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Bedrock mediates responses of ecosystem
productivity to climate variability

Xiaoli Dong 1 Jonathan B. Martin?, Matthew J. Cohen® 3 & Tongbi Tu 4%

Sensitivity of ecosystem productivity to climate variability is a critical component of eco-
system resilience to climate change. Variation in ecosystem sensitivity is influenced by many
variables. Here we investigate the effect of bedrock lithology and weathering products on the
sensitivity of ecosystem productivity to variation in climate water deficit using Bayesian
statistical models. Two thirds of terrestrial ecosystems exhibit negative sensitivity, where
productivity decreases with increased climate water deficit, while the other third exhibit
positive sensitivity. Variation in ecosystem sensitivity is significantly affected by regolith
porosity and permeability and regolith and soil thickness, indicating that lithology, through its
control on water holding capacity, exerts important controls on ecosystem sensitivity. After
accounting for effects of these four variables, significant differences in sensitivity remain
among ecosystems on different rock types, indicating the complexity of bedrock effects. Our
analysis suggests that regolith affects ecosystem sensitivity to climate change worldwide and

thus their resilience.
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limate change has profound impacts on the functioning of

Earth’s ecosystems!. However, our current understanding

of ecosystem response to climate change is mostly based
on trajectories of mean climate state2. This static view neglects
how temporal variability of climate may affect ecosystem struc-
ture and functioning®*. Because ecosystem responses to climatic
variability are a key facet of ecosystem resilience to changing
conditions, the characterization of ecosystem sensitivity and the
identification of properties that contribute to resilience constitute
research priorities of global relevance®. Here we investigate how
bedrock lithology—including overlying sedimentary properties
such as soil thickness and regolith porosity, permeability, and
thickness—may affect ecosystem sensitivity to climate variability.
The investigation focuses specifically on the direction and mag-
nitude of responses of primary productivity of global terrestrial
ecosystems to changes in climate water deficit, a temporally
dynamic measure of hydroclimatic variability, applicable
worldwide®.

Bedrock lithology can affect the biological productivity of
overlying ecosystems through variations in the storage of plant-
available water’-12. While bedrock usually has low primary
porosity and hydraulic conductivity!314, differences in mineral
weathering rates can lead to different rates of regolith
formation!?, regolith permeability and porosity!?, and production
of nutrients needed to support terrestrial ecosystems®16. For
instance, carbonate rocks consist of highly soluble minerals, such
as calcite and dolomite. These minerals commonly display con-
gruent dissolution by rainwater, forming large voids within the
bedrock. Voids coalesce to create preferential flow paths that
further enhance dissolution, increase permeability, and limit
regolith water retention via leakage!”. In karst regions, limestone
dissolution corresponds directly to elevated calcium concentra-
tion in bedrock, with which the regolith water loss rate and
ecosystem productivity are strongly correlated’. Furthermore,
although intact regolith generally has a lower porosity than the
more highly weathered soil layer above it, its thickness, com-
monly tens of meters, allows storage of significant amounts of
water/10-1216,18 Recent studies have shown that water storage
within the regolith can be an especially important source for
deep-rooted plants during droughts or summer dry seasons, long
after shallow soils are dry!®-2l. This deep water source is
important because shallow soils, in contrast to weathered bed-
rock, vary in thickness over a much smaller range and are
commonly thin across upland landscapes?>23.

While bedrock and regolith properties affect ecosystem
productivity®?, we expect that regolith water retention would also
affect the sensitivity of ecosystem productivity to climatic varia-
bility. Variation in ecosystem sensitivity may be identified as
differing magnitudes of productivity changes with water avail-
ability, an important aspect of climatic variability. Depending on
the primary constraints, ecosystem productivity can respond
negatively to climatic water deficit, e.g., drier or warmer condi-
tions decrease ecosystem productivity (Fig. 1). Ecosystem sensi-
tivity can also be positive, where reduced precipitation or warmer
conditions lead to enhanced productivity. Previous studies sug-
gest ecosystems in some karst regions exhibit significantly higher
sensitivity to interannual temperature and precipitation variations
than do surrounding non-karst areas, as a result of lower water
holding capacity in karst bedrock’. We expect that regolith
properties and bedrock lithology will affect the sensitivity of
ecosystem productivity to climatic variability and the specific
effects will depend on the primary constraints of ecosystems, e.g.,
temperature, water availability. In energy-limited ecosystems, low
temperature and short growing seasons are primary limitations
on ecosystem productivity?42°, Longer growing seasons under
climatic warming should lead to greater ecosystem water

demand?®. As such, we expect high water retention capacity in
less permeable lithologies to increase ecosystem sensitivity to
warming. Conversely, in water-limited ecosystems, we expect low
regolith water retention capacity in more permeable lithologies to
amplify the sensitivity of productivity to droughts.

Bedrock can also affect ecosystem sensitivity via mechanisms
other than water-holding capacity. Bedrock weathering liberates
plant-essential nutrients?’, such P, Ca, Mg, and K, which play a
significant role in ecosystem processes and functioning?®2%.
Bedrock minerals can also release toxins (e.g., As, Se, and Cd),
which can inhibit plant growth30. Furthermore, incongruent
weathering of primary clay-forming bedrock minerals can
enhance soil production and retention of plant-available nutrients
and water®. These biogeochemical bedrock properties may alter
the sign and magnitude of ecosystem sensitivity to climate water
deficit. Their effects of altering ecosystem sensitivity are likely
strongest where productivity is not already primarily limited by
water>1.

Here we investigate how soil and regolith water storage mediates
responses of ecosystem productivity to climate variability at the
global scale. We address three major knowledge gaps: (1) We seek
to quantify lithologic effects on the sensitivity of ecosystems to
climatic variability in contrast with previous studies that have
focused on how lithology affects ecosystem productivity; (2) We
use a global framework to evaluate effects of bedrock lithology
worldwide rather than limiting our evaluation to local sites or
regions; and (3) previous studies have established effects of bedrock
geochemistry on ecosystem productivity, but have not isolated the
underlying mechanism by explicitly considering the effects of
mediating variables (e.g, regolith thickness, permeability,
porosity)®?32, Evaluation of these mediating variables has been
previously limited by the paucity of scale-appropriate data, parti-
cularly on bedrock permeability and porosity. In this study, we
leverage newly available global datasets®33-3% to examine the effects
of bedrock lithologies and soil and regolith properties on global
scale patterns of ecosystem sensitivity. We find a significant effect
of properties of bedrock and weathering products on ecosystem
sensitivity globally, although the specific effect varies from region to
region depending on the primary constraints of an ecosystem.

Results
Overview of approaches. To evaluate the relationship between
lithology and ecosystem sensitivity requires concatenation of
multiple global datasets and statistical analysis in two stages. First,
we use gridded global measurements of climatic water deficit
(CWD; defined as the difference between reference and actual
evapotranspiration in mm yr—1)® and ecosystem productivity
inferred from GIMMS (Global Inventory Modeling and Mapping
Studies) NDVI (Normalized Difference Vegetation Index)
dataset3%. These two datasets allow us to quantify global patterns
of ecosystem sensitivity to climatic variability, as our first-stage
analysis. Ecosystem sensitivity in this study is defined as the
change in ecosystem productivity, inferred from vegetation
greenness captured by NDVI, relative to the change in CWD.
Larger absolute values reflect greater sensitivity. Negative sensi-
tivity implies diminished productivity with higher CWD; that is,
drying or warming (both increase CWD) reduce ecosystem
productivity. In contrast, positive sensitivity implies that
increased CWD increases ecosystem productivity. In the second-
stage analysis, we use recently available high-resolution data on
lithology and hydro-lithological characteristics>3-3° to evaluate
effects of bedrock lithology on ecosystem sensitivity quantified in
the first-stage analysis.

Preliminary analyses of ecosystem sensitivity suggest that
regions of positive sensitivity clustered into desert, tropical, and
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Fig. 1 Classification of four regions globally and hypothesized region-specific effect of bedrock water holding capacity on ecosystem sensitivity. The
global terrestrial surface is divided into four regions, according to the sign of calculated ecosystem sensitivity and primary constraints of ecosystem
productivity for different ecoregions (Table ST; Figs. ST and S2). We hypothesize that the effect of bedrock water holding capacity on ecosystem sensitivity
(steeper slope represents higher sensitivity) varies by region and list predictions of model results (signs of coefficients in Eq. 5) if the hypotheses are
supported. “Poro”- porosity, “Perm”- permeability, “Zgeg"- thickness of regolith, “Z.;"- soil thickness. In the last row: the mean effect size is represented by

a circle and vertical lines describe 95% credible intervals of the effect size.

polar regions (Fig. 2). While these regions all show positive
sensitivity, as discussed above, the role played by water retention
capacity in increasing ecosystem productivity with more severe
climatic water deficit might be distinctively different in deserts,
tropical regions, and polar regions. The central hypothesis in this
study is that bedrock and its properties affect ecosystem
sensitivity to climatic variation by mediating ecosystem water
retention capacity. These lines of reasoning prompted us to
investigate these regions separately. No such zonation was evident
for regions of negative sensitivity, which were therefore analyzed
as a single group. We thus divided the terrestrial land surface into
four regions (Figs. 1 and 2; Table S1; Fig. S1), based first on the
sign of estimated sensitivity (i.e., positive and negative « in Eq. 2
in “4. Methods” below), then, for locations with positive
sensitivity, into three energy-limited and water-limited domains.
Region I includes all grid cells that showed negative sensitivity,
where warming or drying diminishes ecosystem productivity. For
regions of positive sensitivity, where warming or drying increases
ecosystem productivity, we defined energy-limited regions and
water-limited regions. We identified the spatial intersection of
grid cells of positive sensitivity and biomes that are primarily
energy-limited, including (a) temperate broadleaf & mixed
forests3’, (b) temperate conifer forests3”>38, (c) boreal forests &
taiga3®, and (d) montane grasslands & shrublands?®!, as energy-
limited regions (or cold regions; Region II) (Figs. S1 and S2). We
assume that ecosystems, where productivity is enhanced by lower
precipitation, are mostly in humid tropical and subtropical
regions*2. As such, we identified the spatial intersection of
locations of positive sensitivity and tropical and subtropical moist

broadleaf forests as Region III. The remaining grid cells with
positive sensitivity occur in hyper-arid Saharan desert and
Arabian desert and in African tropical and subtropical grasslands,
savanna, and shrublands, and are identified as Region IV. A
detailed description of the procedure taken to delineate these four
regions is provided in Table S1.

Global patterns of ecosystem sensitivity. Globally, the mean
sensitivity of ecosystem productivity is 0.00026 (SD = 0.0018)
(Table 1; Figs. 2 and 3a); that is, a one unit increase in CWD
(1 mm month~! for every month in a year, or 12 mm year—!)
leads to a decrease of 0.00026 mean annual NDVT in ecosystem
productivity. The range of ecosystem sensitivity is between
—0.076 and 0.149, with >99% between —0.01 and 0.01 (Fig. S3).
Ecosystem sensitivity also varies with latitude systematically, with
positive sensitivity values concentrating in the polar and tropical
regions (Fig. 3b). The degree of uncertainty in sensitivity varies
greatly among grid cells, and the response of ecosystem pro-
ductivity to CWD over the 32-year period was statistically sig-
nificant (95% credible interval excludes zero) in 33.3% of grid
cells globally (Fig. 3c, d; Table S2). We note here that the low
absolute values of ecosystem sensitivity are only arbitrary (a
matter of unit); the focus of this study is to explain the spatial
variation of ecosystem sensitivity.

We found a negative relationship between CWD and produc-
tivity for most ecosystems (63% of grid cells, of which 45% were
statistically significant), with a mean sensitivity of —0.0009. The
negative value indicates the inhibitory effects of high CWD on
ecosystem productivity. Notably, 75% of grid cells with statistically
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Fig. 2 Delineation of regions of global terrestrial surface. a Four regions are delineated in this study. Region | denotes areas of negative sensitivity; regions
with positive sensitivity include Region Il where energy limitation is likely, Region Ill denoting humid tropical regions, and Region IV denoting desert and
xeric regions. Detailed definitions of each region are provided in Fig. 1. b Distribution of ecosystem sensitivity values by region. Box plots: box limits show
the first quartile (Q1) and third quartile (Q3); central line inside the box represents the median ecosystem sensitivity of a given region; and the segments at
ends indicate (Q1-1.5 interquartile range) and (Q3 + 1.5 interquartile range).

Table 1 Summary of ecosystem sensitivity to climate water deficit (CWD) between 1982 and 2013 in different regions globally.

All grid cells Grid cells with statistically significant sensitivity

Maximum sensitivity Mean (standard

deviation)

Maximum sensitivity Mean (standard

deviation)

Region I. Negative-sensitivity region —0.076 —0.00093 (0.0014) —0.076 —0.0026 (0.0029)
Region Il. Energy-limited region 0.077 0.0011 (0.0017) 0.077 0.0033 (0.0033)
Region Ill. Humid tropical region 0.149 0.0010 (0.0032) 0.149 0.0032 (0.0074)
Region V. Desert and xeric shrublands of 0.0035 0.00022 (0.00025) 0.0035 0.0023 (0.00062)
positive sensitivity

Global 0.149 —0.00026 (0.0018) 0.149 —0.00050 (0.0044)

“Maximum sensitivity” refers to the largest absolute value of sensitivity in the region.

significant sensitivity were moderately water-limited biomes,
including (1) tropical and subtropical dry broadleaf forests, (2)
tropical and subtropical grasslands, savanna, and shrublands, (3)
temperate grasslands, savanna, and shrublands, (4) temperate
conifer forests, (5) Mediterranean forests, woodlands, and scrubs,
and (6) desert and xeric shrublands (Figs. 3¢ and S2).

In contrast, 37% of ecosystems exhibited a positive relationship
between ecosystem productivity and CWD, of which 13.3% were
statistically significant (Fig. 3). Of the areas where ecosystem
sensitivity was positive, 63% were in the energy-limited regions
(Region II), 20% in desert and xeric shrublands (Region III), and
14% in humid tropical regions (Region IV; tropical and subtropical
moist broadleaf forests) (Figs. 3 and S2). Energy-limited regions
refer to ecosystems that are primarily limited by cold temperatures
and a short growing season, e.g., high latitude areas (boreal forests
and taiga)?®, high-altitude areas (montane grasslands and shrub-
lands and montane alpine and subalpine forests)24, and temperate
broadleaf and mixed forests that are located in higher-latitude
areas®3 (Fig. S2). Both energy-limited regions (mean = 0.0011) and
humid tropical regions (mean=0.0010) were characterized by
relatively high sensitivity and large spatial variation (Table 1;
Fig. 3). Although sensitivity in desert and xeric shrublands (Region
IV) is also positive, the values are approximately an order of
magnitude lower than the other regions (Table 1; Fig. 3).

The positive sensitivity in energy-limited regions means that
higher CWD, likely due to increased temperatures, increases
ecosystem productivity. Humid tropical regions (tropical &
subtropical moist broadleaf forests) near the equator (Fig. S2)
also show a positive sensitivity. In contrast with cold regions
where ecosystem sensitivity depends on temperature, a higher
CWD in tropical settings likely results from decreased annual
precipitation, which enhances ecosystem productivity. This
rainfall control aligns with previous studies showing increased
productivity in humid tropical ecosystems with reduced
precipitation*4>. Desert and xeric shrublands that show
positive sensitivity are primarily located in hyper-arid regions
including the Arabian and Sahara deserts, and Saharan xeric
steppe and woodland (Figs. 3 and S2). A positive relationship
suggests that productivity of deserts and xeric shrublands in
certain hyper-arid regions increases with warming, consistent
with the greening observed in dryland foliage cover since the
198054648,

Effects of regolith permeability and porosity on ecosystem
sensitivity. In regions of negative sensitivity, regolith porosity,
and permeability significantly increase ecosystem sensitivity, that
is, ecosystems located on high permeability and porosity regolith
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Fig. 3 Sensitivity of ecosystem productivity to variability in climatic water deficit (CWD) between 1982 and 2013 globally. a Shows calculated
sensitivity values for the global terrestrial surface; € shows sensitivity values in locations where ecosystem sensitivity values are statistically significant
(95% credible interval does not contain zero). b shows the mean ecosystem sensitivity by latitude and d shows the proportion of grid cells at each latitude
where sensitivity values are statistically significant. Positive sensitivity (shades of red) implies increased ecosystem productivity in response to higher
CWD, while negative values (shades of blue) suggest diminished productivity with higher CWD (i.e., drying, warming, or both).
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Fig. 4 Effect size of variables describing the properties of bedrock and its
products on ecosystem sensitivity for four regions. Effect size of each
variable is inferred by the mean (denoted by circles, squares, diamonds,
and triangles) and 95% credible interval (denoted by the vertical line) of
posterior estimates of regression coefficients from the model. Definitions of
four regions are provided in Fig. 1 and Table S1.

are more responsive to climatic variability (Fig. 4). Statistical
correlations from the model suggest that in regions of positive
sensitivity, permeability, and porosity might also exert significant
effects. In energy-limited areas, increased regolith porosity and
permeability significantly reduce the enhancement effect of
warming on productivity (Fig. 4). Similarly, in the desert and

xeric shrublands of hyper-arid regions, high permeability and
porosity dampen productivity enhancement by CWD. Finally, in
humid tropical regions, ecosystems located on regolith of lower
permeability or porosity are more responsive to a drier climate
(Fig. 4).

In regions of negative sensitivity, a one SD increase in
permeability (i.e., change in permeability log(k) by ~0.96) or
porosity leads to an increase of 3 and 7% relative to mean regional
sensitivity. In energy-limited regions, a one SD increase in
porosity or permeability results in decreases of sensitivity by 13
and 12% relative to the regional mean level. In humid tropical
regions, an increase of one SD in porosity or permeability
decreases sensitivity by 6 and 12% relative to the regional mean
level. Finally, in hot deserts of positive sensitivity, a one SD
increase in porosity or permeability decreases sensitivity by 11%
relative to the regional mean. In summary, a change of one SD
from the region-specific mean in regolith porosity and perme-
ability results in changes in sensitivity by 3% ~ 13% of the region-
specific mean.

Effects of regolith and soil thickness on ecosystem sensitivity.
In regions with negative sensitivity, both increasing regolith and
soil thickness reduce ecosystem sensitivity (Fig. 4). An increase of
one SD in soil and regolith thickness reduces ecosystem sensi-
tivity by 17 and 6% of the regional mean level, respectively. For
regions with positive sensitivity, the effects are most significant.
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Fig. 5 Effect size of different types of bedrock lithology on ecosystem sensitivity in different regions. a Region |. Negative-sensitivity regions; b Region II.
Energy-limited regions; ¢ Region Ill. Humid tropical regions; and d Region IV. Hyper-arid regions of positive sensitivity. Statistically significant effects are in

black and those not significant are in gray. Bedrock class: “ev"- evaporites, mt metamorphlc rocks, “pa”- acid plutonic rocks “pb"- basic plutonic rocks,
sc”- carbonate sedimentary rocks, *
basic volcanic rocks,

intermediate plutonic rocks, “py"- pyroclastlcs
“su”- unconsolidated sediments, “va”- acid volcanic rocks, “vb"-

u -

‘sm”- mixed sedimentary rocks, “ss"- siliciclastic sedimentary rocks
“vi"- intermediate volcanic rocks, “wb"- water bodies. The number of

bedrock types is different among regions because not all lithology categories exist in each region. Diamond symbols denote the posterior mean values and

the vertical lines denote the 95% credible intervals of the estimated mean.

In energy-limited regions, a one SD increase in regolith thickness
and soil thickness increases the responsiveness of ecosystem
productivity to warming by 5 and 18% of the regional mean.
Similarly, thicker regolith in humid tropical regions enhances the
positive response of productivity to higher CWD; however, the
effect of soil thickness was not statistically significant (Fig. 4). In
these ecosystems, a one SD increase in regolith thickness
increased sensitivity by 34% of the mean. For ecosystems in the
desert and xeric landscapes of positive sensitivity, a one SD
deviation in regolith and soil thickness enhances sensitivity by 12
and 7% of the mean level, respectively. In summary, a change of
one SD from the region-specific mean in regolith thickness and
soil thickness results in changes in sensitivity by 6%~34% of the
region-specific mean.

Residual effects of bedrock lithology. The 15 lithological classes
used are distinguished by their global variation based on weath-
ering and hydrological studies (“hydrolithology”)*°. After con-
trolling for effects of soil thickness and regolith porosity,
permeability, and thickness, soil thickness, residual effects of
lithology were not significant in regions with negative sensitivity
(Fig. 5a); however, significant random effects of lithology on
ecosystem sensitivity remained in regions with positive sensitivity
(Fig. 5b-d). Notably, sedimentary bedrock, including mixed
sedimentary bedrock (mixed siliciclastic-carbonate rocks), car-
bonate sedimentary rocks, siliciclastic sedimentary rocks, and
unconsolidated sediments, show significantly different effects on
ecosystem sensitivity than other rock types (Fig. 5b-d). Sedi-
mentary rocks dampen the positive productivity response to
CWD in energy-limited regions (Fig. 5b) and in the desert and
xeric regions (Fig. 5d), while pyroclastics and acid plutonic rocks
intensify ecosystem sensitivity to CWD in those regions (Fig. 5b,
d). Sedimentary bedrocks however increase ecosystem sensitivity
in humid tropical regions (Fig. 5¢). In energy-limited regions,
ecosystems located on plutonic rocks overall show greater pro-
ductivity increases under warming (Fig. 5b).

Discussion

Sensitivity of ecosystems productivity to climatic variability
varies widely, both in sign and magnitude (Fig. 3)% Most of
Earth land surface (~63%) shows a negative sensitivity to CWD,
suggesting that the dominant effect of drying or warming is to
reduce ecosystem productivity (Fig. 3). Despite being limited to
a much smaller spatial extent, the magnitude of positive sensi-
tivity of ecosystems in energy-limited and in humid regions is
slightly higher (Table 1; Fig. 2). While ecosystems in some
deserts and xeric shrublands in hyper-arid regions also exhibit
positive sensitivity, its magnitude is much lower than other
regions (Table 1; Fig. 2). Furthermore, we found that 45% of
grid cells in negative sensitivity regions are statistically sig-
nificant, compared to only 13% for positive sensitivity regions.
This difference suggests that positive effects of climatic drying or
warming on ecosystem productivity is far more variable than
their negative effects. Spatial distribution of ecologically sensi-
tive regions identified in this study is remarkably consistent with
previous studies using different sensitivity metrics®44, support-
ing the robustness of the pattern revealed in our study. Varia-
bility of ecosystem sensitivity has previously been suggested to
be affected by many ecosystem attributes, such as species niche
partitioning®?, biodiversity>1>2, ecosystem successional stage®>
and landscape topography®®. Our study suggests that at the
global scale, properties of bedrock and its weathering products
also have a significant effect on ecosystem sensitivity to climatic
variability. This effect occurs primarily through modifications of
the water-holding capacity of bedrock and its products. Effects
of modifications can vary among geographic regions, depending
on primary constraints (e.g., water, temperature, nutrients) of
ecosystem productivity in each region. Across all regions,
properties of bedrock weathering products exert a relatively
strong effect on ecosystem sensitivity (Fig. 4). A change of one
SD in regolith porosity and permeability results in a 3% ~ 13%
change in ecosystem sensitivity, and a change of one SD in soil
thickness and regolith thickness leads to a 6% ~ 34% change in
sensitivity, depending on the region.
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Increased regolith permeability reduces water holding capacity
of the subsurface of an ecosystem. As a result, ecosystem pro-
ductivity can become sensitive to CWD accompanied by limited
hydrologic buffering capacity. In ecosystems where productivity
declines with intensified CWD, i.e., in regions of negative sensi-
tivity, as expected, we find that high regolith permeability and
porosity amplify ecosystem sensitivity to climatic variability
(Fig. 4). Previous studies have highlighted the importance of soil
water storage capacity in affecting water availability and
partitioning®>°0, although a few empirical studies suggest that
soil thickness is not evidently related to plant water availability>2.
Soils are commonly thin (<0.5 m) across most upland landscapes,
and vary in thickness over a smaller range compared to regolith
thickness?2-23, Regolith below soils has been increasingly recog-
nized to be also important to ecohydrological variability!!-20 and
regolith water retention can be more important for plants
than soil water, especially during droughts. For instance, in
Mediterranean-type ecosystems, roots of ponderosa pine (Pinus
ponderosa) seedlings penetrate through the soil and encounter
weathered bedrock within the first two years after germination,
and regolith supplies at least 70% of plant water use during the
growing season?V. However, our results suggest that, at the global
scale both regolith and soil thickness significantly reduce eco-
system sensitivity in water-limited regions, with greater effects
attributed to soil thickness in most areas (Fig. 4).

Both model predictions and empirical observations have
shown that tropical drying leads to increased ecosystem
productivity’”=>°. Results from this study further support that
pattern (Figs. 3 and S4). The positive ecosystem sensitivity of this
region reflects reduced ecosystem productivity with elevated
precipitation, which can result from several mechanisms. Higher
rainfall reduces the diffusion of oxygen through water-filled soil
pores, leading to oxygen limitation of roots and heterotrophic
microbes®. While oxygen limitation may not appear to affect
plant growth directly, slower decomposition rates can decrease
nutrient regeneration and limit the nutrient supply for plant
growth®l. In addition to nutrient leaching, this limitation may be
exacerbated by light limitation, as precipitation and associated
cloud cover reduce light availability. We expect areas of higher
water-holding capacity to be more severely suppressed by
excessive water, and thus in those areas, primary productivity
should exhibit a stronger response to reduced precipitation than
in areas of lower water-holding capacity (Fig. 1). This hypothesis
is supported by our results that indicate a stronger productivity
response to drying by ecosystems located on bedrock of lower
permeability and porosity than those on more permeable and
porous bedrocks (Fig. 4). Similarly, we expect ecosystems located
on thicker soils and thicker regolith to be suppressed more by
excessive precipitation. This suppression is due to greater water
storage capacity of thicker soil and regolith, hence a stronger
response to drying (Fig. 4). It is important to note, however, that
humid tropical ecosystems undergo complex biogeochemical
transitions under climatic drying®2. Underlying mechanisms to
explain the correlation between soil/regolith thickness and eco-
system sensitivity are likely manifold.

The primary limitations on ecosystem productivity in energy-
limited regions are low temperatures and short growing
seasons?42>, Recent increases in summer temperatures have
enhanced rhizome growth and leaf production by up to threefold in
alpine and subalpine plants?%. Similarly increased productivity is
reflected in steady increases in carbon sequestration by boreal
forests®3. Although warming can enhance ecosystem productivity
(Figs. 3 and S4), warmer temperatures also elevate evapo-
transpiration and alter precipitation regimes®. These changes in
water balance may limit water availability, and productivity
enhanced by a longer growing season can be reduced or even offset

by water limitation. During the warm 2005-2015 period in alpine
and subalpine forests, growth began to broadly decrease, likely due
to intensified water shortages?. Similarly in boreal forests, warming
releases plants from cold limitation but can induce water shortages,
which then limit productivity increases by higher temperatures and
longer growing seasons®. Water limitation of productivity during
warming may be reduced in areas with low regolith permeability
and porosity and thicker regolith and soils, because of the elevated
water retention capacity of these areas (Fig. 4).

Significantly enhanced productivity in response to increased
CWD was found in hyper-arid regions and other water-limited
regions, concentrated in deserts and xeric shrublands in Sahara and
Sahel areas and the Arabian Peninsula and tropical & subtropical
grasslands, savanna, and shrublands south of Sahel (Figs. 3 and S2).
Enhanced productivity in arid regions has been hypothesized to be
caused by a fertilization effect of elevated atmospheric CO,*86°
coupled with increased precipitation since the early 198050067, even
though CWD has risen since the late 1950s in this region (Fig. S5).
As ecosystems in these areas are highly water limited, we suspect
that the correlation between CWD and atmospheric CO, caused the
spurious positive correlation between ecosystem productivity and
CWD (Fig. S5). If elevated atmospheric CO, is the root cause for
enhanced productivity, increased water holding capacity should
allow water-limited ecosystems to respond more vigorously to
higher atmospheric CO, in these arid landscapes (Fig. 1). Fur-
thermore, previous studies suggest that soil water is a dominant
driver of ecosystem change in African drylands®8. Conforming to
our expectation, the thickness of soil and regolith significantly
enhances ecosystem sensitivity, and a higher regolith porosity and
permeability suppress the effect of CO, fertilization on ecosystem
productivity (Fig. 4).

Significant residual effects of bedrock lithology on ecosystem
sensitivity, particularly where underlain by sedimentary rocks
(Fig. 5), suggest water holding capacity is not the only principal
control on ecosystem sensitivity. In the 12 largest mid-latitude
karst regions in the Northern Hemisphere, six show significantly
lower ecosystem sensitivity to temperature, and four show sig-
nificantly higher sensitivity, compared to adjacent non-karst
areas?, reflecting the complexity of the effects of bedrock lithol-
ogy. One way in which bedrock type may affect productivity is
through contributions of nutrients from bedrock mineral
weathering. Different rock types will have significantly different
phosphate®® and nitrogen concentration’?, which significantly
affect nutrient availability in soils. For instance, carbonate rocks
and mixed siliciclastic-carbonate rocks have low phosphate
content®®, which could induce nutrient limitation of plant
growth’l. The strong nutrient limitation will likely reduce the
plant growth response to other resources, such as dampened
sensitivity to water availability3!. As plants adapt to the relatively
high hydrological variability in regions of sedimentary bedrock,
their sensitivity to water stress may in fact become low, as has
been reported in the case of plant adaptation to variability in
rock-derived nutrients’273. We emphasize that the mechanisms
hypothesized here are based only on statistical correlations and
causal inferences are speculative. Further research controlling
explicitly for confounding variables would be required to eluci-
date underlying mechanisms with greater certainty.

Several aspects of this study can be refined. We did not
explicitly correct for agricultural areas, whose productivity is
largely controlled by humans and thus tends to be more stable
than unmanaged terrestrial ecosystems. This would dampen
the ecosystem sensitivity we calculated at the grid scale. Given the
relatively small ratio of croplands to unmanaged lands and the
significantly strong sensitivity to climatic variability we observed
(Fig. 3), our conclusion on the effect of lithology in this study
is unlikely to be significantly altered; but still, anthropogenic
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activities need to be taken into consideration to better quantify
ecosystem sensitivity. Our study quantifies the relative sensitivity
of ecosystem productivity to climate variability over a 32-year
period, as a component of ecosystem resilience. Results suggest
that the properties of bedrock and associated regolith and soil
have a significant effect on ecosystem responses to climatic
variability, mainly through their control of water holding capa-
city. The impact of bedrock properties on ecosystem sensitivity is
considerable (~30%) given the global scale of the analysis. A
direct comparison of the explanatory power of other covariates
(e.g., biodiversity>!, landscape topography>*) for ecosystem sen-
sitivity is still needed, but is not yet feasible given the lack of
existing studies at these same scales. Our global scale analysis
suggests that terrestrial ecosystem functioning is determined not
only by atmospheric, biospheric, and pedospheric properties and
their interactions, but also by the properties of the weathered
portion of the lithosphere, specifically soils and regolith. This
generalization is global in scope, despite a rich regional variation
in proximal mechanisms and their magnitudes.

Methods

Data compilation for estimating ecosystem sensitivity. All datasets used in this
study are standardized to be annual temporal resolution and 0.5° (longitude) by
0.5° (latitude) spatial resolution. Where the temporal resolution of the source data
was finer than annual, we calculated and analyzed annual means. Where source
data spatial resolution was finer than 0.5°, we obtained grid cell means by bilinear
interpolation. The temporal coverage of the study is from 1982 to 2013, a 32-year
period, and the spatial coverage is the entire land surface between 180°W-180°E
and 55°S-90°N.

To estimate the sensitivity of ecosystem productivity to climatic variability, we
combined satellite records of the normalized difference vegetation index (NDVI)
with globally gridded climatic water deficit (CWD). NDVI has an unparalleled
continuous global time series, and relates strongly to leaf area, fraction of absorbed
photosynthetically available radiation, gross primary productivity, and many other
more advanced vegetation indices’4~77. Our NDVI time series was derived based
on the GIMMS NDVI dataset at 1/12° spatial resolution and 15-day temporal
resolution, from which we calculated mean annual NDVT at 0.5° resolution. The
processed NDVI is used to represent annual ecosystem productivity. The selected
dataset is obtained from AVHRR series3®78, which has gone through atmospheric
correction, geometric rough correction, geometric fine correction, and correction
for impact of volcanic eruptions, and has been processed for short-term effects of
atmospheric aerosols and cloud cover to ensure quality.

Climatic water deficit is defined as the difference between reference and actual
evapotranspiration based on the one-dimensional modified Thornthwaite-Mather
climatic water-balance model’%80, CWD exerts strong control over the spatial
distribution of plant functional types and is an important driver of ecosystem
productivity®!. It is more directly linked to ecosystem productivity and water
resources than precipitation and temperature alone since it accounts for combined
effects of water and energy®. The recent TerraClimate® dataset provides high-
resolution (1/24°, ~4 km) monthly CWD estimates (mm month~!) for the global
terrestrial surface area from 1958-2020 (Fig. S6). We rescaled these observations to
0.5° resolution and calculated annual CWD (by taking average of the original
monthly CWD for a given year) between 1982 and 2013.

Calculating grid-specific ecosystem sensitivity. We defined “ecosystem sensi-
tivity” here as the change in NDVI caused by a unit change in CWD, ranging from
positive to negative infinity. This definition captures the sensitivity of ecosystem
primary productivity, approximated by NDVI, to the interannual variability of
CWD. Negative sensitivity implies that lower CWD increases ecosystem pro-
ductivity, and positive sensitivity implies that ecosystem productivity increases
with CWD.

For each grid cell, we first constructed a Bayesian linear regression between
CWD and NDVI (both were first detrended) to describe the local productivity-
climate relationship. A total of 49,389 regressions (grid cells) were performed
spanning all land grid cells in the study domain. At each grid cell i, we assumed
that mean annual NDVI follows a normal distribution (likelihood function) with
mean y, and variance

NDVI, ~ Normal(u,, T) 1)

where t is the index of year (t=1, 2, ..., 31, 32). The model for the estimated mean,
e (Eq. 2), is expressed as:

U, = ay + ax CWD, 2)

These fitted slopes («;) define the sensitivity of ecosystem productivity (NDVI)
at the grid cell i to interannual variability of CWD. Such a statistical representation

of ecosystem climatic sensitivity is consistent with definitions in the
literature?482.83, The standard deviation of the fitted slope (o;) describes the
uncertainty of the estimated sensitivity. We computed the statistical significance of
ecosystem sensitivity based on whether the 95% credible intervals of the posterior
distribution of a; contain zero. We retained all regression coefficients (sensitivity
values), regardless of statistical significance to preserve the information contained
in data from all grid cells. In the second-stage of our analysis, we use
hydrogeochemical variables to explain the variation in sensitivity calculated here.
However, the calculated sensitivity values are associated with different levels of
uncertainty among grid cells, captured by 0;. We used o; as weights for the relative
effect of a given grid cell in estimating parameters in the second-stage modeling.
This is described in more detail below in “2.5. Statistical models to explain variation
in ecosystem sensitivity.”

Data compilation for explanatory variables. Five variables that are used to
explain the variation of ecosystem sensitivity computed above include bedrock
lithology class, regolith porosity, regolith permeability, soil thickness, and regolith
thickness. Bedrock classes are from the high-resolution global lithological map
database GLiM?3, which represents the rock types of the Earth surface across
1,235,400 polygons. The lithological classification has three levels. The first level
contains 15 broad lithological classes: evaporites, ice and glaciers, metamorphics,
acid plutonic rocks, basic plutonic rocks, intermediate plutonic rocks, pyroclastics,
carbonate sedimentary rocks, mixed sedimentary rocks, siliciclastic sedimentary
rocks, unconsolidated sediments, acid volcanic rocks, basic volcanic rocks, inter-
mediate volcanic rocks, and water bodies. This classification is not based on
conventional rock classification (“geo”-oriented lithology), but rather on the sen-
sitivity of rocks to chemical and mechanical weathering and their eventual trans-
port via surface water (“hydro”-oriented lithology)*°. The second level contains 12
additional classes and the third level includes 14 subclasses, describing more spe-
cific rock attributes33. The first level aligns with the purpose of this study and was
used for all analyses presented here.

Regolith porosity and permeability were obtained from the Global
HYdrogeology MaPS (GLHYMPS)34, which contains permeability and porosity of
consolidated and unconsolidated geologic units below soil horizons (hydro-
lithologies), with an average polygon size of ~100 km? 3484; this was upscaled to
0.5° by 0.5°. Permeability, the ease of fluid flow through porous media, serves as a
fundamental control on subsurface flow at all depths. Porosity is the fraction of
rock or sediment that is void space, and thus controls subsurface water storage
capacity. For each bedrock type, porosity and permeability are generally positively
but nonlinearly correlated®’ (Fig. S7). The global geological datasets we analyze
include a large set of bedrock lithologies under a wide variety of physical
conditions. As a result, the correlation coefficient is only 0.03 between regolith
porosity and permeability, indicating that these two variables yield complementary
and independent information.

Data on soil and regolith thicknesses are from a high-resolution (30 arcseconds
or ~1 km) global gridded dataset describing the thickness of high-porosity material
above unweathered bedrock3”. The dataset includes soil thickness, intact regolith
thickness, and sedimentary deposits based on topography, climate, and geology
inputs, with sites partitioned into upland and lowland landscape components,
based on net erosion vs. deposition over geological time scales (~10° years and
longer). In uplands, high-porosity materials are termed regolith, which is divided
into soil and underlying intact regolith. The intact regolith layer refers to the
chemically altered but relatively immobile materials between the mobile soil layer
and unweathered bedrock!®. Upland soil thickness varies from as little as few
decimeters to a few meters, while intact regolith thickness typically varies from a
few meters to tens of meters. In lowlands, all unconsolidated materials above
bedrock are classified as sedimentary deposits, with thickness from tens to
hundreds of meters®®. Estimated soil, intact regolith, and sedimentary deposit
thickness are limited to 0-50 m3?, which is the most relevant range for plant
rooting depths in terrestrial ecosystems. In this study, “regolith” refers to the intact
regolith layer, and “soil” is defined as soils in uplands or unconsolidated sediment
deposits in lowlands.

Statistical models to explain variation in ecosystem sensitivity. The second-
stage model seeks to explain the variation in ecosystem sensitivity («; in Eq. 2)
across grid cells. In this stage, the estimated sensitivity (a) and the standard
deviation of the sensitivity (o) are treated as “data” or known quantities. We used a
weighted Bayesian hierarchical regression®®, so that each sensitivity value is
‘weighted’ according to its variance estimated from the model in the first-stage, o2.
02 can be interpreted as how reliable the estimated ecosystem sensitivity is (or how
strong the coupling of CWD and NDVI is). This method discounts grids whose
estimated ecosystem sensitivity is highly uncertain and allows us to use maximum
amount of information contained in the full dataset. It provides the strongest
model inference of parameter values. Grid cells whose sensitivity values are more
statistically significant (smaller o) exert a larger influence on the statistical inference
of the effect of underlying drivers on sensitivity than grid cells whose sensitivity
values are only marginally significant or not statistically significant (larger o). Since
a high sensitivity is defined as « that deviates far from 0, i.e., very negative values or
very positive values, we took the absolute values of all original «, so that large
values consistently represent high sensitivity. We used a link function of log
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transformation so that the range of the sensitivity extends from negative to positive
infinity. The model also controls for spatial autocorrelations (Kj;), which might
introduce unobserved (latent) processes that simultaneously affect the explanatory
variables and the outcome variable. The likelihood of the data, that is, the estimated
ecosystem sensitivity from models in the first-stage, is described as:

log(|a]) ~ MVNormal (42, K) (3)

Ky = (@0)rexp(—p°D;) @

where i donates grid cell ID (i=1, 2, ..., 49,389). K is a variance-covariance matrix,
represented by a Gaussian process kernel. K accounts for the spatial autocorrela-
tion of ecosystem sensitivity among grid cells located nearby. The covariance
between any pair of grid cells i and j is Ky, which is defined by Eq. 4. Dj; is the
distance (in meter) between grid cell i and j and the parameter p describes the rate
of decline of the covariance between grid cell i and j with distance. If p is large,
covariance declines rapidly with distance. 7? is the maximum covariance between
any two grid cells. Theoretically, the dimension of D is 49,389 x49,389. For
computational efficiency, we assume that autocorrelation is zero (i.e., grid cells are
independent) beyond a distance of 1000 km (~ twenty 0.5° grid cells).

We define the model for the predicted sensitivity as a linear regression on
bedrock-related properties and bedrock lithology:

U2, =Py + :Bl.reg(x)Port + 5z,yeg(i)Pe’mx + BsngmRegZ, + ﬁA,reg(x)SailZI + Epedrockregy  (5)

where Por and Perm denote porosity and permeability of the intact regolith,
respectively, RegZ refers to mean regolith thickness in a grid, and SoilZ is the
thickness of soil and unconsolidated sedimentary deposits above the intact regolith.
All variables were standardized by z-scoring their original values. Grid cell i is
nested within region (reg=1, 2, 3, 4). As such, the coefficients 's quantifies the
region-specific effect size of the corresponding covariate (explanatory variable)
(Fig. 1).

We assigned a hierarchical effect to each of the regolith properties, to estimate
region-specific effects () more accurately. The region-specific parameter of a given
covariate (denoted by subscript v; v =1, 2, 3, 4) is sampled from a common hyper-
prior distribution, characterized by hyper-parameters 4, and oy, describing the

overall effect of that covariate:

Bk~ N"’m“l(ﬂﬁw Uﬁv) (6)

where k denotes the region (k =1, 2, 3, 4). The model further includes a random
effect term by bedrock lithology ¢ (Eq. 5), indexed by bedrock type (bedrock =1, 2,
3, ..., 15) and region (reg=1, 2, 3, 4), with grid cell i nested within region. This
structure of random effect allows us to account for unobservable (or latent)
processes associated with different types of bedrock lithology in different regions®.

Similar studies of ecosystem sensitivity have standardized ecosystem sensitivity
across grids. This is done by standardizing the raw NDVI and raw CWD data in
each grid to get a “standardized” slope®” or by first calculating the raw slope for
each grid and then standardizing the raw slopes across grids using grid-specific
NDVI distributions and grid-specific CWD distributions®2. Such standardization
was implemented to account for the spatial variation in NDVI (and CWD)
magnitude and variance caused by differences in ecosystem types in different
grids®2. With the standardization procedure, ecosystem sensitivity is defined from a
relative perspective—focusing on the strength of coupling between CWD variation
and NDVI variation. Ecosystem sensitivity in our study is defined from an absolute
perspective, capturing the proportional changes in NDVI invoked by one unit
change in CWD. To still test whether ecosystem types confound our estimate of the
effect of bedrock and its related properties on ecosystem sensitivity, we built a
different model, one that also included ecosystem types as an independent
predicator:

H2; = By F Prregy POTi F Poreg(iy P + B reg(yRE8Z; + B reg(iySOHZ; + Epedrock reg(iy + Boiom(i)
(7)

where B captures the random effect of ecosystem type and biom describes the 14
major terrestrial biomes?2. Each grid is classified as one of these 14 major biomes.
With biomes explicitly included in the model, the multiple regression investigates
the relationship between the bedrock-related variables and ecosystem sensitivity,
after controlling for ecosystem type. The results of the model with and without
ecosystem type controlled for are largely the same (Fig. S8; Supplementary

note S1). This suggests that though biome itself might affect ecosystem sensitivity,
it does not confound our inference about the relationship between bedrock-related
variables and ecosystem sensitivity. Similarly, other climatic variables (e.g., mean
annual precipitation, mean annual temperature) might themselves affect ecosystem
sensitivity, but they are unlikely to confound our estimate of the effect of bedrock-
related variables on ecosystem sensitivity (Table S3).

Model implementation and fit. We coded the models in JAGS 4.0.088 and
implemented them in R®, using the RJAGS package. The identifiability problem??
arising from having an intercept term (f,) and the random effect term (¢) in Eq. 5
is solved by post-sweeping of random effects®!. Noninformative priors were used
for all the parameters, so the posterior estimates of parameters are informed

principally by the data. For each model, we sampled the posterior parameter space
and assessed convergence using 20 parallel Markov chain Monte Carlo (MCMC)
chains run for 1000 iterations. We subsequently thinned the chains to produce
>3000 approximately independent posterior samples for each parameter of interest.
We assessed convergence using the Gelman and Rubin diagnostic®?. Parameter
estimates are reported as the posterior means and 95% credible intervals, defined
by the 2.5% and 97.5% percentiles. We evaluated model fit by computing the
coefficient of determination (R?) from a regression of observed sensitivity on the
predicted sensitivity, given the fitted value for y, and K (Eqgs. 3 and 4) (i.e., using
replicated data’2).

Evaluating model sensitivity to data selection. We evaluated sensitivity of model
results to the choice of data used to represent ecosystem productivity. In addition
to NDVI, we used the dataset of global monthly average gross primary productivity
(GPP; g carbon m~2 day~!) between 1982 and 2016 at the 8 km spatial
resolution®. GPP in this data product is estimated from the Monteith light use
efficiency (LUE) equation optimized in space and time using explicit LUE values
derived from selected FLUXNET tower site data®3. Global gridded GPP was
derived using the optimized LUE, Global Inventory Modeling and Mapping Studies
(GIMMS3g) canopy fraction of photosynthetically active radiation (FPAR), and
Modern-Era Retrospective analysis for Research and Applications (Version 2)
(MERRA-2) meteorological information. Annual mean GPP was obtained from the
original monthly mean GPP by averaging over 12 months each year. GPP and
NDVI show a significantly positive correlation (Fig. S9). Using this independent
estimate of GPP, rather than NDVI, to represent ecosystem productivity did not
significantly change the major conclusions of this paper, suggesting the observed
patterns are robust to data sources (Figs. S3, $4 and S10-12; Supplementary
note S1).

We also calculated ecosystem sensitivity using growing season NDVI and
CWD. We defined growing seasons to be months whose mean monthly
temperature is greater than 5°C%%. Annual growing season mean NDVI was
calculated by averaging the original monthly mean NDVI over those months.
Similarly, we calculated annual growing season CWD, by taking an average of the
monthly CWD over the growing season months of a given year between 1982 and
2013. The temperature data used to define growing season were obtained from
“Terrestrial Air Temperature and Precipitation: 1900-2014 Gridded Monthly Time
Series” provided by the NOAA (PSL, Boulder, Colorado, USA; https://psl.noaa.
gov). We then used the same method described above to calculate ecosystem
sensitivity, but using growing season NDVI and growing season CWD (Egs. 1 and
2 above). Using growing season ecosystem sensitivity did not significantly change
the major conclusions of this paper, suggesting that the observed patterns are
robust to data choices (Figs. S13; Supplementary note S1).

Interpretation of model results. For modeling purposes, the absolute value of
sensitivity was log-transformed (Eq. 3). Therefore, positive fitted slopes (8> 0)
imply that the focal variable enhances ecosystem sensitivity, amplifying interannual
variability in productivity, while negative slopes suggest that the focal variable
reduces ecosystem sensitivity. Interpretations of  vary with region. In regions of
negative sensitivity (Region I), broadly characterized as water-limited, we expected
that higher water-holding capacity would manifest its strongest effect in dry years
(Fig. 1). Thus, in regions of negative sensitivity, >0 means that as the value of the
focal variable increases, productivity will have a larger drop in periods of high
CWD. In contrast, in regions of positive sensitivity, § >0 means that as the value of
the focal variable increases, productivity will experience greater increases in periods
of high CWD. Specifically, in energy-limited regions of positive sensitivity (Region
II), water limitation becomes most evident during warming as plant water
requirements increase?%. 8> 0 means that the focal variable allows a greater
increase in productivity with warming (Fig. 1). Likewise, in hyper-arid regions of
positive sensitivity (Region IV), water holding capacity likely manifests its strongest
effects in dry years (Fig. 1). >0 means that the focal variable creates conditions
that allow a greater increase in productivity with elevated CWD. In contrast, in
humid tropical regions of positive sensitivity (those where ecosystem productivity
is negatively affected by precipitation®’; Region III), water-holding capacity likely
manifests stronger effects in wetter years (Fig. 1). > 0 means that the focal variable
creates conditions that allow stronger productivity increases in drying.

The slopes in the model (B's) also describe the effect size of corresponding
variables. To interpret f8's, we first set all variables at their region-specific mean

level, which allows us to estimate a region-specific mean sensitivity; that is, |a| =
102 (Eq. 5). When we increase the value of the focal variable by one standard
deviation (SD) from its region-specific mean, the sensitivity becomes |a| =

1092+ x 1 (using Por in Region II as an example). In this case, the effect size of Por
(porosity), i.e., the estimated S ,, can be interpreted as the departure of one SD in
the regolith porosity from its mean level results in a change in ecosystem sensitivity
in Region II by an amount of (10>*12 — 10“) or a percent change of
(ﬁ#) x 100% relative to its regional mean sensitivity level.

Model fit. To evaluate the model fit, we quantified the ability of our model to
replicate the ‘observed’ ecosystem sensitivity (estimated & in Eq. 2). Model

COMMUNICATIONS EARTH & ENVIRONMENT | (2023)4:114 | https://doi.org/10.1038/s43247-023-00773-x | www.nature.com/commsenv 9


https://psl.noaa.gov
https://psl.noaa.gov
www.nature.com/commsenv
www.nature.com/commsenv

ARTICLE COMMUNICATIONS EARTH & ENVIRONMENT | https://doi.org/10.1038/543247-023-00773-x

predicted values fall on the 1:1 line (Fig. S14). Regression of predicted vs observed
sensitivity yielded a coefficient of determination R? = 0.29.

Data availability

All the data used in this study are already publicly available with detailed information on
their sources provided in the main text. Regardless, a complete set of data has been
uploaded to Figshare at: https://doi.org/10.6084/m9.figshare.21078307

Code availability
The R codes to implement statistical models in this study are available from GitHub,
https://github.com/xdong05/lithology.
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