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Abstract: Reachability analysis is a widely used method to analyze the safety of a Human-
in-the-Loop Cyber Physical System (HiLCPS). It allows the HiLCPS to respond against an
imminent threat in advance by predicting reachable states of the system. However, it could lead
to an unnecessarily conservative reachable set if the prediction only relies on the system dynamics
without explicitly considering human behavior, and thus the risk might be overestimated. To
avoid the conservativeness, we present a state probability distribution function (pdf) prediction
method which takes into account a stochastic human behavior model represented as a Gaussian
Mixture Model (GMM). In this paper, we focus on the multi-rotor controlled by a human
operator in a near-collision situation. The stochastic human behavior model is trained using
experimental data to represent the human operators’ evasive maneuver. Then, we can retrieve a
human control input pdf from the trained stochastic human behavior model using the Gaussian
Mixture Regression (GMR). The proposed algorithm predicts the multi-rotor’s future state pdf
by propagating the pdf of the retrieved human control input according to the given dynamics,
which yields closed-loop analysis of the HILCPS. Human subject experiment results are provided
to demonstrate the effectiveness of the proposed algorithm.
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1. INTRODUCTION

Ensuring safe operation is a crucial task to enhance the
reliability of a Human-in-the-Loop Cyber Physical System
(HiLCPS). To this end, there have been various approaches
to assess the safety of the HILCPS. Reachability analysis
is one of the commonly applied techniques to derive the
safety envelope of the system. The reachability analysis
computes the set of reachable state which the HILCPS will
arrive at the specific time instant, thus it can verify if the
system violates safety conditions in future. For instance,
a safety guaranteeing controller which considers a human
counterpart was developed based on the Hamilton-Jacobi
backward reachable set in Leung et al. (2018, 2020).

Nevertheless, computing a reachable set relying on a given
system dynamics may yield overly conservative reachable
set (Govindarajan et al. (2017)). To address this issue, the
closed-loop analysis should be performed, i.e., a human
operator’s behavior needs to be considered to achieve the
less conservative reachable set for the HILCPS. One can
prevent the reachable set from including the states which
a human operator does not tend to reach in practice by
incorporating human behavioral data. However, there have
been relatively few approaches that compute the reachable
set based on human behavioral data. Except some existing
papers (Driggs-Campbell et al. (2018); Govindarajan et al.
(2017)), most of the works relied on the dynamics of a
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system or a given bound of states. Even most of the
stochastic reachability analysis approaches, which is ben-
eficial for making less conservative decisions by ignoring
the reachable state with negligible probability (Vinod et al.
(2017)), only considered the uncertainty coming from noise
or disturbance.

To address the aforementioned issue, we propose a state
prediction method that can avoid the conservativeness of
the existing reachability analysis by propagating probabil-
ity distribution function (pdf) derived from a stochastic
human behavior model as opposed to directly compute
the reachable set. We select the Gaussian Mixture Model
(GMM) as a basis model for the stochastic human behavior
model. The GMM has been shown to be a good represen-
tation of human operators’ reaction (Wang et al. (2018)).
Moreover, the GMM can approximate non-Gaussian dis-
tributions (Pishdad and Labeau (2016)), thereby allowing
our proposed algorithm to be extended for more general
stochastic human models.

The objective of the proposed algorithm is to predict the
pdf of the multi-rotor’s future state in a near-collision sit-
uation. In this scenario, we assume the multi-rotor is con-
trolled by a human operator. First, the stochastic human
behavior model is trained as a GMM using the Expectation
Maximization (EM) algorithm and the flight trajectory
from human subject experiments. We assume the trained
model represents the joint distribution between the human
operator’s control inputs and time, i.e., the model includes
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Fig. 1. Landing mission of the multi-rotor

the expected time-indexed future control input trajectory.
Then, the human operator’s control input pdf retrieved us-
ing the Gaussian Mixture Regression (GMR) is propagated
according to the given linear dynamics. Assuming the
initial uncertainty is also given as a GMM, the resulting
pdf of the future state can be derived as a form of the
GMM. A Gaussian mixture reduction technique is used to
alleviate the computational complexity.

The contributions of this paper are as follows: (a) We
propose the state prediction method that can explicitly
account for the stochastic human behavior model to miti-
gate the conservativeness of the conventional reachable set
methods. To this end, a closed-form equation is derived
based on the Chapman-Kolmogorov equation that itera-
tively computes the pdf of the future multi-rotor state. (b)
The proposed state prediction algorithm is demonstrated
using the stochastic human behavior model of the multi-
rotor. The stochastic human behavior model is trained
using the data obtained from the human subject exper-
iments setting on the near-collision scenario of the multi-
rotor. Through the experiments, the performance of the
proposed state prediction algorithm is demonstrated.

The rest of the paper is organized as follows: In Section
2, detailed information about the experiment scenario and
the multi-rotor system is given. The method to train the
stochastic human behavior model is introduced in Section
3. In Sections 4 and 5, the state prediction algorithm for
the multi-rotor and the experiment results are presented,
respectively. Lastly, conclusions are given in Section 6.

2. NEAR-COLLISION SCENARIO

Figure 1 shows a multi-rotor landing mission scenario for
human subject experiments. The objective of the experi-
ment is to extract collision avoidance reaction of a human
operator in the multi-rotor system. Motivated by the exist-
ing works about rear-collision of a car (Angkititrakul et al.
(2011); Luster and Pitts (2021)), we design the simulator
which can observe the participants’ evasive maneuver. The
simulation is set on the 2-D environment with a pop-up
obstacle. The participants should land the multi-rotor on a
touch pad without any collision with the obstacle. In addi-
tion, the participants are asked to follow a designated lane
while maintaining constant downward speed during the
experiments. In each trial, the location where the obstacle

Obstacle

Fig. 2. State variables of the multi-rotor

pops up is not informed to the participants in advance. By
focusing on the initial few seconds of the trajectory after
the obstacle is spawned, we can train a stochastic human
behavior model that represents the participants’ collision
avoidance reaction.

Figure 2 shows the state variables of the simulated multi-
rotor. Based on Sabatino (2015) and Byeon et al. (2021),
the linearized dynamics of the multi-rotor is modeled as

Tpy1 = Axy, + Buy, (].)

where x; and w; are the state and the control input
vectors at time step k, respectively. Here, the state vector
x), € RO is defined as T, = [Py ks Py, Batt o, Vo ks Uy ks Wi) T
which consists of the position (pgr,py k), the attitude
(Oatt,k), the linear velocity (vsk,vy k), and the angular
velocity (wy). The control input u; € R? is defined as
uy, = [, Ti,]T where o and T are the angular acceleration
and the thrust, respectively. A and B matrices can be
written as

000100
000010
B 00000 1
A=1Is+ 00400 0 At, (2)
0000k O
00k O 0 ks
0 0
0 0
0 0
B=| o o |At (3)
0 1/m
/I, 0

where At is the discretization time interval, g is the
gravitational acceleration, m and I, are the mass and the
moment of inertial of the multi-rotor, respectively, ki, ks,
and k3 are the controller parameters, and I is the 6 x 6
identity matrix. A and B are computed by linearizing the
multi-rotor’s dynamics with respect to a hovering point
(Sabatino (2015)).

3. STOCHASTIC HUMAN BEHAVIOR MODEL

In this section, we train the stochastic human behavior
model using the data collected from the human subject
experiments. Using the Expectation Maximization (EM)
algorithm, we can compute the stochastic human behavior
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model which contains the joint distribution between the
participants’ control input and the time elapsed after
the obstacle is spawned. The trained stochastic human
behavior model will be utilized as the prior knowledge for
the multi-rotor’s state prediction in Section 4.

The GMM is a combination of multiple Gaussian distribu-
tions. Assuming a distribution of state x follows the GMM,
the pdf of 2, P(z), is defined as

Z’frz ,U/za z ) (4)

where 7; is the weight of each Gaussian component satisfy-
ing vail m; = 1 and N (u;, X;) is the Gaussian distribution
which has p; and 3; as the mean and the covariance, re-
spectively. In this paper, we focus on the joint distribution
between the human control input and time, which can be
represented as a GMM. Accordingly, the trajectory used
to train the stochastic human behavior model is written
as C = [CgaC?a T acz;]T where Ck = [tkvug]Ta tp = ]{,‘At,
and t; is the end time of the trajectory. It is worth noting
that ¢ty is the time when the obstacle is spawned. The
proper parameters of the stochastic human behavior model
can be computed by feeding ¢ to the EM algorithm. The
trained stochastic human behavior model can be expressed
as (Calinon (2016))

E :7Tp,

where u = [ul ul, .- | utf] t = [t1,t2, -+ ,t,])7, and
Tpyis My, and 3, ; are the welght, mean, and covariance
matrix for each Gaussian component, respectively. The
EM algorithm finds the value of each Gaussian compo-
nent’s parameters (m,;, H,;, and X,;) which are the
best fit for representing the given trajectory. Throughout
the paper, we assume that the stochastic human behavior
model is composed of M number of Gaussian components,
which is a design parameter, and properly trained through
sufficient amount of data thereby it well represents the
human operators’ evasive behavior.

Np i f)’ (5)

4. STATE PREDICTION OF MULTI-ROTOR

4.1 State prediction based on stochastic human behavior
model

The Gaussian Mixture Regression (GMR) allows us to
retrieve the conditional distribution of the human control
input at a given time instant (Calinon (2016); Stulp and
Sigaud (2015)). From (5), let u, ; and X, ; be defined as

u u ut
o= (7)., (Ea o). o

bt D, P,

In (6), py; € R? is the mean fraction corresponding to
the human control input, p! ; € R is that of time, and
E Et ZUt and Etu are the corresponding covariance
fractlons respectlvely Then the conditional distribution
of the human input at time step k is (Calinon (2016))

Z?‘rn te)N

P(ulty) = (B (1), 3p0),  (7)

where
2 u u -1
iy, (k) = poy + 2 t'zt i (b — 1y4), (8)
S =X, - 2;““ (9)
Tp,i N (tr|ps! ivzt i)
fpi(th) = =31 B (10)

o .
35 T N (ke 5 35 5)

Our objective is to compute the pdf of the future state
at time step k + T, P(zy+7), using the human operator’s
evasive behavior information achieved in (7). Assume that
the current state (xy) has uncertainty represented as a
GMM with L Gaussian components:

L
Ty ~ g Ty, ilN
i=1

The propagation of the state pdf can be computed by
Chapman—Kolmogorov equation.

P(eir) = / P(@py @) Py day

(/J’ack,iazﬂck,i) (11)

(12)

From (12), using the dynamics (1) and the input pdf (7),
P(xpt1|xr) can be rewritten as:

Zﬂ'pz tk‘

P a:k+1|a:k A:ck +B/1'p1(tk) sz ZBT)

(13)

By substituting equation (13) for P(xyt1|er) in (12), we
obtain

P($k+1) =
/ Zwm 1)N (Azyt Bty (1), BE,: BT Py )dzy.
Tk =1
(14)
and if we replace P(x) with (11), we have
P(mk+1) =
/ Zﬂ'pz tk ACCk—l-B/J,pl(tk) szzBT)
Tk j=1
L
Zﬂ—mk,jN(ﬂ'rck,jv zmk,J)dmk (15)
j=1

By Karumanchi and Tulpule (2021), equation (15) can
be rewritten as a GMM with ML number of Gaussian
components:

E :71—17, tk E ﬂ—mkﬂ

N(Apg, ; + Bpm(tk), BEWBT + A%, ;AT), (16)

where 7 is a normalization constant to ensure the integral
of (16) is 1.

One can compute P(xji+r) by repeating (11)-(16) to
time step T. However, this process is computationally
demanding as the number of Gaussian components grows
rapidly. For each time step, it increases by M times
since we assume the stochastic human behavior model is
composed of M Gaussian components.

iEk+1
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4.2 Gaussian mizture reduction

As shown in the previous section, the combination of
GMDMs leads to the rapid growth of the number of Gaus-
sian components. To address this issue, there have been
various studies to efficiently reduce the number of Gaus-
sian components (Zhang and Chen (2020)). One of the
methods is using the Kullback-Leibler (K-L) divergence,
which represents the difference between two distributions.
Unfortunately, the closed form of the K-L divergence be-
tween two GMMs is known to be unavailable. To tackle
this problem, a novel reduction algorithm was proposed
in Runnalls (2007) based on the upper bound of the K-L
divergence.

Let P(xji1) be the reduced GMM from P(xjy;) by
merging the Gaussian components ¢ and j into a single
Gaussian. The author merged the pair which induces
the lowest upper bound of the K-L divergence between
P(x)11) and P(x41). We adopt this approach to reduce
the number of Gaussian components. Let (3;,3;) be a
pair of the covariance matrices of the selected Gaussian
components from P(xiy1). (mi,m;) and (p;, p;) are the
corresponding weights and means. The merged covariance
3;; can be computed as
Yy Uy

i = i+ 3+
’/Ti+7Tj 7T7;+7Tj

TS — o M — )T
(M_Jrﬁjp(uz ) (e — )"

(17)

From (17), the upper bound of the K-L divergence
(K Lyp(i,5)) is defined as follow:

KLup(i7j) = %[(7’(’1 —+ Wj)ln(det(EU))f

Wlln(det(Ez)) - w]ln(det(Ej))] (18)
Then, the pair (¢, j) with the minimum KL, is merged
into a single Gaussian, m;; N (p;;, 3i5), where m;; = m; +7;
and p;; = Tip,; + %uj (Runnalls (2007)). As a result,
one can maintain the number of Gaussian components by
repeating the above process until it reaches the desired
number.

5. EXPERIMENT SETUP AND RESULT
5.1 Stochastic human behavior model training

We first train the stochastic human behavior model using
the data obtained from the human subject experiments.
A total of 11 participants are recruited from Purdue
University . Among the collected data, initial 4.5 [s] of
the trajectory after the obstacle spawned is extracted from
each successful landing trial. It yields total 544.5 [s] of
training data from 121 trials. We separate a single trial
(4.5 [s]) as validation data and set M = 3 for the EM
algorithm.

Figure 3 shows the randomly selected 10 flight logs and
the GMR result for the initial 4.5 [s] after the obstacle
spawned. The green line describes the mean of the GMR

I The Institutional Review Board (IRB) at Purdue University
approved the study. IRB protocol number: IRB-2020-755.
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Fig. 3. GMR prediction of human control input

Table 1. Simulation parameters

Discretization time interval (Af) 0.04 [s]
Gravitational acceleration (g) 9.8 [m/s?]
Mass (m) 0.25 [kg]
Moment of inertia (/) 0.01 [kg - m?]
Control parameter (ki, ka, k3) —0.1,—1,-30
Thrust input bound (7") —1.7,1.7
Angular acceleration input bound («) —0.5,0.5
Maximum Gaussian components 16

result while blue lines are the participants’ control input
logs. The green shaded regions represent the 1,2, and 3-o
bound of the GMR result, respectively, where o is the
standard deviation. As shown in the figure, the trained
model successfully predicts the participants’ input within
2-0 bound most of the time.

5.2 State prediction result

In this subsection, the state prediction results of the
proposed algorithm are presented. Starting from ¢y, the
proposed algorithm predicts the states of the multi-
rotor at 1.5, 3, and 4 [s]. Moreover, the comparison
with Monte-Carlo simulation of 5000 samples is also pro-
vided to demonstrate the effectiveness of the proposed
algorithm. Table 1 shows the parameters used for the
simulation. In the simulation, we assume that the ini-
tial state has uncertainty represented as a GMM with
three Gaussian components. Accordingly, the initial state,
Ty = [P2,0: Py,0, att,05 V2,0, Vy,0, wo] ", with the GMM un-
certainty can be written as

m0—:730‘|'§ 7Tcz

where Te,l = Te2 = Te3 = %a 20,17 Ec,Za and z:C,S
are identical matrices whose diagonal components are
diag[1.5,1.5,0.05,1,2,0.05] and 0 elsewhere, and

Beq =10,0,0,0,0,0]",
ucz—[l 1,0.1, 1,1,005]
=[-1 1,-1,-0.05T.

(He,ir Bei), (19)

(20)

The initial state of each Monte-Carlo simulation is sampled
from (19) and propagates through the dynamics (1). We
assume the control inputs («, T') are uniformly distributed
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with the bound a € [-0.5,0.5] and T € [-1.7,1.7] for the
Monte-Carlo simulation, as shown in Table 1.

Figure 4 shows the state prediction result at each specific
time instant. In the figures, the grey box is the obstacle,
the red circle is the initial position, the grey line is
the actual trajectory of the multi-rotor, and the black
circle is the position of the multi-rotor at the given time
instant. The white lines at each side of the figures and
the dotted line at the center divide the lanes, which are
described in Fig. 1. The red box at the bottom of the
figures is the danger zone where the multi-rotor should
avoid. The collision probability is obtained by computing
the cumulative probability of the predicted pdf on the
danger zone. Figure 4a describes the initial state with
the uncertainty given in (20). Meanwhile, Figs. 4b-4d
represent the predicted state pdf at each time instant. The
brighter area means higher probability. Due to the initial
uncertainty and the stochastic human behavior model,
the pdf expands over time. Nevertheless, the additional
probabilistic information gives more weight on a certain
area unlike the conventional reachable set.

Figures 5a-5d are the comparison between the proposed
algorithm and the Monte-Carlo simulation. The contour
describes the predicted pdf, the grey dots are the Monte-
Carlo samples, and the red dotted line is the convex
hull of the samples. The black lines and box represent
the lanes and the obstacle, respectively. In the figures,
the resulting contour significantly reduces the area that
the multi-rotor is likely to reach in comparison with the
convex hull. This advantage is clearly shown in 3-4 [s].
In Figs. 5c-5d, the Monte-Carlo samples indicate that
the multi-rotor can reach the obstacle although there was
no collision during the flight. In contrast, the proposed
approach shows in Figs. 4c-4d that the multi-rotor is not
likely to collide, thereby alleviating the conservativeness of
reachable states, a well-known weakness of the reachability
analysis.

6. CONCLUSION

In this paper, we proposed the state prediction algo-
rithm for the Human-in-the-Loop Cyber Physical System
(HiLCPS) which explicitly considers the stochastic human
behavior model. The proposed algorithm computes the
state pdf of the multi-rotor at a desired future time instant.
The computed pdf provides probabilistic information that
can be facilitated for safe controller design compared to a
simple set of states which further improves the reliability
of the system.

For future work, the human behavior model which rep-
resents the joint distribution between vehicle states and
human control inputs will be examined. We expect that the
human model which includes a vehicle’s state can express
more general and complex human action, therefore im-
prove the prediction accuracy of the proposed algorithm.
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