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A B S T R A C T   

Understanding if and how individuals and populations cope with environmental change is an enduring question 
in evolutionary ecology that has renewed importance given the pace of change in the Anthropocene. Two 
evolutionary strategies of coping with environmental change may be particularly important in rapidly changing 
environments: adaptive phenotypic plasticity and/or bet hedging. Adaptive plasticity could enable individuals to 
match their phenotypes to the expected environment if there is an accurate cue predicting the selective envi-
ronment. Diversifying bet hedging involves the production of seemingly random phenotypes in an unpredictable 
environment, some of which may be adaptive. Here, I review the central role of the hypothalamic-pituitary- 
adrenal (HPA) axis and glucocorticoids (GCs) in enabling vertebrates to cope with environmental change 
through adaptive plasticity and bet hedging. I first describe how the HPA axis mediates three types of adaptive 
plasticity to cope with environmental change (evasion, tolerance, recovery) over short timescales (e.g., 1–3 
generations) before discussing how the implications of GCs on phenotype integration may depend upon the 
timescale under consideration. GCs can promote adaptive phenotypic integration, but their effects on phenotypic 
co-variation could also limit the dimensions of phenotypic space explored by animals over longer timescales. 
Finally, I discuss how organismal responses to environmental stressors can act as a bet hedging mechanism and 
therefore enhance evolvability by increasing genetic or phenotypic variability or reducing patterns of genetic and 
phenotypic co-variance. Together, this emphasizes the crucial role of the HPA axis in understanding fundamental 
questions in evolutionary ecology.   

1. Introduction 

A pressing question in the face of unprecedented changes in the 
natural environment is if and how organisms can persist through this 
change. All organisms experience or have experienced environmental 
instability where one or more key aspects of the biotic or abiotic envi-
ronment varies across time and/or space. The signatures of the impor-
tance of these environmental fluctuations can be observed in the 
numerous characteristics of organisms that enable them to cope or 
buffer themselves from environmental change. Of many examples to 
choose from, these would include the reorganization of ion transport 
across the gills of teleost fish as they transition from freshwater to 
oceanic environments, sensitivity to food or temperature cues that 
enable adjustments in the phenology of key life history decisions (e.g., 

when to emerge from hibernation, when to breed) that are observed 
across organisms experiencing seasonal environments, or behavioral 
adjustments in response to changes in ambient temperatures or preda-
tion risk. Organisms need to be flexible in response to the environmental 
changes they experience, yet this need for flexibility is balanced by its 
potential costs. In many cases, there are benefits to inflexibility or stability 
through environmental change, such as the oft-mentioned example of 
the maintenance of body temperature within a narrow range to ensure 
optimal enzyme function. 

This trade-off between flexibility and stability manifests itself across 
biological scales of organization. From the perspective of an individual, 
they may either be flexible (phenotypic plasticity) or robust (canaliza-
tion) to an environmental change. Across longer timescales, populations 
or even species face a trade-off between evolvability and robustness 
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through environmental change: too much change in response to envi-
ronmental perturbations is problematic, but so is too little. The same can 
be said of the genome when it comes to its sensitivity to environmental 
or mutational perturbations. 

One proposed solution that balances the costs and benefits of flexi-
bility is a “bow tie network” where many environmental inputs are 
processed centrally (core or hub: Fig. 1A) and there are many outputs 
that are in turn affected by this central processing system (Fig. 1A). This 
has been proposed as a solution whereby an organism can balance the 
need to be both flexible and stable through environmental change 
(Kitano, 2004; Csete and Doyle, 2004). The hypothalamic-pituitary- 
adrenal (HPA) axis, also called the vertebrate neuroendocrine stress 
axis, has been proposed to function as a bow tie network (del Giudice, 
2015). This is because HPA axis activity is affected by many inputs from 
extrinsic and intrinsic sources (predation risk, individual state, ambient 
food availability, weather patterns, competitive interactions, parasitism 
or disease), these inputs or information about the environment are 
processed centrally, and activation of the HPA axis results in the pro-
duction of the metabolic steroid hormones, glucocorticoids (GCs), which 
can influence many cell types and, in turn, phenotypes (Fig. 1A). 
Interestingly, the HPA axis itself may act as a “bow tie of bow ties” as its 
inputs and targets include other endocrine systems such as nutrient 
sensing pathways (hypothalamic-pituitary-somatotrophic axis) or the 
endocrine axis coordinating reproduction in vertebrates (hypothalamic- 
pituitary-gonadal axis). GCs or other products of the HPA axis can in-
fluence the activity of these other endocrine systems (Fig. 1B), thereby 
exhibiting high centrality (or acting as a hub) in how this physiological 
network coordinates animal responses to environmental cues. 

Given the bow tie nature of the HPA axis in addition to its connection 
with other bow tie physiological networks (Fig. 1), it is no surprise that it 
seems central for coordination of phenotypic responses to 

environmental change in vertebrate animals, including balancing the 
need to be flexible but not too unstable through change. Here, I discuss 
how the HPA axis is central to understand how vertebrate animals cope 
with environmental change and/or stressors across temporal scales. I 
first briefly describe the evolutionary strategies organisms can use to 
cope with environmental change and define how stress at the environ-
mental and individual level is defined and measured. I then review the 
how the HPA axis and GCs coordinate the ability of vertebrate animals to 
cope with environmental change across short and long timescales. My 
central point is that the HPA axis and GCs in particular can enable in-
dividual vertebrate animals to be flexible to short-term environmental 
changes through phenotypic plasticity in single phenotypes or inte-
grated suites of phenotypes, but also enable populations of (related) 
individuals to be stable across longer term environmental changes 
through bet hedging. I first point out that others have made similar 
points about the key role of the HPA axis in enabling individuals to cope 
with short-term environmental change by inducing plasticity (e.g., 
Wingfield, 2002; Dantzer et al., 2013; Wingfield, 2013; Angelier and 
Wingfield, 2013; Taff and Vitousek, 2016; Wingfield et al., 2017) or 
perhaps over longer-time scales through the generation of novel genetic 
and phenotypic variation or the level of integration among different 
traits (Badyaev, 2005a; Badyaev, 2005b). Here, I gather these different 
contributions together for a comprehensive review of this subject about 
how the HPA axis induces adaptive plasticity to cope with short-term 
environmental change. I then expand this perspective to think about 
how the role of the HPA axis in enabling or retarding the ability of 
populations to cope with environmental change across longer timescales 
through its effects on phenotypic integration and bet hedging. 

I first review how GCs promote three types of plasticity (evasion, 
tolerance, resistance: sensu Bradshaw, 1972; Huey, 2002) to deal with an 
environmental change/stressor. Because the phenotypic response to an 
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Fig. 1. Bowtie structures are expected to be the 
outcome of the need for organisms to balance the 
costs and benefits of flexibility in the face of envi-
ronmental change. A) The hypothalamic-pituitary- 
adrenal (HPA) axis exhibits a bowtie type structure 
in the sense that the HPA axis is the core (or hub) and 
receives information from the external environment 
and internal environment that in turn has manifold 
effects on organismal phenotypes. The activity of the 
HPA axis is often quantified using measures of 
glucocorticoid (GCs). GC production can be influ-
enced by external environmental features such as 
abiotic conditions (season, temperature, precipita-
tion), predation risk, and the degree of competition. 
Internal environmental conditions, such as individual 
state (age, level of nutrition, body condition) and life 
stage (ontogenetic state, reproductive condition) can 
also affect GCs. In turn, elevations in GCs can have 
diverse effects on organismal phenotypes from phys-
iological to life history traits. B) The HPA axis could 
be viewed as being a “bowtie of bowties” or central 
hub in physiological networks. Information from the 
internal or external environment can modify HPA axis 
activity that in turn influences the hypothalamic- 
pituitary-gonadal axis (HPG Axis), hypothalamic- 
pituitary-thyroid axis (HPT Axis), and the 
hypothalamic-pituitary-somatotrophic axis (HPS 
Axis), each of which could be considered as exhibiting 
a bowtie structure itself. Note that these conceptual 
diagrams are an oversimplification for the many 
components of the HPA axis (hormone, receptors, 
carrier proteins, etc.) and the cross-talk envisioned in 
panel B can vary among species (see text).   
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environmental change/stress is multifaceted, involving complementary 
changes to physiological, morphological, behavioral, and life history 
traits, I then focus on how activation of the HPA axis affects phenotypic 
integration, or patterns of co-variation among different traits. The ef-
fects of GCs on phenotypic integration during environmental change 
could be adaptive over short temporal scales, but potentially maladap-
tive over longer timescales because of the ability of GCs to structure 
patterns of phenotypic co-variation, which could theoretically constrain 
the dimensions of phenotypic space explored by animals over longer 
timescales. Finally, I focus on the potential role of the HPA axis on 
coping with environmental change/stress over longer timescales in the 
context of evolvability, which I define as the ability of populations to 
rapidly adapt (exhibit an evolutionary response to selection) to new 
environments due to the emergence of novel heritable phenotypic 
variation (sensu Wagner and Altenberg, 1996; Kirschner and Gerhart, 
1998; West-Eberhard, 1998). “Novel phenotypic variation that is heritable” 
is challenging to define but here it is meant to refer to heritable phe-
notypes or phenotypic combinations that have not before been exposed 
to selection. Activation of the HPA axis could function as a bet hedging 
mechanism that enhances population persistence through environ-
mental change (and therefore evolvability) because exposure to envi-
ronmental stress can enhance genetic and phenotypic variation or alter 
genetic and phenotypic co-variation to produce novel combinations of 
traits. Because little work has been done on this topic with specific focus 
on the HPA axis, I discuss how organisms respond to environmental 
stress writ large. My focus is on vertebrate animals, but I also discuss 
other organisms including plants and microbes to make specific points 
about plasticity, bet hedging, and responses to environmental stressors. I 
note that below I focus on how activation of the HPA axis can be asso-
ciated with plasticity in adulthood or during development, but I do not 
focus on some of the possible epigenetic mechanisms that might 
contribute to the inter-generational transfer of such plasticity given that 
this has been covered extensively elsewhere (e.g., Champagne, 2013; 
Anacker et al., 2014; Matthews and McGowan, 2019; Cao-Lei et al., 
2020). 

2. Evolutionary strategies to cope with environmental change 

Organisms are invariant in that all of them experience environmental 
change and exhibit specific responses to cope with such change. The 
types of environmental change experienced are various, but the re-
sponses to deal with the change can largely be grouped under four 
different types of “strategies” that I discuss below. These strategies could 
be used to deal with environmental change both from the perspective of 
short temporal scales (e.g., within the lifetime of a single individual or 
across two generations such as from parents to offspring) and over 
longer time periods (e.g., population or species persistence). Although I 
briefly describe all four strategies, I focus the rest of this contribution on 
phenotypic plasticity and bet hedging. 

The first way to respond to an environmental change is to exhibit 
phenotypic robustness, do not let the environmental change alter your 
phenotype (Wagner et al., 2007; Masel and Siegal, 2009). This is often 
referred to as canalization and is often considered to be a by-product of 
stabilizing selection (Waddington, 1942; Schmalhausen, 1949; Flatt, 
2005). For example, organisms may experience profound fluctuations in 
nutrient availability during development, which can influence body 
size, the size of specific morphological structures, or the allometric re-
lationships between body size and some specific morphological trait 
(Emlen, 1997). However, some traits, such as genital size in many in-
sects, exhibit canalization where they do not respond to variability in the 
developmental environment (Eberhard et al., 1998; House and Sim-
mons, 2003; Shingleton et al., 2009). The robustness of insect genitalia 
should be adaptive given that the potential cost of scaling your genitals 
with your overall body size is a lack of fit with the genitals of opposite- 
sex conspecifics (Eberhard, 1985). 

Second, organisms may exhibit an evolutionary or genetic response 

to the environmental change (i.e., adapt to it: Darwin, 1859), which is 
also called “adaptive tracking” (Simons, 2011). Here, selection of 
beneficial phenotypes that are heritable leads to a shift in the genetic 
composition of a population. Populations with higher levels of standing 
genetic variation, such as when there are larger populations sizes, are 
expected to have greater potential to mount an evolutionary response to 
environmental change (Fisher, 1930; Houle, 1992; Lande and Shannon, 
1996). Populations may also be “rescued” from extinction due to a 
sudden environmental change by the evolutionary response to selection 
(Gonzalez et al., 2013; Bell, 2017). This can take time, so it is often 
viewed to not be involved in coping with rapid environmental change 
(Botero et al., 2015), but there are some examples where adaptation is 
occurring over short (ecological) timescales (Hairston et al., 2005) in the 
context of global climate change (Donelson et al., 2019) or even within- 
season changes in weather patterns or predation risk in species with 
large population sizes (Yoshida et al., 2003; Rudman et al., 2022). 

Third, organisms may exhibit adaptive (or predictive or anticipatory) 
phenotypic plasticity in response to the environmental change. I define 
phenotypic plasticity as a situation where a phenotype is conditionally 
expressed depending upon the environment where the organism either 
responds to the environment or the environment induces plasticity, with 
special emphasis made on being inclusive with respect to both 
“response” vs. “induce” (sensu Sultan, 2021). Adaptive plasticity is ex-
pected to evolve in organisms that experience heterogeneous environ-
ments (which often cause fluctuating selection) where there is no one 
phenotype that is “best” for all environments, but where individuals 
have access to a reliable cue with which to predict the selective envi-
ronment as well as the sensory capabilities to detect the cue (Levins, 
1968; Gavrilets and Scheiner, 1993; Scheiner, 1993; Chevin et al., 2010; 
Reed et al., 2010; Bonamour et al., 2019). Plasticity exhibited by an 
individual can be reversible, which has also been called phenotypic 
flexibility or activational or contextual plasticity: (Piersma and Drent, 
2003; Snell-Rood, 2013; Stamps, 2016). Plasticity may also be irre-
versible, which is often a consequence of plasticity that occurs during 
development either from the individuals own environmental experience 
or the environment/phenotype provided by the parent or even grand-
parent (Uller, 2008; Snell-Rood, 2013; Burton and Metcalfe, 2014; 
Nettle and Bateson, 2015). Adaptive developmental plasticity (or inter- 
generational plasticity) in the context of parental effects comes with 
more names than can be listed here (anticipatory parental effects, pre-
dictive adaptive responses, adaptive transgenerational phenotypic 
plasticity, etc.: Engqvist and Reinhold, 2016). Acclimation may also be 
used to describe activational plasticity when it is adaptive, but activa-
tional and developmental plasticity can also decrease the match be-
tween the phenotype and environment (Ghalambor et al., 2007). 
Whether plasticity is reversible or irreversible likely depends upon its 
costs (potentially being lower for reversible/activational plasticity: 
Snell-Rood, 2013), but also the temporal scale (and autocorrelation) of 
environmental changes experienced by an organism (Botero et al., 2015; 
Leimar and McNamara, 2015). Activational (reversible plasticity) may 
be expected in organisms that experience fine grained environments (e. 
g., multiple environments experienced during the lifetime of an indi-
vidual: Levins, 1968; Botero et al., 2015) whereas developmental 
(irreversible) plasticity may be likely to be observed in organisms that 
experience coarse grained environments (minimal environmental vari-
ation during the lifetime of an individual: Levins, 1968; Snell-Rood, 
2013; Botero et al., 2015). Phenotypic plasticity can play an important 
role in the ability of populations to cope with natural environmental 
fluctuations (e.g., temperature, food availability), but also through 
abrupt environmental changes, such as those caused by global climate 
change, in addition to its ability to increase the ability of individuals to 
colonize and populations to persist in novel environments (Yeh and 
Price, 2004; Miner et al., 2005; Lande, 2009; Chevin et al., 2010; Chevin 
and Lande, 2011; Merilä and Hendry, 2014; O’Dea et al., 2016; Snell- 
Rood et al., 2018; Fox et al., 2019; Kelly, 2019). Plasticity occurring 
early in life may result in stable changes in offspring phenotypes through 
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epigenetic mechanisms (Champagne, 2013; Anacker et al., 2014; Mat-
thews and McGowan, 2019; Cao-Lei et al., 2020). 

The fourth way of dealing with environmental change is through bet 
hedging, which is expected to maximize geometric mean fitness in an 
unpredictable environment as it is expected to reduce the temporal 
variation in fitness (Cohen, 1966; Slatkin, 1974; Seger and Brockmann, 
1987). Bet hedging is a form of risk reduction (the risk here being zero 
fitness) that may evolve in organisms that experience unpredictable 
environments (Slatkin, 1974) or those experiencing temporal fluctua-
tions in selection (Simons, 2009). Unlike adaptive phenotypic plasticity, 
bet hedging is expected to be exhibited by organisms that do not have 
predictive cues about the selective environment. Diversifying bet 
hedging (also called “adaptive coin-flipping”: Cooper and Kaplan, 1982) 
involves “spreading the risk” where a group of related individuals or 
those with the same genotype to exhibit enhanced phenotypic vari-
ability, increasing the likelihood that one individual exhibits the optimal 
phenotype in that environment (Cohen, 1966; Seger and Brockmann, 
1987; Philippi and Seger, 1989). For example, plants may hedge their 
bets by producing seeds that germinate in different subsequent years 
(Cohen, 1966; Philippi and Seger, 1989) or animals may produce 
offspring that vary in some continuous (e.g., body size: Crump, 1981; 
Marshall et al., 2008; Crean and Marshall, 2009) or discrete/ 

discontinuous (polyphenic) trait. Diversifying bet hedging and the cor-
responding increase in phenotypic variability should promote popula-
tion viability and persistence through periods of environmental change. 
This is most evident in studies of microbes where there is evidence 
suggesting that groups exhibit an adaptive bet hedging strategy where 
individual cells in the group differ in their phenotypes and the enhanced 
phenotypic variability can increase population persistence through an 
environmental stressor (Balaban et al., 2004; Veening et al., 2008; 
Ratcliff and Denison, 2010). 

There is overlap in these different strategies, such as plasticity in 
response to an environmental change that increases population sizes and 
therefore allows new genetic variants to emerge, which can “buy time” 
for evolutionary adaptation to occur (Chevin et al., 2010; Chevin et al., 
2010; Kelly, 2019). Plasticity could “lead” adaptation (West-Eberhard, 
2003; Levis and Pfennig, 2016), for example enhancing phenotypic 
variability that in turn promotes adaptation to extreme environments 
(Bódi et al., 2017). It is also possible that plasticity could hinder adap-
tation because individuals can buffer themselves from the environment 
and shield the genome from selection (Huey et al., 2003; Donelson et al., 
2019). There is also some degree of overlap between plasticity and 
diversifying bet hedging, such as in situations where the parental 
phenotype or environment induces higher levels of phenotypic 

Environmental 
Stressors

HPA Axis

Activational or developmental 
plasticity that increases 

phenotype-environment match 
through evasion, tolerance, and/or 
recovery. Can be individual traits 

or integrated sets of traits.

Bet hedging 
parental 
e ects

Adaptive  
Phenotypic Plasticity Bet Hedging

Generation of novel genetic or 
phenotypic variance & co-variance 

that can enhance evolvability

Short timescales Long timescales

?

Environmental stressors 
can increase genetic or 
phenotypic variance & 

alter co-variance

Fig. 2. Two evolutionary strategies organisms use to 
respond to environmental stressors are adaptive 
phenotypic plasticity and bet hedging. Adaptive 
phenotypic plasticity can be reversible (also called 
activational) or irreversible (often occurring during 
development) where a phenotype is modified due to 
exposure to some environmental cue experienced 
early in life. Adaptive plasticity can increase the 
match between the phenotype and the environment. 
Diversifying bet hedging can involve the increased 
production of genetic and phenotypic variation or 
modify genetic/phenotypic co-variation to produce 
novel combinations of phenotypes. This is sometimes 
immediately detrimental (reducing phenotype- 
environment match) but can enhance evolvability of 
organisms inhabiting unpredictable environments by 
increasing population persistence over longer time-
scales. Bet hedging parental effects occur where the 
environment experienced by a breeding individual 
increases the total phenotypic variability present 
within all the offspring produced in that litter or 
clutch (essentially inducing developmental plasticity 
but not necessarily increasing phenotype- 
environment match). The HPA axis appears to play 
an important role in mediating adaptive plasticity to 
environmental stressors occurring across relatively 
short temporal scales, such as a pregnant female 
mammal exhibiting behavioral plasticity in response 
to elevated predation risk and her offspring being 
exposed to maternally derived GCs that induce 
changes in an integrated set of phenotypes in her 
offspring that increase the ability of them to survive 
(tolerate) environments with high predation risk. In 
other organisms, exposure to an environmental 
stressor may increase genetic or phenotypic variation 
or patterns of genetic and phenotypic co-variance, 
providing new phenotypes or combinations of phe-
notypes, that could be favored in the stressful envi-
ronment. Relatively little is known about how the 
HPA axis or increases in GCs affect genetic/pheno-
typic variation and co-variation (indicated by the 
question mark), but some studies suggest exposure to 
developmental stressors or elevated GCs early in life 
can modify the degree of phenotypic co-variance 
(Careau et al., 2014; Merrill and Grindstaff, 2018; 
Dantzer et al., 2020b).   
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variability among offspring (called “bet hedging parental effects” in 
Fig. 2: Crean and Marshall, 2009). Simulations also suggest that both bet 
hedging and developmental plasticity could be used to cope with envi-
ronmental fluctuations on the same temporal scale (Botero et al., 2015). 
However, here I split them up and refer to them as adaptive phenotypic 
plasticity (both activational and developmental) and bet hedging, 
respectively, because I focus on how the former may be important for 
coping with environmental change across shorter timescales (e.g., 
within 13– generations: Fig. 2) whereas the latter may be important over 
longer timescales (e.g., >3 generations: Fig. 2). Below, I discuss how 
exposure to environmental change and/or activation of the HPA axis 
induces adaptive plasticity that enables vertebrate animals to cope with 
environmental change across short time scales and, secondly, how it 
elicits a bet hedging strategy to cope with change across longer time 
scales, thereby increasing evolvability. 

3. Environmental stress, the HPA Axis, and glucocorticoids 

Many of the environmental changes experienced by organisms are 
stressful, which can be quantified at the level of a population or an in-
dividual organism. At a population level and from the perspective of an 
evolutionary ecologist, environments are defined as stressful if there is a 
reduction in population mean fitness, such as a broad reduction in sur-
vival or reproductive success of individuals in the population (Hoffmann 
and Parsons, 1991; Schulte, 2014). This reduction in fitness may be 
caused by a “sudden reduction in the availability of any fundamental 
factor” (Schlichting and Pigliucci, 1998), for example oxygen, water, 
and food in vertebrates. At the level of a vertebrate animal and from 
multiple perspectives (organismal biologist, physiological ecologist, 
behavioral neuroendocrinologist or neuroscientist), environmental 
change is usually considered stressful if there is some measurable in-
crease in nervous system activity that is indicative of heightened arousal 
of components of the nervous system that are associated with fear, 
stress, and anxiety (e.g., amygdala, nucleus accumbens, hippocampus, 
ventromedial hypothalamus, insular cortex, etc.). Because detection of 
the activity or arousal of this neurocircuitry is non-trivial, these types of 
data are usually only collected from laboratory animals. Instead, an 
animal is often considered “stressed” based upon behavioral or physio-
logical indicators, which often, but not always, are reflective of stress 
and anxiety. These could be behavioral indices, such as an enhanced 
startle response or freezing to some conditioned stimulus in rodents or 
increased self-directed behavior in non-human primate species. Because 
arousal of the nervous system may occur without an outward behavioral 
manifestation, whole-animal stress is often inferred from the physio-
logical manifestation such as an increased heart rate, reduction in heart 
rate variability, or increase in some physiological biomarker like mon-
amine neurotransmitters (catelcholamines) or the steroid hormones GCs 
(cortisol and/or corticosterone). 

Most work on this topic focuses on measuring the activity of the HPA 
axis, which needs little introduction given multiple reviews on this 
subject (Sapolsky et al., 2000; Romero, 2004; Charmandari et al., 2005; 
Romero and Wingfield, 2015; McEwen and Akil, 2020) so I will not do so 
here. Although there are other methods to quantify activation of the 
HPA axis, they are often more challenging to measure in free-living 
animals or require more invasive methods to do so (Gaidica and Dant-
zer, 2020). Most studies quantify HPA axis activity using a diversity of 
measures of GCs (Sheriff et al., 2011), such as mean fecal glucocorticoid 
metabolite concentrations (Dantzer et al., 2010) or mean plasma GCs 
(van Kesteren et al., 2019) or the reactivity of the HPA axis to phar-
macological agents that suppress and stimulate the HPA axis (van Kes-
teren et al., 2019; Westrick et al., 2021). 

GCs can be elevated due to a variety of intrinsic and extrinsic vari-
ables, namely abiotic conditions (temperature, precipitation, extreme 
weather), predation risk, competition, parasitism, and nutrition 
(Fig. 1A). Elevated GCs are often assumed to be indicative of “stress” 
even though they can be elevated for other reasons, such as seasonal 

changes in GCs associated with reproduction (Romero, 2002; Boonstra, 
2005; Fletcher et al., 2015) or be elevated at specific times of the day (e. 
g., immediately prior to the start the active part of the day) due to GC 
production exhibiting a circadian rhythm (Dickmeis, 2009). These ele-
vations in GCs in the absence of exposure to some stressor like adverse 
weather or increased predation risk can reflect the metabolic role of GCs 
in coordinating energetic demands such as mobilizing energetic re-
sources needed for reproduction (Dallman et al., 1993; Romero, 2002). 
Thus, it is important to emphasize (or stress!) that although “stress” can 
be associated with elevated GCs, an elevation of GCs may not reflect 
exposure to some physical or psychological challenge and instead 
highlights the metabolic functions that GCs can play especially in terms 
of energy balance and how energy is allocated within an organism 
(Herman et al., 2016; MacDougall-Shackleton et al., 2019). 

GCs can in turn have manifold effects on diverse phenotypes (Sap-
olsky et al., 2000; Hau et al., 2016). Their numerous effects are 
congruent with viewing the HPA axis as a bow tie network (described 
above) where many inputs (intrinsic and extrinsic) influence its activity 
and its products that in turn have many phenotypic targets (Fig. 1A). For 
instance, elevated GCs can affect numerous phenotypes given that most 
tissues have cells with GC receptors (GRs: Rousseau and Baxter, 1979; 
Bamberger et al., 1996; Lattin et al., 2012), although this does not al-
ways mean cells expressing GRs will respond to increased GCs (Bam-
berger et al., 1996). As such, GCs have been viewed as a type of 
“integrator” that links the environment, genotype, and phenotype 
because the circulating concentrations of GCs are affected by both in-
ternal and external processes and they can coordinate phenotypic re-
sponses to stimuli through genomic or non-genomic mechanisms 
(Martin et al., 2011a, 2011b; Cohen et al., 2012). This centrality of the 
HPA axis and GCs in coordinating responses to environmental change is 
especially evident if we consider how the HPA axis is a “first responder” 
to different sources of intrinsic and extrinsic information (Fig. 1B) and 
how it engages in cross-talk with the other endocrine axes responsible 
for major life history traits (growth, development, reproduction, and 
lifespan: Fig. 1B). Specifically, the HPA axis appears highly sensitive to 
extrinsic (predation risk) or intrinsic (individual or nutritional state) 
cues that reliably signal environmental harshness (Fig. 1B). It can then 
relay or transduce this information through crosstalk with the other 
endocrine axes through the production of corticotropin releasing hor-
mone, GCs, or through adjustments in the production or metabolism of 
other products of these other endocrine axes. For instance, environ-
mental stressors that cause chronic activation of the HPA axis can sup-
press reproduction by reducing HPG activity (e.g., Kirby et al., 2009; 
Tsutsui et al., 2010) or suppress growth of individuals after birth/ 
hatching by inhibiting or lowering the activity of the HPS and/or HPT 
axes (Kühn et al., 1998; Singleton et al., 2000; Charmandari et al., 
2005). 

Obviously, these hypothesized relationships among the different 
endocrine axes (Fig. 1B) represent a series of oversimplifications and 
there are many exceptions. For example, some have hypothesized that 
the phenotypic responses of plants and animals to environmental stress 
is “generalized” or stereotypical (Parsons, 1987; Chapin, 1991; Petrullo 
et al., 2022), such as specific environmental features always causing the 
cessation of growth in plants (Chapin, 1991). However, organismal bi-
ologists show that there is no consistent phenotypic manifestation of 
“chronic stress” (Dickens and Romero, 2013). They also show that the 
effects of HPA axis activation due to exposure to an environmental 
stressor can depend upon the ecological environment that shaped the 
life history of the vertebrate species (Ricklefs and Wikelski, 2002; 
Bókony et al., 2009; Hau et al., 2010). This is evident when we consider 
how chronic activation of the HPA axis or chronically elevated GCs is 
expected to cause the cessation of reproduction and growth (Sapolsky 
et al., 2000) where the animal goes into a state of waiting and maximizes 
self-maintenance, but this is not always the case (Wingfield and Sap-
olsky, 2003). Animals that could be characterized as exhibiting a “fast” 
life history, namely semelparous animals, can have extraordinarily high 
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GCs while engaged in mating (Boonstra, 2005). Additionally, although 
elevated HPA axis activity might suppress growth and development 
during larval or adult stages (Kühn et al., 1998), it can instead accelerate 
growth and development during larval/fetal stages (Crespi and Denver, 
2005) or in some taxonomic groups where the adaptive response to the 
environmental stressor causing HPA axis activation is to leave the area 
(e.g., in larval amphibians experiencing a drying pond: Denver, 1997). 
Thus, there is much more complexity in how and when the HPA axis is 
activated by an environmental stressor (it may not respond depending 
upon their life history) and if and how elevated GCs affect phenotypes 
(phenotypes need not respond if there are no receptors). Here, I gloss 
over this complexity and simply indicate that the HPA axis is responsive 
to many extrinsic factors (e.g., Petrullo et al., 2022) and in turn affects 
many phenotypes, some of which is due to crosstalk with other endo-
crine axes. 

4. HPA axis and three types of phenotypic plasticity to cope with 
environmental change: mediation of evasion, tolerance, and 
recovery 

The different types of adaptive plasticity that organisms may exhibit 
in response to environmental change were put into a helpful organiza-
tional framework by Bradshaw (1972) and Huey (2002). In response to 
an environmental change, organisms could evade it, tolerate or resist it, 
or, if they are damaged by exposure to the environmental change, they 
could exhibit an increased recovery rate (Bradshaw, 1972; Huey, 2002). 
These three solutions to dealing with environmental change are non- 
mutually exclusive. For example, animals are sensitive to predation 
risk during foraging and may alter where or when they forage or reduce 
foraging/activity in the presence of predators. Below, I classify this as 
evasion from the environmental change (predation risk) as it enables the 
animal to avoid the danger, but it could also be classified as tolerance/ 
resistance as it is essentially an example of behavioral plasticity that 
enables an individual to tolerate increased predation risk. Here, I discuss 
the central importance of the HPA axis in mediating the adaptive 
response to short term environmental change and/or stressors in ver-
tebrates by facilitating evasion, tolerance/resistance, and perhaps re-
covery to stressors. This is in the context of within an individual, such as 
reversible (activational) behavioral plasticity of mainly adult in-
dividuals (Snell-Rood, 2013), or among individuals or generations, such 
as in the case of early life environments, parental phenotypes or envi-
ronments inducing developmental plasticity in offspring that is usually 
irreversible (Uller, 2008; Nettle and Bateson, 2015). Notably, the latter 
could involve developmental or inter-generational plasticity, where the 
parental phenotype or environment induces or elicits plasticity in the 
phenotypes of F1 or F2 or even F3 offspring (Skinner, 2008; Burton and 
Metcalfe, 2014; Dias and Ressler, 2014), that is induced through 
epigenetic mechanisms (Champagne, 2013; Anacker et al., 2014; Mat-
thews and McGowan, 2019; Cao-Lei et al., 2020). The maternal HPA axis 
response or perinatal stress more broadly has been implicated in 
inducing such inter-generational plasticity in offspring behavior or 
physiology and some of the epigenetic mechanisms have been identified 
(Champagne, 2013; Anacker et al., 2014; Matthews and McGowan, 
2019; Cao-Lei et al., 2020). Given that this has been reviewed exten-
sively elsewhere, I do not devote too much space on this topic below. 

4.1. Evasion 

Behavioral responses to environmental change may be an animals 
first response to environmental change that enables them to evade a 
stressor either in space or time (Bartholomew, 1987). In mobile organ-
isms, this can include movement away from a specific area containing 
the stressor (temporary or permanent dispersal or recurrent migratory 
behavior), but it can also include different types of dormancy in mobile 
or less mobile organisms (e.g., hibernation, torpor, or aestivation during 
harsh conditions). Organisms may also respond through temporal 

evasion of the stressor, such as modifying when they are active to avoid 
the stressor (e.g., Kohl et al., 2018). 

The HPA axis seems intricately involved in many of these evasive 
responses, especially those associated with movement away from an 
environmental stressor (Wada, 2008). For example, individuals with 
elevated movement or restlessness often exhibit higher GCs (Buttemer 
et al., 1991; Landys et al., 2004; Eikenaar et al., 2014). Causality cannot 
be determined in these latter studies, but other studies that experi-
mentally elevated GCs show that increased GCs also elevates movement 
and escape behavior (e.g., Belliure and Clobert, 2004). The effects of GCs 
on movement behavior may also occur in a non-linear fashion where 
moderate levels of GCs cause the highest levels of movement (Dallman 
et al., 1993; Breuner et al., 1998). Individuals who are more active, bold, 
and/or exploratory (and therefore potentially more likely to disperse: 
Cote et al., 2010) can also exhibit different HPA axis dynamics or 
increased GCs (Carere et al., 2003; Atwell et al., 2012; Westrick et al., 
2019, 2021). Individuals often exhibit elevated GCs during natal or adult 
dispersal or recurrent migratory behavior (Heath, 1997; Belthoff and 
Dufty Jr, 1998; Landys-Ciannelli et al., 2002; Romero, 2002; Landys 
et al., 2006; Cease et al., 2007; Hamann et al., 2007; Young and Monfort, 
2009; Maag et al., 2019; Piersma et al., 2000; Bauer and Watts, 2021). 
However, elevated GCs during migration is not universal in passerine 
birds (Bauer et al., 2016). Nonetheless, elevated GCs during these time 
periods or life history stages is frequently interpreted because of the 
“stress” associated with these long-distance movements, but it could also 
be due to the role that GCs may play in mobilizing energy that is needed 
for dispersal/migration (Sapolsky et al., 2000). For example, individuals 
with elevated GCs during dispersal events may exhibit longer dispersal 
distances due to increased stamina (Miles et al., 2007) or increased 
energetic resources because of the effects of GCs on motivating food- 
seeking behavior (Santana et al., 1995; Dallman, 2010). Finally, 
elevated GCs in response to sudden extreme weather conditions can 
trigger the well-documented “emergency life history stage” associated 
with the abandonment and dispersal away from a nest and/or territory 
(Wingfield et al., 1998; Wingfield and Kitaysky, 2002). 

Direct connections have also been made between GCs and develop-
mental plasticity in dispersal behavior by assessing how early life 
exposure to heightened GCs influences offspring dispersal behavior. Like 
most biological phenomenon, the effects of activation of the HPA axis on 
offspring dispersal are context dependent. For example, in willow tits 
(Parus montanus), experimental elevations in corticosterone levels were 
associated with higher juvenile but not adult dispersal (Silverin, 1997). 
In common lizards (Lacerta vivipara), experimental application of syn-
thetic GCs to breeding females reduced movement behavior of offspring 
(Belliure et al., 2004), but its effects on offspring dispersal behavior 
depended upon maternal body condition (de Fraipont et al., 2000; 
Meylan et al., 2002). Offspring from heavier mothers who were treated 
with GCs prenatally were significantly less likely to disperse than 
heavier control mothers whereas those from lighter mothers who were 
treated with GCs tended to be more likely to disperse than lighter control 
mothers (de Fraipont et al., 2000; Meylan et al., 2002). The effects of 
maternal GCs on offspring dispersal behavior can also depend upon 
offspring sex and maternal age. For instance, yearling male but not fe-
male yellow-bellied marmots (Marmota flaviventris) were more likely to 
disperse away from their natal burrow if their mother was older and had 
elevated GCs, but yearling males from younger mothers with elevated 
GCs were less likely to disperse (Monclús et al., 2011). Although there 
are exceptions (e.g., Stumpf et al., 2009; Akinyi et al., 2017), these 
studies together illustrate that individuals with elevated GCs exhibit 
higher movement, activity, escape behavior, and are more likely to 
disperse or leave an area, though those from mothers treated with GCs 
are less likely to disperse. 

Animals may not necessarily need to leave an area to avoid the 
challenge/stressor as they could also alter their daily or seasonal 
behavioral patterns or rhythms to enable escape from the stressor (e.g., 
temporal niche partitioning exhibited by prey species). The HPA axis 
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interfaces with biological clocks and the adrenal cortex itself expresses 
clock genes that seem to regulate GC production (Oster et al., 2006; Son 
et al., 2008, 2011). GCs may also to play an important role in ultradian 
and circadian rhythms (Dickmeis, 2009; Jaikumar et al., 2020) as well as 
circannual (seasonal) rhythms (Romero, 2002; Landys et al., 2006; 
Dickmeis et al., 2013), and they can help entrain biological clocks in 
peripheral tissues expressing GRs (e.g., liver: Reddy et al., 2007). This 
alone helps to establish the possibility that the HPA axis can play a role 
in establishing adaptive behavioral rhythms across different temporal 
scales (days or seasons). For example, adjustments in peak GC produc-
tion could increase arousal during periods of the day when the stressor 
(such as a predator) is least active. Elevated GC production in response 
to exposure to a stressor could also alter or entrain biological clocks in 
such a way that produces adaptive adjustments in behavioral rhyth-
micity to avoid the stressor. Because relatively little is known on how the 
HPA axis might modify biological rhythms to cope with environmental 
stressors (but see Spencer et al., 2018), I focus my attention instead on 
examples that suggest that acute HPA axis activation facilitates evasion 
of environmental stressors through the induction of antipredator 
behavior (a type of behavioral plasticity). 

In mammals and fish, exposure to predators or their cues can 
enhance HPA axis activity, as evidenced by increased GCs, and this 
activation of the HPA axis seems to cause an increase in freezing or 
quiescent behavior (Apfelbach et al., 2005; Remage-Healey et al., 2006; 
Roseboom et al., 2007; Kondoh et al., 2016), which should be beneficial 
when predators are nearby. However, exposure to predator cues can also 
elicit evasion of the risk of predation by changes in prey behavior by 
inhibiting the HPA axis. For instance, wood frog (Rana sylvatica) tadpoles 
exposed to cues of simulated predation of conspecifics (macerated skin 
cells from other tadpoles) exhibit a rapid reduction in swimming activity 
(i.e., they freeze) and an inhibition of the HPA axis (Fraker et al., 2009). 
Whole body corticosterone levels of tadpoles exposed to these predator 
cues are significantly lower than controls 2–4 h (but not 1 h) after the 
cues were added to an aquarium (Fraker et al., 2009). If exogenous 
corticosterone was added to the aquarium at the same time as the 
predator cues, swimming activity was not reduced as much as in con-
trols, indicating that this decrease in corticosterone production in 
response to exposure to these predator cues was at least partially 
responsible for this evasive behavior (reduction in swimming) that 
should be beneficial in the presence of these predators (Fraker et al., 
2009). Although these studies suggest that exposure to predators initi-
ates either an increase or decrease in HPA axis activity that in turn fa-
cilitates behavioral evasion from predators, at least one study suggests 
that the hormonal response to predator cues may be sufficient but not 
necessary to elicit the antipredator behavioral response. Specifically, 
volatile predator odors activate neurons in the olfactory cortex (amyg-
dalo-piriform transition area: AmPir) in mice that in turn initiates an 
increase in the production of GCs through activation of corticotropin 
releasing hormone neurons (Kondoh et al., 2016). Although chemo-
genetic silencing the activity of the AmPir when mice were exposed to 
predator cues prevents the increase in GCs compared to controls, these 
mice still exhibited increased freezing behavior (Kondoh et al., 2016), 
suggesting a decoupling of the behavioral and hormonal response to 
predator cues. 

There is also evidence that early life exposure to environmental 
stressors or increased GCs can promote adaptive developmental plas-
ticity that enables offspring to evade predators in space or time. For 
example, birds with experimentally increased yolk corticosterone 
exhibit better flight performance (Chin et al., 2009), which may increase 
their ability to evade direct predation attempts. GCs may interact with 
thyroid hormones in larval amphibians to accelerate metamorphosis 
(Denver, 2013; Sachs and Buchholz, 2019), which could decrease their 
amount of time spent in vulnerable life stages. Perhaps the best studied 
and most widespread pattern is where mothers exposed to increased 
predation risk produce offspring that exhibit elevated anti-predator 
behavior (e.g., reduced movement or activity in the presence of 

predators) that may enable them to better evade predators (Giesing 
et al., 2011; Storm and Lima, 2010; St-Cyr and McGowan, 2015; Bell 
et al., 2016; Donelan and Trussell, 2018; Ensminger et al., 2018). In 
some cases, the epigenetic mechanisms contributing to these changes in 
offspring characteristics have been identified (reviewed by Matthews 
and McGowan, 2019). It has been hypothesized that these changes in 
offspring anti-predator behavior are due to elevations in maternal GCs in 
response to them experiencing increased predation risk (Love et al., 
2013; Sheriff and Love, 2013). This has been supported in some studies 
(St-Cyr and McGowan, 2015, St-Cyr et al., 2017; Ensminger et al., 2018), 
but studies in fish suggest that the mechanisms by which elevated pre-
dation risk in the parental environment affects offspring anti-predator 
behavior are independent of maternal GCs (Sopinka et al., 2014; Bell 
et al., 2016). 

A final way that the HPA axis is involved in evading stressors is 
through its role in the regulation of on-body energy stores in species that 
engage in temporary dormancy that enables individuals to evade some 
stressor. Torpor and hibernation are both strategies to minimize ener-
getic expenditure during harsh environments with the most obvious 
difference (of many) between the two being the length of time an animal 
spends in torpor or hibernation (torpor < hibernation). Hibernation is 
thought to be an adaptive response to seasonal environments that en-
ables some species to escape environments that are associated with low 
availability of energy sources, such as the winter or dry seasons. In the 
case of torpor, birds with naturally higher or experimental elevations in 
GCs can exhibit longer torpor bouts (Hiebert et al., 2000). During 
preparation and entry into hibernation, GCs are elevated in a variety of 
mammalian species (Shivatcheva et al., 1988; Armitage, 1991; Boswell 
et al., 1994; Nunes et al., 2006; Willis and Wilcox, 2014) and this may 
serve as a potential motivator of food-seeking behavior or by altering 
other mechanistic pathways to increase fattening prior to hibernation 
(Willis and Wilcox, 2014). Although these studies are few in number 
(especially in the case of torpor), they illustrate that GCs and the HPA 
axis plays a central role in enabling organisms to enter behavioral states 
(torpor or hibernation) that facilitates their ability to cope with and 
escape seasons with low resource availability or that are otherwise 
harsh. 

4.2. Tolerance/resistance 

Organisms exposed to environmental changes that are stressful need 
not escape them in space or time. They could instead exhibit plasticity 
that enables them to stay put, but be more tolerant or resistant to the 
stressor. Below I discuss some examples where activation of the HPA axis 
by different environmental stressors induces plasticity that seems to 
enable the individuals to better tolerate or at least resist its effects. For 
instance, individuals experiencing low food availability can exhibit an 
increase in GCs that increases motivation to seek food (Dallman, 2010). 
This would be a type of adaptive behavioral plasticity that increases the 
resilience of that individual in a low food area instead of the individual 
fleeing the area. As I indicated above, increased anti-predator behavior 
exhibited by individuals in response to increased predation risk is 
considered here to be a type of evasion from the stressor, though it could 
equally be viewed as a way to tolerate the negative effects of predators. 

Research on larval amphibians has played a central role in our un-
derstanding of the intimate relationship between the HPA axis and 
mediation of tolerance/resistance to predation risk. Pre-metamorphic 
larval amphibians do not have the option to exhibit immediate 
dispersal away from a pond or ephemeral body of water containing 
predators. They may accelerate metamorphosis and growth to escape 
predators more quickly, or they could adjust their behavior (as discussed 
above for evasion), but they also exhibit morphological plasticity that 
enables them to better resist predators in situ. In response to increased 
predation risk, larval amphibians often exhibit pronounced changes to 
the head/trunk shape and tail depth (Relyea, 2001; Benard, 2004) that 
increases their ability to evade predators (van Buskirk et al., 1997; Van 
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Buskirk and McCollum, 2000). In wood frogs, tadpoles collected from 
ponds with more predators have higher whole-body corticosterone and 
tadpoles exposed to predator cues (caged predators who were 
consuming wood frog tadpoles) in the laboratory exhibited higher 
whole-body corticosterone (Middlemis Maher et al., 2013). Exposure to 
these predator cues caused increases in tail depth and reductions in 
trunk length, which have both been repeatedly shown to be an example 
of adaptive morphological plasticity in larval amphibians that increases 
the ability of tadpoles to escape predators, perhaps by increasing 
swimming performance (Calsbeek and Kuchta, 2011). Larval amphib-
ians exposed to exogenous GCs also exhibited a similar increase in tail 
height and reduction in trunk length as those that were exposed to 
predator cues whereas if the tadpoles were exposed to predator cues and 
were treated with a GC receptor antagonist (metyrapone), it blocked the 
expression of this morphological plasticity (Middlemis Maher et al., 
2013). This well-documented example (in addition to previous studies: 
Denver, 1997, Denver, 2009) illustrates the central role of the HPA axis 
in the induction of adaptive morphological plasticity that enables sta-
tionary (at least temporarily during the larval stage) vertebrate animals 
to tolerate and resist an environmental stressor like increased predation 
risk. 

Elevations in GCs in response to social stressors may also promote 
resistance rather than evasion. Rank in a social dominance hierarchy 
affects GCs with sometimes the socially dominant individual having 
higher GCs than subordinates and sometimes subordinates have higher 
GCs than dominants (Sapolsky, 2005; Creel, 2022; Dantzer and New-
man, 2022). The increases in subordinate GCs are primarily caused by 
restricted food access or receiving physical aggression or psychological 
intimidation from dominant individuals (Sapolsky, 2005; Dantzer and 
Newman, 2022). In laboratory rats, social defeat in a dyadic interaction 
promotes an acute increase in GCs in both the eventual winner and loser, 
but often only a prolonged increase in GCs in the loser (Dantzer and 
Newman, 2022). These elevations in GCs in the loser of the antagonistic 
interaction can in turn promote a type of adaptive behavioral plasticity, 
submissiveness, that may enable them to reduce the likelihood of 
continued assaults from the dominant individual (Weger et al., 2018). 
Chronic elevations in GCs observed in subordinates in group-living 
species may therefore promote submissiveness that enables them to 
stay within the social group and reduce their likelihood of being evicted 
from the social group, which could be quite costly. In contrast to the 
above examples where elevations in GCs are associated with behavioral 
plasticity that enables an individual to evade a stressor, in group-living 
species, elevations in GCs may promote behavioral plasticity (submis-
siveness) that enables them to resist or tolerate this social stressor. 

Life history plasticity can also enable animals to cope with envi-
ronmental change or stressor. For example, birds experiencing a specific 
environmental stressor (harsh weather) exhibit a pronounced increase in 
GCs that shifts their investment towards self-maintenance/survival and 
away from reproduction (i.e., enter the “emergency life history stage”: 
Wingfield et al., 1998; Wingfield and Kitaysky, 2002), indicating the 
important role of the HPA axis in mediating plasticity in this major life 
history trade-off but also in terms of affecting the timing of breeding. 
More recent work has revealed how elevated GCs suppress reproduction 
through suppression of the HPG axis (Kirby et al., 2009). However, an 
elevation in HPA axis activity or increased GCs is not necessarily always 
a trigger that shunts investment towards survival and self-maintenance 
and away from reproduction (Wingfield and Sapolsky, 2003; Boonstra, 
2013). For example, seasonal breeders exhibit elevated GCs during the 
breeding season, perhaps to enable the mobilization of energetic re-
sources (Romero, 2002; Fletcher et al., 2015). Moreover, short-lived or 
semelparous species can exhibit pronounced increases in GCs while 
breeding (Carruth et al., 2000; Barry et al., 2001; Boonstra, 2005; 
Boonstra, 2013; Fletcher et al., 2015), indicating the potential for the 
HPA axis to mediate this major life history trade-off but in a nuanced and 
species-specific manner. 

GC responses to environmental stressors may also mediate other 

(lesser) life history trade-offs, such as that between offspring size and 
number (Stearns, 1992). For instance, individuals breeding under harsh 
conditions (high predation risk, low food availability, high conspecific 
competition) are often expected to produce fewer but larger offspring 
(offspring quantity vs. quality trade-off: Lima, 1987; Stearns, 1992; 
Martin, 1995; Roff, 2002). Some field studies that exposed breeding 
birds to cues of increased predation risk support these predictions as 
they show that individuals experiencing heightened predation risk 
produce smaller clutches (Eggers et al., 2006; Hua et al., 2014), smaller 
clutches of heavier eggs (Zanette et al., 2011), or no change in clutch 
size, but larger eggs (LaManna and Martin, 2016) or offspring that are 
initially smaller at hatching and who grow faster after hatching 
(Coslovsky and Richner, 2011). Note that the effects of predation risk on 
clutch size and egg mass are not entirely uniform among different bird 
species (Fontaine and Martin, 2006; Martin and Briskie, 2009; LaManna 
and Martin, 2016), but these selected studies illustrate how an increased 
risk of predation induces plasticity in the trade-off between litter size 
and offspring size or growth. 

Given that predation risk can elicit increase GCs in prey (Clinchy 
et al., 2013), if these changes in GCs occur in breeding females, do they 
induce shifts in the number or size of offspring? Ideally, these studies in 
birds described above would have also quantified the GC responses of 
females to increased cues of predation risk and if the elevation in GCs 
caused changes in clutch size or egg/offspring size, but they did not do 
so. However, other studies show that the GC responses of breeding fe-
males to cues predicting that their offspring will encounter a harsh 
environment affect the trade-off between the number and size of 
offspring (Travers et al., 2010; Dantzer et al., 2013). For example, in 
North American red squirrels (Tamiasciurus hudsonicus) in the Yukon, 
Canada, conspecific densities vary due to temporal fluctuations in the 
availability of their major food source (Dantzer et al., 2020a). When 
densities are elevated, overwinter survival of offspring is reduced 
because there are no or few territories available for juveniles to acquire 
(Taylor et al., 2014). Consequently, breeding female squirrels can 
experience reductions in reproductive success when conspecific den-
sities are increased (Dantzer et al., 2013), which emphasizes that high 
conspecific densities in this species is analogous to a harsh environment 
or characteristic of environmental stress. Adult squirrels do not evade 
these elevations in density because they rarely disperse away from their 
territory where they have accumulated a cache of food (Berteaux and 
Boutin, 2000). Dispersal to evade these increases in density is also un-
likely to be beneficial because temporal/spatial synchrony in food 
availability causes little variation in conspecific densities across large 
spatial scales. In other words, squirrels experiencing high densities at 
their territory are very likely to experience high densities elsewhere if 
they dispersed. Instead of evading this stressor (conspecific density), 
most pregnant females exhibit an increase in GCs due to experiencing 
elevated conspecific densities and these elevations in maternal GCs 
promote increases in offspring postnatal growth rates that can result in 
offspring being better able to acquire a territory under high density 
conditions (Dantzer et al., 2013; Guindre-Parker et al., 2019; Dantzer 
et al., 2020a, 2020b). This example illustrates how GC responses can 
enable resistance to environmental fluctuations by inducing adaptive 
developmental plasticity: without the change in offspring growth rates, 
individuals would be expected to experience reduced reproductive 
success. 

This developmental plasticity induced in offspring growth rates in 
red squirrels should be beneficial for both mothers and offspring 
(Dantzer et al., 2013), but there are also examples where the fitness 
benefits of developmental plasticity are less obvious. For example, in 
cooperatively breeding meerkats (Suricata suricatta), socially dominant 
females who were treated with GCs produced daughters that exhibited 
significantly slower postnatal growth, which should reduce their ability 
to breed independently later in life (Dantzer et al., 2019). However, 
these slower growing daughters also exhibit elevated cooperative (pup- 
rearing) behavior later in life that aids their mother in rearing offspring, 
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which was likely due to changes in the daughter’s HPA axis (Dantzer 
et al., 2017, 2019). Here, the developmental plasticity in offspring 
growth rates in daughters appears to reduce the chances of their direct 
fitness but could enhance their indirect fitness if their elevated cooper-
ative behavior helps their mother produce more relatives. 

4.3. Recovery 

A final way by which the HPA axis may facilitate the ability of ani-
mals to cope with an environmental change or stressor is through 
enhancing recovery following exposure to the change/stressor. This 
differs from evasion or tolerance/resistance by the fact that animals do 
not leave the area where they experience the stressor (evasion) and do 
not stay in the area and adjust their easily observable characteristics 
(behavior, morphology, life history traits) to deal with it (tolerance/ 
evasion). Instead, the HPA axis may facilitate recovery after being 
exposed to the stressor through physiological means, which are of course 
less easily observed. Studies on this topic are somewhat rare except in 
the realm of biomedical research, so I largely focus on these studies 
below. 

Recovery following exposure to a stressor is most often discussed in 
the context of how quickly individuals can terminate the increase in GCs 
in response to the stressor (i.e., exhibit strengthened negative feedback: 
Romero et al., 2009; Lattin and Kelly, 2020). This is often related to 
individual differences in mineralcorticoid (MRs) and glucocorticoid re-
ceptors (GRs) in specific parts of the HPA axis, such as individuals 
having more GRs in the hippocampus, pituitary gland, or para-
ventricular nucleus exhibiting a quicker return to baseline GCs (Ladd 
et al., 2004). This focus on recovery of the HPA axis, especially through 
the binding of GCs to GRs, has been reviewed at length elsewhere (de 
Kloet et al., 1998, 2005; de Kloet, 2022; Herman et al., 2012, 2016; van 
Bodegom et al., 2017). Consequently, I instead focus on how activation 
of the HPA axis that results in a measurable increase in GCs has other 
physiological effects (that is other than how quickly GCs return to 
baseline levels) on an individual that promotes recovery from the 
stressor. 

Most of the studies on this topic illustrate how the duration of the 
increase in GCs impacts their consequences, finding that acute or short- 
duration increases in GCs can enhance recovery but long/chronic ele-
vations in GCs decrease organismal function. This is very similar to the 
hypothesis that acute increases in GCs are adaptive whereas chronic 
elevations in GCs are maladaptive (McEwen, 1998; Sapolsky et al., 2000; 
McEwen and Wingfield, 2003; Romero et al., 2009; McEwen and Akil, 
2020; but see Boonstra, 2013). This inverted u-shaped relationship (or 
Yerkes-Dodson phenomenon: Yerkes and Dodson, 1908) where moder-
ate elevations in GCs have hormetic effects is often best illustrated by the 
effects of GCs on stimulating recovery from an acute immune attack. For 
instance, Dhabhar and McEwen (1999) showed how exposure to stress 
of short durations can enhance delayed-type hypersensitivity reactions, 
which may be beneficial for wild animals in the form of enhancing cell- 
mediated immunity by increasing resistance to different pathogens. 
Chronic exposure to stressors or chronic elevations in GCs (which are not 
necessarily synonymous) may reduce immune function and be detri-
mental (Munck et al., 1984; Sapolsky et al., 2000; Glaser and Kiecolt- 
Glaser, 2005), but acute increases in GCs may promote cell-mediated 
immunity towards pathogens, at least at the level of the skin (Dhabhar 
et al., 1996; Dhabhar and McEwen, 1999). As such, acute increases in 
GCs could promote recovery from exposure to physical stressors (e.g., 
wounding due to some antagonistic interaction with a conspecific or 
heterospecific) or pathogenic agents through their immunoenhancing 
effects, thereby once again facilitating the ability of an animal to cope 
with an environmental change or stressor but without evasion or 
tolerance/resistance. 

A second way in which moderate or acute elevations in GCs may 
enhance recovery is through their effects on telomerase production. 
Exposure to stress is thought to be costly by accelerating biological aging 

or increasing the risk of mortality (Cohen et al., 2007; Monaghan, 2014; 
Lin and Epel, 2022). One way it may do so is through elevations in GCs 
(due to exposure to stressors) that may cause oxidative damage to 
telomeres, which may themselves directly contribute to the rate of aging 
(Shalev, 2012; Shalev et al., 2013; Monaghan, 2014; Haussmann and 
Heidinger, 2015; Reichert and Stier, 2017; Lin and Epel, 2022). For 
example, previous studies illustrate that individuals with a higher GC 
response have shorter telomeres or find a negative association between 
basal or stress-induced GCs and telomere lengths (Tomiyama et al., 
2012; Jiang et al., 2019; Bae et al., 2021). Telomerase, an enzyme that 
can maintain or even enhance telomere lengths (Blackburn et al., 2015; 
Criscuolo et al., 2018), is also affected by exposure to GCs. For example, 
T lymphocytes in cell culture exposed to synthetic GCs exhibited re-
ductions in telomerase levels 3 days after continuous exposure (Choi 
et al., 2008) and higher levels of cortisol in the urine in humans was 
associated with lower telomerase activity (Epel et al., 2006). 

On the other hand, more recent studies about the effects of increased 
exposure to stress or GCs on telomerase have provided a potentially new 
way to view how the HPA axis affects recovery from exposure to envi-
ronmental stressors (see also Epel, 2009; Smith et al., 2021; Marasco 
et al., 2022). This was largely spurred by the observational study in 
elderly women showing that 50- and 90-min after exposure to an acute 
stressor, there was a significant increase in telomerase levels measured 
in leukocytes that was independent of any change in leukocyte 
composition in the blood samples (Epel et al., 2010). Additionally, 
women with the highest increase in salivary cortisol following the acute 
stressor had the largest increase in leukocyte telomerase levels 90 min 
after exposure to the stressor (Epel et al., 2010). Depressed individuals, 
who often exhibit disruptions to HPA axis function, have higher telo-
merase levels (Wolkowitz et al., 2012; Chen et al., 2014; Deng et al., 
2016), although there is some evidence that this pattern is gender spe-
cific (Simon et al., 2015). In a meta-analysis, Deng et al. (2016) showed 
that of the nine studies reporting an association between major 
depressive disorder (MDD) and telomerase, five reported individuals 
with MDD had higher telomerase levels. A subsequent study in humans 
did not find that an acute stressor increased maximal telomerase levels 
following a mitogen challenge (de Punder et al., 2018). Similar studies 
in non-human animals are increasing in number and are supportive of 
the hypothesis that telomerase levels are elevated in response to exposure 
to stressors or increased GCs. For example, male laboratory rats exposed 
to 3 months of a chronic stress experimental paradigm (seven types of 
randomized stressors, 5 days per week) had higher telomerase levels 
than controls (Beery et al., 2012). A previous study in wild North 
American red squirrels showed that females with increased GCs either 
during pregnancy or lactation did not produce offspring with shortened 
telomeres, potentially due to offspring (or mothers) exhibiting elevated 
telomerase levels (Dantzer et al., 2020b). In support of the latter, sub-
sequent studies in wild gulls that injected GCs into eggs showed that 
offspring had elevated telomerase levels and no attenuation of telomere 
lengths (Noguera et al., 2020). Collectively, these studies about the ef-
fects of exposure to stressors, elevated GCs, and telomere lengths pro-
vide divergent results, with some studies suggestive of elevated GCs 
being associated or causing a reduction in telomere lengths (e.g., 
Tomiyama et al., 2012; Jiang et al., 2019; Bae et al., 2021) and telo-
merase production (e.g., Epel et al., 2006; Choi et al., 2008) or actually 
enhancing telomere lengths due to their stimulative effects on telome-
rase (Epel et al., 2010; Beery et al., 2012; Noguera et al., 2020). How to 
reconcile these divergent findings is challenging and must be the subject 
of future study, but once again they may reflect the hormetic effects of 
stress and HPA axis activation where there is a dose-dependent effect of 
stress and/or elevated GCs on telomerase levels and telomere lengths, as 
described above. 

The HPA axis and GCs may also facilitate recovery from an envi-
ronmental change/stressor that increases their movement or aerobic 
activity. This is often illustrated in human athletes, but non-human 
animals are also athletes when it comes to competing for life and 
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death (Killen et al., 2017). For example, in male side-blotched lizards 
(Uta stansburiana) that were exercised to exhaustion, those that received 
implants of corticosterone exhibited enhanced recovery as measured by 
the time it took them reach resting oxygen consumption rate following 
the exercise. We can also integrate the above section on telomerase as 
studies in both humans and non-human animals show that telomerase 
levels are increased following exercise (Deng et al., 2016). For instance, 
in lab mice, 21 days or ~6 months of voluntary wheel running exercise 
was associated with increased telomerase levels in cardiac cells, leuko-
cytes, or skeletal muscle (Werner et al., 2008, 2009; Ludlow et al., 
2012). These studies illustrate the potential for increased GCs in 
response to an environmental change/stressor that increases movement 
of individuals to promote recovery from the increased activity levels. 

5. HPA Axis & phenotypic integration 

The effects of HPA axis activation (or GCs themselves) on phenotypes 
are often studied from a unidimensional perspective where an increase 
in GCs due to an environmental change is expected to influence the 
expression a single trait that in turn affects animal performance or 
fitness. This is true of many of the examples discussed above, which is 
reflective of both reductionism and a logistical constraint that re-
searchers face as they try to identify causality in terms of hormone- >
trait- > fitness. However, how selection operates in nature and the 
phenotypic and genetic response to selection in nature emphasize the 
need for a more dimensional view of the effects of the HPA axis on how 
animals cope with environmental change and stressors. Environmental 
change can induce multifarious selection, where multiple environmental 
features that induce selection on phenotypes will change simultaneously 
resulting in selection along many different axes of environmental vari-
ation. For instance, as predation risk increases in wild guppies, so too do 
numerous features of the abiotic environment (stream width, openness 
of tree canopy, light intensity, water temperature, etc.) and these may 
also induce selection on guppy phenotypes (Endler, 1995). Additionally, 
adaptive phenotypic responses to environmental change are often 
multidimensional where the optimal phenotype for a given environment 
is an integrated phenotype involving suites of traits (physiological, 
morphological, behavioral, life history) that work well together and 
respond to a shift in the environment in a coordinated fashion (Fischer 
et al., 2016). 

An additional (and more dimensional) way that the HPA axis can 
affect vertebrate animal responses to environmental change on rela-
tively short temporal scales is by promoting phenotypic integration 
(Fig. 2). Phenotypic integration can be defined and characterized in 
many ways (Armbruster et al., 2014), but it is usually discussed in 
reference to patterns of co-variation (or inter-dependency) among 
multiple traits that make up a complex characteristic of an organism. 
These can be broken down to the degree of co-variance both within and 
across units (modules) that make up the complex trait (Klingenberg, 
2008). For example, the “rattle” possessed by some viperid snakes is a 
complex trait made up of a highly correlated set of physiological, 
morphological, and behavioral traits. Each of these units (physiological, 
morphological, and behavioral) has a different function and can be 
referred to as a module. Within each module, there is strong co-variation 
among different traits that comprises it, reflective of within-module 
phenotypic integration. For instance, within the physiological module, 
oxygen consumption and enzymatic activity of tail shaker muscles are 
correlated with one another (Moon, 2001). Integration can also be 
present across modules where rattlesnakes exhibit a complex trait (rat-
tling) composed of a morphological structure (the rattle composed of 
hollow modified keratin scales at the end of the tail), anti-predator 
behavioral response (vibrating the tail), and a suite of physiological 
traits that enable fast twitching of the tail-shaker muscles for long pe-
riods of time (Schaeffer et al., 1996). 

In this snake example, there may be strong co-variation (integration) 
within and among the modules, which would suggest that the modules 

are not independent from one another (i.e., a lack of modularity: West- 
Eberhard, 2003; Wagner et al., 2007). In other cases, there may be 
strong co-variation (integration) among component traits within a 
module, but not across modules (i.e., modularity: West-Eberhard, 2003; 
Wagner et al., 2007). A different way to view this is that each module or 
functional unit is composed of many highly connected nodes (traits), 
organisms have multiple modules (physiological, morphological, 
behavioral), and biological networks often show a lack of connection 
(autonomy) among these different modules (nodes in module 1 are 
unlinked to nodes in module 2). This is the essence of the concept of 
modularity (Wagner et al., 2007) or community structure in biological 
or engineered networks (Girvan and Newman, 2002), which is impor-
tant to consider when discussing how HPA axis activation coordinates 
the phenotypic response to environmental change and whether these 
changes are adaptive or maladaptive. 

Here, I discuss the role of the HPA axis in phenotypic integration 
within modules, such as behavioral syndromes where multiple behav-
ioral traits are correlated with one another (Sih et al., 2004). I also 
discuss the effects of the HPA axis on integration across modules, such as 
“coping styles” where behavioral and physiological traits (modules) are 
hypothesized to correlate with one another (Koolhaas et al., 1999, 2010) 
or “pace-of-life syndromes” where behavioral, physiological (including 
metabolic traits), and life history traits (three different modules) are 
hypothesized to correlate with one another (Ricklefs and Wikelski, 
2002; Careau et al., 2008; Biro and Stamps, 2008, 2010; Réale et al., 
2010; Careau and Garland Jr., 2012). This is largely descriptive as many 
of these studies describing how the HPA axis response to an environ-
mental change affects integration within- or across-modules do not 
investigate how it affects individual fitness in that specific environment. 
However, the assumption of many of the studies discussed below is that 
the integration induced by HPA axis activation is adaptive. 

5.1. Causes of phenotypic integration 

Strong correlations among different phenotypic traits (either within 
or across modules) are a statistical representation of the degree of 
phenotypic integration and are quite common across organisms (Clau-
sen and Hiesey, 1958; Olson and Miller, 1958; Berg, 1960; Murren, 
2012; Conner et al., 2014). For example, reproductive traits in self- 
fertilizing plants often exhibit strong positive phenotypic and genetic 
correlations between corolla tube and filament length (Conner, 2003). 
In most organisms, the sizes of different morphological traits (legs, or-
gans, etc.) scale allometrically with total body size to such a degree that 
they can be predicted by relatively simple equations (Shingleton, 
2010a). These patterns of phenotypic co-variation could reflect some 
non-adaptive process due to a shared developmental or genetic mech-
anism (Wagner and Altenberg, 1996; West-Eberhard, 2003; Wagner 
et al., 2007; Klingenberg, 2008). In the case of the latter, phenotypic co- 
variation can be caused by genetic pleiotropy or linkage disequilibrium 
(Lynch and Walsh, 1998; Wagner et al., 2007; Wagner and Zhang, 2011; 
Saltz et al., 2017). Environmental co-variance can also cause phenotypic 
co-variation, such as when a feature of the environment causes the co- 
expression of two or more traits (Price et al., 1988; Rausher, 1992; 
Dantzer et al., 2016). Alternatively, or in combination with the above 
mechanisms (pleiotropy, linkage disequilibrium, or both), phenotypic 
integration could be adaptive and reflect correlational selection where 
individuals with specific combinations of traits (or integrated pheno-
types) were favored for specific environments (Armbruster and 
Schwaegerle, 1996; Cheverud, 1996; Sinervo and Svensson, 2002; 
McGlothlin et al., 2005). This is evident when one looks at what happens 
to whole organismal function if there is an environmental perturbation 
that disrupts these patterns of phenotypic co-variation. For example, a 
perturbation in the size of one craniofacial bone (Olson and Miller, 
1958; Cheverud, 1996) or organ (Shingleton, 2010b) can result in a 
reduction in whole-organism function unless the other bones/organs 
change in a coordinated manner thereby maintaining the integrated 
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phenotype. In self-fertilizing plants, a lack of strong positive co-variation 
between corolla tube and filament length can result in an inability to 
secure reproduction. Other studies in plants that can measure pheno-
typic integration at a comprehensive level confirm that phenotypic 
integration is under positive selection in the wild (e.g., Damián et al., 
2020). 

Although the concept of phenotypic integration has been a topic of 
discussion in ecology and evolution for decades (Darwin, 1872; Clausen 
and Hiesey, 1958; Olson and Miller, 1958; Berg, 1960; Pigliucci, 2003; 
Pigliucci and Preston, 2004; Murren, 2012), the ability of endocrine axes 
or hormones to act as a mediator of phenotypic integration did not really 
arrive on the scene until pivotal work led by Barry Sinervo (Sinervo and 
Licht, 1991a, 1991b), and Ellen Ketterson (Ketterson and Nolan Jr, 
1992, 1999; Ketterson et al., 2005, 2009), among others (Hinde, 1970; 
Marler and Moore, 1988, 1989; Finch and Rose, 1995; Rose and Bradley, 
1998). These studies have largely focused on the pleiotropic effects of 
hormones and how the phenotypic correlations they can generate may 
influence the response to selection or phenotypic evolution (Sinervo and 
Svensson, 1998; McGlothlin and Ketterson, 2008; Cox et al., 2016; 
Dantzer and Swanson, 2017; Cox, 2020). For the most part, these studies 
have focused on a two-trait paradigm where they aim to identify the 
mechanistic basis of negative phenotypic or genetic correlations be-
tween two traits. These negative correlations are indicative of trade-offs 
that are themselves a type of phenotypic integration (Agrawal et al., 
2010). These studies also tend to focus on the degree of co-variation 
among traits within specific modules (among life history or among 
behavioral traits). For example, Sinervo and Licht (1991a, 1991b) 
examined the mechanistic basis of the trade-off between egg size and 
number by manipulating follicle-stimulating hormone whereas Ketter-
son and colleagues (Ketterson and Nolan Jr, 1992, 1999; Ketterson et al., 
2005) have focused on how testosterone affects the trade-off between 
reproduction and self-maintenance/survival (especially from a behav-
ioral perspective). More recent studies have focused on identifying how 
hormones might impact phenotypic integration, such as how the degree 
of insulin-signaling affects multivariate life history phenotypes (Dantzer 
and Swanson, 2012; Swanson and Dantzer, 2014) or the relationship 
among different physiological, immune, and life history traits (Spark-
man et al., 2009; Robert and Bronikowski, 2010). There has also been a 
related but broader focus examining how physiological, behavioral, and 
life history traits co-evolve to form a pace-of-life syndrome (Ricklefs and 
Wikelski, 2002; Réale et al., 2010; Dammhahn et al., 2018; Mathot and 
Frankenhuis, 2018) and how physiological and/or metabolic traits co- 
evolve with multiple behavioral traits (Careau et al., 2008; Royauté 
et al., 2015; Biro et al., 2018). Studies specifically testing if hormones 
affect statistical estimates of phenotypic integration, the strength of 
genetic correlations, the matrix of genetic variances and co-variances, or 
gene expression itself have only recently arrived and have focused 
exclusively on testosterone (Cox et al., 2016, 2017, 2022; Lipshutz et al., 
2019; Wittman et al., 2021). 

5.2. HPA axis & phenotypic integration 

Does the HPA axis coordinate phenotypic integration such that ani-
mals can mount an adaptive multidimensional response to environ-
mental change? GCs do appear to play an important role in affecting 
patterns of phenotypic integration, both from a perspective of within- 
module integration (correlations among life history traits or among 
behavioral traits) or among-module integration (correlations among life 
history, behavioral, and physiological traits). Once again, this is often 
viewed from a two-trait paradigm that focuses on asking if GCs mediate 
trade-offs between two traits (i.e., cause negative phenotypic correla-
tions). For example, elevations in GCs in response to an environmental 
stressor are expected to be an adaptive shift of investment away from 
current reproduction in populations or species where individuals have a 
high probability of reproducing again in the future (due to being young, 
iteroparous, experiencing low predation risk, etc.: Wingfield et al., 1998; 

Boonstra, 2004; Bókony et al., 2009; Hau et al., 2010). Other studies 
document how GCs affect life history trade-offs at lower hierarchical 
levels, such as Lancaster et al. (2007) showing that female lizards treated 
with GCs exhibited a lessening of the trade-off between offspring size 
and number. In red squirrels, there is also evidence of a lessening of the 
trade-off between litter size and offspring postnatal growth rate in 
mothers exposed to conspecific territorial vocalizations that were meant 
to simulate high density conditions (Dantzer et al., 2013). These females 
experiencing increased density cues also had higher fecal GC metabo-
lites (Dantzer et al., 2013). These studies illustrate how the HPA axis 
may adaptively modulate the degree of covariance between two life 
history traits, either magnifying the trade-off (current vs. future repro-
duction) or lessening it (offspring size/growth vs. number). 

Other studies focus on the potential role of the HPA axis (or exposure 
to developmental stress) in generating patterns of co-variation among 
different behavioral traits (Sih, 2011) or among behavioral and physi-
ological traits to form a coping style (Groothuis and Carere, 2005; Korte 
et al., 2005; Koolhaas et al., 1999, 2010). Here, multiple behavioral 
traits are integrated (co-vary) into a “behavioral module” (or syndrome: 
Sih et al., 2004) and different physiological traits are integrated (co- 
vary) into a “physiological module” with higher-level integration (sig-
nificant co-variation suggestive of a lack of modularity) between the 
behavioral and physiological modules to form a coping style (Koolhaas 
et al., 1999, 2007, 2010). For instance, individuals exhibiting a proac-
tive coping style are expected to exhibit higher levels of aggression, 
activity, and HPA axis reactivity, suggestive of both within and across 
module integration (Koolhaas et al., 1999, 2007; Cockrem, 2007; Carere 
et al., 2010). Despite much interest in coping styles, there is little evi-
dence of integration between the behavioral and physiological modules 
(Westrick et al., 2019). Other studies emphasize that exposure to 
developmental stress can cause a specific (and often consistent) 
constellation of traits in offspring, including specific physiological and 
behavioral traits (Meaney, 2001; Harris and Seckl, 2011; Guenther et al., 
2018), such as birds in urban areas (which may experience higher 
exposure to environmental stressors) exhibiting higher exploration, 
aggressiveness, and breathing rates (Caizergues et al., 2022). In red 
squirrels, there is evidence of integration within relatively simple (two 
trait) behavioral modules (activity and aggression exhibit significant 
positive phenotypic and genetic correlations: Taylor et al., 2012; 
Westrick et al., 2019; Martinig et al., 2022) and physiological modules 
(baseline GCs and stress-responsiveness to a pharmaceutical challenge 
[ACTH] exhibit significant positive phenotypic correlations: Westrick 
et al., 2021). When the degree of association between the behavioral and 
physiological modules was examined, the results depended upon the 
developmental stage (adult vs. juvenile) and method used to quantify 
the HPA axis. Specifically, there was no significant association between 
fecal GC metabolites and activity, aggression, or docility in adult red 
squirrels (Westrick et al., 2019) whereas juvenile red squirrels from 
specific treatment groups that exhibited a stronger GC response to ACTH 
were less active and aggressive (Westrick et al., 2021). These two studies 
conducted in the same population but at different developmental stages 
and methods to quantify HPA axis activity illustrate the inherent com-
plexities of trying to identify how hormones affect phenotypic integra-
tion. Just as Schlichting and Pigliucci (1998) emphasized how the 
environment can affect the degree of phenotypic integration, this study 
shows that that ontogenetic stage at which the traits are measured does 
so as well. 

Researchers have also started to examine the degree of phenotypic 
integration among GCs, body condition, biomarkers of oxidative dam-
age and antioxidants, telomeres, immune function, and behavior (Cos-
tantini et al., 2011; Buehler et al., 2012; Hau et al., 2015; Ouyang et al., 
2016; Angelier et al., 2018). These studies are revealing in that GCs (or 
other attributes of the HPA axis) can co-vary with some of these other 
traits, but they still largely operate in a bi-variate (or two dimensional) 
world that focuses on the effects of GCs on mediating trade-offs between 
two traits (usually assessed using pairwise correlations). Recently, 
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several studies have gotten us closer to understanding the effects of GCs 
on phenotypic integration by studying if exposure to developmental 
stressors or direct treatment with GCs early in life shaped the strength of 
phenotypic correlations among different traits. Careau et al. (2014) 
showed that exposure of juvenile birds to nutritional stress reduced the 
degree of both positive and negative phenotypic correlations between 
two traits for multiple physiological and behavioral attributes that were 
measured. For instance, control birds who exhibited a higher basal 
metabolic rate (BMR) exhibited significantly less activity in a novel 
environment, whereas this association was substantially lessened in 
birds who were exposed to nutritional stress during the nestling stage 
(Careau et al., 2014). By contrast, Merrill and Grindstaff (2018) found 
that offspring treated with GCs early in life exhibited stronger pheno-
typic correlations both within specific clusters of traits (morphological, 
baseline and stress-induced GCs, immune measures) and also among 
them (e.g., baseline GCs and bacterial killing ability). In studies of red 
squirrels, treatment of mothers with GCs during pregnancy or lactation 
had minimal effects on the degree of co-variation between behavioral 
and physiological traits (Westrick et al., 2021) or between a life history 
trait (growth), physiological condition (hematocrit) and measures of 
oxidative damage or antioxidants (Dantzer et al., 2020b). These three 
studies illustrate the diversity of organismal responses to exposure to an 
environmental stressor or increases in GCs showing that it can increase, 
decrease, or have no effect on the strength of phenotypic correlations 
within- or among-modules. 

In nearly all these examples, the fitness consequences of the effects of 
GCs on phenotypic integration largely remain untested, especially from 
the perspective of the animal exhibiting an increase in GCs that alters 
patterns of phenotypic integration in response to an environmental cue 
that is adaptive for the selective environment predicted by that cue. It is 
still unclear if phenotypic integration induced within or across modules 
is adaptive. Interestingly, Merrill and Grindstaff (2018) showed that 
captive juvenile birds treated with GCs early in life had stronger 
phenotypic correlations among traits and those with enhanced inte-
gration among these traits exhibited reduced survival, suggesting an 
immediate cost to phenotypic integration. Although enhanced pheno-
typic integration caused by GCs could be adaptive, it may also be mal-
adaptive if the expected environment is not met in reality or when the 
effects are considered over longer timescales, which I now turn to below. 

5.3. HPA axis & evolvability: coping with environmental change across 
longer timescales 

“Extreme stress can be regarded as an environmental probe which 
increases genetic variability revealing associations among life- 
history and stress traits that are difficult to perceive under more 
benign conditions.” 

Parsons, 1993 

Most work on the HPA axis has focused on how activation of the HPA 
axis induces adaptive plasticity to cope with environmental change over 
relatively short timescales. For instance, many studies have examined if 
elevations in maternal GCs induce adaptive developmental or inter- 
generational plasticity in offspring characteristics that prepares them 
for a harsh environment (Dantzer et al., 2013; Sheriff et al., 2017). Some 
studies in animal models in the laboratory or in humans have extended 
this work by focusing on epigenetic mechanisms that cause the persis-
tence of offspring phenotypes induced by being produced by mothers 
with elevated GCs or by being exposed to perinatal stress (Champagne, 
2013; Matthews and McGowan, 2019; Cao-Lei et al., 2020; Anacker 
et al., 2014), though notably most of these studies are only concerned 
with F1 offspring and, as such, are still focused on relatively short 
timescales. By contrast, evolutionary ecologists and other researchers 
have studied for some time how environmental stressors can have 
important macroevolutionary consequences or evolutionary phenomena 
that happen over longer timescales than those considered above 

(Belyaev and Borodin, 1982; Belyaev, 1983; Parsons, 1987; Hoffmann 
and Parsons, 1991; Poole et al., 2003; Badyaev, 2005a, 2005b). By 
“longer timescales”, I mean the impacts beyond an individual offspring or 
the effects of developmental stress on F1 of F2 offspring. Here, I use 
insight gained from their studies and focus on how responses to envi-
ronmental stressors (including activation of the HPA axis and increased 
GCs) affect evolvabilty. I do so from a broad perspective because of the 
lack of research on this topic specifically focused on the HPA axis or in 
vertebrates. 

Evolvability is defined and quantified in various ways and at various 
levels of biological organization from the genome to the individual or-
ganism, and to populations (Wagner and Altenberg, 1996; Kirschner and 
Gerhart, 1998; West-Eberhard, 1998, 2003; Pigliucci, 2008; Brookfield, 
2009; Brown, 2014; Hansen and Pélabon, 2021; Hansen et al., 2022). 
Here, I define it as the ability of populations to adapt (exhibit an 
evolutionary response to selection) to new environments due to the 
emergence of novel heritable phenotypic variation (Wagner and Alten-
berg, 1996; Kirschner and Gerhart, 1998; West-Eberhard, 1998; 
Schlichting and Murren, 2004; Pigliucci, 2008). Although this definition 
of evolvability is an abstract description of a population, it ultimately 
starts with if and how individual organisms can produce novel pheno-
typic variation that is heritable (or eventually heritable due to genetic 
assimilation: Waddington, 1953; Pigliucci and Murren, 2003; West- 
Eberhard, 2003; Crispo, 2007). What is and is not “novel phenotypic 
variation that is heritable” is also challenging to define, but here I refer 
to it as phenotypes or phenotypic combinations that have not before 
been exposed to selection. This often occurs during development where 
the environment modifies the effects of genotype on phenotype (Wagner 
and Altenberg, 1996; West-Eberhard, 2003; Klingenberg, 2008). I 
characterize populations as exhibiting “higher evolvability” if they 
produce higher quantities of genetic and phenotypic variation (perhaps 
due to higher rates of mutation or recombination or the “release” of 
cryptic genetic variation) and/or produce greater variability in the 
number of trait combinations available for selection to act upon because 
the environment modifies the degree of integration among phenotypes 
by enhancing or dissolving phenotypic correlations between traits. In all 
cases, these may be caused by some epigenetic mechanism, but I do not 
focus on these. Finally, I will note that the concept of evolvability, as 
defined here, can be controversial (Brookfield, 2001; Poole et al., 2003; 
Pigliucci, 2008) because it suggests that selection acts at levels higher 
than an individual (group, population, species, clade, etc.) to increase 
evolvability or because it suggests that evolution through natural se-
lection acts in a teleological fashion where it favors traits that offers 
some benefit in the future (Kirschner and Gerhart, 1998, Sniegowski and 
Murphy, 2006; Lynch, 2007; Brookfield, 2009). 

Below, I discuss the effects of environmental stressors and, where 
possible, the HPA axis on evolvability. I do so by describing the effects of 
stress on the generation of novel genotypic and phenotypic variation and 
genetic and phenotypic co-variance. This encompasses several related 
concepts (phenotypic integration, modularity, cryptic genetic variation, 
evolutionary constraints), but ultimately these are distilled into similar 
concepts under the heading of how environmental stressors affect ge-
netic and phenotypic variation and co-variation. As described above, 
organismal responses to environmental change or stress that increases 
genetic or phenotypic variance or increases the number of combinations 
of phenotypic traits could act as a diversifying bet hedging mechanism 
where total phenotypic variability is enhanced that in turn increases the 
geometric mean fitness of a population. 

5.4. Effects of stress on phenotypic & genetic variation 

The amount of additive genetic variation is expected to determine 
the rapidity of an evolutionary response to selection (Fisher, 1930; 
Houle, 1992; Lande and Shannon, 1996) and higher levels of phenotypic 
variability could provide a greater number of targets of selection, both of 
which could facilitate the ability of a population to persist through a 
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severe environmental stressor. The responses of individual organisms to 
environmental stressors may therefore enhance evolvability through the 
production of novel genetic and phenotypic variability. Genetic varia-
tion may increase during periods of environmental stress for a variety of 
reasons, such as increased mutation, recombination, or transposition 
rates (Holloway et al., 1990; Hoffmann and Parsons, 1991; Pigliucci 
et al., 1995; Badyaev, 2005a; Zhong and Priest, 2011; Rowiński and 
Rogell, 2017). The evidence of the effect of environmental stress on 
genetic variation is mixed (Hoffmann and Parsons, 1991; Blows and 
Sokolowski, 1995; Merilä and Fry, 1998; Hoffmann and Merilä, 1999; 
Fowler and Whitlock, 2002; Charmantier and Garant, 2005; Paaby and 
Rockman, 2014), with differences observed in studies measuring heri-
tability of traits in laboratory animals versus those in natural pop-
ulations (Charmantier and Garant, 2005). However, a meta-analysis that 
directly quantified a measure of genetic variation (coefficient of genetic 
variation) showed an increase in genetic variance for life history traits 
(but not morphological traits) under stressful conditions (Rowiński and 
Rogell, 2017). This could be because exposure to stress releases cryptic 
genetic variation (Rutherford, 2000; Siegal and Bergman, 2002; Gibson 
and Dworkin, 2004; Badyaev, 2005a; Schlichting, 2008; McGuigan and 
Sgrò, 2009; Ledón-Rettig et al., 2014). Mechanistically, cryptic genetic 
variation exposed by stressful environments could be the outcome of 
epigenetic modifications that alters gene expression or the generation of 
new genetic variation due to changes in mutation rates (among other 
possibilities). Cryptic genetic variation appears common (Paaby and 
Rockman, 2014), for example as has been shown to occur during 
exposure to an environmental stressor that disrupts the availability of 
heat shock proteins (Hsp90) to resist environmental or mutational per-
turbations revealing genetic variation that is usually hidden by the ac-
tivity of Hsp90 (Jarosz and Lindquist, 2010). This ability of stressful 
environments to reveal cryptic genetic variation may have important 
effects on the ability of populations to persist through environmental 
change or to colonize novel environments (McGuigan and Sgrò, 2009; 
Paaby and Rockman, 2014), such as freshwater fish colonizing caves 
(Rohner et al., 2013). 

Exposure to a stressful environment can also enhance evolvability 
through the production of novel phenotypic variants or expose “hidden 
reaction norms” some of which are beneficial for novel or stressful en-
vironments (Schlichting and Pigliucci, 1998; Schlichting, 2004; West- 
Eberhard, 2003; Pfennig et al., 2010; Moczek et al., 2011). This can 
manifest itself in terms of an increase in phenotypic variance within a 
population when organisms are exposed to an environmental stressor, as 
in many studies about wing shape in Drosophila (e.g., Fowler and 
Whitlock, 2002). This could be the outcome of “phenotypic accommo-
dation” where the developmental environment results in a change in one 
trait that causes a change in other traits (West-Eberhard, 2003, 2005). 
Recent meta-analyses show that this is a widespread phenomenon: or-
ganisms exposed to developmental stressors exhibit heightened pheno-
typic variance (Sánchez-Tójar et al., 2020; but see Moran et al., 2021). 
For instance, fish in thermally stressful environments (increased tem-
peratures) exhibit higher levels of total phenotypic variability (O’Dea 
et al., 2019) and animals experiencing nutritional stress during devel-
opment exhibit increased variance in longevity (Senior et al., 2017). 
This increase in phenotypic variability could enable the production of 
novel phenotypic variants that enable the population to persist through 
the environmental change or “buy time” until the population can build 
up enough genetic variation to mount an evolutionary response to the 
new selective environment (Gavrilets and Scheiner, 1993; Ghalambor 
et al., 2007; Moran et al., 2016; O’Dea et al., 2016; Fox et al., 2019; 
Thompson et al., 2022). If some of these phenotypic variants were 
adaptive for the stressful or novel environment and the environment 
remains somewhat consistent, they could undergo genetic assimilation 
where the formerly plastic trait that was sensitive to an environmental 
cue becomes constitutively expressed due to genetic differences (Wad-
dington, 1953; Pigliucci and Murren, 2003; West-Eberhard, 2003; 
Crispo, 2007). 

Turning to the HPA axis, there are very few studies that can address if 
activation of the HPA axis and increased GCs in individuals have an 
influence on genetic or phenotypic variability within a group or popu-
lation. There are no studies on genetic variation that I am aware of and 
most studies examining the effects of endocrine responses on pheno-
types assess them through their effects on measures of central tendency 
in some treatment group (means and medians) rather than their influ-
ence on variance among the treated groups (Bennett, 1987; Williams, 
2008). For instance, the numerous studies that have addressed how 
developmental stress impacts offspring traits, including direct manipu-
lation of circulating GCs, focus on the effects of a treatment on the means 
and medians of offspring traits (Harris and Seckl, 2011). This focus on 
means and medians is also true in most meta-analyses (Sánchez-Tójar 
et al., 2020). For example, recent meta-analyses on the effects of 
developmental stress or GC manipulations on animal phenotypes do not 
report how their effects on the variance in the phenotypes considered 
(Eyck et al., 2019; Bonier and Cox, 2020). Other meta-analyses have 
started to focus on how exposure to stress affects phenotypic variance 
(O’Dea et al., 2019; Sánchez-Tójar et al., 2020; Moran et al., 2021). 
When the phenotypic data from Eyck et al. (2019) were re-analyzed to 
look at the effects of developmental stress on phenotypic variance, 
Sánchez-Tójar et al. (2020) reported that developmental stress did 
indeed enhance phenotypic variance. Finally, although rare, there are 
some studies that manipulate GCs and show that offspring have higher 
levels of phenotypic variance. For instance, in cavies (Cavia aperea), 
groups treated with exogenous GCs during adolescence had higher 
among-individual variance in physiological and behavioral traits than a 
control group (Guenther et al., 2018). This lack of examples emphasizes 
opportunities for researchers to identify if exposure to an environmental 
stressor that activates the HPA axis promotes phenotypic variation, as 
studies in other taxonomic groups have shown. 

5.5. Effects of stress on phenotypic & genetic co-variation 

Not only might exposure to environmental stressors generate the 
production of genetic and phenotypic variation, but it may also influ-
ence the ability of populations to cope with environmental change over 
evolutionary (long) timescales by affecting the degree of phenotypic 
integration. The effects of hormones on phenotypic integration repre-
sents a sort of double-edged sword. Strong phenotypic integration pro-
moted by hormones (or another mechanism) can be adaptive in 
relatively constant environments by promoting the expression of adap-
tive combinations of traits (discussed above). An environmental change 
that alters hormone titers could alter multiple phenotypes in an adaptive 
direction, such as changes in insulin-signaling in response to changes in 
food availability or competition promoting an adaptive increase in the 
pace of life (Dantzer and Swanson, 2012; Swanson and Dantzer, 2014). 
The integration of different physiological, behavioral, and life history 
traits into a “syndrome” could be adaptive for specific types of envi-
ronments that are predictable (Hämäläinen et al., 2021). In both cases, 
there is integration within- and among-modules (i.e., multiple behaviors 
are strongly correlated with one another and also strongly correlated 
with life history traits), indicating strong integration and a lack of 
modularity. 

On the other hand, phenotypic integration and/or lack of modularity 
should theoretically reduce the evolvability of populations by limiting 
the independent evolution of parcels of traits or acting as a constraint to 
population or species persistence in the face of environmental change 
because the required diversity in form and function (or specific combi-
nation of phenotypes) is not present (Wagner and Altenberg, 1996). 
Modularity or compartmentalization can reflect “weak linkages” among 
the component parts (or modules) of an organism and is expected to 
enhance evolvability (Kirschner and Gerhart, 1998; Wagner et al., 2007; 
Pigliucci, 2008) because each module of an organism can respond to 
new environmental challenges separately rather than as a whole. If 
integration within- and across-modules (i.e., a lack of modularity) is 
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caused by genetic co-variance, it could theoretically limit the multidi-
mensional phenotypic space that can be explored during evolutionary 
change. Genetic co-variance between two traits is thought to act as a 
type of constraint on their independent evolution because a response to 
selection on one trait causes a correlated response in another trait 
(Lande, 1979; Cheverud, 1984; Lynch and Walsh, 1998; Conner, 2002; 
Chenoweth et al., 2010). Populations may evolve along “genetic lines of 
least resistance” where the co-variance between two traits is largely 
stable even if there are shifts in the mean trait value over evolutionary 
timescales (Lande, 1976; Schluter, 1996; McGuigan et al., 2005; 
McGlothlin et al., 2018). For example, two morphological traits may 
exhibit strong positive genetic co-variance whereby they are also posi-
tively phenotypically correlated. If the major axis of genetic co-variation 
is congruent with the direction of selection (such as favoring an increase 
in the size of trait 1 and trait 2), it can facilitate an adaptive response to 
selection. If the major axis of genetic variation is orthogonal to the di-
rection of selection (such as favoring an increase in size of trait 1 but a 
decrease in the size of trait 2), the response to selection could be blunted. 
As such, phenotypic integration and genetic co-variation could constrain 
the total amount of phenotypic variability that can be exposed to se-
lection or blunt the evolutionary response to selection, thereby lowering 
evolvability. Greater phenotypic integration, perhaps caused by genetic 
co-variance, may also limit the total amount of phenotypic plasticity 
mounted by an organism in response to environmental change (Gianoli 
and Palacio-López, 2009). Alternatively, if different traits can exhibit 
differential plasticity to the same environmental cue, it may reduce 
phenotypic integration and expose novel combinations of phenotypes to 
selection (Schlichting, 1986, 1989). Note that these are types of “local 
constraints” rather than “universal constraints” (sensu Maynard Smith 
et al., 1985) given that the local constraints posed by modularity or 
integration are expected to be dissolved given enough time or pressure 
from selection. 

The evidence for genetic co-variance to act as an evolutionary 
constraint is mixed (Chenoweth et al., 2010; Bolstad et al., 2014; Hansen 
and Pélabon, 2021). Examples from the fossil record provide some 
support for the hypothesis that strong morphological integration can 
constrain divergence or variation in morphological phenotypes (Firmat 
et al., 2014; Goswami et al., 2014; Voje et al., 2014). Other studies using 
morphological data from extant bird species also show that the response 
to selection can be reduced by 28 % by genetic co-variance among 
morphological traits (Teplitsky et al., 2014). Yet, genetic co-variance 
can also facilitate responses to selection (Agrawal and Stinchcombe, 
2009) and empirical studies using artificial selection highlight that 
observed patterns of phenotypic co-variation among morphological 
traits in plants and animals can be broken if selection is strong enough 
(e.g., Beldade et al., 2002; Conner, 2003; Frankino et al., 2005; Agrawal 
et al., 2010). It seems that if selection is strong enough, the genetic ar-
chitecture underlying the phenotypes under selection can be reshaped 
by selection (e.g., Arnold et al., 2008; Doroszuk et al., 2008; Eroukh-
manoff, 2009; Eroukhmanoff and Svensson, 2011; Wood and Brodie, 
2015). This may be because even in situations where two traits are 
highly functionally related to one another, these two traits are heavily 
influenced by two separate gene regulatory networks (described in 
Wagner et al., 2007), suggesting that they can evolve independently 
from one another due to this modularity. 

Leaving aside this issue of whether genetic co-variance acts as an 
evolutionary constraint and/or reduces evolvability, how might envi-
ronmental stress or activation of the HPA axis affect evolvability by 
influencing genetic and phenotypic co-variation? We can first look at 
this from the responses of plants and animals to environmental stressors. 
Exposure to a severe environmental stressor may enhance evolvability 
by lessening phenotypic integration and/or the genetic covariance 
among traits (Parsons, 1987, 1994; Hoffmann and Parsons, 1991; 
Badyaev, 2005a). For instance, different traits could exhibit differential 
plasticity to the same environmental cue, thereby reducing phenotypic 
integration and expose novel combinations of phenotypes to selection 

(Schlichting, 1986, 1989). Despite the interesting potential, few studies 
find that exposure to stress enhances evolvability by decreasing 
phenotypic integration. Matesanz et al. (2021) did find that plants 
exposed to a stressor (drought) did have lower integration. Additionally, 
the overall degree of integration among phenotypes is expected to be 
reduced by stress, as reflected in the fluctuating asymmetry literature 
(Parsons, 1990; Hoffmann and Woods, 2003). For example, develop-
mental stress could promote instability in the development of pheno-
types or the dissolution of phenotypic canalization, producing novel 
phenotypic combinations of traits by causing fluctuating asymmetry in 
different traits that are usually related to one another in a consistent 
manner (Siegal and Bergman, 2002; Hoffmann and Woods, 2003; 
Badyaev, 2005a). Some studies also find that the negative genetic cor-
relation between two life history traits is reduced in the stress treatment 
group. For instance, in Drosophila the negative genetic correlation be-
tween early life fecundity and starvation resistance was −0.913 in the 
standard environment, but −0.453 in the novel (stressful) environment 
(Gebhardt and Stearns, 1988). 

By contrast, many studies find that environmental stress actually 
enhances phenotypic integration (Schlichting, 1986; Waitt and Levin, 
1993; Donohue and Schmitt, 1999; Gianoli, 2004; Gianoli and Palacio- 
López, 2009; Benavides et al., 2021). This is evident when viewing how 
the trade-off between traits that compete for the same pool of resources 
being increased under stressful conditions. For instance, studies inves-
tigating life history trade-offs find that nutritional stress exacerbates the 
trade-off (increases the negative phenotypic correlation between two 
traits) exhibited by two life history traits that compete for the same 
resources (current vs. future reproduction, offspring size vs. number, 
etc.: Merilä et al., 2000; Reznick et al., 2000). Finally, novel environ-
ments encountered by organisms are expected to be stressful (although 
not necessarily), yet they do not seem to alter patterns of genetic 
covariance among multiple traits (Wood and Brodie, 2015). Thus, there 
is mixed evidence for the hypothesis that activation of the stress 
response can relieve evolutionary constraints by increasing the number 
of combinations of phenotypes that selection can act upon. This could be 
because the types of environmental stressors that are often used in these 
studies are not entirely novel to the organism from the perspective of its 
evolutionary history. For example, plants and animals may have specific 
adaptive patterns of trait combinations to deal with nutritional stress or 
water restriction that they have undoubtedly experienced over evolu-
tionary timescales so it may not be surprising that exposure to one of 
these stressors enhances integration. On the other hand, exposure to a 
truly novel environment or stressor (such as the panoply of stressors 
present in urbanized landscapes) may dissolve the patterns of pheno-
typic and genetic co-variance and therefore promote evolvability. 

To date, there are no studies about how activation of the HPA axis or 
increased GCs affects statistical characterizations of phenotypic and 
genetic co-variance. As described above, there are three studies about 
how early life nutritional stress or increased GCs affects phenotypic 
(pairwise) correlations with one study showing an enhancement of 
pairwise correlations between two traits both within- and across- 
modules (Merrill and Grindstaff, 2018), another showing a reduction 
in pairwise correlations between traits across modules (Careau et al., 
2014), and the other suggesting no change (Dantzer et al., 2020b). Other 
studies described above have described how developmental stress might 
promote the co-variation among behavioral traits (syndromes) or be-
tween physiological and behavioral traits (Meaney, 2001; Harris and 
Seckl, 2011; Guenther et al., 2018). Clearly a future area of research is to 
investigate how activation of the HPA axis affects patterns of phenotypic 
co-variation and, if sample size permits, quantifying how elevations in 
GCs affects patterns of genetic co-variance. By doing so, this would help 
reveal if the HPA axis promotes adaptive phenotypic integration to cope 
with predictable environmental change over short timescales, but also 
how its effects on integration may constrain or facilitate coping with 
environmental change across longer timescales. 
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6. Some future directions 

Moving forward, there are many research opportunities when it 
comes to understanding if and how the HPA axis mediates adaptive 
plasticity, but also if and how it affects evolvability by modifying pat-
terns of phenotypic integration or inducing bet hedging. First, it will be 
interesting to consider if individuals experience trade-offs in these 
different types of plastic responses to environmental change. For 
example, do individuals that employ evasion to deal with an environ-
mental stressor also exhibit a reduction in the ability to recover from 
stressors? Furthermore, given that GCs can promote recovery from 
stressors (even chronic stressors: Beery et al., 2012), rather than only 
inflict damage, it may require a revaluation of models exploring the 
respective roles of damage and repair in the evolution of the vertebrate 
stress response (Taborsky et al., 2022). Second, we need studies of how 
GCs affect statistical estimates of phenotypic and genetic co-variance. 
Some of the studies described above demonstrate the potential for 
how exposure to environmental stressors or increases in GCs can alter 
patterns of phenotypic integration, but they are still analyses of pairwise 
associations. We still have poor knowledge on how the HPA axis affects 
statistical patterns of phenotypic or genetic co-variance among different 
traits (i.e., statistical estimates of integration as in studies with other 
hormones: Cox et al., 2017; Wittman et al., 2021). This is surprising 
given that the classic review on the HPA axis (Sapolsky et al., 2000) 
emphasized how GCs coordinate adaptive phenotypic integration, 
causing a cavalcade of physiological responses that facilitate evasion 
from dangerous situations. Other studies examining the pleiotropic ef-
fects of testosterone provide an organizational framework to carry out 
this type of work and they largely support the hypothesis that testos-
terone can have important impacts on the evolutionary trajectories of 
species by affecting the genetic response to selection or patterns of 
phenotypic/genetic variance and co-variance (Cox et al., 2016; Cox, 
2020). Third, there is a need to consider how the plastic responses of 
different traits are related to one another. This concept of “whole or-
ganism plasticity” (Steiner and Van Buskirk, 2008) or “plasticity inte-
gration” (Schlichting, 1986; Schlichting and Pigliucci, 1998; Gianoli and 
Palacio-López, 2009; Plaistow and Collin, 2014; Ellers and Liefting, 
2015) focuses on understanding how an individual organism integrates 
plastic responses in suites of traits (similar to phenotypic accommoda-
tion: West-Eberhard, 2005). How does the whole organism or complex 
trait stay functional if one trait is responding to an environmental cue? If 
one trait exhibits plasticity to an environmental stressor, how do the 
other traits respond? Are the patterns of phenotypic co-variance plastic 
or static when exposed to an environmental change? These outstanding 
questions have implications for the evolution of plasticity induced by the 
HPA axis (Schlichting, 1989; Schlichting and Pigliucci, 1998; Pigliucci, 
2003) and addressing them will require more sophisticated statistical 
approaches. Luckily, many of these are already used in other taxonomic 
groups besides vertebrates (Schlichting and Pigliucci, 1998; Gianoli and 
Palacio-López, 2009). Fourth, measures of the HPA axis such as GCs may 
exhibit co-variation with other traits (physiological, morphological, 
behavioral), but does the HPA axis mediate this integration or does it 
merely reflect another biomarker of some life history stage or strategy 
that is associated with all these other coordinated trait changes? That is, 
is the HPA axis a hub on a phenotypic network where if it is activated, it 
results in changes in all the other nodes (Fig. 1B)? Or, is it just a node in 
the phenotypic network where all nodes are jointly influenced by some 
environmental factor? Similar discussions have occurred around link-
ages between telomeres and lifespan regarding whether telomere 
lengths or rates of telomere attrition are a cause or symptom of aging 
(Simons, 2015; Casagrande and Hau, 2019). Here, it is quite possible 
that the response of the HPA axis to an environmental change acts as a 
hub in the phenotypic network or, said differently, acts as an “inte-
grator” between the environment and the multidimensional phenotypic 
response (Martin et al., 2011a, 2011b). Empirical tests of these possi-
bilities requires testing how GCs affect patterns of trait covariation (e.g., 

through experimental manipulation of the hormone: Cox et al., 2017) 
and/or identifying if specific "supergenes" associated with HPA axis 
function contribute to a multifaceted phenotypic response similar to 
those chromosomal inversion polymorphisms that influence other ste-
roid hormones or their receptors (Maney and Küpper, 2022). Fifth, we 
do not yet know if these patterns of integration that are observed (such 
as the presence of coping styles or pace-of-life syndromes) are adaptive 
or reflect some pleiotropic constraint where GCs constrain the inde-
pendent expression of two traits. The latter is thought to be unlikely 
given that different parts of endocrine systems (production, transport, 
reception) can evolve independently from one another (Hau, 2007; 
Adkins-Regan, 2008; Ketterson et al., 2009; Dantzer and Swanson, 
2017). On the other hand, there is evidence that component parts of the 
HPA axis (GC receptors and mineralcorticoid receptors) are correlated 
with one another across tissues (Lattin et al., 2015) and, for other hor-
mones, some level of macroevolutionary stasis in the relationships be-
tween ligand production and suites of life history traits (Swanson and 
Dantzer, 2014). The HPA axis also seems to be closely connected with 
other endocrine axes affecting growth, reproduction, and lifespan 
(Fig. 1B), which is suggestive of a lack of “weak linkages” among these 
physiological networks, could reduce evolvability (Kirschner and Ger-
hart, 1998; Kitano, 2004). The interconnectedness of the HPA axis with 
other endocrine axes suggests some coordinated rather than compart-
mentalized (or parcellated) response to environmental change is 
possible, potentially lowering both modularity and evolvability 
(Kirschner and Gerhart, 1998; Kitano, 2004). It seems plausible that 
future studies will show that the sequalae of phenotypes or the pattern of 
integration that are induced by activation of the HPA axis or exposure to 
developmental stress are beneficial for those specific environments if the 
individual encounters the expected environment (i.e., observed in ani-
mals with short lifespans: Nettle and Bateson, 2015), but what are the 
consequences of this integration and the potential for a lack of modu-
larity across longer timescales? Finally, there is a desperate need to 
consider how the HPA axis has evolved to not only promote adaptive 
responses of individual organisms across short timescales, but also 
longer/evolutionary timescales. More than 15 years ago, Williams 
(2008) brought back Bennet’s (Bennett, 1987) concepts about the 
“tyranny of the golden mean” and yet there is still a lack of reporting 
when it comes to the phenotypic variance within treatment groups or 
meta-analyses on the effects of environmental stressors or GCs on 
phenotypic variance (Sánchez-Tójar et al., 2020). This is changing but 
there is a need for more of these studies focusing on the magnitude of 
genetic and phenotypic variance and co-variance within groups to better 
understand how responses to environmental stressors (during develop-
ment or another life stage) could act as a bet hedging mechanism. 

7. Synthesis 

The HPA axis serves as a bow tie network that balances the need for 
organisms and populations to be flexible, but not too flexible, in 
response to environmental change. Above I have discussed how the HPA 
axis can coordinate organismal responses to environmental change by 
promoting adaptive phenotypic plasticity in terms of evasion, tolerance, 
and recovery and in terms of coordinating adaptive phenotypic inte-
gration. This univariate and multivariate plasticity induced by the HPA 
axis can enable individuals to cope with environmental change across 
short timescales, namely at the level of the individual or from parents to 
offspring or grand offspring (13– generations). At the same time, 
organismal responses to environmental change, including activation of 
the HPA axis, seem to play an important role in their ability to cope with 
environmental change across longer timescales (>3 generations) by 
affecting evolvability through their effects on genetic and phenotypic 
variation and co-variation. 

In the field of evolutionary endocrinology, which combines evolu-
tionary ecology and behavioral neuroendocrinology (Zera et al., 2007; 
Cox et al., 2016), there may have been a tendency to shy away from 
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considering how environmental changes over long timescales have 
shaped the evolution of the HPA axis or how organismal responses to 
environmental stressors affect evolvability (but see Badyaev, 2005a, 
2005b). This is evident in the many studies that are primarily focused on 
asking if the parental HPA axis induces adaptive developmental plas-
ticity in offspring that enables offspring to evade or tolerate environ-
mental stressors (heightened predation risk, low food, high competition: 
Dantzer et al., 2013; Love et al., 2013; Sheriff et al., 2017). Although 
informative, this is a narrow view about the selective factors that shape 
the HPA axis. For instance, for this type of developmental plasticity to 
evolve, it requires some level of environmental stability in the envi-
ronment experienced by offspring (Kuijper and Hoyle, 2015; McNamara 
et al., 2016) where the parental phenotype (e.g., elevated maternal GCs) 
provided offspring with a predictive cue that the environment they 
would encounter would be harsh, it caused developmental plasticity, 
and offspring exhibiting that plasticity did indeed encounter a harsh 
environment that increased their fitness relative to offspring that did not 
exhibit this plasticity (Nettle and Bateson, 2015). Thus, while these 
studies attempt to illustrate how maternal hormonal responses to 
ecological cues induce adaptive developmental plasticity, this is 
potentially only applicable to species that exhibit high temporal auto-
correlation between parental and offspring environments, which may 
only apply over short time scales. 

The perspective I have advocated here is to consider how the HPA 
axis facilitates coping with environmental change across both short and 
long timescales from the evolutionary strategies of plasticity to bet 
hedging, respectively. Doing so can help us fully understand the causes 
of HPA axis activation and its consequences (or lack thereof) and may 
illuminate new interpretations for common and seemingly anomalous 
observations. For example, in red squirrels, some individuals exposed to 
the same cues of environmental harshness (high conspecific density) do 
not exhibit an increase in GCs (Guindre-Parker et al., 2019) and/or their 
offspring do not exhibit developmental plasticity in response to those 
cues that would be adaptive (Dantzer et al., 2013, 2020a). This could be 
because some individuals do not have equal access to those cues or 
because they value them differently according to their individual state, 
the amount of resources they have on hand, or their residual repro-
ductive value. Alternatively, this individual-variation in the respon-
siveness of the HPA axis to conspecific density may be shaped by 
environmental fluctuations across larger temporal scales than is usually 
considered. For instance, the lack of response to these cues exhibited by 
some individuals could be reflective of a bet hedging strategy that was 
favored because it enhances evolvability. Another example illustrating 
the potential value of widening the temporal scope of the selective 
factors shaping the HPA axis comes from studies of the effects of peri-
natal stress in laboratory rodents (Harris and Seckl, 2011). They have 
been kept in captivity for numerous generations, yet they still exhibit a 
stereotypical response to perinatal stress where their offspring exhibit 
plasticity in their characteristics that should be adaptive for high pre-
dation risk environments (Harris and Seckl, 2011). Instead of the 
maintenance of this response being maladaptive given their present 
environment, it could reflect a bet hedging strategy to avoid making the 
costliest error (Sheriff et al., 2018; Petrullo et al., 2023). These types of 
observations are common and incorporating a perspective focused on 
bet hedging can help us better understand the selective forces shaping 
the HPA axis. 

Understanding how the HPA axis has been shaped by selective fac-
tors over both short (plasticity) and long (bet hedging) timescales is 
pressing due to the need to understand how animals will cope with 
human-induced rapid environmental change (HIREC: Sih et al., 2011). 
HIREC is expected to be stressful for animals because these are often 
novel and unpredictable environmental changes. Moreover, bow tie type 
networks like the HPA axis may exhibit fragility when they encounter 
unanticipated environmental perturbations (Kitano, 2004), such as 
HIREC activating the HPA axis and potentially inducing maladaptive 
plasticity (Donelan et al., 2020). Even though results from meta-analyses 

regarding the effects of anthropogenic factors on GCs in wild vertebrates 
is mixed and some studies find a reduction in the GC response for those 
in urban environments (Atwell et al., 2012), many animals exposed to 
HIREC do indeed exhibit elevated GCs (Dantzer et al., 2014; Iglesias- 
Carrasco et al., 2020; Injaian et al., 2020). However, these elevations in 
GCs may be adaptive over short timescales, such as the developmental 
plasticity that is induced when parental GCs are elevated being adaptive 
for offspring living in harsh environments (Dantzer et al., 2014). More 
importantly, the increase in GCs due to HIREC could also be adaptive 
over longer timescales, such as inducing novel phenotypic variation or 
combinations of phenotypes that act as a bet hedging mechanism to 
enhance population persistence under HIREC (see also Donelan et al., 
2020). Although there is much focus on the negative consequences of 
HPA axis activation of animals experiencing HIREC, there could also be 
hope when we consider how the HPA axis has evolved to deal with 
environmental fluctuations over longer timescales than is typically 
considered. 
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Szamecz, B., Fekete, G., Papp, B., Araújo, H., 2017. Phenotypic heterogeneity 
promotes adaptive evolution. PLoS Biol. 15 (5), e2000644. 
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Escudero, A., 2021. Phenotypic integration does not constrain phenotypic plasticity: 
differential plasticity of traits is associated to their integration across environments. 
New Phytol. 231, 2359–2370. 

Mathot, K.J., Frankenhuis, W.E., 2018. Models of pace-of-life syndromes (POLS): a 
systematic review. Behav. Ecol. Sociobiol. 72, 1–12. 

Matthews, S.G., McGowan, P.O., 2019. Developmental programming of the HPA axis and 
related behaviours: epigenetic mechanisms. J. Endocrinol. 242, T69–T79. https:// 
doi.org/10.1530/JOE-19-0057. 

Maynard Smith, J., Burian, R., Kauffman, S., Alberch, P., Campbell, J., Goodwin, B., 
Lande, R., Raup, D., Wolpert, L., 1985. Developmental constraints and evolution: a 
perspective from the mountain Lake conference on development and evolution. 
Q. Rev. Biol. 60, 265–287. 

McEwen, B.S., 1998. Stress, adaptation, and disease: allostasis and allostatic load. Ann. 
N. Y. Acad. Sci. 840, 33–44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x. 

McEwen, B.S., Akil, H., 2020. Revisiting the stress concept: implications for affective 
disorders. J. Neurosci. 40, 12–21. https://doi.org/10.1523/JNEUROSCI.0733- 
19.2019. 

McEwen, B.S., Wingfield, J.C., 2003. The concept of allostasis in biology and 
biomedicine. Horm. Behav. 43, 2–15. https://doi.org/10.1016/S0018-506X(02) 
00024-7. 

McGlothlin, J.W., Ketterson, E.D., 2008. Hormone-mediated suites as adaptations and 
evolutionary constraints. Phil. Trans. Roy. Soc. B 363, 1611–1620. 

McGlothlin, J.W., Parker, P.G., Nolan, V., Ketterson, E.D., 2005. Correlational selection 
leads to genetic integration of body size and an attractive plumage trait in dark-eyed 
juncos. Evolution 59, 658–671. 

McGlothlin, J.W., Kobiela, M.E., Wright, H.V., Mahler, D.L., Kolbe, J.J., Losos, J.B., 
Brodie III, E.D., 2018. Adaptive radiation along a deeply conserved genetic line of 
least resistance in Anolis lizards. Evol. Lett. 2, 310–322. 
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