
ESTIMATING ACOUSTIC DIRECTION OF ARRIVAL USING A SINGLE STRUCTURAL
SENSOR ON A RESONANT SURFACE

Tre DiPassio, Michael C. Heilemann⇤, Benjamin Thompson, Mark F. Bocko

Department of Electrical and Computer Engineering, University of Rochester, USA

ABSTRACT
The direction of arrival (DOA) of an acoustic source is

a signal characteristic used by smart audio devices to enable
signal enhancement algorithms. Though DOA estimations
are traditionally made using a multi-microphone array, we
propose that the resonant modes of a surface excited by
acoustic waves contain sufficient spatial information that
DOA may be estimated using a singular structural vibration
sensor. In this work, sensors are affixed to an acrylic panel
and used to record acoustic noise signals at various angles
of incidence. From these recordings, feature vectors contain-
ing the sums of the energies in the panel’s isolated modal
regions are extracted and used to train deep neural networks
to estimate DOA. Experimental results show that when all 13
of the acrylic panel’s isolated modal bands are utilized, the
DOA of incident acoustic waves for a broadband noise signal
may be estimated by a single structural sensor to within ±5�

with a reliability of 98.4%. The size of the feature set may
be reduced by eliminating the resonant modes that do not
have strong spatial coupling to the incident acoustic wave.
Reducing the feature set to the 7 modal bands that provide
the most spatial information produces a reliability of 89.7%
for DOA estimates within ±5� using a single sensor.

Index Terms— Direction of arrival (DOA), Vibration
Sensing, Audio Feature Extraction, Structural Sensors

1. INTRODUCTION

Smart audio devices employ microphone arrays to record
acoustic sources [1]. As these devices typically exist in
chaotic, noisy, and untreated environments, signal enhance-
ment must be applied to the recorded signal before it is
interpreted by a smart-home service to ensure that the user’s
request is executed correctly.

One such signal enhancement method commonly em-
ployed in smart devices is acoustic beamforming, which aims
to improve the signal-to-noise ratio of the recorded audio
signal by attenuating sounds that do not arrive from the di-
rection of the desired source [2]. Focusing the beam pattern
toward the desired source location requires an estimation of
the signal’s direction of arrival (DOA). Techniques such as
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inter-sensor time difference of arrival (TDOA), correlative
techniques such as generalized cross-correlation with phase
transform (GCC-PHAT), and the multiple signal classification
algorithm [3, 4, 5, 6] are widely used for DOA estimation.
These techniques each require the simultaneous measurement
of the arriving wave at multiple points in space. While the
estimation accuracy may be improved by increasing the spa-
tial resolution of the microphone array, this comes higher
power consumption, increased hardware expense, and addi-
tional computational cost. As such, there is a need to develop
systems that accurately estimate DOA using as few sensors
as possible.

We propose that a single structural sensor affixed to a
panel surface may be employed to reliably estimate DOA.
When an acoustic wave induces vibrations on a panel, the
contribution of each of the panel’s bending modes to the to-
tal vibration response is dependent on the incident angle of
the wave [7, 8, 9]. This vibration response may be recorded
by a structural vibration sensor, and deep neural networks
(DNNs) may be trained to distinguish the subtle variations
in the relative modal amplitudes to infer DOA. Since the
panel’s resonant modes produce many peaks and dips in the
vibration response across the audible frequency bandwidth,
a previous experiment utilized mel-frequency cepstral coef-
ficients (MFCCs) to reduce the recorded signal to a spectral
feature vector where the relative modal excitations could be
inferred [10]. MFCC feature vectors typically use 40 over-
lapping mel bands to provide a detailed representation of the
auditory spectrum. The feature-space for estimating DOA
proposed in this work is made significantly more compact
by summing the energy in bands that align with the panel’s
resonant modes, and rejecting bands that may not contain
significant spatial information and may cause over-fitting and
other training errors.

Although the panel’s resonances that are leveraged in this
work to estimate DOA will inevitably introduce reverberation
into the recorded signal, intelligibility measurements have
shown that automatic speech recognition systems are still able
to transcribe speech recorded by structural sensors without
a significant accuracy reduction when compared to conven-
tional microphones [11]. Combining these methods with the
emergence of panel-based audio reproduction systems [12]
gives the potential to create new, multimodal interfaces forIC
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smart devices that meet the form-factor requirements of thin,
lightweight displays.

2. RESONANCES OF PANEL VIBRATIONS

2.1. Vibration of a Baffled Panel

For a damped isotropic panel with Young’s Modulus E, Pois-
son’s ratio ⌫, density ⇢, and thickness h, the out-of-plane
displacement w when the panel is excited by external load
p(x, y, t) may be expressed as,

p(x, y, t) =
Eh

3

12(1� ⌫2)
r4

w + bẇ + ⇢hẅ, (1)

where b is the panel’s mechanical loss factor. Solutions for (1)
are found extensively in the literature, such as by Cremer et
al. [13]. The displacement w is a separable function of space
and time that may be written as,

w(x, y, t) = '(x, y)ej!t
. (2)

The resonant modes of the surface can be used to fully de-
scribe the spatial component '(x, y) as,

'(x, y) =
1X

r=1

↵r�r(x, y), (3)

where �r(x, y) is the spatial function of the r
th mode and ↵r

is the mode’s amplitude. For rectangular panels with clamped
boundary conditions, �r(x, y) contains separable sinusoidal
functions along the panels length Lx and width Ly , and modal
indices rm and rn may be used to represent the number of
half-wavelengths in the horizontal and vertical dimensions,
respectively. The resonant frequency !r of each mode un-
der these conditions has been approximated by Mitchell and
Hazel [14] as,

!r = ⇡
2

s
D

⇢h

"✓
mr +�mr

Lx

◆2

+

✓
nr +�nr

Ly

◆2
#
, (4)

where �mr and �nr are edge effect factors used to compen-
sate for clamped boundary conditions. The bandwidth of each
mode is subject to quality factor Qr, given by,

Qr =
!r⇢h

b
. (5)

2.2. Incident Pressure Wave Excitation

For a plane wave pi incident on a baffled panel at angle ✓i

between the in-plane projection of the propagation vector and
the horizontal axis as shown in Fig. 1, the pressure P (x, y) on
the panel’s surface is given by,

P (x, y) = 2Pie
�jk cos ✓ix�jk sin ✓iy, (6)

Fig. 1. A pressure wave pi incident with angle ✓i in the hori-
zontal plane on a baffled panel surface, from [7].

where Pi is the amplitude of the wave at frequency ! and k is
the wave number. The panel mode amplitudes excited by (6)
are given following [7, 8, 9] as,

↵r =
pr(✓i,!)

⇢h(!2
r � !2 + j!r!/Qr)

, (7)

with pr(✓i,!) given by,

pr(✓i,!) = 8PiIrm(✓i,!)Irn(✓i,!). (8)

Irm(✓i,!) and Irn(✓i,!) are coupling factors between the
pressure distribution on the panel due to the incident wave
and the spatial response of each mode and are given by,

Irm(✓i,!) =
m⇡

⇥
1� (�1)me

�j sin ✓i(!Lx/c)
⇤

m2⇡2 � [sin ✓i(!2L2
x/c

2)]
, (9a)

Irn(✓i,!) =
n⇡

⇥
1� (�1)ne�j sin ✓i(!Ly/c)

⇤

n2⇡2 � [sin ✓i(!2L2
y/c

2)]
, (9b)

where c = !
k is the incident wave’s prorogation speed. Sub-

stituting (7) into (3) allows the frequency response of a panel
excited by an incident plane wave to be fully described when
the wave’s incident angle is known.

2.3. Signal Recorded by Structural Sensor

Consider an acoustic source radiating signal s(t) toward
a panel that has a sensor affixed to its surface at position
(x0, y0). If the transfer function from source to sensor is
h✓i(t), the recorded velocity response becomes,

ẇ(x0, y0, t) = s(t)~ h✓i(t), (10)

where h✓i(t) varies by incident angle as described in Sec-
tion 2.2. For s(t) containing broadband white noise, h✓i(t)
can be inferred directly from the recorded signal.
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Fig. 2. Velocity response of the panel showing the isolated modal regions that would be excited by incident acoustic waves.

3. METHODOLOGY

3.1. Experimental Setup

A 2 mm thick acrylic panel with E = 3.2 GPa, ⌫ = 0.35,
⇢ = 1, 180 kg/m3, and (Lx, Ly) = (18 cm, 23 cm) was
constructed. The panel’s spatially-averaged velocity response
with corner excitation was measured using a Polytec PSV-
500 scanning laser vibrometer and plotted in Fig. 2 to show
the modes of the panel that would be excited by incoming
acoustic waves.

The panel was mounted in a semi-anechoic space to a ro-
tary table capable of rotating between ✓i = �90� and 90� in
5� increments relative to a KEF LS50 loudspeaker placed on-
axis at a distance of one-half meter [10]. At each angle of inci-
dence, the panel was excited by 1,800 broadband noise bursts
from the loudspeaker, each with a duration of 100 ms, and
the panel’s response was recorded by a single PCB Piezotron-
ics U352C66 accelerometer arbitrarily positioned off-center
in each dimension.

3.2. Feature Extraction

The vibrometer scan shown in Fig. 2 was used to determine
the center frequencies and bandwidths of the isolated modal
bands in the panel’s vibration response. Note that some bands
may contain degenerate modes, such as the band containing
the (2, 4) and (3, 3) modes. At sufficiently high frequen-
cies, so many modes are excited simultaneously that individ-
ual modes can no longer be observed in the panel’s response
[15, 16]. For this panel, this effect occurs at approximately
4 kHz, so the response above this frequency may be ignored.
The 13 isolated modal bands below this threshold were used
to make a band-pass filter bank Gl with center frequencies fc
and bandwidths �f shown in Table 1. The modes contained
in isolated modal bands with significant degeneracy are la-

beled “unclear” in the table. The energy contained in the l
th

band, E(l), can be computed by,

E(l) =

Z

!
Gl|S(j!)H✓i(j!)|2d!, (11)

where S(j!) and H✓i(j!) are the Fourier transforms of s(t)
and h✓i(t) respectively. The proposed feature vector is an ar-
ray containing E(l) values for the recorded panel vibrations.
The filter bank may be abbreviated to contain only the bands
with modes whose excitation varies strongly with ✓i, as these
modes are hypothesized to be the most useful for determining
DOA. Algorithm 1 shows how (7) is used to rank modes by
variance in ✓i.

The DNNs used in this work are LSTM-based recurrent
neural networks modeled after networks that have shown
promise in classifying colors of broadband noise from spec-
tral features, modified in this case to estimate DOA using
these energy-sum feature vectors with 13 or fewer values of
E(l) [17]. A set of 37,000 broadband noise bursts across all
considered ✓i were used to excite the panel, and the recorded
vibration responses were split into training and validation
sets with a ratio of 80:20. An additional 29,600 responses
were recorded as a testing set. The DNNs were trained with

Algorithm 1 Pseudo-code for selecting modes with the great-
est excitation variance with respect to ✓i

1: for all isolated modes r do
2: for all angles ✓i in dataset do
3: Compute ↵r at ✓i using (7)
4: end for
5: Normalize resulting ↵r values
6: Compute variance of normalized ↵r values
7: end for
8: Rank modes r by greatest variance when varying ✓i
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fc (Hz) �f (Hz) Mode(s) Rank
256.5 60.0 (1,1) 5
454.9 115 (1,2) T6
582.7 88.6 (2,1) 2
784.2 146 (2,2) T6
1168 312 (2,3) 1
1287 210 (3,2) T6
1564 340 (2,4),(3,3) 3
1962 224 Unclear N/A
2233 317 (4,3) 4
2554 666 Unclear N/A
3028 707 Unclear N/A
3430 506 Unclear N/A
3832 900 Unclear N/A

Table 1. Resonant properties of the panel’s modal bands that
are ranked by variance in excitation with respect to ✓i.

a loss function that minimizes the root-mean-square error
between the known incident angle and the estimate returned
by the model using regression. When acting on the testing
set, the reliability of each DNN was determined by its ability
to estimate DOA within an angular tolerance of ±�✓ as the
ratio of the number of correct predictions within ±�✓i to the
total number of bursts in the set whose incident angle was ✓i
[18, 19]. Angular tolerances �✓ of 5�, 10�, and 20� were
used [20].

4. RESULTS AND DISCUSSION

The DNN trained with each of the 13 isolated modal bands
estimated DOA to within ±5� with a reliability of 98.4% as
shown in Table 2. Previously, when MFCC features were uti-
lized, a reliability of 99.8% with an angular tolerance of ±5�

was reported [10]. Therefore, only a 1.4% reduction in re-
liability is observed when a feature vector constructed from
13 resonance-informed filters is utilized in lieu of a more
spectrally-complete feature set utilizing 40 mel filters. In both
cases, the bursts in the testing set were always estimated cor-
rectly within ±10�, an angular tolerance that may be suffi-
cient for many signal enhancement algorithms. It is worth
noting that the reliability values are representative of an ex-
periment that occurred in a well-controlled and semi-anechoic
environment, as the scope of this paper is to suggest the possi-
bility of making DOA estimates from recorded vibration sig-
nals. A more robust DNN and training procedure accounting
for realistic and noisy environments is left to future work.

The abbreviated versions of the resonance-informed filter
bank can be used without significant reduction in reliability,
particularly when removing bands that contain modes with
the smallest excitation variance with respect to ✓i. A DNN
trained using as few as 7 modal bands was able to estimate
DOA to within ±5� with a reliability of 89.7%. When re-
moving bands that contain modes with the largest excitation

Reliability of DOA Estimates to within:
# Bands ±5� ±10� ±20� ±5� ±10� ±20�

13 0.984 1 1
12 0.978 1 1 0.981 1 1
11 0.962 0.998 1 0.977 0.999 1
10 0.966 0.998 1 0.966 0.999 1
9 0.945 0.993 1 0.917 0.991 0.995
8 0.921 0.993 0.998 0.880 0.984 0.994
7 0.897 0.983 0.998 0.836 0.958 0.974

Table 2. Reliability of the DOA estimates made by DNNs
trained with subsets of the resonance-informed filter bank.
Bands are removed in the leftmost columns by least excita-
tion variance when varying ✓i, and removed by most variance
in the italicized rightmost columns.

variance, the reliability fell off more quickly, which supports
the notion that modes whose amplitudes vary significantly
with the incident angle are more effective for DOA estima-
tion. Since several of the reported isolated modal bands con-
tained significant degenerate modes, only 8 of the 13 bands
could be ranked directly with Algorithm 1. In future work,
Algorithm 1 may rank the variance of E(l) directly using em-
pirical data. Additionally, the sensor couples better to certain
modes depending on its location relative to the mode’s nodal
lines. An optimal sensor location based on the panel’s res-
onances should be determined to ensure that the sensor has
strong coupling to all the modes within the isolated bands.

Estimating DOA from harmonic, band-limited speech
signals is a required feature in smart audio devices. MFCC
vectors in prior work showed promise for estimating DOA
from speech-based signals recorded by structural sensors
[10]. While determining DOA from the fricative sounds of
human speech that more closely resemble noise bursts is a di-
rect extension of this work, measuring the effectiveness of the
resonance-informed energy-sum feature vectors proposed in
this work for estimating DOA from harmonic speech sounds
will be a point of emphasis in future work.

5. CONCLUSIONS

The results in this work suggest that compact feature vectors
informed by the resonant properties of a panel surface are suf-
ficient for reliable DOA estimation using a single structural
sensor. DNNs trained utilizing the energy contained in iso-
lated modal bands of a panel’s vibration response were able
to estimate the DOA of broadband noise signals within ±5�

with a reliability of up to 98.4%. The method presented is a
more efficient approach to DOA estimation utilizing surface
vibrations than the previous work, and is an important step in
the design of panel-based smart audio devices.
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