

1 **Holocene water balance variations in Great Salt Lake, Utah: application of**
2 **GDGT indices and the ACE salinity proxy**

3 **Rachel T. So^{1*}, Tim K. Lowenstein², Elliot Jagniecki³, Jessica E. Tierney⁴, and Sarah J.**
4 **Feakins¹**

5 ¹Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089,
6 USA.

7 ²Department of Geological Sciences and Environmental Studies, Binghamton University,
8 Binghamton, NY 13902, USA.

9 ³Utah Geological Survey, Salt Lake City, UT 84114, USA.

10 ⁴Department of Geoscience, University of Arizona, Tucson, AZ 85721, USA.

11 Corresponding author: Rachel T. So (rtso@usc.edu)

12 **Key Points:**

- 13 • Glycerol dialkyl glycerol tetraethers produced by bacteria and archaea detect Holocene
14 limnological changes at Great Salt Lake.
- 15 • The Archaeol and Caldarchaeol Ecometric salinity index remains near its upper limit in
16 Great Salt Lake from 7.2 ka to present.
- 17 • A 5.5 ka step shift in microbial lipids suggests limnological change coeval with the end
18 of a regional dry spell in the mid-Holocene.

19 **Abstract**

20 Great Salt Lake, Utah, is a hypersaline terminal lake in the Great Basin, and the remnant of the
21 late glacial Lake Bonneville. Holocene hydroclimate variations cannot be interpreted from the
22 shoreline record, but instead can be investigated by proxies archived in the sediments. GLAD1-
23 GSL00-1B was cored in 2000 and recently dated by radiocarbon for the Holocene section with
24 the top 11 m representing ~7 ka to present. Sediment samples every 30 cm (~220 years) were
25 studied for the full suite of microbial membrane lipids, including those responsive to temperature
26 and salinity. The Archaeol and Caldarchaeol Ecometric (ACE) index detects the increase in
27 lipids of halophilic archaea, relative to generalists, as salinity increases. We find Holocene ACE
28 values ranged from 81-98, which suggests persistent hypersalinity with <50 g/L variability
29 across 7.2 ka. The temperature proxy, MBT'_{5Me}, yields values similar to modern mean annual air
30 temperature for months above freezing (MAF = 15.7°C) over the last 5.5 ka. Several GDGT
31 metrics show a step shift in microbial communities and limnology at 5.5 ka. Extended archaeol
32 detects elevated salinity during the regional mid-Holocene drought, not readily detected in the
33 ACE record that is often near the upper limit of the index. We infer that the mid-Holocene GSL
34 was shallower and saltier than the late Holocene. The current drying may be returning the lake to
35 conditions not seen since the mid-Holocene.

36 Keywords: GDGT, ACE, Holocene, Great Salt Lake

37 **Plain Language Summary**

38 Great Salt Lake in Utah is the remnant of a once much larger lake and is currently at a
39 historically low level. We study a lake sediment core, collected in 2000 from the floor of Great
40 Salt Lake, and recently dated. We take new samples from the core and measure them for
41 molecules made by microbes, whether living in the lake or washed in from the surrounding soils.
42 We reconstruct lake conditions during the last 7,200 years and assess whether lake level
43 fluctuated during that time. Over the past 7,200 years, we find evidence that the lake was
44 shallower from 7,200 to 5,500 years ago but has been relatively stable until the modifications of
45 the lake in the 20th century and the current drying trend.

46 **1. Introduction**

47 Paleoclimate reconstructions of the Holocene provide insights into the stability or sensitivity of
48 our present climate state. While it is a time of relative climatic stability compared to the glacial-
49 interglacial cycles that preceded it, the changes may in some cases be profound especially in
50 zones prone to drought-stress. In southwestern North America, lake sediments and speleothems
51 record a generally wet early Holocene (11 to 8 ka), and a dry middle Holocene (8 to 4 ka) with a
52 return to relatively moist late Holocene (Lachniet et al., 2020 and references therein). Although
53 many Holocene climate modeling studies have struggled to simulate the mid-Holocene warmth,
54 recent modeling has found this emerges with the addition of vegetation feedbacks (Thompson et
55 al., 2022). As the mid-Holocene warming may be an analog for the current warming, it is studied
56 here as context for the current drought in the region.

57 Great Salt Lake (GSL), UT, USA, at 41.1°N is a remnant of a larger lake, Lake Bonneville. Lake
58 Bonneville reached its maximum size during the termination of the Last Glacial Maximum
59 (LGM) at ~18 ka then shrank to the areal extent of modern GSL by ~13 ka (Oviatt et al., 2021).
60 The drying between the LGM and Holocene greatly increased salinity in the residual lake and
61 left behind the Bonneville salt flats. This drastic shrinking and lake level drop was recorded in
62 preserved shorelines (Oviatt et al., 2021). In contrast, any recessional shorelines of the mid-
63 Holocene arid interval have been lost to subsequent late Holocene transgressions. Instead,
64 continuous geochemical records from sediment cores have potential to reconstruct Holocene
65 climate. As its name implies, Great Salt Lake is salty with current salinity of 120-180 g/L (data
66 for 2010-2021; Rupke and McDonald, 2012), making it hypersaline (>50 g/L salinity). In a
67 closed-basin lake like GSL, salinity is controlled by the hydrologic balance between input from
68 rivers, springs/groundwater, and precipitation, and output as evaporation, with increased
69 evaporation resulting in lower lake levels and higher salinity. Using organic geochemical
70 evidence, we seek to reconstruct GSL salinity and limnological conditions across the Holocene
71 to provide longer context for present-day drying trends and declining lake levels (Wurtsbaugh et
72 al., 2017).

73 Archaeol is a diphytanyl glycerol diether (DGD), a membrane lipid made by a diverse range of
74 archaea (e.g. Vandier et al., 2021 and references therein) including abundant production by
75 halophilic *Euryarchaeota* (Dawson et al., 2012; Macalady et al., 2004; Teixidor et al., 1993).
76 Proportional abundances of archaeol have been used to track the contrasting salinity of

77 hypersaline, marine, estuarine, and freshwater environments (Turich and Freeman, 2011).
78 Application of this method to lake sediment cores has revealed large salinity fluctuations in the
79 late Pleistocene in Lake Elsinore (CA) and Searles Lake (CA) (Feehins et al., 2019; Peaple et al.,
80 2022), but the response to more subtle variations in the Holocene has not yet been tested.
81 Another DGD, extended archaeol, has been identified as a more diagnostic biomarker for
82 halophilic *Euryarchaeota* (Bale et al., 2019; Vandier et al., 2021), but not yet reported from
83 southwestern North American hypersaline lakes.

84 Aside from DGDs, archaea also produce a number of isoprenoid glycerol dialkyl glycerol
85 tetraethers (isoGDGTs) and these have been used as microbial and environmental indicators in
86 aquatic environments. GDGT-0 (previously referred to as caldarchaeol) is produced by
87 *Crenarchaeota*, *Thaumarchaeota*, and some *Euryarchaeota* (Schouten et al., 2013). High
88 proportions of this compound, in the absence of abundant crenarchaeol, have been used to denote
89 production by methanogenic *Euryarchaeota*, which can be indicative of stratified waters (Baxter
90 et al., 2021; Blaga et al., 2009; Naeher et al., 2014). In stably stratified hypersaline lakes, mixing
91 may occur during lake freshening events (Peaple et al., 2022) or in lakes shallow enough for
92 wind mixing (Stefanescu et al., 2021).

93 Branched GDGTs (brGDGTs) are bacterial membrane lipids that have also been widely applied
94 to reconstruct paleoenvironments including applications to soils and lacustrine sediments for
95 temperature reconstructions (e.g. Martinez-Sosa et al., 2021; Peterse et al., 2012; Weijers et al.,
96 2007). Complications with lake depth have been noted with this paleothermometry technique in
97 nearby alpine lakes with temperature stratification (Stefanescu et al., 2021). As GSL is located at
98 mid-elevation (1,280 masl) and has density primarily controlled by salinity (rather than
99 temperature), those alpine lake depth complications are not expected to apply. However, the
100 hypersaline environment of GSL may carry additional complications, as salinity outliers have
101 been noted in existing calibrations (Martinez-Sosa et al., 2021). Here, using DGDs, isoGDGTs,
102 and brGDGTs, we generate a 7.2 ka hydroclimate history of GSL to track climate change and
103 limnological conditions from the middle to late Holocene, paying particular attention to the
104 limitations of GDGT proxies in this extreme environment.

105 **1.1. Study location**

106 GSL is a hypersaline terminal lake located in the eastern part of the United States' Great Basin
107 (**Figure 1**). At the lake's historic mean elevation of 1,280 masl (m above sea level), the lake is
108 more than 10 m deep across the central part of the basin and averages 5.5 m deep (Belovsky et
109 al., 2011; Shope and Angeroth, 2015). In 2000, the Global Lakes Drilling (GLAD) initiative
110 drilled four sites to a total of 120 m below lake floor reaching back to the boundary of oxygen
111 isotope stages 6 and 7 (~175 ka) (Dinter et al., 2000). The original study reported density,
112 magnetic susceptibility, mineralogy, inorganic carbon, and organic carbon from the recovered
113 cores (Dinter et al., 2000). Recently the Holocene sedimentary section in the upper 11 m of
114 GLAD1-GSL00-1B (41.094°N, 112.365°W, 8.4 m water depth) was dated using radiocarbon
115 (Bowen et al., 2019). The Holocene sedimentary sequence is the target for the biomarker
116 reconstructions here.

117 The modern lake water balance of Great Salt Lake includes inflow from rivers (66%),
118 precipitation (31%), and groundwater (3%) (Jones et al., 2009). The water leaves by evaporation
119 from the closed basin (Jones et al., 2009), although recent work revises groundwater inflow up to
120 10-12% (Bunce et al., 2022). Instrumental records from 1966 to present indicate 7 m of
121 fluctuation in lake levels (Rupke and McDonald, 2012; United States Geological Survey, 2022b)
122 due to the changing water balance. During the high stand of the last glacial maximum/Heinrich
123 Stadial 1 (HS1), GSL occupied a much greater areal extent, up to ~52,000 km², forming
124 freshwater Lake Bonneville (Baxter et al., 2005; Oviatt et al., 2021). Continued downcutting at
125 the outflow point eventually caused rapid overflow during the Bonneville flood, dropping lake
126 levels by 100 m (Oviatt et al., 2021). Since then, the drier climate caused continued lake
127 shrinkage to modern levels by the start of the Holocene, leading to the formation of the
128 Bonneville Salt Flats (west of the present-day GSL) and a reduction of lake size to <10% of its
129 former extent.

130 Riverine inflow to GSL primarily comes from the Bear ($32.5 \pm 34.4 \text{ m}^3/\text{s}$), Jordan (3.5 ± 1.2
131 m^3/s), and Weber Rivers ($8.1 \pm 15.9 \text{ m}^3/\text{s}$; all reported as 2000-2020 annual mean discharge).
132 The Bear River records low discharge (2-5 m^3/s) in the dry summer months from July to
133 September, with flow rising consistently during the fall to a plateau of 20-50 m^3/s in January and
134 February. Peak flows occur in March to April, reaching >50 m^3/s , and then drops back down to
135 2-5 m^3/s by June (United States Geological Survey, 2022a).

136 The modern GSL is separated into a northern and southern section by a railroad causeway built
137 in 1959. As rivers exclusively flow into the South Arm, salinities are 120-180 g/L, whereas the
138 North Arm has salinities of 290-340 g/L and a permanent halite bottom crust (data for 2010-
139 2021; Jagniecki et al., 2021; Rupke and McDonald, 2012). Salinity is heterogeneous around the
140 shallow lake margins with freshwater influence near river inflows during peak discharge
141 associated with times of snowmelt and evaporative enrichment along other margins, especially
142 during summer and drought. At times in the instrumental record, a halocline has developed in the
143 south arm, with higher salinities at depth and fresher conditions at the surface, but it is currently
144 well mixed (Rupke and McDonald, 2012). While the North Arm is a restricted evaporation pond,
145 the South Arm has major river inflow and is more representative of the pre-causeway GSL
146 (Belovsky et al., 2011).

147 GSL has fluctuated between 7.6 m and 13.7 m deep over the historical record (1847-present)
148 (Belovsky et al., 2011) with fluctuations during the seasonal cycle of summer evaporation and
149 spring snow melt, interannual variability, and recent declining trends. In August 2022, GSL lake
150 levels reached a historic low at just 6.8 m deep, with a surface elevation of 1,277 m, 3 m below
151 the historic average (Ramirez, 2022). Current drought and diversion of inflowing rivers primarily
152 for agriculture are projected to lead to further declines in lake levels in the coming decades
153 (Wurtsbaugh et al., 2017). The decreasing areal extent of GSL is leaving infrastructure at
154 abandoned shorelines and there are growing concerns over health effects associated with exposed
155 lake bed dust (Null and Wurtsbaugh, 2020; Perry et al., 2019). The increase in salinity is
156 projected to negatively impact the lake ecosystem, which will be detrimental to migratory shore
157 and water birds (Jewell, 2021; Sorensen et al., 2020). Changing salinities and lake access will
158 also affect existing resource extraction, including the brine shrimp cyst and mineral extraction
159 industries (Naftz, 2017; Wurtsbaugh et al., 2017). This study seeks to generate Holocene
160 paleolimnological reconstructions that extend beyond the instrumental record to provide longer
161 baselines against which current trends can be compared.

162 **2. Age model**

163 Bowen et al. (2019) measured the radiocarbon of various materials (including brine shrimp cysts,
164 algal mats, *n*-alkanes, carbonate, total organic carbon, and terrestrial macrofossils) from the GSL

165 sediment core GLAD1-GSL00-1B and formulated a radiocarbon age model based upon the cysts
166 only (n = 15 dates). While some components are older (carbonates) or younger (charcoal), we are
167 interested in all the organics that formed in the lake waters as age control for the lake biomarker-
168 based record. In addition to cysts, the short chain *n*-alkanes, algal mats, and total organic carbon
169 (TOC) all appear to form in lake waters. Thus, these additional age constraints are used to inform
170 a revised age model here (n = 27 dates, **Figure 2a**), which is modestly different from the prior
171 age model (**Figure 2b**). The revised age model is retained, as it has the most constraints. Despite
172 producing older ages (\leq 300 years) between 5.5 and 3 ka (**Figure 2c**), this is trivial for the 220-
173 year resolution of this study but represents uncertainty on the timing of the 5.5 ka transition
174 identified in this study.

175 **3. Materials and methods**

176 **3.1. Lipid extraction**

177 We subsampled sediment core GLAD1-GSL00-1B at 30 cm intervals (approximately every 220
178 yrs) with each sample spanning \sim 1 cm (integrating \sim 7 yr) and samples were stored frozen at \sim
179 20°C until analysis. Sediment samples (\sim 10 g) were freeze-dried then homogenized with a
180 mortar and pestle. Total lipid extracts (TLE) were obtained for each sample by immersion in 9:1
181 dichloromethane (DCM):methanol (MeOH) at 100°C and 1.034×10^4 kPa for 15 min using a
182 Dionex ASE 350 Accelerated Solvent Extraction at the University of Southern California.

183 **3.2. GDGT quantification**

184 TLEs were dissolved in 40 μ L 99:1 hexane:isopropanol and filtered through 0.45 μ m PTFE
185 (polytetrafluoroethylene) filters. 10 μ L (or $\frac{1}{4}$ of the sample) was injected and archaeol,
186 isoGDGTs, and brGDGTs were separated using an Agilent 1260 Infinity high-performance
187 liquid chromatograph (HPLC) coupled to an Agilent 6120 single quadrupole mass spectrometer
188 with two Ethylene Bridged Hybrid (BEH) Hydrophilic Interaction (HILIC) silica columns (2.1
189 mm \times 150 mm, 1.7 μ m; Waters) in series at 30°C following the methods of Hopmans et al.
190 (2016). The mobile phase is hexane:isopropanol with a linear gradient transition between
191 98.2:1.8 for 25 mins, 96.5:3.5 for 25 mins, 90:10 for 50 mins, and reverting to the initial mixture
192 for 20 mins, for a total of 120 minutes at a flow rate of 0.20 mL min^{-1} . Ionization was via
193 positive ion atmospheric pressure chemical ionization (APCI) and detection was in selective ion

194 monitoring (SIM) mode, targeting the *m/z* for archaeol (653.8), isoGDGTs (1302.3, 1300.3,
 195 1298.3, 1296.3, 1292.3), and bGDGTs (1050.0, 1048.0, 1046.0, 1036.0, 1034.0, 1032.0, 1022.0,
 196 1020.0, 1018.0) at a mass tolerance of 1 dalton. Integration of peak areas was done using the
 197 MATLAB package ORIGAmI and each compound was quantified by comparison to the peak
 198 area for 500 ng of a C₄₆ internal standard (*m/z* 743.8) from the University of Arizona (Huguet et
 199 al., 2006). Six samples were rerun in SIM mode with an additional target to detect extended
 200 archaeol (*m/z* 723.8), injecting 10 μ L out of 200 μ L as it is an abundant compound, but otherwise
 201 using the same conditions. We compared the raw concentrations of summed branched and
 202 summed isoprenoidal compounds (Σ isoGDGT and Σ brGDGT) in ng/g sediment, to assess the
 203 productivity of each compound class. Here, we also include 7-methyl isomers (isomers with
 204 methyl groups bonded in the C₇ position) in the Σ brGDGT calculations due to their high
 205 abundance in this hypersaline environment (Wang et al., 2021). An example chromatogram is
 206 shown in **Figure S1**.

207 The ACE index, a paleosalinity proxy, was calculated using the following equation from Turich
 208 and Freeman (2011):

$$209 ACE = \frac{archaeol}{archaeol+GDGT-0} \times 100 \quad (1)$$

210 ACE values were converted to salinity according to the calibration of Turich and Freeman
 211 (2011), where:

$$212 ACE = 0.35 \times salinity - 5.4 \quad (2)$$

213 We also monitored for extended archaeol, biomarker specific to halophilic *Euryarchaeota*, in a
 214 subset of samples (Bale et al., 2019; Vandier et al., 2021) and calculate the ratio R_{EA} following
 215 Vandier et al. (2021):

$$216 R_{EA} = \frac{extended\ archaeol}{archaeol+extended\ archaeol} \quad (3)$$

217 The MBT'_{5Me} index, a brGDGT temperature proxy, was calculated according to De Jonge et al.
 218 (2014a):

219
$$MBT'_{5Me} = \frac{Ia+Ib+Ic}{Ia+Ib+Ic+IIa+IIb+IIc+IIIa} \quad (4)$$

220 where I-III indicates the number of methyl groups (4-6), and a-c the number of cyclopentane
 221 rings (0-2). While MBT'_{5Me} is most frequently used as an indicator for temperature, recent work
 222 by Martinez-Sosa et al. (2021) and Wang et al. (2021) found evidence that salinity, particularly
 223 hypersalinity, may bias temperature estimates. We convert the MBT'_{5Me} values to mean annual
 224 temperature for months above freezing (MAF) using BayMBT₀, the Bayesian calibration of
 225 Dearing Crampton-Flood et al. (2020) available for both global surface soils and lake sediments.
 226 Martinez-Sosa et al. (2021) suggested that alkaline, saline lakes may receive greater brGDGT
 227 input from surrounding soils than from in lake production. Thus, we test both the soil and lake
 228 calibrations here.

229 The CBT' index is used as a pH indicator and was also calculated following the equation of De
 230 Jonge et al. (2014a):

231
$$CBT' = \log_{10} \left(\frac{Ic+IIa'+IIb'+IIc'+IIIa'+IIIb'+IIIc'}{Ia+IIa+IIIa} \right) \quad (5)$$

232 where ' denotes structural isomers with methyl groups bonded in the C₆ rather than C₅ position.
 233 We calculated pH values using the global soils and lakes calibrations of Raberg et al. (2022):

234
$$CBT' = 0.50 \times \text{soil pH} - 3.65 \quad (6)$$

235
$$CBT' = 0.23 \times \text{lake pH} - 1.98 \quad (7)$$

236 As the CBT' formulation in Raberg et al. (2022) included a negative sign, both calibration
 237 equations were adjusted to maintain the positive formulation of CBT' (equation 5) as originally
 238 defined by De Jonge et al. (2014a).

239 The IR_{6Me} index is the ratio of 6-methyl brGDGT isomers to the sum of 5- and 6-methyl
 240 brGDGT isomers, calculated according to De Jonge et al. (2014b):

241
$$IR_{6Me} = \frac{IIa'+IIb'+IIc'+IIIa'+IIIb'+IIIc'}{IIa+IIb+IIc+IIIa+IIIb+IIIc+IIa'+IIb'+IIc'+IIIa'+IIIb'+IIIc'} \quad (8)$$

242 The fractional cyclization (fC) index shows the proportion of brGDGTs with cyclopentane rings
 243 and is calculated according to Martinez-Sosa and Tierney (2019):

$$244 fC = \frac{\Sigma(b) + 2\Sigma(c) + \Sigma(b') + 2\Sigma(c')}{\Sigma(a) + \Sigma(b) + \Sigma(c) + \Sigma(b') + \Sigma(c')} \times 0.5 \quad (9)$$

245 The branched and isoprenoidal tetraether (BIT) index measures the proportion of branched to
 246 isoprenoidal inputs, with the isoprenoidal inputs represented only by crenarchaeol. BIT is
 247 calculated using the equation of Hopmans et al. (2004):

$$248 BIT = \frac{Ia + IIa + IIa' + IIIa + IIIa'}{Ia + IIa + IIa' + IIIa + IIIa' + cren} \quad (10)$$

249 However, BIT is limited in environments where crenarchaeol is a minor constituent; in such
 250 cases it may be more useful to compare the summed branched and isoprenoidal compounds using
 251 the ratio $R_{i/b}$:

$$252 R_{i/b} = \frac{\Sigma isoGDGT}{\Sigma brGDGT} \quad (11)$$

253 BIT was originally developed as a measure of terrestrial GDGT input to marine environments,
 254 but recent work by Xiao et al. (2016) introduced the $\Sigma IIIa / \Sigma IIa$ ratio as a measure solely of
 255 brGDGT sourcing without including crenarchaeol:

$$256 \Sigma IIIa / \Sigma IIa = \frac{IIIa + IIIa'}{IIa + IIa'} \quad (12)$$

257 Martin et al. (2020) and Ramos-Roman et al. (2022) later extended this to lacustrine
 258 environments and included the 7-methyl isomers (denoted by ''):

$$259 \Sigma IIIa / \Sigma IIa = \frac{IIIa + IIIa' + IIIa''}{IIa + IIa' + IIa''} \quad (13)$$

260 4. Results

261 We measured the individual isoGDGT and brGDGT abundances along with archaeol abundance
 262 (data available at NOAA; So et al., 2022). IsoGDGTs are dominated by GDGT-0 (**Figure 3a**)

263 and we show the distribution of the remaining isoGDGTs (**Figure 3b**). Σ_{isoGDGT} and
264 Σ_{brGDGT} were similar in magnitude (**Figure 3c**). Σ_{isoGDGT} values had a mean of 168 ng/g (1σ
265 = 56 ng/g) and Σ_{brGDGT} values had a mean of 117 ng/g (1σ = 39 ng/g). Only 5 out of the 35
266 samples had Σ_{brGDGT} exceeding Σ_{isoGDGT} (by <30 ng/g).

267 The salinity proxy, the Archaeol and Caldarchaeol Ecometric (ACE), remained relatively
268 invariant throughout the record with a mean of 90.5 (1σ = 3.7) from 7.2 ka to present; Z-scores
269 range from -2.5 to 2.0 (**Figure 4a**). Statistical analysis using the R Package EnvCpt (Beaulieu
270 and Killick, 2018) for environmental time series changepoint detection confirms a single
271 changepoint in the mean and variance for the $\text{MBT}'_{5\text{Me}}$ index between a mean of 0.49 (1σ = 0.05)
272 before 5.5 ka to a mean of 0.67 (1σ = 0.05) from 5.5 ka to present (**Figure 4b**, **Figure S2b**). The
273 same changepoint analysis identified shifts at the same time in other indices as follows. $\text{IR}_{6\text{Me}}$
274 values showed a small increase from 0.61 (1σ = 0.02) before 5.5 ka to 0.69 (1σ = 0.03) after
275 (**Figure 4c**, **Figure S2c**). The fC index shifted from 0.23 (1σ = 0.02) before 5.5 ka to 0.15 (1σ =
276 0.03) after (**Figure 4d**, **Figure S2d**). The $\Sigma_{\text{IIIa}}/\Sigma_{\text{IIa}}$ ratio including 7-methyl isomers remained
277 constant over 7.2 ka (**Figure 4e**), averaging 0.84 (1σ = 0.13). However, when 7-methyl isomers
278 are excluded, a step shift at 5.5 ka is seen, with $\Sigma_{\text{IIIa}}/\Sigma_{\text{IIa}}$ averaging 0.64 (1σ = 0.08) pre-shift
279 and 0.38 (1σ = 0.06) post-shift (**Figure S2e**). Additional indices were relatively invariant. CBT'
280 values averaged -0.01 (1σ = 0.08) across the record (**Figure S3c**). The BIT index was high and
281 invariant across 7.2 ka (**Figure S3f**), with a mean of 0.95 (1σ = 0.02). $R_{i/b}$ averaged 1.51 (1σ =
282 0.05) across 7.2 ka, indicating archaeal isoGDGTs are generally more abundant than bacterial
283 brGDGTs (**Figure S3g**). As ACE was relatively insensitive, we measured extended archaeol in
284 six samples. We found R_{EA} was as high as 40% prior to 5.5 ka (mean 20%, 1σ = 12%) and
285 consistently low after 5.5 ka (mean 6%, 1σ = 3%) (**Figure 4a**).

286 5. Discussion

287 5.1. GSL Holocene paleosalinity

288 Measured ACE values for the Holocene GSL interpreted with the calibration of Turich and
289 Freeman (2011) indicate a mean salinity of 274 g/L (1σ = 11 g/L) with <50 g/L of variability for
290 the whole record. Thus, from 7.2 ka to present, we find GSL to be hypersaline and its salinity to
291 be relatively invariant (**Figure 5**). The low variability (<50 g/L) likely results from applying the

292 ACE index at its upper limits. With all samples having ACE values >80 (almost all archaeol with
293 little GDGT-0), the index would have limited sensitivity to variations at such high salinities. At
294 deeper depths in the same GLAD core that extends through Pleistocene pluvials, the ACE proxy
295 could be applied to study a larger range of salinities. However, in the Holocene hypersaline
296 terminal lake system, we approach the upper limit of the index.

297 Modern lake measurements indicate the salinity of the North Arm brine is over 300 g/L, and the
298 South Arm brine is close to 140 g/L (the latter being more reflective of GSL prior to causeway
299 separation). Historical measurements (data for 1966-2020, Rupke and McDonald, 2012) indicate
300 the salinity range of surface samples and depth profiles in the North Arm is 250-340 g/L and the
301 South Arm is 100-220 g/L. Although the available ACE calibration (Turich and Freeman, 2011)
302 suggests salinities in the range of 248-295 g/L during the mid to late Holocene, these estimates
303 appear too high, as this is higher than the modern and historical measurements for the South
304 Arm, with such values found only in the North Arm today. Overestimates of salinity using ACE
305 (values ranging 14-67) have previously been reported in the Piedmont Basin (Italy), which was
306 deposited at the onset of the Miocene Messinian salinity crisis (Natalicchio et al., 2017). This
307 was attributed to archaeol and GDGT-0 production by methanotrophic *Euryarchaeota* and
308 *Thaumarchaeota* in addition to halophilic archaea. In the Holocene GSL, the *Euryarchaeota* are
309 likely producers based on high GDGT-0 and low crenarchaeol (**Figure 3a**).

310 Absolute salinities are therefore approximations given the limited datasets for calibration and the
311 lack of laboratory quantification standards for each of the analytes. Turich and Freeman (2011)
312 noted that HPLC-MS measurements made in different laboratories have differential ionization of
313 archaeol and GDGT-0, which Natalicchio et al. (2017) also noted. Given the present lack of
314 robust quantification and comparability, we interpret the ACE index as a qualitative indicator of
315 salinity. In addition to relative response factors, the different ecologies of different aquatic
316 communities and their limited calibration each affect the quantitative interpretation of the proxy
317 at present. We can rule out low GDGT-0 relative response factors based on analyses with the
318 same instrument conditions in other sedimentary archives across the full range of the ACE index
319 (Feakins et al., 2019; Peaple et al., 2021). In the Holocene GSL, we may expect some archaeol
320 and GDGT-0 production by halophilic methanogens but not *Thaumarchaeota* given the high
321 GDGT-0/crenarchaeol ratios (based on the inferences of Natalicchio et al. (2017)). Instead, the

322 dominant producers are likely methanogenic *Euryarchaeota*, which can be indicative of stratified
323 waters (Baxter et al., 2021; Blaga et al., 2009; Naeher et al., 2014). The narrow range and
324 consistently high calculated ACE values of 80-100 suggest limited microbial ecology variability
325 or a loss of sensitivity to salinity variations near the index maximum.

326 We can also test the ACE salinity proxy through comparison to other evidence for hypersalinity.
327 Bowen et al. (2019) found brine shrimp cysts throughout the core section. In modern GSL, brine
328 shrimp are abundant in the south arm and previous studies have identified the optimum salinity
329 range for these shrimp to be 120-160 g/L, below which brine shrimp are limited by predation and
330 above which by physiological stress (Great Salt Lake Salinity Advisory Committee, 2021). The
331 presence of cysts seems to indicate ACE overestimates salinity. However, there are likely spatial
332 and temporal differences between ACE and cysts as salinity recorders as we will explore. Brine
333 shrimp live in shallow, marginal shore environments while their cysts float near the surface and
334 can be transported/deposited in deeper parts of the lake. In comparison, halophilic archaea can be
335 found throughout the water column and may record salinities at different depths including the
336 saltier deep water at density stratified times. Seasonally, brine shrimp become very productive in
337 late spring when temperatures reach 18-20°C while archaea may be most productive during the
338 warm summer. Thus, high ACE values may not indicate a calibration problem for this system
339 and instead the mismatch between high ACE and cyst may reflect seasonally varying or depth
340 stratified salinity.

341 A biomarker more specific to halophilic archaea, but that has not yet been developed into a
342 quantitative proxy, is extended archaeol (Bale et al., 2019; Vandier et al., 2021). We measured
343 extended archaeol for six samples (three pre-5.5 ka, three post-5.5 ka) and detect this compound
344 in all six. We calculate R_{EA} , defined by Vandier et al. (2021) as the ratio of extended archaeol to
345 the sum of extended archaeol and archaeol, and find R_{EA} to range from 3-30%, with the pre-5.5
346 ka average being 20% ($1\sigma = 12\%$) and the post-5.5 ka being 6% ($1\sigma = 3\%$) (**Figure 4a, 5b**). The
347 presence of this compound confirms the presence of abundant halophilic *Euryarchaeota*. Vandier
348 et al. (2021) broadly identifies an increase in R_{EA} with an increase in salinity and this, together
349 with generally higher R_{EA} pre-5.5 ka, may suggest higher salinities during the arid mid-
350 Holocene. However, as extended archaeol is a relatively novel compound and its abundance

351 cannot currently be directly converted to salinity values, further studies are needed to validate
352 this interpretation.

353 Overall, both high ACE values, constant brine shrimp cyst presence, and high quantities of
354 extended archaeol indicate GSL hypersalinity over the past 7.2 ka. Given that GSL ACE values
355 extend beyond the upper limits of the calibration of Turich and Freeman (2011) and the lack of
356 an applicable local calibration, the calculated salinities may be overestimates and we consider
357 reconstructions to be semi-quantitative using existing ACE calibrations. The limited variability
358 detected by ACE suggests a role for an additional hypersalinity marker, extended archaeol to
359 discern variations in extreme salinity in this setting.

360 **5.2. MBT'_{5Me} temperature record**

361 Using the BayMBT₀ lake calibration, the mean annual temperature of months above freezing
362 (MAF) averaged 18°C ($1\sigma = 3^\circ\text{C}$) throughout the record, with a mean of 15°C ($1\sigma = 2^\circ\text{C}$) before
363 5.5 ka and 20°C ($1\sigma = 2^\circ\text{C}$) after (Figure 6). Lower MAF estimates resulted from the soil
364 calibration, averaging 14°C ($1\sigma = 3^\circ\text{C}$) throughout the record, 10°C ($1\sigma = 2^\circ\text{C}$) before 5.5 ka,
365 and 15°C ($1\sigma = 2^\circ\text{C}$) after 5.5 ka. After the step change at 5.5 ka, the soil-based calibration
366 yields MAF estimates that closely match those of present-day Salt Lake City (15.7°C; National
367 Centers for Environmental Information, 2022), whereas the lake-based calibration yielded
368 temperatures that were on average 4°C too warm. A warm bias for saline lakes had previously
369 been reported from the global lakes calibration dataset including nearby Mono Lake, California
370 (Martinez-Sosa et al., 2021).

371 Reconstructed temperatures apparently increased by 5°C at 5.5 ka (Figure 6). Temperatures
372 reconstructed using the soil calibration before 5.5 ka were much cooler than expected when
373 compared against modern temperatures, whereas using the lake calibration temperatures were
374 similar to modern. Previous climate records suggest the mid-Holocene to be a warm, arid period
375 relative to the late Holocene and no known climatic processes would support a step change in
376 MAF of that magnitude at that time (see Section 5.4). As we also detect a step shift at 5.5 ka in
377 several GDGT indices (see Section 5.3 and Figure S2), it is likely that non-thermal changes in
378 GSL at 5.5 ka affected the MBT'_{5Me} proxy, whether through a change in the microbial
379 community between a saltier, shallower lake and a deeper lake with increased overturning and

380 bottom water oxygenation, and/or a shift in the productivity within the lake, and/or changes in
381 the influx of microbial lipids from surrounding soils. We do find evidence from extended
382 archaeol relative to archaeol that the pre-5.5 ka GSL was saltier (**Figure 5b**). We also find an
383 increase in IR_{6Me} , decrease in fC, and decrease in $\Sigma IIIa/\Sigma IIa$ excluding 7-methyl isomers, which
384 also point to a shift in the microbial community and their lipids within the lake. Whereas
385 exploration of soil versus lake provenance is, to some extent, inconclusive (see supplementary),
386 some of the questions remain unclear and signal a need for more regional calibration of
387 microbial communities in saline lake systems. While we are not certain about the nature of the
388 microbial community change, we see signs of non-thermal factors and we do not interpret the
389 temperatures for 7.2-5.5 ka (**Figure 6**, yellow shading).

390 **5.3. Limnology shift at 5.5 ka**

391 Although the ACE index may be relatively insensitive to salinity change in the last 7.2 ka given
392 the hypersalinity of the lake, other biomarker indices show evident changes. Changepoint
393 analysis revealed a shift in several GDGT indices that indicate shifts in limnological conditions
394 at 5.5 ka (MBT'_{5Me} , IR_{6Me} , fC, and $\Sigma IIIa/\Sigma IIa$) (**Figure 4**, **Figure S2**). We see an increase in
395 MBT'_{5Me} values at 5.5 ka (**Figure 4b**). As MBT'_{5Me} is a paleotemperature proxy, these values
396 alone would indicate increased temperatures. The increase in IR_{6Me} at this time means a
397 proportional increase in 6-methyl brGDGT isomers (**Figure 4c**). Greater proportions of 6-methyl
398 isomers have been linked to higher pH (De Jonge et al., 2014a; Raberg et al., 2021; Raberg et al.,
399 2022), comparatively more aquatic production than soil production (De Jonge et al., 2014b;
400 Kirkels et al., 2020), lower soil water content (Dang et al., 2016), and/or higher conductivity
401 (Raberg et al., 2021). A decrease in fC is a decrease in the proportions of cyclized brGDGTs
402 (**Figure 4d**). Less cyclization of brGDGTs has been linked to lower pH/conductivity (Raberg et
403 al., 2021), and/or comparatively more soil production (Kirkels et al., 2020). We also see a step
404 decrease at 5.5 ka in $\Sigma IIIa/\Sigma IIa$ values when 7-methyl isomers are excluded (**Figure 4e**). Lower
405 $\Sigma IIIa/\Sigma IIa$ values indicates a lower proportion of brGDGTs with six methyl groups compared to
406 those with five methyl groups and has been linked to increased soil inputs to lacustrine
407 environments (Martin et al., 2020; Ramos-Roman et al., 2022). However, when 7-methyl
408 isomers are accounted for, the $\Sigma IIIa/\Sigma IIa$ ratio remains relatively constant. Principal component

409 analysis (PCA) of GSL samples further supports a shift in lake conditions at 5.5 ka with samples
410 pre- and post-5.5 ka plotting in separate clusters (**Figure S4a**).

411 MBT'_{5Me} values are low prior to this shift and, using the soil calibration, yield unrealistically cold
412 temperatures (**Figure 6**). Lake production of brGDGTs has a ‘colder’ distribution than soils
413 (Martinez-Sosa et al., 2021), thus a shift to *in situ* aquatic production might explain the observed
414 pattern. The values pre-5.5 ka may instead represent more *in situ* lake production of brGDGTs
415 during the middle Holocene, making it more appropriate to use the lake calibration and this
416 seems to be supported by lake calibration temperatures matching more closely to modern Salt
417 Lake City temperatures during this time. One possibility is that lower lake levels prior to 5.5 ka
418 combined with arid conditions restricted river inflows that would have brought soil-produced
419 brGDGTs to GSL. Mixed brGDGT sourcing is possible for Holocene GSL based on its
420 distributions of tetra-, penta-, and hexamethylated brGDGTs (Ramos-Roman et al., 2022; Russell
421 et al., 2018) falling between those of global lakes and soils (**Figure S5, S6**), although neither pre-
422 nor post-5.5 ka distributions can be unambiguously ascribed to a purely lake-like or soil-like
423 signal compared to large global datasets (**Figure S4b, S6**). Thus, we do not find strong support
424 for a shift from lake to soil-derived compounds.

425 Part of the ambiguity may be due to the uniqueness of GSL. PCA analysis shows that GSL has
426 an extreme brGDGT distribution compared to global distributions, especially prior to 5.5 ka
427 (**Figure S4b**). Hypersaline lakes differ in their chemistry and are isolated bodies of water which
428 may have fundamentally different microbial communities and/or lipid responses to
429 environmental change than their freshwater counterparts or other saline lakes. Wang et al. (2021)
430 noted warm-biased MBT'_{5Me} values with increasing salinity. In contrast to Martinez-Sosa et al.
431 (2021) who had attributed this warm bias to soil inputs, Wang et al. (2021) attributed this to
432 increased production of 7-methyl penta- and hexamethylated isomers in place of 5-methyl ones
433 by lake microbes. This would explain the temperature overestimates we observe when using the
434 BayMBT₀ lake calibration post-5.5 ka (**Figure 6**). Overall, both studies indicate warm biases in
435 MBT'_{5Me} in saline lakes, although the variations need additional study.

436 Across the 5.5 ka transition, IR_{6Me} and fC increase and decrease respectively (**Figure 4c, 4d**). pH
437 estimated from CBT' using the soil calibration of Raberg et al. (2022) averaged 7.2 (1 σ = 0.02)

438 and using the lake calibration averaged 8.6 ($1\sigma = 0.03$). Both calibrations yield near-constant pH
439 values throughout the whole record meaning shifts in $\text{IR}_{6\text{Me}}$ and fC are likely not due to changes
440 in pH. Pre-5.5 ka, higher fC could indicate higher conductivity which may reflect higher
441 temperature and/or higher salinity, both of which align with middle Holocene aridity (see
442 **Section 5.4**). Lower $\text{IR}_{6\text{Me}}$ values are harder to reconcile as they would suggest lower
443 conductivity, opposite that of fC. Aside from conductivity, low $\text{IR}_{6\text{Me}}$ may otherwise indicate
444 higher soil water content and/or a greater influx of organic material produced in soils. However,
445 these factors seem secondary to pH and conductivity as controls of $\text{IR}_{6\text{Me}}$. Additionally, an
446 interpretation of high soil water content or soil production would contrast with both regional
447 climate records, which highlight mid-Holocene aridity, and brGDGT provenance studies, which
448 do not suggest shifts from lake to soil sourcing. Due to the large number of factors with potential
449 to influence $\text{IR}_{6\text{Me}}$ at this site, we do not interpret the exact environmental implications of the
450 $\text{IR}_{6\text{Me}}$ step change.

451 The decrease in $\Sigma\text{IIIa}/\Sigma\text{IIa}$ values with the exclusion of 7-methyl isomers would suggest greater
452 soil input after 5.5 ka, but constant values when these isomers are included indicate otherwise
453 (**Figure 4e**). Throughout the 7.2 ka record, the quantity of 7-methyl isomers is comparable to or
454 exceeds their 5- and 6-methyl counterparts. Wang et al. (2021) reported high abundances of 7-
455 methyl isomers in hypersaline lakes and low amounts in freshwater lakes. The high abundance of
456 7-methyl isomers at hypersaline GSL may explain the trends in the different formulations of
457 $\Sigma\text{IIIa}/\Sigma\text{IIa}$ (**Figure 4e**). It is likely that 7-methyl brGDGTs are produced within the hypersaline
458 lake and their high abundance results in differing $\Sigma\text{IIIa}/\Sigma\text{IIa}$ trends when these isomers are
459 included or excluded. The coincident changepoint in four GDGT indices ($\text{MBT}'_{5\text{Me}}$, $\text{IR}_{6\text{Me}}$, fC,
460 and $\Sigma\text{IIIa}/\Sigma\text{IIa}$) (**Figure 4, Figure S2**) suggests a change in both the bacterial and archaeal
461 communities suggesting that the microbial and limnological conditions of GSL pre-5.5 ka are
462 distinct from post-5.5 ka.

463 Our biomarker reconstruction detects a changepoint in GSL limnology at 5.5 ka in several
464 metrics and those non-thermal effects appear to disrupt the temperature proxy. Though ACE
465 shows that GSL is hypersaline throughout the 7.2 ka record, both high ACE and extended
466 archaeol show that the mid-Holocene lake was saltier and shallower than the subsequent 5.5 ka.

467 We infer that the shallower, saltier mid-Holocene lake hampered paleothermometry in this time,
468 while the late Holocene temperature reconstructions appear reasonable.

469 **5.4. Comparison to regional climate**

470 The reconstruction of shallower, saltier (**Figure 7a**) GSL in the mid-Holocene is consistent with
471 evidence for regional aridity. In Lehman Caves (NV) located 260 km southwest of GSL, a
472 decrease in speleothem Mg/Ca shows increased aridity at ~8 ka (Steponaitis et al., 2015) (**Figure**
473 **7b**). In nearby Leviathan Cave (NV) 180 km southwest of GSL, a decrease in speleothem $\delta^{13}\text{C}$
474 values at ~4 ka is interpreted as an increase in effective moisture (Lachniet et al., 2020) (**Figure**
475 **7c**). Collectively, these cave records bracket a mid-Holocene arid period from around 8-4 ka. A
476 proxy synthesis and reanalysis effort across western North America (Routson et al., 2022)
477 identifies a mid-latitude moisture increase in this region after 6 ka (**Figure 7d**). Preceding this
478 moisture increase, we observe low lake levels in many Great Basin lakes (Steponaitis et al.,
479 2015) (**Figure 7e**), including Owens Lake (CA) (Bacon et al., 2020), Lake Tahoe (CA/NV)
480 (Benson et al., 2002), and Pyramid Lake (NV) (Benson et al., 2002), as well as at small lakes in
481 the Midwest (Shuman et al., 2002) and in the sub-alpine region of the Rocky Mountains
482 (Shuman and Serravezza, 2017). A compilation of southwestern US climate records by Lachniet
483 et al. (2020) also found peak aridity at 7.5 ka (**Figure 7f**). Thus, it seems likely that widespread
484 mid-Holocene aridity in mid-latitude western North America contributed to a shallower GSL
485 recorded from the start of this record at 7.2 ka to 5.5 ka, with a shift to wetter conditions
486 represented locally at 5.5 ka.

487 Most of the precipitation in the Great Basin falls during the winter with moisture delivered by
488 westerlies from the Pacific, and a much smaller fraction falls during the summer as part of the
489 North American Monsoon (NAM) with moisture from the Gulf of California and eastern Pacific
490 (Lachniet et al., 2020). Moisture from the Gulf of Mexico can also contribute to the NAM, but
491 this rarely reaches the Great Basin (Jana et al., 2018). Changes in the incursion of the NAM and
492 the position of westerlies over western North America have been inferred from the reanalysis of
493 a large network of proxy data (Routson et al., 2022). They identified a strong NAM that peaked
494 at 7 ka, coincident with weakened/northward-deflected westerlies. The latter could explain the
495 dry mid-Holocene in the mid-latitudes, including at GSL from 7.2 to 5.5 ka, as it would have

496 decreased delivery of Pacific moisture. Following this, in the late Holocene, a reduction in the
497 NAM and more zonal westerly flow, resulted in wetter conditions in western North America
498 including at GSL.

499 Routson et al. (2022) suggested that these changes in circulation were linked to meridional
500 temperature gradients. Changes in broad scale atmospheric circulation and Pacific SSTs due to
501 high summer insolation and Laurentide ice sheet (LIS) collapse have previously been connected
502 to Holocene shifts in the precipitation regime over the western US. Summer northern hemisphere
503 insolation peaked in the Early Holocene ~11-10 ka and has steadily decreased up to the present
504 (Lachniet et al., 2020). In the same time period, the LIS rapidly retreated from 10-8 ka (Shuman
505 et al., 2002), mostly having disappeared by ~7 ka (Peltier et al., 2015). Steponaitis et al. (2015)
506 attributed the onset of mid-Holocene aridity in the Great Basin at ~8 ka to a northward
507 displacement of winter storm tracks after the collapse of the remnant LIS. In contrast, Lachniet et
508 al. (2020) suggested summer insolation to be the primary driver of regional climate variation.
509 They find a connection between southwestern US drought and increased SSTs in the western
510 tropical Pacific (WTP), warmth in the Arctic, and low Arctic sea ice, these phenomena being
511 caused by high summer insolation. Both Steponaitis et al. (2015) and Lachniet et al. (2020) also
512 suggest that a La Niña-like configuration of the tropical Pacific (a response to orbital forcing
513 (Brierley et al., 2020) may have contributed to regional aridity.

514 Changes in summer insolation and the LIS have also been linked to hydroclimate changes in
515 other regions of the US. Lake and pollen records indicate a moist to dry transition in the
516 Midwest, and a dry to moist transition in the northeast and southeast between 9 and 8 ka,
517 attributed to the collapse of the LIS Hudson Bay Dome and the subsequent proportional increase
518 in the influence of summer insolation (Shuman et al., 2002). In the northeast, plant wax isotopes
519 show an increased ratio of summer to winter precipitation after 8 ka, as the LIS glacial
520 anticyclone previously prevented northward transport of subtropical moisture during the summer
521 (Shuman et al., 2006). From ~9-7 ka, lakes in California, the Great Basin, and the Rocky
522 Mountains declined while those in western Canada rose. These trends reversed by ~5.7 ka,
523 possibly due to the decline in summer insolation after the LIS melted (Shuman and Serravezza,
524 2017). Similarly, between 5.7-5.2 ka, lakes across central and eastern mid-latitude North
525 America show an increase in effective moisture, which terminated mid-Holocene aridity and

526 coincided with the end of the Holocene temperature maximum in this region (Shuman and
527 Marsicek, 2016). A global compilation of Holocene temperature proxies (“Temperature 12K”)
528 including their age model uncertainties, places the central estimate for mid-Holocene warmth
529 around 6.45 ka within a range of 7.65-4.95 ka (Kaufman et al., 2020).

530 Model studies also suggest similar patterns of mid-Holocene aridity driven by large scale
531 climatic processes. Diffenbaugh et al. (2006) found insolation to be the primary driver of North
532 American midcontinent aridity and model efforts by Shin et al. (2006) suggested persistent La
533 Niña-like Pacific SST patterns (i.e. warm western tropical Pacific, cool eastern tropical Pacific).
534 Bhattacharya et al. (2018) found both models and proxy records from the Gulf of California
535 region indicate a weakened NAM during the last glacial and NAM strengthening as the LIS
536 retreated and westerly storm tracks, which previously mixed in cold, dry air that weakened the
537 NAM, were displaced/weakened. While the LIS had largely disappeared by the middle
538 Holocene, PMIP4-CMIP6 simulations still show enhanced seasonality and stronger monsoons in
539 the northern hemisphere compared to preindustrial times (Brierley et al., 2020). The model
540 dynamics support the proxy evidence for a strong NAM and weakened westerlies in the middle
541 Holocene, leaving dry conditions in mid-latitude western North America (Routson et al., 2022).
542 In the late Holocene, once NAM weakened, the more zonal westerlies (Routson et al., 2022) may
543 have increased the moisture flux to the GSL region, resulting in the more mesic conditions
544 experienced until recently.

545 The late Holocene was comparably wetter than the mid-Holocene, with lake high stands from
546 ~4.5 to ~3 ka recorded at Owens Lake (CA) (Bacon et al., 2020; Benson et al., 2002), Walker
547 Lake (NV) (Benson et al., 1991), Pyramid Lake (NV) (Briggs et al., 2005), Winnemucca Lake
548 (NV) (Briggs et al., 2005), Mono Lake (CA) (Stine, 1990), and Silver Lake (CA) (Enzel et al.,
549 1989). Although the biomarker record was stable without changepoints within the late Holocene,
550 we do observe some variability within the GSL record. We note an ACE spike at 2.8 ka (**Figure**
551 **7a**) so this may have been a short lived drying in GSL. This may correspond to the onset of the
552 Late Holocene Dry Period (2.8-1.85 ka) identified by Mensing et al. (2013) with lake low stands
553 at Mono Lake (CA) (Stine, 1990), Walker Lake (CA) (Adams, 2007; Benson et al., 1991), Zaca
554 Lake (CA) (Kirby et al., 2014), and Bear Lake (UT/ID) (Moser and Kimball, 2009). Tree ring
555 studies are optimal for shorter timescales with limber pine assemblages in the western Great

556 Basin spanning the last 4000 years (Millar et al., 2019). Within the Late Holocene Dry Period,
557 they found wet interludes occurred at the Neoglacial and Little Ice Age, whereas drought
558 conditions stunted tree growth in the last 20 years, the second driest interval in the last 4000
559 years, surpassed only during 20 BC to 150 AD (Millar et al., 2019). The 220-year resolution of
560 sampling in this study of GSL is not sufficient to contribute to finer records of hydroclimate (20-
561 200 yr droughts). Although finer sampling is possible (samples span 1 cm, integrating ~7 yrs),
562 there are limits to the resolution in lake sediments in a large lake with a large catchment, for
563 example terrestrial plant wax, may experience considerable pre-aging on the landscape (Bowen
564 et al., 2019) that may preclude detailed Holocene reconstructions. Longer records are the focus
565 of future study as the GLAD drilling extended to 175 ka, capturing Pleistocene pluvials that may
566 be resolved by the ACE salinity proxy which had approached its upper limit for the Holocene
567 hypersaline terminal lake system.

568 **6. Conclusions**

569 We reconstructed a Holocene paleoclimate record for GSL using GDGT biomarker analyses of
570 lacustrine sediments from the GLAD1-GSL00-1B sediment core spanning 7.2 ka to present.
571 Although absolute salinity interpretations of the ACE index in GSL are uncertain, the index is
572 near its upper limit (>80/100) suggesting that hypersaline conditions existed throughout the
573 record. Applying the calibration of Turich and Freeman (2011), ACE values in these Holocene
574 GSL sediments suggest salinities >250 g/L, though comparison to the present-day salinity range
575 along with brine shrimp cyst evidence suggests this may be an overestimate, or represent spatial
576 or temporal differences between the two recorders.

577 For the brGDGT thermometer, the BayMBT₀ soil calibration yielded MAF estimates consistent
578 with modern Salt Lake City MAF from 5.5 ka to the present, whereas the lake calibration was
579 warm-biased, consistent with reports of saline lake outliers in prior calibration studies (Martinez-
580 Sosa et al., 2021). In contrast, the soil calibration yields unreasonably cold temperatures during
581 the mid-Holocene while the lake calibration yields temperatures similar to modern MAF. Using
582 either calibration alone, at 5.5 ka we find an apparent step shift in temperature of 5°C. However,
583 such a large, abrupt warming is unlikely as the Holocene is a generally stable time. As we do not
584 find provenance evidence to support a switch in calibration for the MBT'_{5Me} index, we maintain

585 interpretations of the late Holocene temperature records that are consistent with modern MAF,
586 but we do not find temperature estimates to be secure for the mid-Holocene.

587 Changepoint analysis reveals that several other GDGT indices (IR_{6Me}, fC, ΣIIIa/ΣIIa without 7-
588 methyl isomers) also show a step shift at 5.5 ka strongly suggesting non-thermal effects on
589 MBT'_{5Me}, likely a change in the lake depth influencing microbial communities before 5.5 ka. We
590 find some support from extended archaeol measured on a subset of samples that found greater
591 salinity before 5.5 ka. We interpret these data to indicate a shallow, saltier lake from 7.2 to 5.5
592 ka, in line with regional evidence for dry conditions during the mid-Holocene (Lachniet et al.,
593 2020).

594 This paleolimnological study provides context for recent changes in the instrumental record, with
595 a decline in lake level of 7 m from 1986 to 2022, which has reduced the surface area from 8550
596 km² to 2460 km² (Utah Department of Natural Resources, 2022) due to unsustainable water use
597 and climate change (Wurtsbaugh et al., 2017). Our biomarker record extends the instrumental
598 baseline against which the current drying can be compared, finding relatively stable conditions at
599 GSL over the last 5.5 ka, with modern conditions approaching that of the mid-Holocene aridity.
600 The mid-Holocene salty and shallow GSL is a prelude to the current changes associated with
601 water extraction and drying.

602 **Acknowledgements**

603 This study was supported by U.S. National Science Foundation Grant NSF-EAR-1903665 to
604 S.F., and the Packard Fellowship for Science and Engineering to J.T. Sample material used in
605 this project was provided by Continental Scientific Drilling Facility. We thank Patrick Murphy
606 for performing GDGT analyses. We thank Yige Zhang, Gabriel Bowen, David McGee, Mark
607 Peaple, Emily Tibbett and Annie Tamalavage for helpful discussions. This manuscript was
608 improved with the helpful comments of three anonymous reviewers.

609 **Supporting Information**

610 Supporting Information may be found in the online version of this article.

611 **Conflict of Interest**

612 The authors declare no financial conflicts of interests for any author or their affiliations.

613 **Open Research**

614 Data files are archived at the NOAA paleoclimatology database (So et al., 2022).

615 **Figure Captions**

616 **Figure 1.** Maps showing a) the Great Salt Lake (GSL) core site of GLAD1-GSL00-1B and the
617 Lake Bonneville shoreline (top right), and b) the locations of regional comparison records.

618 **Figure 2.** Age model based on all lake organic carbon radiocarbon dates (Bowen et al., 2019)
619 from the GLAD core using the Bayesian R package BACON (Blaauw and Christen, 2011). a)
620 Calibrated radiocarbon age probability distribution functions (blue), age model mean (red line)
621 and uncertainty (gray shading), b) comparison between the age model mean (red line) for all lake
622 organic radiocarbon dates (used in this study) and the cyst-only model (blue line) presented by
623 Bowen et al. (2019), and c) their difference. The biomarker transition at 5.5 ka in the all-lake OC
624 model is ~200 years older than in the cyst-only model.

625 **Figure 3.** Change in the distribution and concentration of isoGDGTs in the GSL over the 7.2 ka
626 record, showing a) isoGDGT proportional abundances, b) isoGDGT proportional abundances
627 without GDGT-0, and c) isoGDGT (black) and brGDGT (gray) concentration through time.

628 **Figure 4.** Temporal variations in GDGT indices showing a) ACE Z-score (blue) and R_{EA} (black
629 cross), b) MBT'5Me, c) IR6Me, d) fC, and e) $\Sigma IIIa/\Sigma IIa$. We use statistical methods to identify a
630 changepoint in several indices at 5.5 ka (**Figure S2**). The portion of the record prior to the step
631 change is highlighted (yellow shading).

632 **Figure 5.** Salinity indicators in a 7.2 ka record from GLAD1-GSL00-1B core. a) ACE variations
633 near the upper limit of the index. b) Calculated ACE Z-scores (blue line) and R_{EA} (black cross).
634 Arrow indicates direction of salinity increase.

635 **Figure 6.** GSL mean annual temperature for months above freezing (MAF) calculated using the
636 BayMBT₀ lake (blue) and soil (red) calibrations of Dearing Crampton-Flood et al. (2020) are
637 shown with one standard deviation uncertainty (light red envelope for soil calibration

638 temperatures, dashed blue lines for lake calibration temperatures). The black line indicates the
639 Salt Lake City mean annual air temperature for months above freezing (MAF). Yellow shading
640 indicates the period when the MBT'_{5Me} proxy was likely affected by different limnological
641 conditions and microbial production, rather than a change in temperature.

642 **Figure 7.** Compilation of regional paleoclimate reconstructions, showing a) GSL ACE Z-score
643 (this study), b) Lehman Caves (NV) Mg/Ca record (Steponaitis et al., 2015), c) Leviathan Cave
644 (NV) δ¹³C record (Lachniet et al., 2020), d) precipitation index for mid-latitude western North
645 America (Routson et al., 2022), e) Great Basin lakes with low lake levels (Steponaitis et al.,
646 2015); and f) aridity index for the southwestern US (Lachniet et al., 2020).

647 **References**

648 Adams, K.D. (2007) Late holocene sedimentary environments and lake-level fluctuations at
649 Walker Lake, Nevada, USA. *Geological Society of America Bulletin* 119, 126-
650 139.10.1130/b25847.1.

651 Bacon, S.N., Jayko, A.S., Owen, L.A., Lindvall, S.C., Rhodes, E.J., Schumer, R.A. and Decker,
652 D.L. (2020) A 50,000-year record of lake-level variations and overflow from Owens Lake,
653 eastern California, USA. *Quaternary Science Reviews* 238, 25.10.1016/j.quascirev.2020.106312.

654 Bale, N.J., Sorokin, D.Y., Hopmans, E.C., Koenen, M., Rijpstra, W.I.C., Villanueva, L., Wienk,
655 H. and Damste, J.S.S. (2019) New Insights Into the Polar Lipid Composition of Extremely
656 Halo(alkali)philic Euryarchaea From Hypersaline Lakes. *Frontiers in Microbiology* 10,
657 24.10.3389/fmicb.2019.00377.

658 Baxter, A.J., van Bree, L.G.J., Peterse, F., Hopmans, E.C., Villanueva, L., Verschuren, D. and
659 Damste, J.S.S. (2021) Seasonal and multi-annual variation in the abundance of isoprenoid GDGT
660 membrane lipids and their producers in the water column of a meromictic equatorial crater lake
661 (Lake Chala, East Africa). *Quaternary Science Reviews* 273,
662 21.10.1016/j.quascirev.2021.107263.

663 Baxter, B.K., Litchfield, C.D., Sowers, K., Griffith, J.D., DasSarma, P.A. and DasSarma, S.
664 (2005) Microbial diversity of Great Salt Lake. *Adaptation to Life at High Salt Concentrations in*
665 *Archaea, Bacteria, and Eukarya* 9, 9-+

666 Beaulieu, C. and Killick, R. (2018) Distinguishing Trends and Shifts from Memory in Climate
667 Data. *Journal of Climate* 31, 9519-9543.10.1175/jcli-d-17-0863.1.

668 Belovsky, G.E., Stephens, D., Perschon, C., Birdsey, P., Paul, D., Naftz, D., Baskin, R., Larson,
669 C., Mellison, C., Luft, J., Mosley, R., Mahon, H., Van Leeuwen, J. and Allen, D.V. (2011) The
670 Great Salt Lake Ecosystem (Utah, USA): long term data and a structural equation approach.
671 *Ecosphere* 2, 40.10.1890/es10-00091.1.

672 Benson, L., Kashgarian, M., Rye, R., Lund, S., Paillet, F., Smoot, J., Kester, C., Mensing, S.,
673 Meko, D. and Lindstrom, S. (2002) Holocene multidecadal and multicentennial droughts
674 affecting Northern California and Nevada. *Quaternary Science Reviews* 21, 659-
675 682.10.1016/s0277-3791(01)00048-8.

676 Benson, L.V., Meyers, P.A. and Spencer, R.J. (1991) Change in the size of Walker Lake during
677 the past 5000 years. *Palaeogeography Palaeoclimatology Palaeoecology* 81, 189-
678 214.10.1016/0031-0182(91)90147-j.

679 Bhattacharya, T., Tierney, J.E., Addison, J.A. and Murray, J.W. (2018) Ice-sheet modulation of
680 deglacial North American monsoon intensification. *Nature Geoscience* 11, 848-
681 +.10.1038/s41561-018-0220-7.

682 Blaauw, M. and Christen, J.A. (2011) Flexible Paleoclimate Age-Depth Models Using an
683 Autoregressive Gamma Process. *Bayesian Analysis* 6, 457-474.10.1214/ba/1339616472.

684 Blaga, C.I., Reichart, G.J., Heiri, O. and Damste, J.S.S. (2009) Tetraether membrane lipid
685 distributions in water-column particulate matter and sediments: a study of 47 European lakes
686 along a north-south transect. *Journal of Paleolimnology* 41, 523-540.10.1007/s10933-008-9242-
687 2.

688 Bowen, G.J., Nielson, K.E. and Eglinton, T.I. (2019) Multi-substrate radiocarbon data constrain
689 detrital and reservoir effects in Holocene sediments of the Great Salt Lake, Utah. *Radiocarbon*
690 61, 905-926.10.1017/rdc.2019.62.

691 Brierley, C.M., Zhao, A.N., Harrison, S.P., Braconnot, P., Williams, C.J.R., Thornalley, D.J.R.,
692 Shi, X.X., Peterschmitt, J.Y., Ohgaito, R., Kaufman, D.S., Kageyama, M., Hargreaves, J.C., Erb,

693 M.P., Emile-Geay, J., D'Agostino, R., Chandan, D., Carre, M., Bartlein, P.J., Zheng, W.P.,
694 Zhang, Z.S., Zhang, Q., Yang, H., Volodin, E.M., Tomas, R.A., Routson, C., Peltier, W.R., Otto-
695 Bliesner, B., Morozova, P.A., McKay, N.P., Lohmann, G., Legrande, A.N., Guo, C.C., Cao, J.,
696 Brady, E., Annan, J.D. and Abe-Ouchi, A. (2020) Large-scale features and evaluation of the
697 PMIP4-CMIP6 midHolocene simulations. *Climate of the Past* 16, 1847-1872.10.5194/cp-16-
698 1847-2020.

699 Briggs, R.W., Wesnousky, S.G. and Adams, K.D. (2005) Late Pleistocene and late Holocene
700 lake highstands in the Pyramid Lake subbasin of Lake Lahontan, Nevada, USA. *Quaternary
701 Research* 64, 257-263.10.1016/j.yqres.2005.02.011.

702 Bunce, L., Lowenstein, T. and Jagniecki, E. (2022) Spring, river, and lake water analyses from
703 the Great Salt Lake basin, northern Utah, Utah Geological Survey Report of Investigation. Utah
704 Geological Survey, Salt Lake City, UT, USA.10.34191/OFR-745.

705 Dang, X.Y., Yang, H., Naafs, B.D.A., Pancost, R.D. and Xie, S.C. (2016) Evidence of moisture
706 control on the methylation of branched glycerol dialkyl glycerol tetraethers in semi-arid and arid
707 soils. *Geochimica Et Cosmochimica Acta* 189, 24-36.10.1016/j.gca.2016.06.004.

708 Dawson, K.S., Freeman, K.H. and Macalady, J.L. (2012) Molecular characterization of core
709 lipids from halophilic archaea grown under different salinity conditions. *Organic Geochemistry*
710 48, 1-8.10.1016/j.orggeochem.2012.04.003.

711 De Jonge, C., Hopmans, E.C., Zell, C.I., Kim, J.H., Schouten, S. and Damste, J.S.S. (2014a)
712 Occurrence and abundance of 6-methyl branched glycerol dialkyl glycerol tetraethers in soils:
713 Implications for palaeoclimate reconstruction. *Geochimica Et Cosmochimica Acta* 141, 97-
714 112.10.1016/j.gca.2014.06.013.

715 De Jonge, C., Stadnitskaia, A., Hopmans, E.C., Cherkashov, G., Fedotov, A. and Damste, J.S.S.
716 (2014b) In situ produced branched glycerol dialkyl glycerol tetraethers in suspended particulate
717 matter from the Yenisei River, Eastern Siberia. *Geochimica Et Cosmochimica Acta* 125, 476-
718 491.10.1016/j.gca.2013.10.031.

719 Dearing Crampton-Flood, E., Tierney, J.E., Peterse, F., Kirkels, F. and Damste, J.S.S. (2020)
720 BayMBT: A Bayesian calibration model for branched glycerol dialkyl glycerol tetraethers in
721 soils and peats. *Geochimica Et Cosmochimica Acta* 268, 142-159.10.1016/j.gca.2019.09.043.

722 Diffenbaugh, N.S., Ashfaq, M., Shuman, B., Williams, J.W. and Bartlein, P.J. (2006) Summer
723 aridity in the United States: Response to mid-Holocene changes in insolation and sea surface
724 temperature. *Geophysical Research Letters* 33, 5.10.1029/2006gl028012.

725 Dinter, D., Haskell, B., Valero-Garcés, B., Schnurrenberger, D., Heil, C., Dean, W. and Kruger,
726 N. (2000) GLAD1, GSL SITE 1, in: Schnurrenberger, D., Haskell, B. (Eds.), *Initial Reports of*
727 *the Global Lakes Drilling Program*. University of Arizona; Limnological Research Center,
728 University of Minnesota; Northern Arizona University; University of Utah; United States
729 Geological Survey; University of Rhode Island, Graduate School of Oceanography, pp. 12-17

730 Enzel, Y., Cayan, D.R., Anderson, R.Y. and Wells, S.G. (1989) Atmospheric circulation during
731 Holocene lake stands in the Mojave Desert - Evidence of regional climate change. *Nature* 341,
732 44-47.10.1038/341044a0.

733 Feakins, S.J., Wu, M.S., Ponton, C. and Tierney, J.E. (2019) Biomarkers reveal abrupt switches
734 in hydroclimate during the last glacial in southern California. *Earth and Planetary Science Letters*
735 515, 164-172.10.1016/j.epsl.2019.03.024.

736 Great Salt Lake Salinity Advisory Committee (2021) *Influence of Salinity on the Resources and*
737 *Uses of Great Salt Lake*, Utah Geological Survey Open-File Report. Utah Geological
738 Survey.10.34191/OFR-736.

739 Hopmans, E.C., Schouten, S. and Damste, J.S.S. (2016) The effect of improved chromatography
740 on GDGT-based palaeoproxies. *Organic Geochemistry* 93, 1-
741 6.10.1016/j.orggeochem.2015.12.006.

742 Hopmans, E.C., Weijers, J.W.H., Schefuss, E., Herfort, L., Damste, J.S.S. and Schouten, S.
743 (2004) A novel proxy for terrestrial organic matter in sediments based on branched and
744 isoprenoid tetraether lipids. *Earth and Planetary Science Letters* 224, 107-
745 116.10.1016/j.epsl.2004.05.012.

746 Huguet, C., Hopmans, E.C., Febo-Ayala, W., Thompson, D.H., Damste, J.S.S. and Schouten, S.
747 (2006) An improved method to determine the absolute abundance of glycerol dibiphytanyl
748 glycerol tetraether lipids. *Organic Geochemistry* 37, 1036-
749 1041.10.1016/j.orggeochem.2006.05.008.

750 Jagniecki, E., Rupke, A., Kirby, S. and Inkenbrandt, P. (2021) Salt crust, brine, and marginal
751 groundwater of Great Salt Lake's North arm (2019-2021), Utah Geological Survey Report of
752 Investigation. Utah Geological Survey, Salt Lake City, UT, USA.10.34191/RI-283.

753 Jana, S., Rajagopalan, B., Alexander, M.A. and Ray, A.J. (2018) Understanding the Dominant
754 Sources and Tracks of Moisture for Summer Rainfall in the Southwest United States. *Journal of*
755 *Geophysical Research-Atmospheres* 123, 4850-4870.10.1029/2017jd027652.

756 Jewell, P.W. (2021) Historic low stand of Great Salt Lake, Utah: I Mass balance model and
757 origin of the deep brine layer. *Sn Applied Sciences* 3, 16.10.1007/s42452-021-04691-5.

758 Jones, B.F., Naftz, D.L., Spencer, R.J. and Oviatt, C.G. (2009) Geochemical Evolution of Great
759 Salt Lake, Utah, USA. *Aquatic Geochemistry* 15, 95-121.10.1007/s10498-008-9047-y.

760 Kaufman, D., McKay, N., Routson, C., Erb, M., Datwyler, C., Sommer, P.S., Heiri, O. and
761 Davis, B. (2020) Holocene global mean surface temperature, a multi-method reconstruction
762 approach. *Scientific Data* 7, 13.10.1038/s41597-020-0530-7.

763 Kirby, M.E., Feakins, S.J., Hiner, C.A., Fantozzi, J., Zimmerman, S.R.H., Dingemans, T. and
764 Mensing, S.A. (2014) Tropical Pacific forcing of Late-Holocene hydrologic variability in the
765 coastal southwest United States. *Quaternary Science Reviews* 102, 27-
766 38.10.1016/j.quascirev.2014.08.005.

767 Kirkels, F., Ponton, C., Galy, V., West, A.J., Feakins, S.J. and Peterse, F. (2020) From Andes to
768 Amazon: Assessing Branched Tetraether Lipids as Tracers for Soil Organic Carbon in the Madre
769 de Dios River System. *Journal of Geophysical Research-Biogeosciences* 125,
770 18.10.1029/2019jg005270.

771 Lachniet, M.S., Asmerom, Y., Polyak, V. and Denniston, R. (2020) Great Basin Paleoclimate
772 and Aridity Linked to Arctic Warming and Tropical Pacific Sea Surface Temperatures.
773 *Paleoceanography and Paleoclimatology* 35, 22.10.1029/2019pa003785.

774 Macalady, J.L., Vestling, M.M., Baumler, D., Boekelheide, N., Kaspar, C.W. and Banfield, J.F.
775 (2004) Tetraether-linked membrane monolayers in *Ferroplasma* spp: a key to survival in acid.
776 *Extremophiles* 8, 411-419.10.1007/s00792-004-0404-5.

777 Martin, C., Menot, G., Thouveny, N., Peyron, O., Andrieu-Ponel, V., Montade, V., Davtian, N.,
778 Reille, M. and Bard, E. (2020) Early Holocene Thermal Maximum recorded by branched
779 tetraethers and pollen in Western Europe (Massif Central, France). *Quaternary Science Reviews*
780 228, 21.10.1016/j.quascirev.2019.106109.

781 Martinez-Sosa, P. and Tierney, J.E. (2019) Lacustrine brGDGT response to microcosm and
782 mesocosm incubations. *Organic Geochemistry* 127, 12-22.10.1016/j.orggeochem.2018.10.011.

783 Martinez-Sosa, P., Tierney, J.E., Stefanescu, I.C., Crampton-Flood, E.D., Shuman, B.N. and
784 Routson, C. (2021) A global Bayesian temperature calibration for lacustrine brGDGTs.
785 *Geochimica Et Cosmochimica Acta* 305, 87-105.10.1016/j.gca.2021.04.038.

786 Mensing, S.A., Sharpe, S.E., Tunno, I., Sada, D.W., Thomas, J.M., Starratt, S. and Smith, J.
787 (2013) The Late Holocene Dry Period: multiproxy evidence for an extended drought between
788 2800 and 1850 cal yr BP across the central Great Basin, USA. *Quaternary Science Reviews* 78,
789 266-282.10.1016/j.quascirev.2013.08.010.

790 Millar, C.I., Charlet, D.A., Delany, D.L., King, J.C. and Westfall, R.D. (2019) Shifts of
791 demography and growth in limber pine forests of the Great Basin, USA, across 4000 yr of
792 climate variability. *Quaternary Research* 91, 691-704.10.1017/qua.2018.120.

793 Moser, K.A. and Kimball, J.P. (2009) A 19,000-year record of hydrologic and climatic change
794 inferred from diatoms from Bear Lake, Utah and Idaho, *Paleoenvironments of Bear Lake, Utah*
795 and Idaho, and Its Catchment. Geological Soc Amer Inc, Boulder, pp. 229-246.

796 Naeher, S., Niemann, H., Peterse, F., Smittenberg, R.H., Zigah, P.K. and Schubert, C.J. (2014)
797 Tracing the methane cycle with lipid biomarkers in Lake Rotsee (Switzerland). *Organic*
798 *Geochemistry* 66, 174-181.10.1016/j.orggeochem.2013.11.002.

799 Naftz, D. (2017) Inputs and Internal Cycling of Nitrogen to a Causeway Influenced, Hypersaline
800 Lake, Great Salt Lake, Utah, USA. *Aquatic Geochemistry* 23, 199-216.10.1007/s10498-017-
801 9318-6.

802 Natalicchio, M., Birgel, D., Peckmann, J., Lozar, F., Carnevale, G., Liu, X.L., Hinrichs, K.U. and
803 Dela Pierre, F. (2017) An archaeal biomarker record of paleoenvironmental change across the
804 onset of the Messinian salinity crisis in the absence of evaporites (Piedmont Basin, Italy).
805 *Organic Geochemistry* 113, 242-253.10.1016/j.orggeochem.2017.08.014.

806 National Centers for Environmental Information (2022) Time series- monthly GHCN v3 mean
807 temperature- Salt Lake Cit (United States of America),

808 Null, S.E. and Wurtsbaugh, W.A. (2020) Water Development, Consumptive Water Uses, and the
809 Great Salt Lake, in: Baxter, B.K., Butler, J.K. (Eds.), *Great Salt Lake Biology, A Terminal Lake*
810 in a Time of Change

811 Springer Nature Switzerland AG, Cham, Switzerland, pp. 1-21.

811 Oviatt, C.G., Atwood, G. and Thompson, R.S. (2021) History of Great Salt Lake, Utah, USA:
812 since the Termination of Lake Bonneville, in: Rosen, M.R., Finkelstein, D.B., Park Boush, L.,
813 Pla-Pueyo, S. (Eds.), *Limnogeology: Progress, Challenges and Opportunities : A Tribute to*
814 Elizabeth Gierlowski-Kordesch

815 Springer International Publishing, Cham, pp. 233-271.

815 Peaple, M.D., Bhattacharya, T., Lowenstein, T.K., McGee, D., Olson, K.J., Stroup, J.S., Tierney,
816 J.E. and Feakins, S.J. (2022) Biomarker and Pollen Evidence for Late Pleistocene Pluvials in the
817 Mojave Desert. *Paleoceanography and Paleoclimatology* 37, 20.10.1029/2022pa004471.

818 Peaple, M.D., Tierney, J.E., McGee, D., Lowenstein, T.K., Bhattacharya, T. and Feakins, S.J.
819 (2021) Identifying plant wax inputs in lake sediments using machine learning. *Organic*
820 *Geochemistry* 156, 11.10.1016/j.orggeochem.2021.104222.

821 Peltier, W.R., Argus, D.F. and Drummond, R. (2015) Space geodesy constrains ice age terminal
822 deglaciation: The global ICE-6G_C (VM5a) model. *Journal of Geophysical Research-Solid*
823 *Earth* 120, 450-487.10.1002/2014jb011176.

824 Perry, K.D., Crosman, E.T. and Hoch, S.W. (2019) Results of the Great Salt Lake Dust Plume
825 Study (2016-2018). University of Utah, Salt Lake City, UT, USA

826 Peterse, F., van der Meer, J., Schouten, S., Weijers, J.W.H., Fierer, N., Jackson, R.B., Kim, J.H.
827 and Damste, J.S.S. (2012) Revised calibration of the MBT-CBT paleotemperature proxy based
828 on branched tetraether membrane lipids in surface soils. *Geochimica Et Cosmochimica Acta* 96,
829 215-229.10.1016/j.gca.2012.08.011.

830 Raberg, J.H., Harning, D.J., Crump, S.E., de Wet, G., Blumm, A., Kopf, S., Geirsdottir, A.,
831 Miller, G.H. and Sepulveda, J. (2021) Revised fractional abundances and warm-season
832 temperatures substantially improve brGDGT calibrations in lake sediments. *Biogeosciences* 18,
833 3579-3603.10.5194/bg-18-3579-2021.

834 Raberg, J.H., Miller, G.H., Geirsdottir, A. and Sepulveda, J. (2022) Near-universal trends in
835 brGDGT lipid distributions in nature. *Science Advances* 8, 12.10.1126/sciadv.abm7625.

836 Ramirez, R. (2022) Great Salt Lake is 'in trouble' as level falls to lowest on record for second
837 year in a row. CNN

838 Ramos-Roman, M.J., De Jonge, C., Magyari, E., Veres, D., Ilvonen, L., Develle, A.L. and Seppa,
839 H. (2022) Lipid biomarker (brGDGT)- and pollen-based reconstruction of temperature change
840 during the Middle to Late Holocene transition in the Carpathians. *Global and Planetary Change*
841 215, 13.10.1016/j.gloplacha.2022.103859.

842 Routson, C.C., Erb, M.P. and McKay, N.P. (2022) High Latitude Modulation of the Holocene
843 North American Monsoon. *Geophysical Research Letters* 49, 10.10.1029/2022gl099772.

844 Rupke, A. and McDonald, A. (2012) Great Salt Lake brine chemistry database, 1966-2011, Utah
845 Geological Survey Open-File Report. Utah Geological Survey, Salt Lake City Utah, p.
846 7.10.34191/OFR-596.

847 Russell, J.M., Hopmans, E.C., Loomis, S.E., Liang, J. and Damste, J.S.S. (2018) Distributions of
848 5-and 6-methyl branched glycerol dialkyl glycerol tetraethers (brGDGTs) in East African lake
849 sediment: Effects of temperature, pH, and new lacustrine paleotemperature calibrations. *Organic*
850 *Geochemistry* 117, 56-69.10.1016/j.orggeochem.2017.12.003.

851 Schouten, S., Hopmans, E.C. and Damste, J.S.S. (2013) The organic geochemistry of glycerol
852 dialkyl glycerol tetraether lipids: A review. *Organic Geochemistry* 54, 19-
853 61.10.1016/j.orggeochem.2012.09.006.

854 Shin, S.I., Sardeshmukh, P.D., Webb, R.S., Oglesby, R.J. and Barsugli, J.J. (2006)
855 Understanding the mid-Holocene climate. *Journal of Climate* 19, 2801-2817.10.1175/jcli3733.1.

856 Shope, C.L. and Angeroth, C.E. (2015) Calculating salt loads to Great Salt Lake and the
857 associated uncertainties for water year 2013; updating a 48 year old standard. *Science of the*
858 *Total Environment* 536, 391-405.10.1016/j.scitotenv.2015.07.015.

859 Shuman, B., Bartlein, P., Logar, N., Newby, P. and Webb, T. (2002) Parallel climate and
860 vegetation responses to the early Holocene collapse of the Laurentide Ice Sheet. *Quaternary*
861 *Science Reviews* 21, 1793-1805.10.1016/s0277-3791(02)00025-2.

862 Shuman, B., Huang, Y.S., Newby, P. and Wang, Y. (2006) Compound-specific isotopic analyses
863 track changes in seasonal precipitation regimes in the Northeastern United States at ca 8200cal
864 yrBP. *Quaternary Science Reviews* 25, 2992-3002.10.1016/j.quascirev.2006.02.021.

865 Shuman, B.N. and Marsicek, J. (2016) The structure of Holocene climate change in mid-latitude
866 North America. *Quaternary Science Reviews* 141, 38-51.10.1016/j.quascirev.2016.03.009.

867 Shuman, B.N. and Serravezza, M. (2017) Patterns of hydroclimatic change in the Rocky
868 Mountains and surrounding regions since the last glacial maximum. *Quaternary Science Reviews*
869 173, 58-77.10.1016/j.quascirev.2017.08.012.

870 So, R., Lowenstein, T., Jagniecki, E., Tierney, J.E. and Feakins, S.J. (2022) NOAA/WDS
871 Paleoclimatology - Great Salt Lake, Utah Biomarker Data from the Holocene [Dataset], NOAA
872 National Centers for Environmental Information. <https://doi.org/10.25921/f3hg-4e71>.

873 Sorensen, E.D., Hoven, H.M. and Neill, J. (2020) Great Salt Lake Shorebirds, Their Habitats,
874 and Food Base, in: Baxter, B.K., Butler, J.K. (Eds.), Great Salt Lake Biology, A Terminal Lake
875 in a Time of Change. Springer Nature Switzerland AG, Cham, Switzerland, pp. 263-309.

876 Stefanescu, I.C., Shuman, B.N. and Tierney, J.E. (2021) Temperature and water depth effects on
877 brGDGT distributions in sub-alpine lakes of mid-latitude North America. *Organic Geochemistry*
878 152, 15.10.1016/j.orggeochem.2020.104174.

879 Steponaitis, E., Andrews, A., McGee, D., Quade, J., Hsieh, Y.T., Broecker, W.S., Shuman, B.N.,
880 Burns, S.J. and Cheng, H. (2015) Mid-Holocene drying of the US Great Basin recorded in
881 Nevada speleothems. *Quaternary Science Reviews* 127, 174-
882 185.10.1016/j.quascirev.2015.04.011.

883 Stine, S. (1990) Late Holocene fluctuations of Mono Lake, eastern California. *Palaeogeography*
884 *Palaeoclimatology Palaeoecology* 78, 333-&.10.1016/0031-0182(90)90221-r.

885 Teixidor, P., Grimalt, J.O., Pueyo, J.J. and Rodriguezvalera, F. (1993) Isopranylglycerol diethers
886 in nonalkaline evaporitic environments. *Geochimica Et Cosmochimica Acta* 57, 4479-
887 4489.10.1016/0016-7037(93)90497-k.

888 Thompson, A.J., Zhu, J., Poulsen, C.J., Tierney, J.E. and Skinner, C.B. (2022) Northern
889 Hemisphere vegetation change drives a Holocene thermal maximum. *Science Advances* 8,
890 10.1126/sciadv.abj6535.

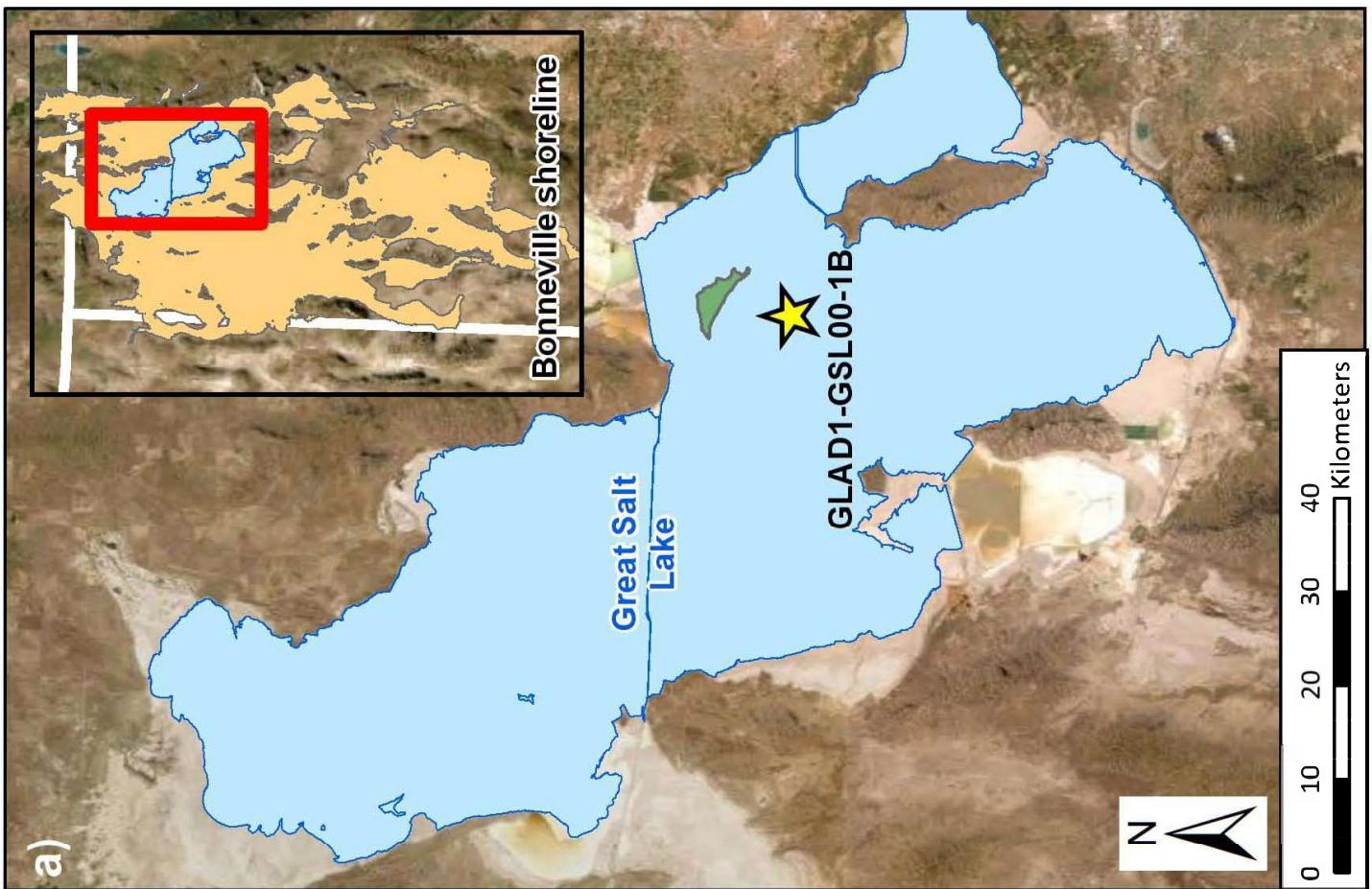
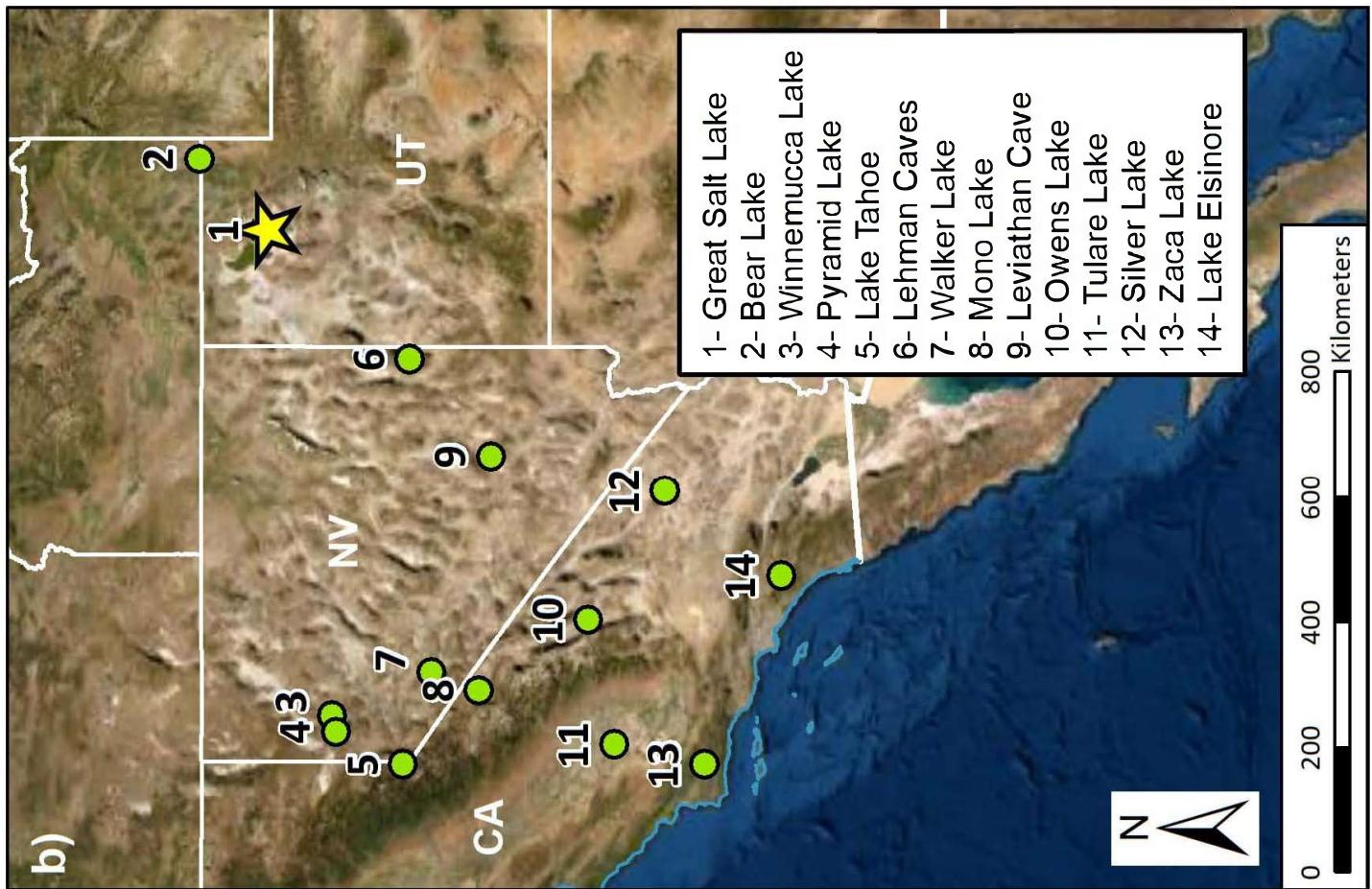
891 Turich, C. and Freeman, K.H. (2011) Archaeal lipids record paleosalinity in hypersaline systems.
892 *Organic Geochemistry* 42, 1147-1157.10.1016/j.orggeochem.2011.06.002.

893 United States Geological Survey (2022a) Bear River near Corinne, UT (10126000), National
894 Water Dashboard

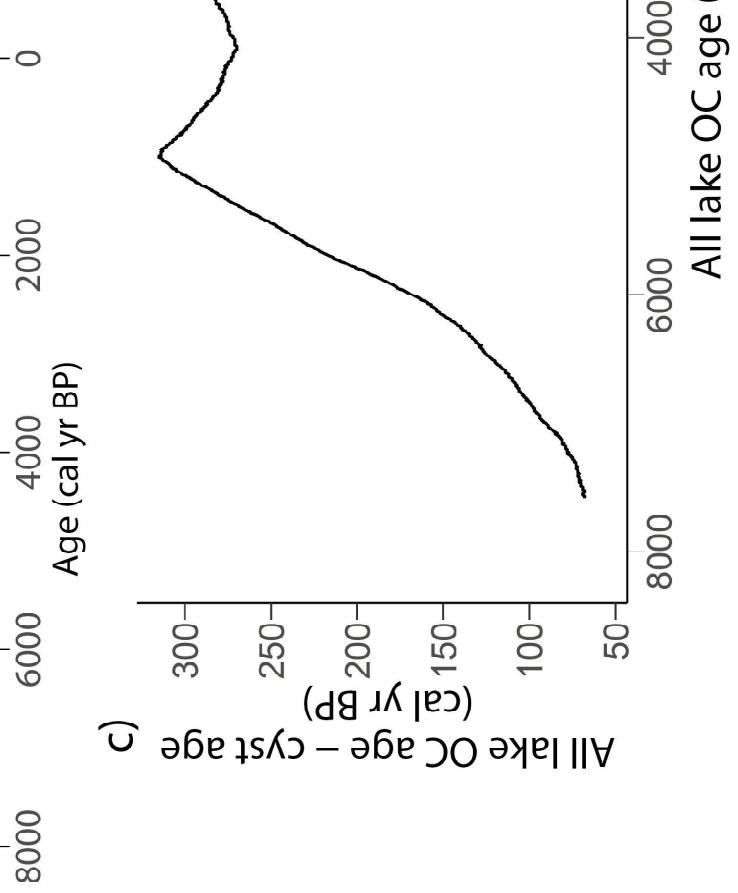
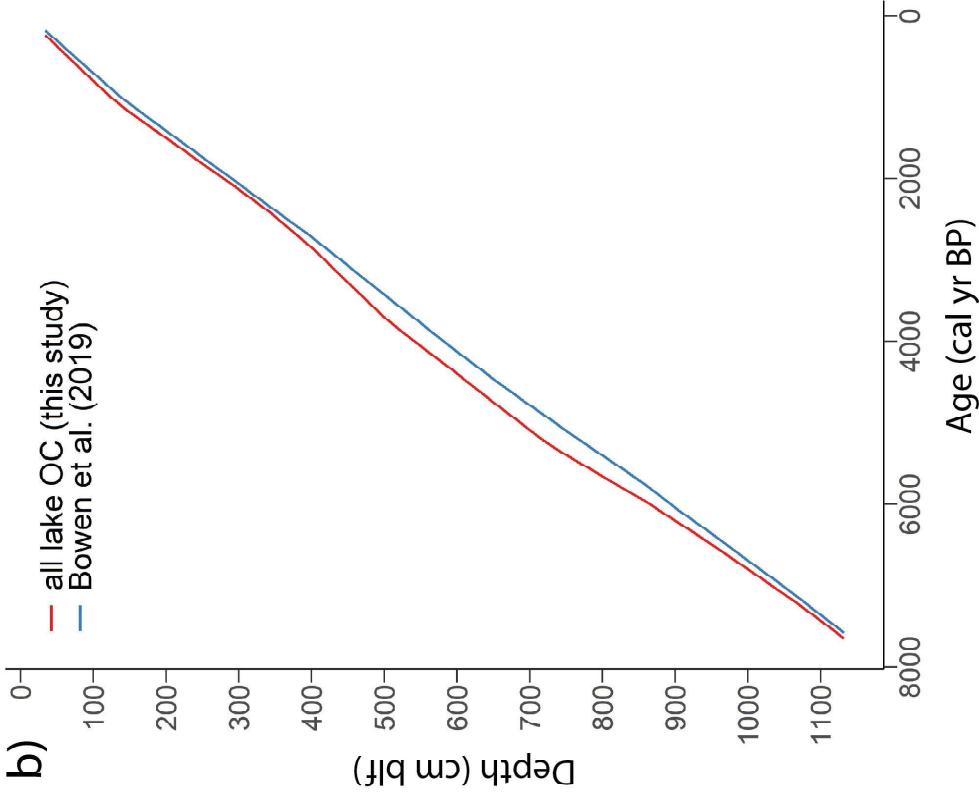
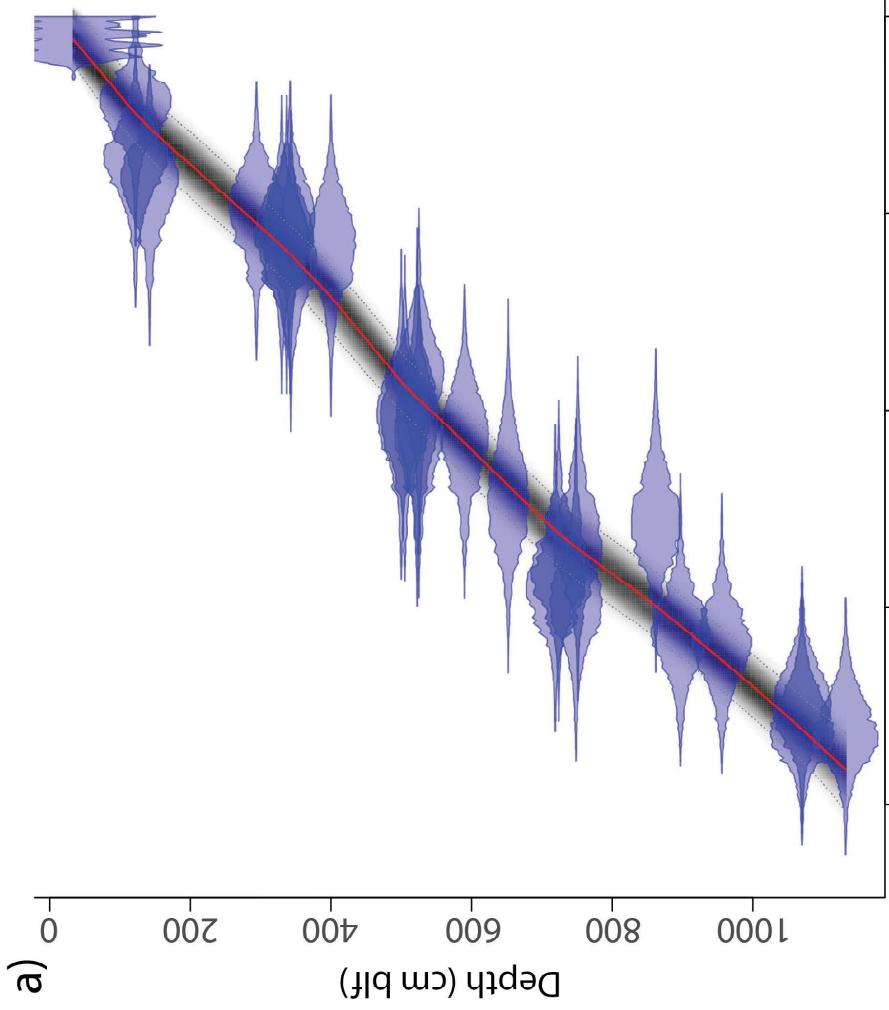
895 United States Geological Survey (2022b) Great Salt Lake at Saltair Harbor, UT (10010000),
896 National Water Dashboard

897 Vandier, F., Tourte, M., Doumbe-Kingue, C., Plancq, J., Schaeffer, P., Oger, P. and Grossi, V.
898 (2021) Reappraisal of archaeal C-20-C-25 diether lipid (extended archaeol) origin and use as a
899 biomarker of hypersalinity. *Organic Geochemistry* 159, 5.10.1016/j.orggeochem.2021.104276.

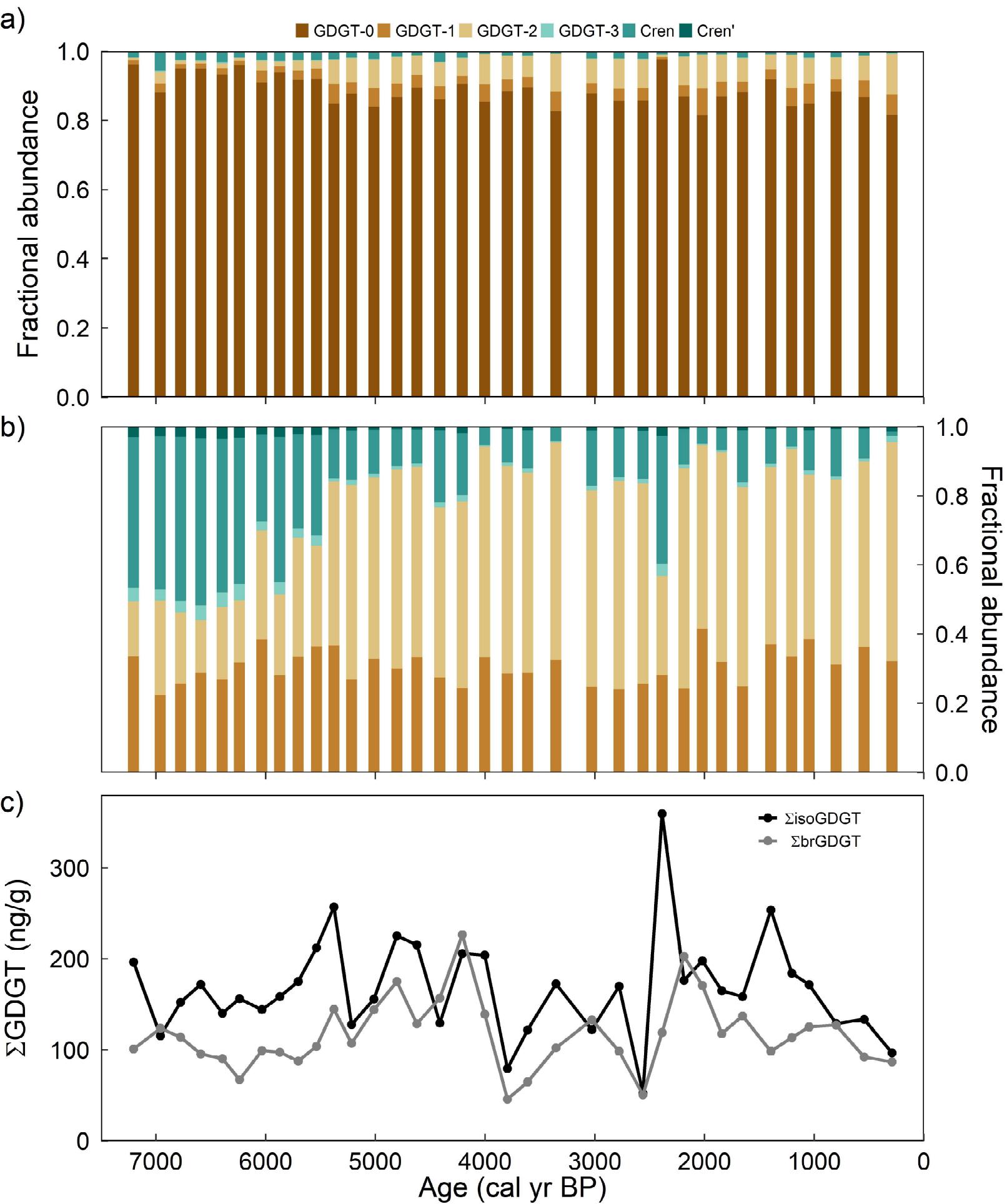
900 Wang, H.Y., Liu, W.G., He, Y.X., Zhou, A.F., Zhao, H., Liu, H., Cao, Y.N., Hu, J., Meng, B.W.,
901 Jiang, J.W., Kolpakova, M., Krivonogov, S. and Liu, Z.H. (2021) Salinity-controlled
902 isomerization of lacustrine brGDGTs impacts the associated MBT5ME terrestrial temperature
903 index. *Geochimica Et Cosmochimica Acta* 305, 33-48.10.1016/j.gca.2021.05.004.

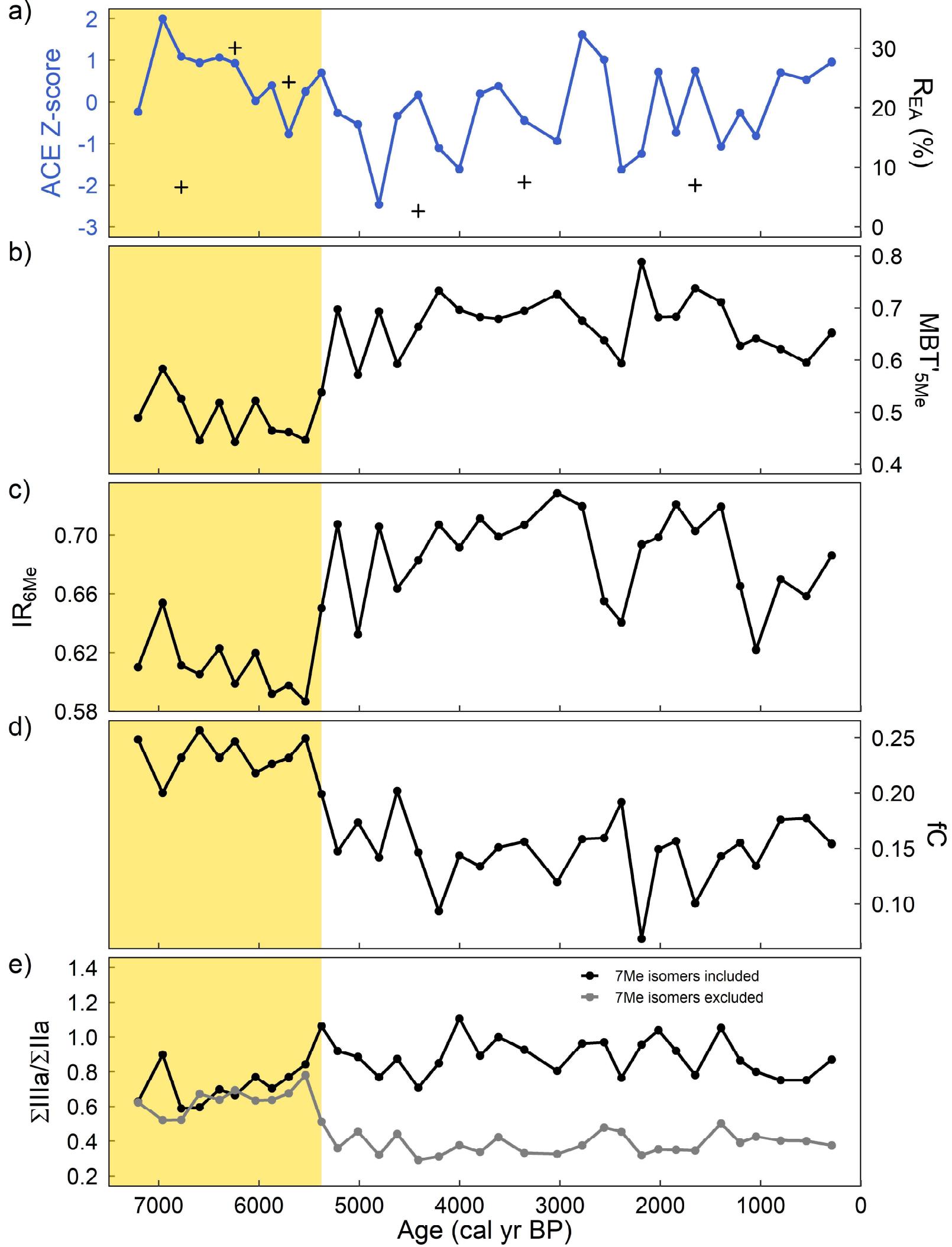


904 Weijers, J.W.H., Schouten, S., van den Donker, J.C., Hopmans, E.C. and Damste, J.S.S. (2007)
905 Environmental controls on bacterial tetraether membrane lipid distribution in soils. *Geochimica
906 Et Cosmochimica Acta* 71, 703-713.10.1016/j.gca.2006.10.003.

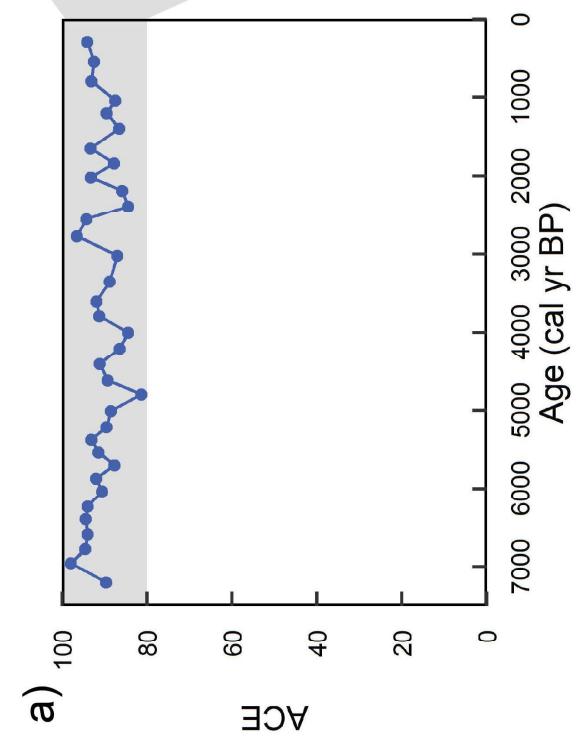
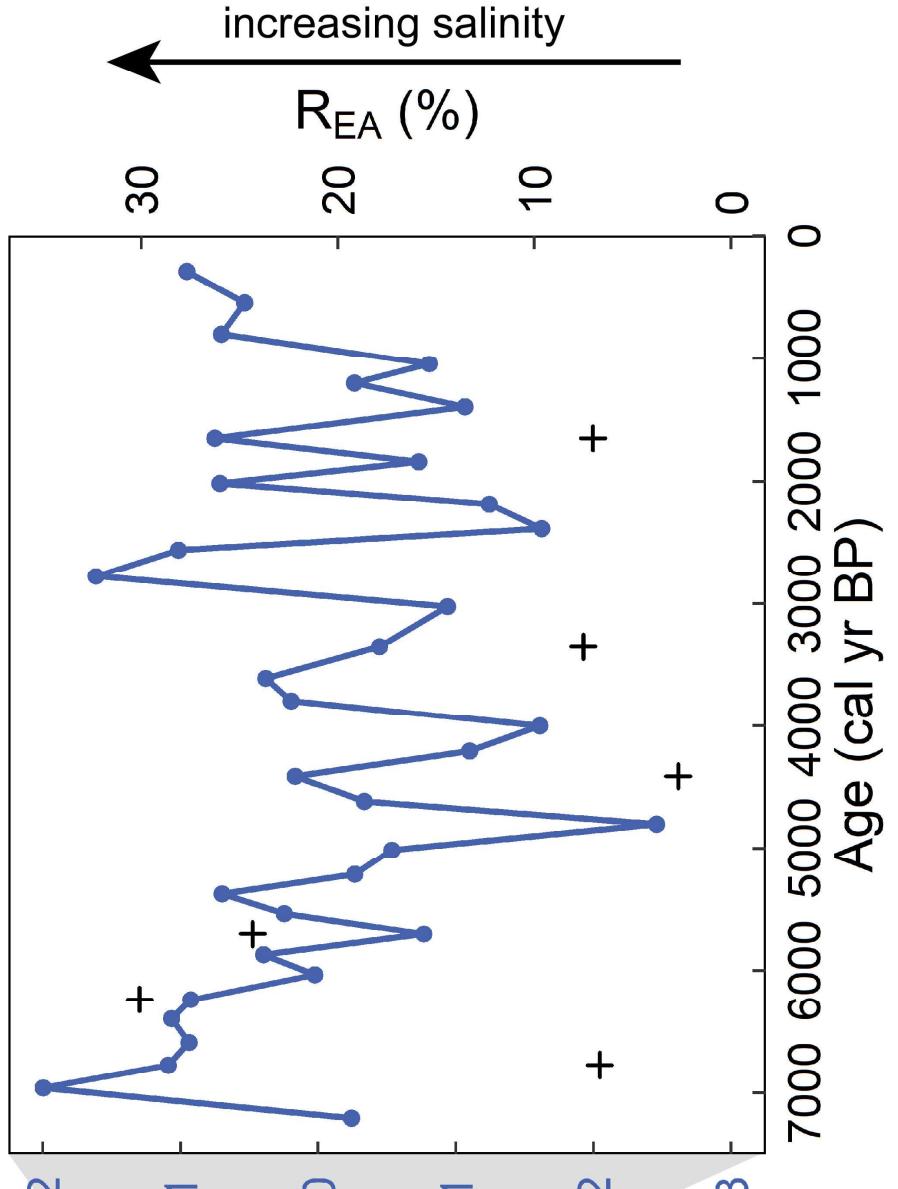
907 Wurtsbaugh, W.A., Miller, C., Null, S.E., DeRose, R.J., Wilcock, P., Hahnenberger, M., Howe,
908 F. and Moore, J. (2017) Decline of the world's saline lakes. *Nature Geoscience* 10, 816-
909 +.10.1038/ngeo3052.

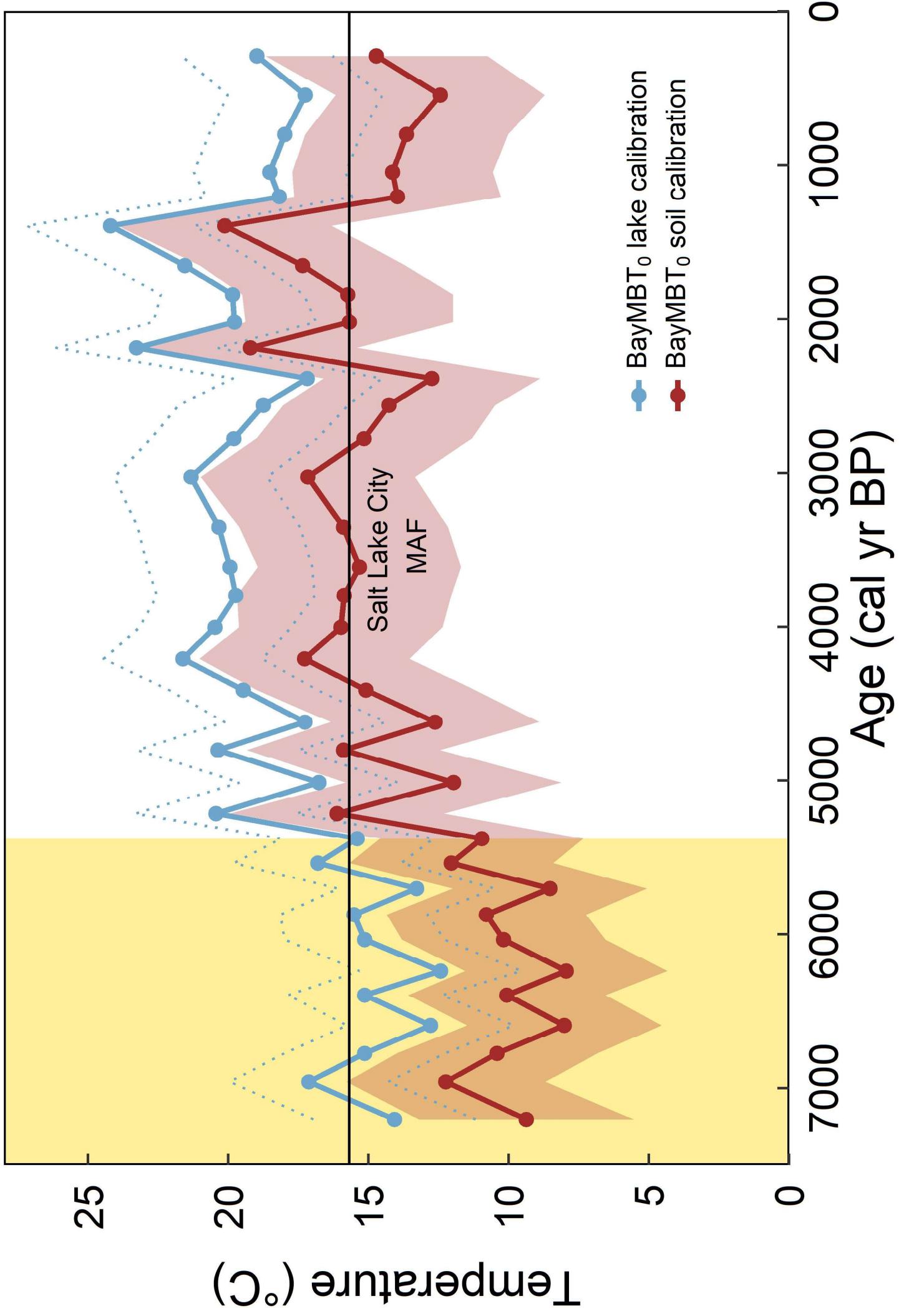



910 Xiao, W.J., Wang, Y.H., Zhou, S.Z., Hu, L.M., Yang, H. and Xu, Y.P. (2016) Ubiquitous
911 production of branched glycerol dialkyl glycerol tetraethers (brGDGTs) in global marine
912 environments: a new source indicator for brGDGTs. *Biogeosciences* 13, 5883-5894.10.5194/bg-
913 13-5883-2016.

914


Figure 1.


Figure 2.



Figure 3.


Figure 4.

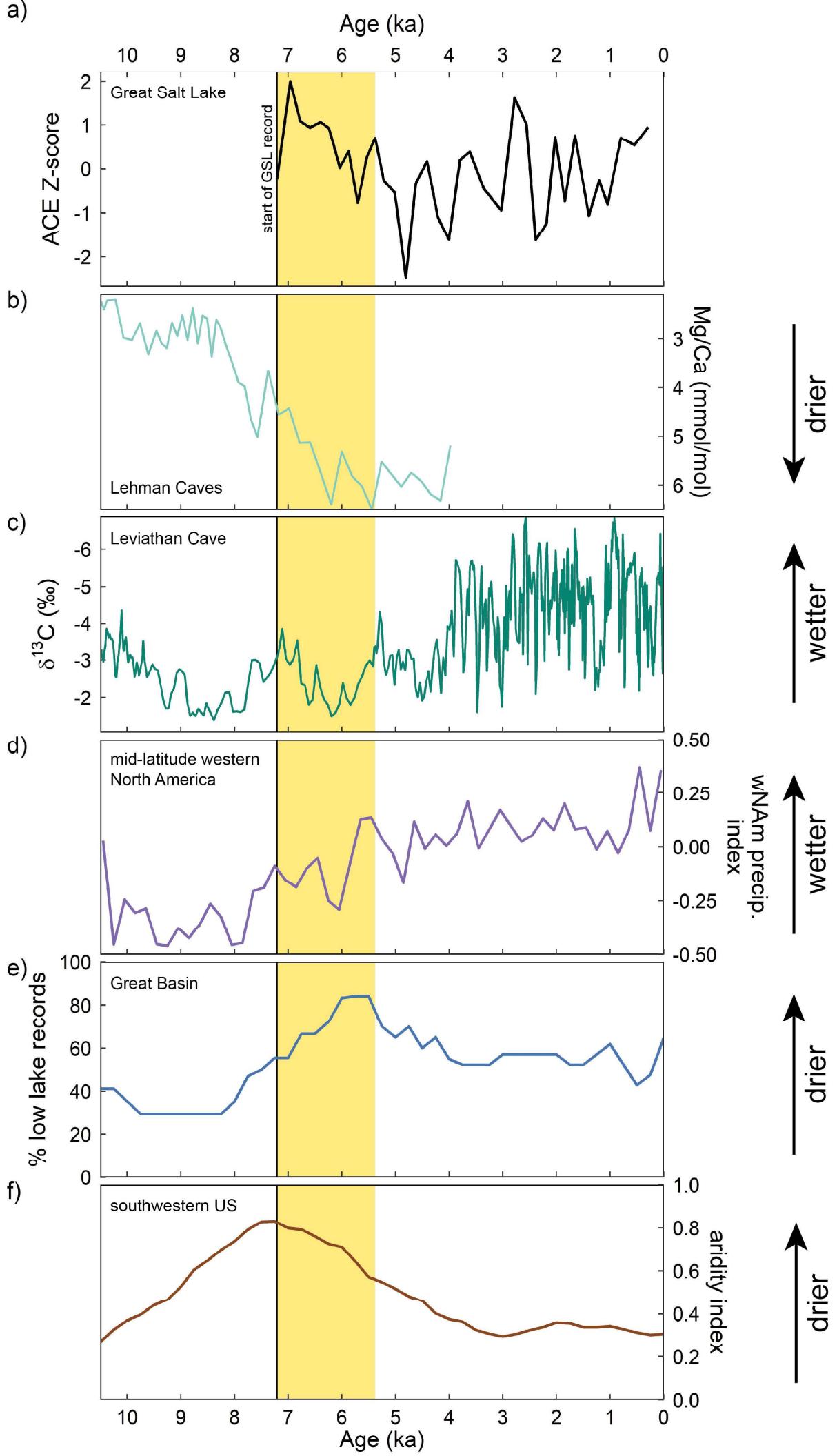

Figure 5.

Figure 6.

Figure 7.

Paleoceanography and Paleoclimate

Supporting Information for

Holocene water balance variations in Great Salt Lake, Utah: application of GDGT indices and the ACE salinity proxy

Rachel T. So^{1*}, Tim K. Lowenstein², Elliot Jagniecki³, Jessica E. Tierney⁴, Sarah J. Feakins¹

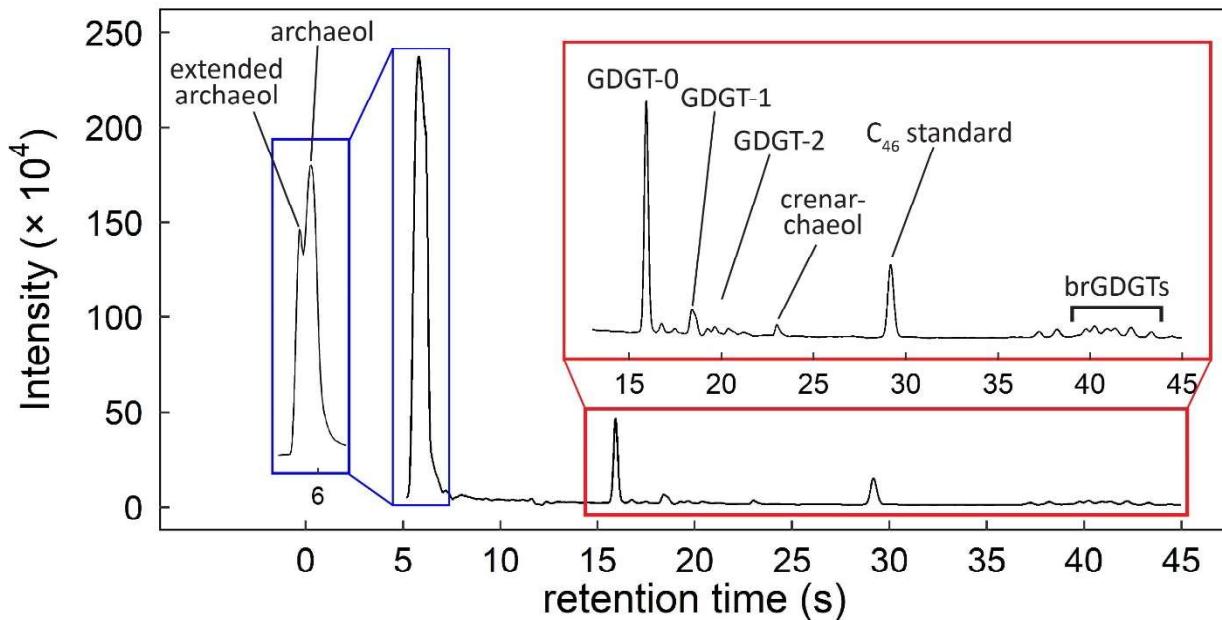
¹Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089, USA.

²Department of Geological Sciences and Environmental Studies, Binghamton University, Binghamton, NY 13902, USA.

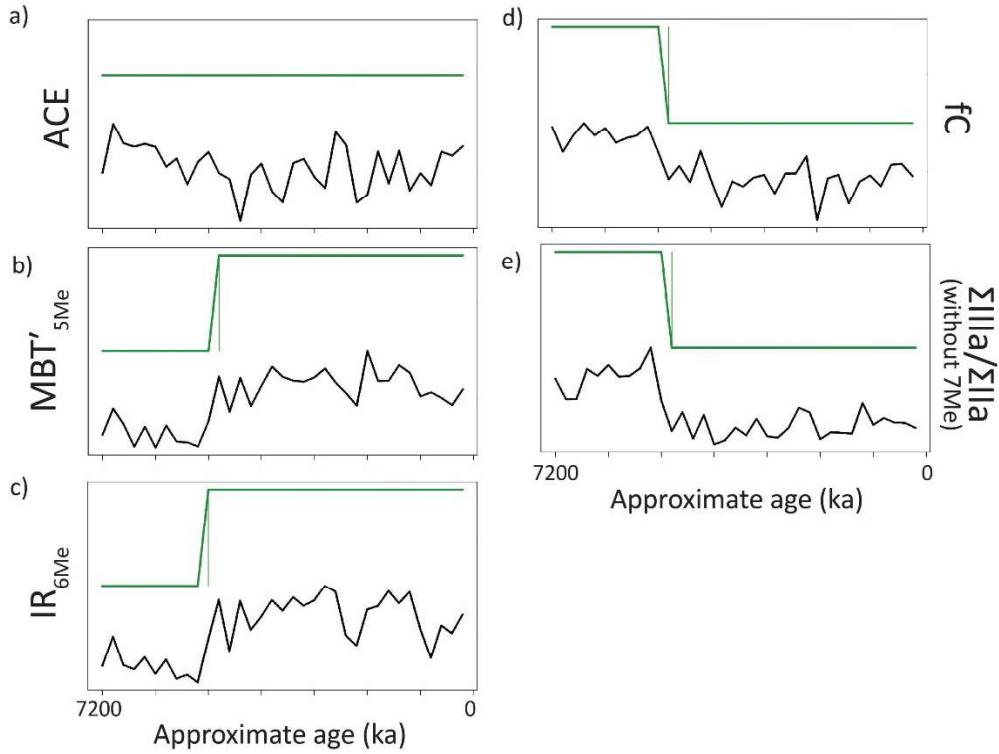
³Utah Geological Survey, Salt Lake City, UT 84114, USA.

⁴Department of Geoscience, University of Arizona, Tucson, AZ 85721, USA.

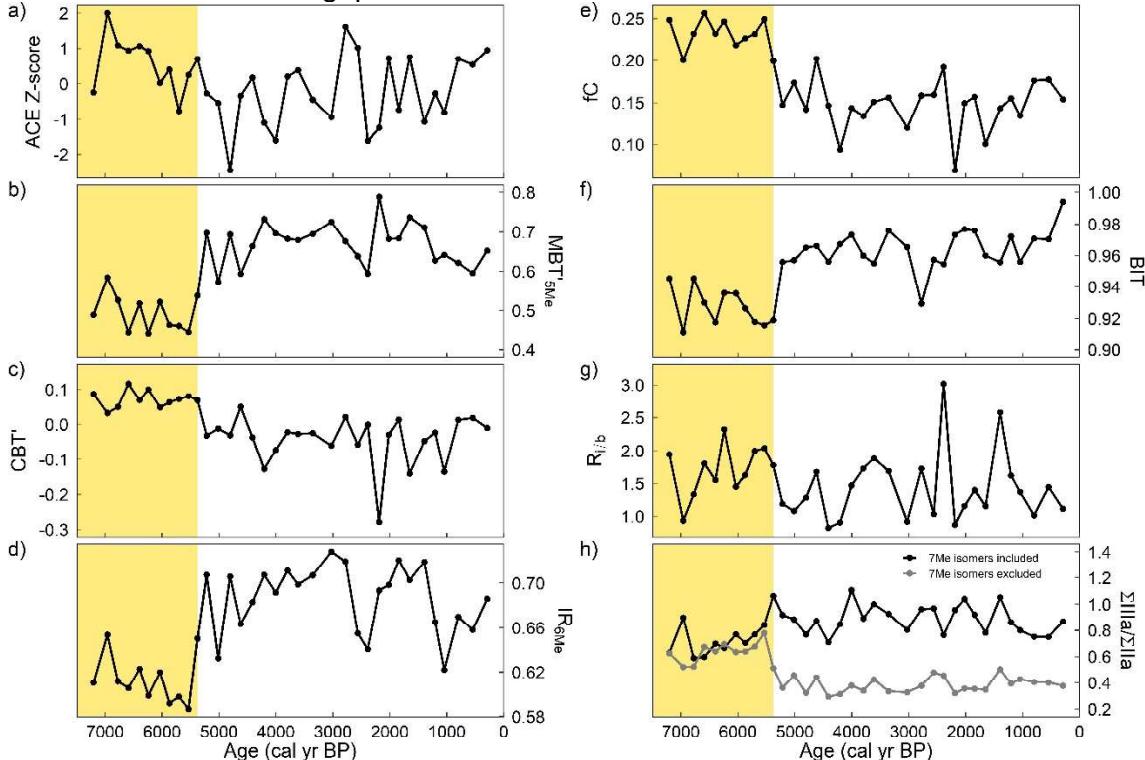
*Correspondence to: Rachel T. So rts0@usc.edu

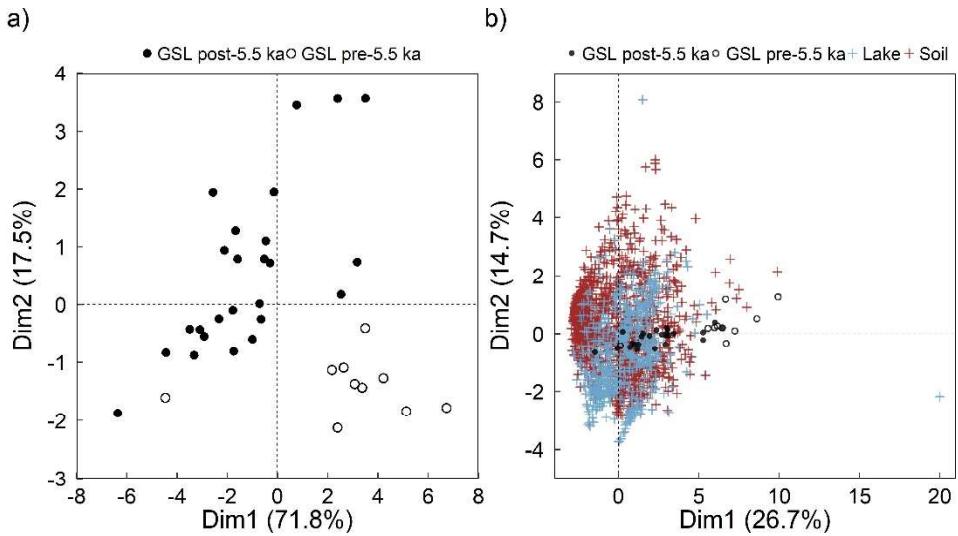

Contents of this file

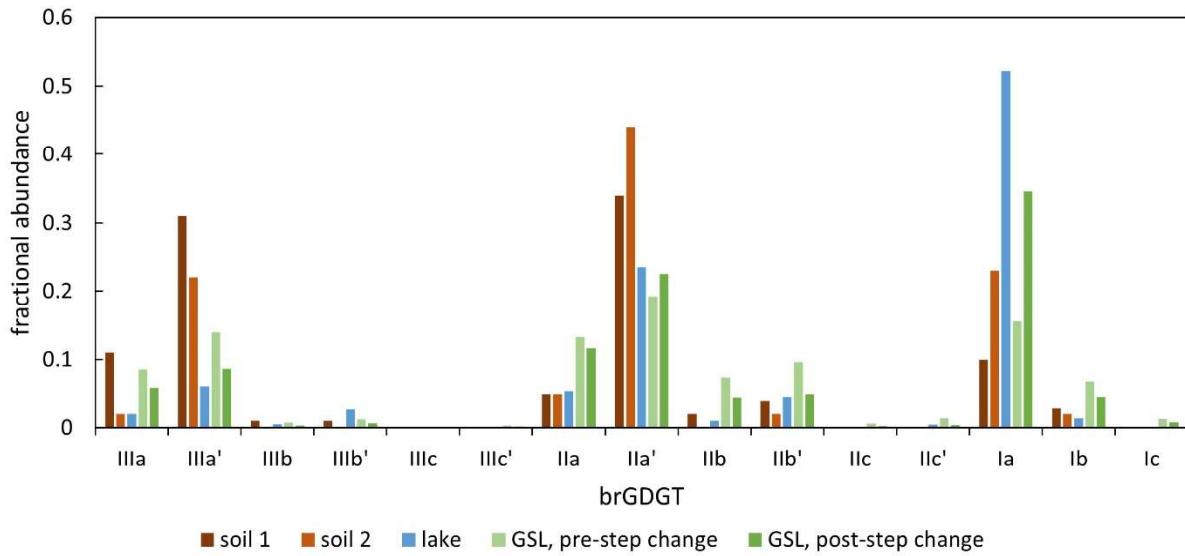
Figures S1 to S6


Introduction

The supporting information associated with the manuscript referenced above includes six supplementary figures. Figure S1 is an example chromatogram of a GSL sample from this study. Figure S2 shows changepoint analysis for detecting changes in the mean and variance of select GDGT indices calculated for this study's GSL samples. Figure S3 is a compilation of all GDGT indices calculated for this study's GSL samples. Figure S4 shows principal component analyses using brGDGT distributions of GSL samples, compared to global lakes and soils. Figure S5 shows the brGDGT distributions of lake sediment and soils compared against GSL sediments. Figure S6 is a ternary diagram of tetra-, penta-, and hexamethyl brGDGT proportions in GSL samples compared to global lakes and soils.


Supplementary Figures


Figure S1. An example chromatogram representative of GSL samples from this study (GLAD1-GSL00-1B, 906-907cm). Labeled in the chromatogram are the individual peaks of archaeol, extended archaeol, GDGT-0, GDGT-1, GDGT-2, crenarchaeol, and the C₄₆ standard along with the region containing brGDGTs.


Figure S2. Environmental time series changepoint detection using the R package EnvCpt applied to a) ACE, b) MBT'_{5Me} , c) IR_{6Me} , d) fC, and e) $\Sigma IIla/\Sigma IIa$ without 7-methyl isomers. The method used identifies changepoints in the series mean and variance.

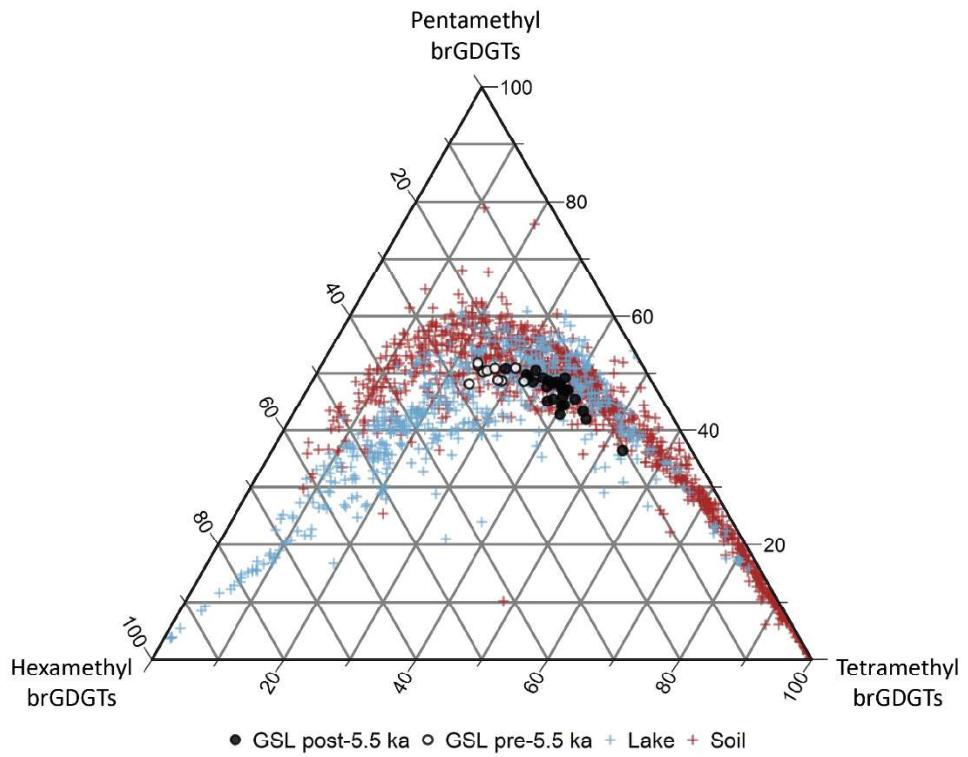

Figure S3. Temporal variations in GDGT indices showing a) ACE Z-scores, b) MBT'_{5Me} , c) CBT', d) IR_{6Me} , e) fC, f) BIT, g) $R_{i/b}$, and h) $\Sigma IIla/\Sigma IIa$. Yellow shading indicates the portion of the record prior to the step change seen in four indices (MBT'_{5Me} , IR_{6Me} , fC, and $\Sigma IIla/\Sigma IIa$).

Figure S4. Principal component analyses (PCA) using brGDGT distributions of a) pre- (open circle) and post-5.5 ka (filled circle) GSL sediments, and b) compared to global lakes (blue cross) and soils (red cross) compilation of Raberg et al. (2022).

Figure S5. BrGDGT distribution of GSL samples from before and after the 5.5 ka step shift, and comparison to soils and lake distributions from southwestern US sites. Comparison brGDGT distributions were obtained from the soil compilation of Dearing Crampton-Flood et al. (2020), and lake compilation of Martinez-Sosa et al. (2021), showing Mono Lake (CA).

Figure S6. Ternary diagram showing the proportions of tetra-, penta-, and hexamethyl brGDGTs (I, II, and III respectively) in GSL sediments, differentiated into pre-5.5 ka (white circle) and post 5.5 ka (black circle), and the global lakes (blue cross) and soils (red cross) compilation of Raberg et al. (2022).