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Abstract

In this work we discuss the calculation of the spin-density matrix from fundamen-
tal spin principles as implemented in the COLUMBUS Program System employing
the graphical unitary group approach (GUGA). First, a general equation for the
spin-density matrix is derived in terms of the one- and two-particle reduced den-
sity matrices, quantities that are spin-independent and readily available within the
GUGA formalism. Next, the evaluation of this equation using the Shavitt loop values
is discussed. Finally, the spatially resolved counterpart of the spin-density matrix,
the spin distribution, is calculated for the phenalenyl radical and structures pro-
duced by heteroatoms with mono- and di-substitutions. The physical meaning of
the spin-density along with its computational description using various methods is
discussed putting special emphasis on negative contributions to the spin-density and
their quantification via a spin-promotion index.
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1. Introduction

Modern multiconfigurational electronic structure methods applied to molecules rely
typically on configuration state functions (CSFs) as a basis for the expansion of the
many-body wave function that describes the spatial and spin distributions of the system.
The graphical unitary group approach (GUGA) [1-5] can be employed to construct a
CSF expansion space that makes no reference to its determinantal representation. In
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this formalism, each CSF may be represented as a walk from the tail to the head of a
Shavitt graph, or as a sequence of nodes within the graph, or as a step vector containing
the occupation and spin coupling of each spatial orbital.

In the absence of external fields, the nonrelativistic molecular Hamiltonian operator
commutes with the spin operators 52 and S'Z, and consequently the CSF expansion can
be limited to include only terms that contribute to the overall target spin, defined by
the quantum number S. Moreover, given the quantum number M related to the spin
projection on the z-axis, the energy values for the 25 + 1 members of the multiplet are
degenerate.

GUGA takes advantage of these above mentioned properties, since it is a spin-free
formalism that completely suppresses the quantum number M from the computational
procedure. However, this spin-free approach introduces difficulties in the calculation of
spin-dependent properties such as the spin-density. A first approach to obtain these
spin-dependent properties would be to transform the wave function from the CSF basis
to the Slater determinant basis that depends on M, and then to compute the property
expectation value in that representation. This approach becomes inefficient for large
expansions, since the determinantal basis is larger and increases faster than the CSF
basis with molecular size. The best approach is to compute the spin-dependent proper-
ties directly within the GUGA formalism, making the effort to compute spin-dependent
properties similar to that for spin-independent properties.

The spatial spin-density distribution is widely used to represent the active or un-
paired electrons of an electronic state pictorially [6-9]. More specifically, the spin-density
matrix and the resultant spatial spin-density distribution are useful for spectroscopic
properties of electron paramagnetic resonance, determining the nuclear hyperfine cou-
pling constants [10-13]. Moreover, shifts in paramagnetic nuclear resonance depend on
the spin density at a nucleus [12-16].

Spin-density distributions obtained from density functional theory calculations can
be sensitive to the choice of functional [7, 17-19]. In this scenario, an ab initio ap-
proach to obtain reliable spin-densities is essential to achieve unambiguous results [8].
Furthermore, accurate ab initio spin-density distributions could be used for developing
density functional theory (DFT), especially in the spin-DFT formalism proposed by von
Barth and Hedin [20]. In this framework, the spin-density is employed as a fundamental
property, and highly accurate results could be employed as benchmarks to construct re-
liable exchange-correlation functionals that approximate the exact molecular electronic
structure.

The main goal of this article is to describe how to obtain the spin-density matrix
within the GUGA formalism and to present results acquired from the new implementa-
tion in the COLUMBUS Program System [5, 21-23]. The current implementation focuses
on multiconfiguration self-consistent field (MCSCF) calculations, but it may be directly
extended also to multireference configuration interaction (MRCI) and multireference
average quadratic coupled cluster (MR-AQCC) calculations.

An interesting molecule to explore the recently added spin-density function in
CoLUMBUS is the phenalenyl (PLY) radical, C13Hg. PLY is an open-shell non-Kékule
molecule composed of three fused benzene rings with a triangular topology containing
13 m-electrons. This molecule is studied widely due to its fascinating electronic structure
properties [24, 25], its role in soot formation [26, 27], as well as potential applications
in energy storage [28] and organic electronics [29, 30].

Structural changes to PLY by incorporating heteroatoms into the structure drastically
affects the electronic properties due to the change of the number of m-electrons and to the
delocalization of the unpaired electron [31]. Furthermore, modified phenalenyl provides



the interesting possibility of inverted singlet-triplet gaps (i.e. S lying below T7) [32].

2. Methods

2.1. Spin-density matrices

In this section, the spin algebra will be reviewed and the equation to obtain the spin-
density matrix from the one-particle and two-particle reduced density matrices (RDM)
will be derived. For more details about this subject, the reader is referred to Ref. [33].

A wave function [¢; S, M) is an eigenfunction of the operator 52 with quantum num-
ber S > 0,

S Jip; S, M) = S(S + 1) |¢; 8, M), (1)

and of the operator S, that determines the projection on the z-axis with quantum
number M = -5, -S+1,...,5—1,5 as

S |45 8, M) = M [4; S, M) . (2)

Atomic units, in which % = 1, are used herein. The quantum numbers S and M assume
integer values for even numbers of electrons N and half-integer values for odd N.

It is usual to define the raising and lowering operators (§+ = S, + igy and §_ =
S, — z'gy) to further develop the projections of the spin along the axes. A same-orbital-
for-different-spins (SODS) spin-orbital basis of dimension 2n is defined as {pk(r) :
k=1...n} ®{«a,8} where gi(r) is an orthonormal molecular orbital (MO), and «
and [ are the two single-electron spin functions |1/2,+1/2). A member of this set is
denoted i, = pi(r)o with o € {«, 8}. Employing the second quantization, creation
and annihilation operators are denoted in this spin-orbital basis as &,1 » and dgs. These
operators satisfy the anticommutation relations

{&La’ ag#h = [y, &‘W]Jr =0, 3)

At A B
|:apo" Aqp L OpgOop,

and particle-number conserving single-excitation operators of the form d;fmdqa/ satisify
the commutation relation

At A At A At oA P
[apgaqar,awasw = Ay sy OgrOo7y — 7, 8g00 OpsOoypur - (4)

It is convenient to collect the four SODS single-excitation operators &;f,a&qa, d;‘,adqg,

d};ﬁ&qa, and &;B&‘Iﬁ into spin-tensor form [34, 35]:



Alg)éo = \}ﬁ(dpadqa + d;;ﬁ&qﬁ) = 12qu7
Tplél - _&La&¢157 )
T = s @it = i)

Tplé_l = A;B&qow

with one singlet operator and the three components of a triplet operator. The E'pq singlet
operator is a generator of the unitary group and is discussed below. With these factors
and phases, the spin-tensors satisfy the standard relations

7S, M _ M rnS,—M
(qu )T - (_1) qu )

(85, T5M] = \/S(5 +1) — M(M £ 1)T5M=1 (6)
|82, T | = T

The ‘4’ convention in this equation and hereafter is that either the sequence of top
signs or the sequence of bottom signs may be taken. This spin-tensor notation is useful
because it allows the normal spin-coupling relations to be used for operator-operator,
wavefunction-wavefunction, and operator-wavefunction products. In particular, matrix
elements of the form (W;Sg,Mg]TI%’MZW;Sl,Ml) can be nonzero only when Msz =
My + M5 and when the three spin values S1, Sa, and S5 satisfy the triangle inequality,
e.g. |S1— 9| <S35 < S1+4 5. In the spin-orbital basis, the spin operators can be written
as

~ 1 o 1, . . 1 .
z = 5 ;(akaaka akﬁak5> = 5 (Na — Nﬁ) = ﬁ ;Tklkﬂ,
§ =81 = Vil 1 o
5= 8L = Paksinn = LT
k k

N, is the number operator for o type electrons, and it commutes with any operator
that conserves the number of o electrons. The total number operator N = N, + Nﬁ
commutes with any operator that conserves the total number of electrons.

The application of these spin operators to a wave function results in

Sy S, M) = /S(S +1) — M(M £ 1) [¢);.5, M £ 1),

= /(S £ M +1)(SF M)|; 8, M £1).



The 52 operator may be written as

§? =52+ 82+ 52,
1 A~ A x .
25( +S- 4+ 5-54) + 5%, (9)
=554 + 5.(5. 1)

The commutation relations,

follow from Egs. (6) and (7).

It is useful to link the spin operators to the generators of the unitary group [2, 4].
This generator may be defined with no reference to spin [36], but here it is convenient to
use the formulation in Eq. (5) based on spinorbitals, qu = \@T&O. The commutation
relations

(B8] = [y 8] = (B 8] = [Bo 1] =0, )

also follow from Egs. (4), (6), and (7). The molecular Hamiltonian can be written in
terms of these generators as

N N 1 A oA A
H= Z hpgEpg + 2 Z Upgrs (EpqLors = Oqr Eips) (12)
Pq

pqrs

in which hp, = (plh|q) and vpers = (p(1)7(2)|v12|q(1)s(2)) are one- and two-electron
integrals over the spatial orbitals. From Eq. (12), it is possible to recognise the two-
electron operator

Epgrs = EpgErs — 0 Eps (13)

that will be used to relate the spin-density matrix to the spin-independent properties
promptly obtained in the GUGA formalism. Consider the identities

Epkkq = Epk kg — Epq

ou
. A~ P RPN (14)
= (5kqapaa;m U gy, Ao
ou
_ o5 £ N
= 203qEpg — Z agaaq#akuakg.

ou



Performing a sum over the k index results in

At oA At on
Z Epkkq —2qu paaqa Z g ke — apaQqp Z Arp0kp
k k

(15)
— alpqs Y Gl ke — O g0 Y Gfadks-
k k
Recognising the operators N, S, and S_ (Eq. (7)),
Z Epkkg = 2Epq — G} ligaNo — 5045 N5 — al,ag55_ — &) 530S, (16)
Replacing the N, and Nﬁ operators by %N + 5., this equation can be written as
S kg = (2 - ;N) By — VOIS, +1) + §L70 — 7118, (g
k

Taking the expectation value of equation (17), using the definitions for the charge-
density matrix and for the spin-density matrix

DI = (1; 8, M|Epglth; S, M) = (1b; S, M|V2T 3 4b; S, M) , (18)
DEOM) = (4; 8, M|af g — 6 aqslth; S, M) = (3 S, MV2T 2 10y S, M), (19)

and recognising that the last two terms in Eq. (17) vanish for M = S, results in the
final expression for the spin-density matrix calculation for M = S in terms of 1- and
2-RDM elements,

1
1,0;8) _ (2 - §N) 0,0 1
D{L0S) = ST DO — S+1§k:qukp. (20)

No assumptions have been made regarding the wave function form in equations (18)-
(20), making this equation completely general and applicable to ground and excited
states and to arbitrary full-CI and restricted expansions, including MCSCF and MRCI.
Note that other density matrix normalisation conventions are sometimes used that in-
clude factors of 1/+/2 or 1/2.

For other members of the multiplet with M # S, the operator identities,

Tpléo [Sia |:S:F7T1 0:|i| ) (21)
lead to the Wigner-Eckart relation [37-39],

M
1L,o;M) __ 1,0;S
DM = == D). (22)

Note that (¢;0, OHA}}&OWJ; 0,0) = 0 because the spin values (0,1,0) violate the triangle
inequality. It follows from these relations that the spin-density matrix is zero for any

M = 0 spin eigenfunction, including in particular the spin-density for a singlet wave
function. The members within a multiplet satisfy the relation D(1OM) — _D1L.0;=M)



The charge-density matrix in the MO basis is hermitian (symmetric for real matrices),
its eigenvalues satisfy 0 < pgx < 2V k, and Tr(D®0) = N. Tt follows from Eq. (11) that
the charge density matrix does not depend on M, i.e. each member of a multiplet has
the same charge-density matrix. Given the charge-density matrix for the wave function
|1; S, M), the spatial charge distribution at a point r is given by

pH(r) = plsM(r) 4 plP M (x Zsoq )DL ep(r)" = p(r)DVp(r)T. (23)

The spatial charge distribution, like the charge-density matrix, is independent of the
quantum number M within a wave function multiplet. Integration over all space of the
charge distribution,

/p[+] (r)dr = Z D((I%O) /app(r)*gpq(r)dr = Z D(gg’o)épq =N, (24)
Pq Pq

gives exactly the total number of electrons, with no approximation due to the finite MO
basis.

The spin-density matrix in the MO basis is also hermitian (symmetric for real ma-
trices), its eigenvalues satisfy —1 < pp < 1V k, and Tr(DG%M)) = 20/, Given the
spin-density matrix for the wave function [¢;S, M), the spatial spin-distribution at a
point r is given by

[—;M]< ) =p [a;M]( ) — [B;M]( )

P
- (1 ) r)DWOM)
=2 )iy iy (x)” = eryD () 25)
]Zp[ (e).

Eq. (25) shows that the spin-distribution for a wave function that is a spin eigenfunction
with M = 0 vanishes everywhere in space. It is shown in the Appendix that this is not
true for an M = 0 spin-contaminated wave function. The members within a multiplet
satisfy the relation pl=Ml(r) = —pl==Ml(r). Integration over all space of the spin-
distribution,

/p[ M dr*ZD(IOM)/gop g (r dr—ZD(IOM)(S =2M, (26)

gives exactly the value 2M, with no approximation due to the finite MO basis.
Taking the appropriate linear combinations of Eqs. (23) and (25) gives the spin-
dependent spatial charge-distributions,

o (o' 1 M ;
P M (x) =p(r)DIMep(r)! = Zeo(r) (D““” + SD“"*S)) (),

: g (27)
PP (x) =p(r)DIF Mo (x)l = Zeo(r) (D““” - SD“"”S)) P(r)"

The spin-dependent charge density matrices satisfy Tr (DM ]) = Nc[rM] for each multi-
plet member. From these equations it follows that within a multiplet NC[YM] =N };M], and



the spin-dependent charge density matrices and spatial charge distributions are related
according to DMl = DIF=MI and plsMl(r) = pl#~Ml(r). Thus in the GUGA for-
mulation, the spin-dependent occupations, charge density matrices, the spin-dependent
spatial charge distributions, and the spatial spin-distributions may all be computed
from the spin-independent 1- and 2-RDM elements, quantities that are already avail-
able within the MCSCF computational procedure.

2.2. Natural Spin-Density Orbitals

The spin-density matrix D®%5) is hermitian (symmetric) and may be diagonalised by
a unitary (orthogonal) transformation matrix U,

DU = Up®), (28)

where the eigenvalues ,LL,(JS) are real and are assumed hereafter to be in increasing order.
If the orbitals are transformed as ¢’ = U, Then the spatial spin-distribution takes

the simple form

= (r)

p(r) D! (r)f
(r)U (UDU) Ulp(r)!

=@/ (1) (r)T = > |0l (r)[*1f?, (29)

in which the spatial orbital factors are nonnegative at every point in space, regard-
less of the orbital signs or nodal structures. These orbitals may be called the natural
spin-density orbitals (NSDO), or sometimes other designations [40]. The positive /J,](DS)
values will therefore result in positive contributions to the spatial spin-distribution, and

negative ués) values will result in negative contributions. In principle, this equation

holds for the inactive and virtual orbital contributions, but MES) = 0 for these orbital
subsets since they have equal o and 8 occupations, so nonzero contributions to the spin-
distribution can arise only from the active orbital subspace. For CASSCF expansions,
direct-product expansions, and some other common wave function expansion forms, the
NSDO transformation is redundant and may be applied to resolve the active orbitals,
thereby simplifying the representation of the orbitals and CSF coefficients in the wave
function. The correct treatment of such redundant transformations is essential during
the orbital optimisation process and also during the computation of analytic energy
gradients and nonadiabatic coupling between electronic states [41]. Once the NSDOs
have been determined for M = S, these same orbitals also apply to the other M # S
members of the multiplet. The eigenvalues for the other members of the multiplet are
given by ,uz(,M) = %,u](gs), which follows from Eq. (22). The relation Tr(u™)) = 2M
holds for the eigenvalues of the NSDO basis for each multiplet member.

The interpretation of these orbitals follows from the min/max condition of the her-
mitian eigenvalue equation, Eq. (28). Specifically, the highest eigenpair, indexed by k,
results from the maximisation of the expectation value, £(u;) = ul DOy /ul'uy,
with respect to the elements of the vector ug. This is typically the orbital that results
in the most strongly dominant « spin-density. The maximisation of £(ug_1) subject to
the constraint that ul_;ug = 0 gives the orbital with the second most strongly dominant
« spin-density. The lowest eigenpair results from the minimisation of the expectation



value, £(uy). This is typically the orbital that results in the most strongly dominant [
spin-density. The second lowest eigenpair is equivalent to the minimisation of the ex-
pectation value &(uz) subject to the constraint that ulw; = 0. This is the orbital that
results in the second most strongly dominant g spin-density. Continuing in this manner,
each successive interior eigenpair may be regarded as the result of both a minimisation
problem, subject to orthogonalisation constraints to the previously determined lower
eigenpairs, and a maximisation problem, subject to the orthogonalisation constraints
to the previously determined higher eigenpairs. Thus the NSDOs are those that exhibit
the most extreme spin-density values. Although there are some special cases, e.g. involv-
ing wave functions that have diagonal charge and spin density matrices, for a general
correlated wave function the charge- and spin-density matrices do not typically com-
mute. This means that the natural charge-density orbitals that diagonalise D9 and
thereby exhibit the most extreme charge density values, are distinct from the NSDOs
that diagonalise D(1:055)

A restricted Hartree-Fock (RHF) wave function is a special case of the CASSCF
expansion. It is a single determinant wave function CAS(Nget,Nger) with maximal
S = M = Ngy/2 spin and where each active orbital has occupation 7y = 1. The
inactive and virtual orbital subspaces are invariant as usual, but in this case the ac-
tive orbital invariance results from the fact that the single CSF transforms to itself
for any active orbital transformation U. The spin-density matrix in the active space
is diagonal, D((J;;’O;S) = +0pq, and therefore the spin-distribution is always given by the
simple, NSDO, form of Eq. (29) with positive eigenvalues. The RHF spin-distribution is
therefore nonnegative at every point in space. The other members of the multiplet, gen-
erated for example by application of the S operator, are generally multideterminantal
wave functions, but the spin-distributions satisfy nevertheless the scaling relation, Eq.
(25). This means that the spin-distribution of each member of the RHF wave function
multiplet is nonnegative everywhere in space for the M > 0 members, identically zero
everywhere in space for the M = 0 member (for even N), and nonpositive everywhere
in space for the M < 0 members. It follows that a wave function that has both positive
and negative regions of spin-distribution cannot be of RHF form, or a member of an
RHF multiplet, or equivalent through orbital transformation to these wave functions.
Such wave functions must consist of other types of CSFs, they must include electron
correlation through the mixing of CSFs, or, as discussed in the Appendix, they must be
spin-contaminated.

Further insight is given by drawing an analogy to excited-state difference density
matrices, widely used to characterise excited states via the analysis of attachment-
detachment densities [42, 43]. The analogy is apt since D®%M) does indeed correspond
to the difference between the DI*M] and DIFM! density matrices. Although the NSDO
factors in Eq. (29) are all positive, at a given point r in space there can be cancellations
between the orbitals with positive and negative eigenvalues. These eigenpairs may be
collected into two subsets:

. (30)
p M = {p:uz(,M) <0O;p=1...n}
The inactive and virtual orbitals, along with any active orbitals with uéM) = 0 need not

be included in either subset. Thus pH*) U u(=M) C {p:p = 1...n}, and either or



both subsets may be empty. The spin-distribution in Eq. (29) is partitioned analogously

ep (M) ep—M)
pEM@) = 3 )Pt + Z )Pud™ (31)
p
Pl () P ()

The p[j; ;M](r) spin-promotion distributions are each composed entirely from contribu-
tions of the same sign with no cancellations. It is furthermore instructive to define the
spin-promotion numbers

cpEM)

P = Z ng (32)

with p(M) + p(M) 2M in analogy to the regular promotion numbers in the attachment-

detachment analysis. If we define the spin-promotion index
A = min(p, —p*"), (33)

then the condition AM) = 0 corresponds to the simple delocalization of any open-shell
electrons with no further spin-polarisation contributions to the spin-distribution. This
occurs, for example, for a single-determinant RHF wave function and for its multide-
terminantal multiplet members. The condition AM) > (0 corresponds to further spin-
polarization within the wave function, arising, for example, from electron correlation
effects or from spin-contamination, and to the promotion of A additional electrons
between the positive and negative regions of the spin-distribution. The p[i_ M) (r) promo-
tion distributions themselves provide a visual perspective of the essential contributions

to the spatial spin-distribution.

2.3. Implementation in the GUGA Framework

The spin-density matrix D1%9%) is computed from the spin-independent 1- and 2-RDM
elements using Eq. (20). Within GUGA, these RDM elements are constructed from
individual contributions of Shavitt loops (see Fig. 2 in Ref. [44], Fig. 8 in Ref. [3], or
Fig. 4 in Ref. [45]). The charge-density matrix D9 is the normal 1-RDM that is
already computed and is available within the MCSCF optimisation procedure,

DO = (6] Epgly) = Z ContCo (10 Elpg ), (34)
where [)) = 3, ¢ |m) is assumed to be normalised. (m/|E,,|m) is a one-electron

coupling coefficient. The D;?,’O) matrix elements are computed from Shavitt loop type
14b, and the D((]g’o) elements for p < ¢ are computed from Shavitt loop type 12¢. The
computational procedure consists of starting with a Shavitt loop value, then generating
all m and m’ pairs for the associated coupling coefficients, and then combining those
coupling coefficients with the CSF coefficients to accumulate the D( ) Value. The p>q
matrix elements are determined implicitly from the matrix index symmetry.

10



The 2-RDM elements that are computed and stored within the CoLumBUS MCSCF
procedure are the symmetrised elements

1

- R R 1
dsrqp = ) (V]epgrs + Epgsr|t0) = §(dsrqp + drsqp), (35)

which have the same index symmetry as the two-electron hamiltonian integrals. The
contributions of the required dgikp elements in Eq. (20) must therefore be accumulated
prior to this symmetrisation step. These 2-RDM elements are partitioned according to
the number of distinct index values. Consider first the p = ¢ terms which contribute to

the diagonal DZ%’O;S) elements,

p—1 n
Z dpkkp - dpppp + Z dpkkp + Z dpkkp' (36)
k k=1 k=p+1

The first term is computed from Shavitt loop type 14a, and the last terms are computed
from loop type 11b.

Consider next the off-diagonal Dfnlg’O;S) spin-density matrix elements for p < ¢. There
are five possible ranges for the index k, namely k < p < q, k =p < q, p < k < g,

p < k=gq,and p < q < k. These result in the contributions,

p—1 q—1 n
Z qukp = Z qukp + dqppp + Z qukp + dqqqp + Z qukp' (37)
k k=1 k=p+1 k=q+1

The terms in Eq. (37) correspond respectively to Shavitt loop types 4b, 12a, 6b, 12b,
and 8b. The general computational procedure is the same as for the 1-RDM except
that each contribution is accumulated both into the spin-density matrix and into the
symmetrised 2-RDM, Eq. (35). The p > ¢ matrix elements are determined implicitly
from the matrix index symmetry.

2.4. Computational Details

The geometry of the pristine phenalenyl was first optimised using the TPSS [46] den-
sity functional and the def2-tzvp [47] basis set using the unrestricted Kohn-Sham (UKS)
method. The resulting geometry presented the Ds;, symmetry and the subsequent calcu-
lations were performed using the Cy, point group (subgroup of the D3, point group). The
computed wave functions have A} symmetry in D3y, which correlates to Ay symmetry
in Cy,. Next, heteroatom substitutions were applied to selected positions substituting
the CH group by N and NH and the structures were reoptimised. The final geometries
presented C; symmetry for the N atom mono-doped structure and Cs, symmetry for the
N and NH di-doped structures, and these point groups were employed in the following
calculations. The sets of cartesian coordinates are available within the supplemental
material (SM).

At these optimised geometries, the spin-density distributions were obtained from
single point calculations employing the unrestricted approach for the TPSS density
functional [46] and the def2-tzvpp basis set [47]. This functional was employed because
it was observed for iron-containing complexes that nonhybrid functionals (like TPSS)
predict spin-density distributions closer to CASSCF than hybrid functionals [7, 8]. This

11



issue will be discussed in more detail below. All TPSS calculations were performed with
M = +1/2. These calculations were carried out with the Orca 5.0.1 software [48].

The MCSCF calculations employing the 6-311G** basis set [49] were performed using
the same optimised geometries attained by the TPSS/def2-tzvp approach. Seven active
orbitals were selected in relation to the pristine phenalenyl to make a CAS(7,7) wave
function which is augmented with 3 RAS orbitals and 3 AUX orbitals. This results
in the RAS(3)/CAS(7,7)/AUX(3) MCSCF wave function with S = 1/2 that describes
the 13 m-orbitals and 13 m-electrons. This set of active orbitals is maintained for the
doped structures, in which one or two CH groups are substituted. The resulting number
of electrons obtained are as follows: 7) each N atom contributes one electron to the 7-
system (pyridinic doping) keeping the same number of electrons as for PLY, and 47) each
NH substitution contributes two electrons to the m-system (graphitic doping) adding
one additional electron to the active space relative to PLY. Restricted Hartree-Fock
(RHF) calculations are also shown. These calculations have a single active electron in a
single active m-orbital, equivalent to CAS(1,1), with all other occupied orbitals inactive.
These calculations were carried out with the COLUMBUS package [23].

Additional UKS computations were performed to gauge the influence of non-local
Hartree-Fock exchange (HFX) on the spin-densities produced. For this purpose, the
PBE [50] (no HFX), PBEO [51] (25% HFX), PBE50 (PBE with 50% HFX) functionals
were employed. In addition unrestricted HF (UHF) calculations were performed. These
calculations were carried out in Q-Chem 5.4 [52] employing the libwfa wave function
analysis library to compute spin-densities [53].

3. Results and Discussion

The new implementation of the spin-density in COLUMBUS was first applied to calcu-
lations on the PLY radical. PLY possesses 13 m-electrons meaning that it contains at
least one unpaired electron. For the wave functions described below, there is typically
a single MO with occupation 7, ~ 1 which is called the singly occupied molecular or-
bital (SOMO). As a consequence, the system is classified as a non-Kekulé benzenoid
molecule, i.e. there is no valence bond (VB) structure where all m-electrons are paired.
Indeed, there are seven possible resonance structures. One of these options is displayed
in Fig. 1, in which the unpaired electron is located in position 2, and the possible other
positions for the open radical are indicated in blue. Notably, if the unpaired electron is
localised at an edge-carbon, a resonance structure with a Clar sextet is present, whereas
this is not the case when the radical is at the centre. Hence, one expects enhanced rad-
ical character and, therefore, spin-density at the edge positions. PLY is an alternant
hydrocarbon, which means the C atoms may be partitioned into two subsets, starred
and unstarred, with no direct chemical bonds between any two atoms within one of
the subsets. UHF spin-distributions for such systems using model Hamiltonians have
been studied by Pauncz. [54] The starred C atoms correspond to the blue radical sites
in Fig. 1 of the VB structures. All doping substitutions were chosen to keep an odd
number of electrons since singlet systems present a zero spin-density matrix (Eq. (22)).
Fig. 1 displays the carbon numbering scheme for the PLY structure. Doping was always
performed in positions 2 and 12 since these (and the symmetry equivalent positions)
are the atoms where the singly occupied molecular orbital is located in the resonance
structures.

The spin-distributions obtained with the MCSCF, UHF, and RHF methods as well
as the PBES0, PBEO, PBE and TPSS functionals are displayed in Fig. 2 for the pristine
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PLY. The wave functions were computed with A, symmetry within the Cy, point group,
but they display the full A] symmetry within the Ds;, point group. Colour is used to
distinguish between the regions of positive and negative spin-distributions. Blue is used
to designate the a-rich positive regions, and red is used to designate the S-rich negative
regions. All spin-distributions are computed with M = +1/2, thus the positive regions
overall dominate the negative regions. The formal radical resides within the a-rich
region, and additional spin-polarisation is reflected through the further positive and
negative spin-distribution regions.

12 )

11 3
10 4

8 6

Figure 1. Phenalenyl valence bond structure with the indication for the carbon positions. Doping is considered
in positions 2 and 12. The blue positions can present the open radical in ressonant structures.

First considering the spin distribution for the pristine PLY (Fig. 2), all methods
present alternance of positive and negative spin densities on neighbouring carbons re-
siding mostly in the m-system, a similar pattern as also seen for triangulene structures
with larger number of rings [55]. The exception to this is the RHF result in Fig. 2¢
which shows only positive spin-distribution values. As discussed in Section 2.2 this is
the expected result for an RHF wave function with M > 0. For the other methods,
there are 7 a-rich and 6 S-rich sites, consistent with the starred and unstarred C atoms
in the alternant hydrocarbon. The VB framework provides some insight into the spin
distributions. Here, spin population on a position can be seen as the result of a weighted
combination of the resonance structures presenting open radicals on that site. Enhanced
positive spin (blue) is found for the seven positions that can hold the free radical in the
VB picture as indicated in blue in Fig. 1. As discussed above, the radical on the cen-
tral atom does not allow the formation of a Clar sextet. Thus, this resonance structure
should possess a higher energy and present a lower contribution to the spin distribution.
This difference is clearly represented in the MCSCF results [Fig. 2a] where the outer
positions display a spin-density of about four times the value of the inner atom (0.252e
vs. 0.068¢). UHF [Fig. 2b] displays a strikingly different spin-distribution, which is, first,
significantly more pronounced than the MCSCF one and, second, shows a diminished
difference between outer and inner atoms (0.784e vs. 0.724¢). RHF [Fig. 2¢| presents the
opposite limiting case with no spin-density in the centre. Proceeding to UKS, we find
that reducing the amount of HFX in the functional along the series PBE50 (d), PBEO
(e), PBE (f) reduces the overall spin-density on the atoms and restores the difference
between the outer and central carbon atoms. Finally, TPSS (g), which is a local meta-
GGA based on PBE, provides a similar appearance to PBE. In agreement with Refs.
[7, 8], we find that using little or no HFX tends to improve the results. Specifically, the
Mulliken population analysis for the MCSCF and TPSS calculations differs by at most
0.0267e (Table S1), highlighting that TPSS is a suitable choice for the description of
this molecule.

Fig. 2 illustrates the challenges present in describing spin-densities using UHF /UKS
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Figure 2. Spin-density distributions p[*;l/m (r) for the pristine phenalenyl computed for the doublet ground
state obtained from a) MCSCF, b) UHF, ¢) ROHF, d) PBE50, ¢) PBEO, f) PBE, g) TPSS calculations and h)
2D structure with Mulliken populations (e) from the MCSCF calculation. Blue denotes positive spin-density
and red denotes negative values. The isovalue is £0.001e - A7 for positive and negative values, respectively.

approaches. Dramatic differences and qualitatively diverging results are observed be-
tween different functionals, and, were the MCSCF reference not available, there would be
no simple way to assess the quality of these descriptions. From a more formal viewpoint
it is worth noting that our GUGA-based MCSCF strictly produces spin-eigenfunctions.
The negative spin-distributions seen in Fig. 2a arise via electron correlation. By con-
trast, negative spin-distributions from a UHF /UKS single determinantal treatment can
only arise via spin-contamination, i.e. the o and § spin-orbitals have different shapes
and, as a consequence, the resulting determinant is no longer an eigenfunction of SQ,
(see the Appendix for further details). Following Eq. (1), the expectation value ($2)
for a doublet state should be 0.75, and the deviations from that value can be used to
quantify the spin-contamination. Increasing the HFX, we find that spin-contamination
increases sharply and, specifically, <§2) values of 0.766 (PBE), 0.824 (PBE0), 0.973
(PBE50), and 2.01 (UHF) are obtained. Further discussions of spin-contamination in
UKS theory are quite subtle [12, 56, 57] and outside the scope of this work, but two
points are particularly relevant. First, the KS determinant is an auxiliary construction
whose purpose is to produce values for charge and spin densities whereas its <5’2) ex-
pectation value does not have a physical meaning. There is no reason to expect that
<§2> would reflect the true spin of the system. Second, UHF, as a wave function theory,
is required to produce a valid (52) expectation value, (Egs. (A6) and (A15)). In this
sense, the spin-contamination in UHF is more troublesome than in UKS. Therefore,
UHF as such, and by extension its admixture to UKS within a hybrid functional, is
more problematic than using the original “pure” UKS theory. Hence, in line with the
observed results, a pure functional seems more suitable than a hybrid functional for the
description of spin-densities.

The RHF results in Fig. 2c are consistent with an uncorrelated (single determinant
in this case) spin-eigenfunction with spin-promotion index A/2) = (e in Eq. (33).
The RHF spin-distribution arises only from the delocalisation of the SOMO, with no
contributions either from electron correlation or from spin-contamination. The RHF
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SOMO has as(a;) symmetry in the Cy,(Dsy,) point group. The central carbon atom lies
at the intersection of three vertical nodal planes of the SOMO and therefore acquires
no significant spin-distribution from this delocalisation. In contrast, this central carbon
has significant positive spin-density due to correlation in the MCSCF wave function in
Fig. 2a.

The NSDOs of the MCSCF wave function, the spin-promotion distributions, and
the spin-promotion numbers for PLY are shown in Fig. 3. The natural charge-density
orbitals obtained from the MCSCF calculation are displayed in Table S2. The spin-

promotion numbers p(+1/2) = 1.564e and p(_l/z) = —0.564¢ are consistent with the
M = 1/2 value and with significant spin polarisation within the wave function. In

addition to the nominal SOMO distribution, the spin-promotion index A1/2) = 0.564e,
Eq. (33), shows additional promotion from the negative spin-promotion distribution
regions into the positive regions. Within the 13-orbital active space, the lowest six NS-
DOs have negative m(,l/ 2) eigenvalues and the remaining seven NSDOs have positive
eigenvalues. Both the NSDOs and the eigenvalues reflect the Ds;, point group symme-
try of the molecule. The positive spin-promotion distribution is concentrated on the
six alternating edge carbons, as suggested from the VB analysis, and also consistent
with the delocalisation of the a; SOMO. A smaller positive spin-promotion distribution
occurs on the central carbon, a consequence of the valence correlation. This density
does not arise from the SOMO, which has three intersecting vertical nodal planes cen-
tred on that atom. The smaller negative spin-promotion distribution is spread among
the other three edge carbons and the remaining three carbons, consistent with their
unstarred C-atom designations. Due to these spatial separations, there is relatively lit-
tle cancellation of positive and negative spin-promotion distribution to form the total
spin-distribution pl=5'/2(r) shown in Fig. 2a. The square of the orbital amplitude times
the ,u,fgl/ 2) eigenvalue for each orbital gives the contribution of that orbital to the spin-
promotion distribution. Thus all of the orbitals on the left in Fig. 3 contribute only
positive values and all of the orbitals on the right contribute only negative values to the
respective spin-promotion distribution and to the total spin-distribution.

The spin distributions for the N-doped structures are displayed in Figs. 4 and 5.
These substitutions are isoeletronic to PLY and lead to a pyridinic form, not affecting
the number of electrons in the w-system of the molecule. These substitutions break the
D3, symmetry of the molecule, reducing it to Cs, for the C11NoH7 di-substitution and
to Cy for the C15NHg mono-substitution.

Concerning the spin distribution for the doping by two N atoms (Fig. 4), there is no
appreciable qualitative change in comparison to the pristine case. The MCSCF spin-
promotion index is A(/2) = 0.552¢, which is comparable to the PLY value. For both
the MCSCF and TPSS methods, based on the Mulliken analysis, the spin population
decreases in position 2 of the molecule in comparison to PLY, from 0.25¢ to 0.21e for
the MCSCF method and more drastically from 0.28e to 0.18e for the TPSS functional,
as seen in Table S3. The natural charge-density orbitals and NSDOs calculated with
the MCSCF method are displayed in Tables S4 and S5.

For the spin-density of the single N-doped structure (Fig. 5), a comparison of the
spin distribution obtained from the RAS(3)/CAS(7,7)/AUX(3) calculation with the
pristine counterpart (Fig. 2) shows that the MCSCF method predicts a slightly larger
spin distribution on the nitrogen and central carbon atoms than the TPSS functional
(Table S6). The former has values equal to 0.22e (N) and 0.07e (C) while the latter
has values equal to 0.20e (N) and 0.02e (C). The MCSCF spin-promotion index is
A1/2) = 0.560e, which is comparable to the PLY value. The natural charge-density
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Figure 3. p[J_:;l/ 2l (r) spin-promotion distributions and the natural spin-density orbitals (NSDOs) with their
eigenvalues (uél/ 2)) for the pristine phenalenyl computed for the 2A2(2A”) ground state obtained from the

MCSCF calculation. The isovalue is +0.001e - A~ for p ~i/ (r) and £0.0547%/? for the NSDOs. Blue and
red represent positive and negative values, respectively.

orbitals and NSDOs aattained from the RAS(3)/CAS(7,7)/AUX(3) wavefunction are
displayed in Tables S7 and S8.

Fig. 6 shows the NH di-substitution structures. This molecule presents a Cs, sym-
metry and adds two more electrons on the m-system, resulting in nine electrons in
the complete active space, RAS(3)/CAS(9,7)/AUX(3). The SOMO for this wave func-
tion has as symmetry, and the wave function itself has A, symmetry. The MCSCF
spin-promotion index is A®/2) = 0.160e, which is much less than the PLY value and
the previous N-substitution values. Within the 13-orbital active space, the lowest five
NSDOs have negative ,u;()l/ 2) eigenvalues and the remaining eight NSDOs have posi-
tive eigenvalues. A spin-distribution closer to an ROHF wave function is observed in
Fig. 6. According to results obtained from highly correlated multireference methods,
this graphitic doping is expected to have the potential of enhancing the biradicaloid
character for larger polyaromatic hydrocarbons [58-62]. Moreover, among the doping
possibilities considered here, this type of substitution is the only one that changes qual-
itatively the a and § alternance in neighbouring atoms (Fig. 6). For both methods
considered, 10 of the 12 edge atoms present « spin while only the carbons in position
1, 7 and 13 (central) present /3 spin. These carbon atoms lie in the vertical nodal plane
of the as SOMO, and thereby receive no significant spin-distribution from the delo-
calisation of this orbital. For the TPSS functional, a small § spin-distribution is also
observed between the carbons (i.e. within the chemical bonds) presenting o character.
The RAS(3)/CAS(9,7)/AUX(3) wave function cannot validate these contributions since
there are no ¢ orbitals in the active space. This feature will be examined in more de-
tail in future work using more accurate wave functions. The spin population for this
structure is listed in Table S9, and the MCSCF and the DFT values differ by no more
than 0.024e. The natural charge-density orbitals and the NSDOs obtained from the
RAS(3)/CAS(9,7)/AUX(3) method are displayed in Tables S10 and S11.
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Figure 4. Spin-density distributions p[ﬁl/m(r) for the N-didoped phenalenyl computed for the doublet
ground state obtained from a) MCSCF, b) TPSS calculations and c) 2D structure with Mulliken popula-
tions (e) from the MCSCF calculation. Blue denotes positive spin density and red denotes negative values. The

isovalue is £0.001e - A~ for positive and negative values, respectively.
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Figure 5. Spin-density distributions pl=31/2l(r) for the N-monodoped phenalenyl computed for the doublet
ground state obtained from a) MCSCF, b) TPSS calculations and ¢) 2D structure with Mulliken populations
(e) from the MCSCF calculation. Blue denotes positive spin density and red denotes negative values. The

isovalue is +0.001e - A~ for positive and negative values, respectively.
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Figure 6. Spin-density distributions pl=i1/2(r) for the NH-didoped phenalenyl computed for the doublet
ground state obtained from a) MCSCF, b) TPSS calculations and ¢) 2D structure with Mulliken populations
(e) from the MCSCF calculation. Blue denotes positive spin density and red denotes negative values. The

isovalue is +0.001e - A~ for positive and negative values, respectively.
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4. Conclusion

In this work, the theoretical background for the spin-density matrix calculation is pre-
sented. The matrix equation is written in terms of one- and two-particle charge density
matrix elements that do not depend on the spin component quantum number and are
available within the GUGA formalism. This approach avoids the projection of the wave
function in a basis of spin-dependent Slater determinants, and it uses information that
is already computed and is available within the MCSCF optimisation procedure. This
approach is also applicable to MRCI and MR-AQCC methods.

The properties of the spin-density matrix and its spatial spin-distribution are dis-
cussed. Among several insights, the spin-distribution for a wave function that is a
spin-eigenfunction with M = 0 vanishes everywhere in space, while this is not true
for spin-contaminated M = 0 wave functions. In the latter case, it is only the integral
over all space that is zero. Moreover, M # 0 multiconfigurational wave functions that
are spin-eigenfunctions are able to produce spin-distributions with both positive and
negative regions due to electron correlation, in contrast to unrestricted wave functions
in which this feature arises due to spin-contamination. The natural spin-density orbitals
provide a convenient basis for the discussion of the spin-distributions. Spin-promotion
distributions and spin-promotion numbers provide insight into the spin-polarisation of
the MCSCF wave function.

The implementation of the spin-density matrix calculation for the MCSCF method in
CoLuMBUS was applied to the phenalenyl benzenoid radical and three doped structures,
substituting the CH group by the N-atom and NH group. The pristine phenalenyl
structure presents alternating a- and [-rich regions on neighbouring carbons, as do
the N-atom mono- and di-substituted radicals. These radicals all display comparable
spin-polarisation. In contrast, the NH di-substituted radical does not show alternating
regions, and it displays much smaller spin-polarisation.

When compared to DFT functionals, it is observed that UKS functionals with more
Hartree-Fock exchange produce exaggerated spin-distributions, and by comparison with
the MCSCF spin-distribution, a pure functional like TPSS is more reliable than hybrid
functionals.

We believe this work provides solid basis on how to obtain spin properties from the
multiconfigurational GUGA formalism and provides trustworthy tools to explore and
shed light on the spin properties of molecular systems.
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Appendix A. Spin-density matrices in UHF and UDFT formalism

In this appendix the formalism for UHF and UDFT spin-density matrix computation is
briefly reviewed. The important feature of these methods is that a different-orbitals-for-
different-spins (DODS) formulation is used rather than the same-orbital-for-different-
spins (SODS) formulation that is employed within GUGA. These two sets of spatial
orbitals will be denoted l°! with o € {a, 8}. These two sets of molecular orbitals are
computed from the same set of atomic orbitals (AO) of dimension n,

@l = xClol. (A1)

Let X be the overlap matrix between the two sets of spatial orbitals

Xy = [ 5wl w)r = (4l 7). (A2)
that define the DODS spin-orbitals. It then follows that
ol = plIx (A3)

and that the square matrix X, which we assume herein to be real, is orthogonal, X7 X =
XXT =1.

The UHF wave function consists of a simpler, single-determinant, form rather than
the explicitly multiconfigurational form of the MCSCF wave functions used in the
present work. The UHF orbitals are optimised to minimise the single-determinant en-
ergy expectation value, and the resulting wave function is an eigenfunction of the S,
operator, but it is typically not an eigenfunction of the S2 operator. Briefly, with a suit-
able ordering of the molecular orbitals the UHF determinant is written in the occupation
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number representation as

n n
|UHF; %, M) =[1---10---01---10---0), (A4)
N~—— —
Na Ns

with the spin-orbital occupations 7y, € {0,1}. The spin-orbital basis has dimension 2n.
The first N, of the a spin-orbitals are occupied, followed by the n — N, unoccupied
a spin-orbitals, followed by the first Ng of the occupied § spin-orbitals, followed by

the n — Ng unoccupied j spin-orbitals. In the DODS basis, the S, operator form is
unchanged, while the §+ and S_ operators take the form

N 1 - N
SZ = §(N04 - Nﬁ)a
A§+ - S‘i - ZqudLa&qB, (A5)

Pq
& &t _ Tt o
S-=5= Zquapﬂaqa’
pq

In the special case that X = 1, the DODS basis becomes an SODS basis, and the
operators in Eq. (A5) reduce to the simpler forms of Eq. (7) with a single spatial orbital
summation index. These operators lead to the simple expression [63] for the UHF 52
expectation value,

No Np
(UHF; %, M|S?|UHF; %, M) = M(M + 1)+ N — > > X2, (A6)

p=1¢=1

where for M > 0 the last two terms together are regarded as a measure of the spin-
contamination.

The UHF spin-density matrix is typically computed in the atomic orbital (AO) basis
rather than the MO basis. To arrive at this formulation, consider the 1-RDMs that arise
separately from the o and 3 spin-orbitals of a DODS wave function.

DM = (4p; 5, M|af, g5 |05 %, M) . (A7)
These density matrices are symmetric, the eigenvalues satisfy 0 < pp < 1V k, and

Tr(DM)) = N,. For a single-determinant UHF wave function, these density matrices
are diagonal,

DM = diag(nip, -+ Nno) (A8)

with the orbital occupations 7y, shown in Eq. (A4). The corresponding spatial electron
distributions are given by

ploiM] (r) = Z g0([10] (f)Dg?M]@gf] (r)* = cp[”](r)D[”?M]go[“] (r)t,
rq

N N (A9)
="\ (r)DIZMly (1) = x (r) DMy (1),
%
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with the AO density matrices DMl = ClIDI#MICIIT  Integration over all space of
the spatial distributions gives,

[ oMy =S Dl [ (e v fe)de = S Dl 0
o P (A10)

=Tr (DIxMIgA%) — N,

In the common AO basis, the total charge density matrix DIFXM]

matrix DM gre

and the spin-density

DEXM] — plesxsM] 4L plFxM], (AlL)

The total spatial charge distribution pl*i™](r) and the spatial spin-distribution pl=*(r)
are given by

p[i;M} (r) :p[a;M](r) ip[B;M](r)
= > () DL, ()" = x (1) DEX My ()T, (A12)
Hv

It follows from Eq. (A10) that integration over space gives,
/p[i3M] (r)dr =N, £ Nj. (A13)

Because the UHF wave function is usually spin-contaminated, different values for the
quantum number M correspond to distinct, energy-optimised, spin-contaminated wave
functions, and they are not necessarily related to each other through Sy or through
simple spin-tensor relations such as Eq. (6).

Another important difference between spin-eigenfunctions and spin-contaminated
wave functions is that typically DI=X% £ 0, for M = 0, in contrast to Eq. (22). In
principle, a spin-contaminated wave function may be expanded in a spin-eigenfunction
basis,

SnLu:L'

S=Smin

with Sy = |M| and Spee = mm(%N N — %N ). This expansion is discussed in more
detail in Ref. [64]. In general, the spin-eigenfunction basis functions |¢; S, M) are multi-
determinantal expansions in the DODS spin-orbital basis, even when the wave function
|1; %, M) is a single UHF determinant. In terms of this expansion, the UHF 52 expec-
tation value Eq. (A6) is

STVLCLJJ
(UHF; %, M|S?|UHF; %, M) = Y 2% (S(S+1)). (A15)
S=Smin

The S = |M]| term in this expansion is typically the desired wave function, and any
other nonzero terms, each of which is positive so there are no cancellations within the
summation, are regarded as spin-contamination.
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For a DODS wave function expansion, the spin-density operator in the ¢!® orbital
basis may be written

DL =} ptga — > Xpr X s 5its. (A16)

This operator, along with its counterpart operator in the ! basis, is consistent with the
AO spin-density matrix DI=%M] in Eq. (A11). The expectation value of this operator
then simplifies as

(%, MIDLOb; %, M) = 3" agag (1 S, M|IDEO|y; ', M) (A17)
S,S’
Smaw ~
= > 2% (S, MID} b S, M) +
S:S'nmn
Smaz_l N
> wswsia (S, MIDG|; S + 1, M) + (A18)
S:Smin
S'maw
wsrs—1 (1; S, M|DyO; S — 1, M)
S:S7nin+1
Sm,am
= Y 2% (; S, M|D}L|; S, M) +
S:Smin
Smaz_l N ~
Z TSTS+1 <wa Sa M|D;1’90 + D;&O‘¢7 S + 17 M> 5
S:Smin

(A19)

due to the triangle inequality constraints on the values (S,S5’,1). In the spin-
eigenfunction expansion basis, the first summation term in Eq. (A18) consists of the
diagonal matrix elements, the second term consists of upper codiagonal elements, and
the last term consists of lower codiagonal elements of a tridiagonal matrix. The last
summation in Eq. (A19) follows from the identity (ZA);ISO)T = IA);;IO. If S = |M] is the
wave function of interest, then any nonzero S # |M| terms in the first summation in
Eq. (A19) and the entire contribution of the second summation would be considered
spin-contamination. For M = 0 the first summation in Eq. (A19) vanishes due to Eq.
(22) to give,

Sz —1
(3%, 0| D 1) %, 0) Z wswsi (15,0103 + D0l S +1,0) . (A20)

These spin-density matrix elements are composed entirely of spin-contamination con-
tributions from off-diagonal adjacent terms in the spin-eigenfunction expansion. The
nonzero eigenvalues of this matrix must be both positive and negative in order to sat-
isfy Tr(DW%M)) = 20/ = 0, and thus a nonzero spatial spin-distribution at some point
r in space can be either positive or negative, with integration over all space giving
zero. The possibility of a nonzero spatial spin-distribution is also apparent from Eq.
(A12). This is in contrast to the M = 0 spin-distribution for a wave function that is a
spin-eigenfunction, which vanishes at every point in space, Eq. (25).
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