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We present high-resolution three-dimensional (3-D) direct numerical simulations of
breaking waves solving for the two-phase Navier—Stokes equations. We investigate the
role of the Reynolds number (Re, wave inertia relative to viscous effects) and Bond
number (Bo, wave scale over the capillary length) on the energy, bubble and droplet
statistics of strong plunging breakers. We explore the asymptotic regimes at high Re
and Bo, and compare with laboratory breaking waves. Energetically, the breaking wave
transitions from laminar to 3-D turbulent flow on a time scale that depends on the
turbulent Re up to a limiting value Rej ~ 100, consistent with the mixing transition
in other canonical turbulent flows. We characterize the role of capillary effects on the
impacting jet and ingested main cavity shape and subsequent fragmentation process, and
extend the buoyant-energetic scaling from Deike et al. (J. Fluid Mech., vol. 801, 2016,
pp- 91-129) to account for the cavity shape and its scale separation from the Hinze scale,
rg. We confirm two regimes in the bubble size distribution, N(r/rg) o (r/ re) 1073 for
r > ryg, and « (r/ rr) /% for r < ry. Bubbles are resolved up to one order of magnitude
below ry, and we observe a good collapse of the numerical data compared to laboratory
breaking waves (Deane & Stokes, Nature, vol. 418 (6900), 2002, pp. 839—-844). We resolve
droplet statistics at high Bo in good agreement with recent experiments (Erinin et al.,
Geophys. Res. Lett., vol. 46 (14), 2019, pp. 8244-8251), with a distribution shape close
to Ny(rg) o< rgz. The evolution of the droplet statistics appears controlled by the details
of the impact process and subsequent splash-up. We discuss velocity distributions for the
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droplets, finding ejection velocities up to four times the phase speed of the wave, which
are produced during the most intense splashing events of the breaking process.

Key words: air/sea interactions, wave breaking, multiphase flow

1. Introduction
1.1. The broader context

The action of breaking waves on the ocean surface has a large and incompletely understood
effect on the dynamics of mass, momentum and energy transfer between the ocean and the
atmosphere, converting much of the wave energy into heat in a complex process that spans
a wide range of scales (Melville 1996). Breaking also marks a transition at the ocean
surface from laminar flow to two-phase turbulent mixing at small scales, modulating the
dynamics of the upper ocean sub-mesoscales, particularly via Langmuir turbulence and
fronts (McWilliams 2016), and affects the transport of particles with implications for the
fate of oil spills and plastic pollutants (Deike, Pizzo & Melville 2017; Pizzo, Melville &
Deike 2019). Furthermore, surface breaking injects a large amount of gas into the ocean
via the entrainment of bubbles, including approximately 30 % of the CO, that has been
released into the atmosphere (Deike & Melville 2018; Reichl & Deike 2020); breaking
also ejects spray into the atmosphere, where it can convect and evaporate to leave salt
crystals that may serve as cloud condensation nuclei (de Leeuw et al. 2011; Veron 2015).

Wave breaking involves transition from two-dimensional (2-D) laminar wave flow to
three-dimensional (3-D) turbulence. As wave energy focuses through linear or nonlinear
processes, local conditions on a wave surface become unstable and cause breaking, which
transfers energy and momentum to the water column. The geometry and kinematics of
the breaking waves have been studied extensively (Longuet-Higgins & Cokelet 1976;
Perlin, Choi & Tian 2013; Schwendeman & Thomson 2017; Fedele, Banner & Barthelemy
2020), and the identification of a breaking threshold with approaches based on the wave
kinematics, dynamics or geometry remains a longstanding issue (Melville 1982; Banner &
Peirson 2007; Perlin et al. 2013), with recent work discussing the link between the breaker
kinematics and dynamics (Saket er al. 2017; Derakhti et al. 2020; Pizzo 2020).

While the initiation of the breaking phenomenon and the turbulence generated by it
have been characterized (Rapp & Melville 1990; Duncan, Qiao & Philomin 1999; Tulin &
Waseda 1999; Melville, Veron & White 2002; Banner & Peirson 2007; Drazen, Melville &
Lenain 2008; Drazen & Melville 2009), the time and length scales of the transition process
remain to be explored. During this transition to turbulence, air is entrained, and bubbles are
formed (Lamarre & Melville 1991; Deane & Stokes 2002) and spray droplets are ejected
(Erinin et al. 2019). The measurement of 3-D two-phase turbulence in the laboratory and
in the field presents many technical challenges in terms of accessing successfully the
turbulent flow field and the size distributions of drops and bubbles during the active time
of breaking.

Direct numerical simulations (DNS) therefore appear as an appealing tool. Owing to
the computational difficulty and expense of modelling 3-D multiphase flows, numerical
studies began by using 2-D breakers as analogues for the full 3-D processes (Chen et al.
1999; Song & Sirviente 2004; Iafrati 2009, 2011; Deike, Popinet & Melville 2015). Early
development of nonlinear potential flow models has shed light on the breaking process
up to the moment of impact (Longuet-Higgins & Cokelet 1976; Dommermuth et al.
1988), while 3-D simulations have used reduced models such as large-eddy simulations
(LES) to capture the breaking process itself (Watanabe, Saeki & Hosking 2005; Lubin &
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Glockner 2015; Hao & Shen 2019), but the complete resolution of the breaker in DNS in
three dimensions has only recently become feasible (Fuster et al. 2009; Deike, Melville
& Popinet 2016; Wang, Yang & Stern 2016; Yang, Deng & Shen 2018). Surprisingly,
despite the essentially 3-D nature of the turbulence resulting from breaking, 2-D breakers
at the tested conditions have provided a reasonable estimate of the dissipation rates
obtained from experiments and 3-D computation (discussed further below). In contrast, the
turbulent dissipation in internal wave breaking has been shown to be a clear 3-D process
(Gayen & Sarkar 2010).

1.2. Laboratory experiments and direct numerical simulations of canonical breaking
waves

Canonical breaking waves have been studied using a variety of different approaches, both
experimental and numerical (Duncan 1981; Melville 1982, 1994; Rapp & Melville 1990;
Duncan et al. 1999; Banner & Peirson 2007; Drazen et al. 2008; Tian, Perlin & Choi 2010;
Erinin et al. 2019). Studies such as these have identified the main controlling parameters of
breaking waves, namely the breaking speed and the wave slope at breaking S = ak, where
a is the wave amplitude, and k is the wavenumber. The bandwidth of the wave packet
is also important, and the detailed kinematics before breaking, in particular a significant
slowdown of the wave crest, have been discussed in order to propose breaking threshold
criteria (Banner et al. 2014; Saket et al. 2017; Pizzo & Melville 2019; Derakhti et al. 2020;
Fedele et al. 2020), although we will neglect its influence from here onwards.

It follows that DNS of breaking waves can be framed in terms of a set of
non-dimensional numbers. The relevant parameters are the air—water density and viscosity
ratios, the wave speed and wavenumber, and amplitude. These define a wave Reynolds

number and the wave slope as
Ve
(1.1a,b)

Re = , S =ak,
v

where 1o = 27t/k is the wavelength and v is the kinematic viscosity of the water. Similarly
to turbulent DNS, numerical simulations of breaking waves are confined typically to the
highest Re accessible to available computation effort, which has grown over time. lafrati
(2009), Deike et al. (2015, 2016) and De Vita, Verzicco & lafrati (2018) have typically
used Re = 40 x 10°.

To consider bubble and droplet generation, the Bond number is needed:

A
Bo= =P8
ok?

where Ap is the density difference between air and water, and o is the surface tension.
The Bond number Bo corresponds to the ratio between the wavelength and the capillary
length scale.

Deike et al. (2015, 2016) used the Bond number to compare the numerical wavelength
to experimental results. Deike et al. (2015) describes the wave patterns for a large range
of Bo and S, discussing the energetics of parasitic capillary waves, spilling breakers
and plunging breakers. As discussed in Iafrati (2009) and Deike et al. (2015, 2016), the
breaking waves in a laboratory would approach Re = 10°. Despite this difference in Re,
DNS (Iafrati 2009; Deike et al. 2015, 2016) and LES (Derakhti & Kirby 2014, 2016) found
good agreement between experiments and simulations for the non-dimensional energy
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Figure 1. Breaking parameter b as a function of wave slope S. Red cross indicates present DNS data. Inverted
red triangles indicate DNS data from Deike e al. (2016). Black and grey indicate experimental data due to

Drazen et al. (2008), Banner & Peirson (2007) and Grare et al. (2013). Solid line is b = 0.4(S — 0.08)5/2, a
semi-empirical result of Romero ez al. (2012). Shaded area indicates the uncertainties on the scaling for b.

dissipation due to breaking as a function of the breaker slope (see figure 1). Nevertheless,
an outstanding challenge in DNS is the correct numerical resolution of processes whose
separation of scales increases with Re and Bo. For such simulations to capture the physics
of breaking waves correctly, they must resolve all scales between and including those of
energy dissipation and the formation and breakup of bubbles and droplets in a two-phase
turbulent environment. This requires capturing the full physics of the problem, while
retaining a qualitatively faithful representation of the breaking process in comparison with
experiment. Historically, these very difficult challenges have limited the scope of DNS
investigations, the details of whose approaches are discussed in more detail below.

Both the wave Reynolds number and the Bond number characterize the overall scale
of the wave through its wavelength and phase speed, compared with viscous and capillary
effects. Once the wave breaks, the turbulence that it generates is controlled by the breaking
slope together with the speed of the breaker, and is itself characterized by a turbulent
Reynolds number, defined typically using the Taylor micro-scale Re,, with Drazen &
Melville (2009) typically finding values around Re, =~ 500. Similarly, the fragmentation
processes and generation of drops and bubbles in a turbulent flow are usually analysed
in terms of a Weber number, comparing the inertial stresses due to the turbulence to the
surface tension.

1.3. Energetics and dimensionality of breaking waves

Breaking waves dissipate energy, generating a turbulent two-phase flow with properties
that can be related to the local breaking properties (Duncan 1981). The local turbulent
dissipation rate due to breaking can be described by an inertial scaling (Drazen et al.
2008)

e = (\/gh)*/h, (1.3)

where £ is the breaking height, here consistently defined as half the distance between
wave crest and trough, and /gh the ballistic velocity of the plunging breaker, with g
the acceleration due to gravity. The turbulence is confined to a volume Vy = AL, of

cross-section that is generally assumed to be A ~ wh?/4 (Duncan 1981; Drazen et al.
2008), and length of breaking crest L., leading to an integrated dissipation rate per unit
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length of breaking crest given by
€1 = pAe. (1.4)

This scaling can be related to the initial slope, bandwidth and speed of the wave packet
in controlled laboratory experiments (Duncan 1981; Rapp & Melville 1990; Banner &
Peirson 2007; Drazen et al. 2008; Tian et al. 2010; Grare et al. 2013) and numerical
simulations (Iafrati 2009; Deike et al. 2015, 2016; Derakhti & Kirby 2016). The breaking
parameter b is a non-dimensional measure of the dissipation that was introduced by
Duncan (1981) and Phillips (1985), and relates to €; as

€ =bpc’/g, (1.5)

which combined with the local dissipation rate argument above, and assuming that the
breaking speed is related to the wavenumber by the dispersion relation ¢ = +/g/k, leads

to b o $°/% (Drazen et al. 2008). Introducing a slope-based breaking threshold Sy, this
formulation for the breaking parameter reads

b = x0(S — So)*/%. (1.6)

Extensive laboratory experiments have demonstrated the accuracy of the physics-based
model, with x9 >~ 0.4 and Sy >~ 0.08 used as fitting parameters by Romero, Melville
& Kleiss (2012), allowing us to account for numerous laboratory data (Duncan 1981;
Rapp & Melville 1990; Banner & Peirson 2007; Drazen et al. 2008; Tian et al. 2010;
Grare et al. 2013). Several numerical studies have confirmed this scaling and validated
their approaches against this result (Derakhti & Kirby 2014, 2016; Deike et al. 2015,
2016, 2017; De Vita et al. 2018). Figure 1 shows b as a function of S for a variety
of experimental and numerical data, including from the present study. We note that
experimental work using the linear focusing technique typically considers the linearly
predicted wave slope, summed over all components, while numerical work using compact
wave initialization has considered the initial slope. In all cases, the slope being used is
proportional to the breaking slope, as discussed in Drazen et al. (2008) for experimental
data and Deike et al. (2015, 2016) for numerical data, which allows comparison between
the experimental and numerical work. The differences in definitions and estimations may
therefore be responsible for some of the scatter in figure 1 between the various data sets,
and uncertainties in the fitting coefficients are indicated by the shaded area. Note that the
scaling b oc §%/2 is observed at high slopes for both the experiments and DNS. Moreover,
the proportion of energy dissipated by breaking for a given slope is similar between
experiments and simulations. This fundamental model for the turbulent dissipation rate has
been used successfully as the physical basis of larger-scale spectral wave models (Romero
et al. 2012; Romero 2019). Moreover, we proposed recently an extension of the inertial
argument to certain types of shallow water breakers (Mostert & Deike 2020).

It remains to determine the particular transition characteristics of the fully 3-D
flow, and to investigate the dependence of these characteristics on the flow Reynolds
number, as well as on the evolution of the ingested bubble plume. Furthermore, even
aside from limitations on the maximum values of Re, Bo attainable in computation,
many numerical studies have investigated 2-D breakers as computationally feasible
analogues for the full 3-D processes (Song & Sirviente 2004; Hendrickson & Yue 2006;
lafrati 2009; Deike et al. 2015). Surprisingly, despite the essentially 3-D nature of the
turbulence resulting from the breaking process, 2-D breakers at the tested conditions
provided a reasonable estimate of the dissipation rates for 3-D breakers obtained from
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computation and experiment, with discrepancies sometimes as small as 5 % (Lubin ef al.
2006; Iafrati 2009). Favourable comparison with semi-empirical models as discussed
above also suggests the usefulness of 2-D computations for the dissipation rate (Deike
et al. 2015). Nonetheless, the details of the 2-D/3-D transition physics in breaking
waves constitute an open question. The present study will go some way to addressing
these questions, with suggestion of a possible transition to turbulence with an associated
turbulent Reynolds number.

1.4. Bubble size distributions in breaking waves

A breaking wave entrains air, which is characterized by a broad size distribution of
bubbles. Direct investigation of the bubble distribution, obviously not available within
a 2-D study, is important to inform subgrid scale models used in LES (Shi, Kirby & Ma
2010; Liang et al. 2011, 2012; Derakhti & Kirby 2014) and gas transfer models (Liang et al.
2011; Deike & Melville 2018). Garrett, Li & Farmer (2000) proposed a turbulent breakup
cascade model for the size distribution per unit volume A/ (r), where r is the bubble radius,
as a function of the local dissipation rate € with constant volumetric air flow rate Q, with
a dimensional analysis yielding

N (r) oc Qg 13p71053, (1.7)

We note that a time-averaged dissipation rate € over the breaking time has been considered
when analysing and scaling various data sets in Deane & Stokes (2002) and Deike et al.
(2016). The corresponding breakup model assumes a turbulent inertial subrange with
a direct cascade, with large bubbles injected at one end of the cascade by a notional
entrainment process, and turbulent fluctuations then breaking these into smaller bubbles.
The lower end of the cascade is set by the Hinze scale (Hinze 1955; Deane & Stokes 2002;
Perrard et al. 2021)

3/5
i = Co (%) §72/5, (18)

Here, Cy ~ 0.4 (Deane & Stokes 2002) is a dimensionless constant. Its value is related
to the critical Weber number defining bubble breakup, which ranges typically from 1 to
5 (Risso & Fabre 1998; Martinez-Bazan, Montanes & Lasheras 1999; Deane & Stokes
2002; Vejrazka, Zednikovd & Stanovsky 2018; Perrard et al. 2021; Riviere et al. 2021),
with estimations of Cy varying by about a factor of 2. These differences are related to
variations in the experimental protocols and the large-scale structure of the turbulent flow.
Note also that the breaking wave problem is transient in nature, so that the Hinze scale
might present variations in time, and estimations of the Hinze scale based on the averaged
turbulence dissipation rate present an added uncertainty. For all these reasons, it should
be considered a soft limit. The size distribution below the Hinze scale is not addressed by
Garrett et al. (2000).

Laboratory experiments have reported measurements of the bubble size distribution
under a breaking wave using various optical and acoustic techniques (Loewen, O’Dor
& Skafel 1996; Terrill, Melville & Stramski 2001; Deane & Stokes 2002; Leifer & de
Leeuw 2006; Rojas & Loewen 2007; Blenkinsopp & Chaplin 2010), in general agreement
with the model from Garrett et al. (2000). Theoretical and numerical investigation has
further strengthened understanding of the turbulent bubble cascade above the Hinze
scale (Chan, Johnson & Moin 2020a,b). Deike et al. (2016) demonstrated the ability
of numerical methods to reproduce the size distribution observed experimentally and
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described theoretically, with an extension of the theory to constrain the mean air flow
rate for increasing wave slopes. That study also noted a correspondence between the
development of the entrained bubble population and the wave’s energy dissipation rate.
For bubbles below the Hinze scale, however, there is significant scatter between existing
data sets, although Deane & Stokes (2002) suggests a relationship oc r—3/2.

The numerical studies from Deike et al. (2016) and Wang et al. (2016) had limited
resolution of sub-Hinze-scale bubbles and were performed at Re = 40 x 103, Bo = 200,
with the assumption that the bubble size distributions were independent of Re and Bo,
like the dissipation rate (see § 1.3). The present DNS study brings to bear sophisticated
methods and computational resources to test the dependence on Re, Bo of the bubble size
distribution, and to resolve the sub-Hinze bubble statistics. These constitute two of the
main objectives of the present study.

1.5. Droplet size distributions in breaking waves

The mechanisms of spray generation by breaking waves have been reviewed recently by
Veron (2015). Droplet size distributions have been explored experimentally in the presence
of wind (Wu 1979; Veron et al. 2012; Ortiz-Suslow et al. 2016; Troitskaya et al. 2018) as
well as for deep water breaking waves generated by linear focusing (Erinin et al. 2019),
while numerical investigations have been made of Lagrangian transport of spume droplets
in the air (Richter & Sullivan 2013; Druzhinin, Troitskaya & Zilitinkevich 2017; Tang et al.
2017). However, a general theoretical model for the droplet size distribution has not been
formulated.

In the context of breaking waves, spray is not created in the same manner as bubbles in
the flow, being instead more analogous to atomization and fragmentation droplets (Veron
et al. 2012; Troitskaya et al. 2018; Villermaux 2020). They are generated by two main
mechanisms: direct ejection from wave impact and the related dynamic interface evolution,
and indirect jet ejection resulting from the bursting of bubbles that were entrained initially
by the breaker (Lhuissier & Villermaux 2012; Deike et al. 2018; Berny et al. 2020). The
latter population is typically much smaller than the former (Veron 2015), hence even more
challenging to resolve numerically within the breaking wave event, but can be studied
separately (Deike et al. 2018; Berny et al. 2020). Separately, a major complicating factor is
that spray droplet populations are typically significantly smaller than bubble populations
for a given breaking wave, leading to challenges in statistical convergence of the data.
For these reasons, experimental and numerical studies of droplet production by breaking
waves are limited (Wang et al. 2016; Erinin et al. 2019). In this study, droplet populations
are resolved over a sufficient range of length scales to allow comparison with experiment,
showing good agreement in the shape of the resolved size distribution. Velocity and joint
velocity—size distributions are also shown, which will aid future studies.

1.6. Outline

In this paper, we present high-resolution DNS, which mobilizes sophisticated tools and
computational resources to advance the following challenges: we will show statistics
spanning multiple scales of fluid behaviour for full 3-D simulations that capture breaking
physics as seen in laboratory experiments regarding energy dissipation, bubble and
droplets size distribution. The set-up is similar to Deike ef al. (2016) and is analogous
to deep water breaking waves in the laboratory obtained by focusing packets (Deane &
Stokes 2002; Drazen et al. 2008), as demonstrated by Deike et al. (2016), but increased

942 A27-7


https://doi.org/10.1017/jfm.2022.330

https://doi.org/10.1017/jfm.2022.330 Published online by Cambridge University Press

W. Mostert, S. Popinet and L. Deike

resolution of the interfacial processes allows access to higher Reynolds and Bond numbers
to describe the transition to 3-D turbulence, and the formation of droplets and bubbles
down to scales comparable to state-of-the-art laboratory experiments. These simulations
represent the current state of the art in multiphase simulations of breaking waves and
further confirm that the physics of breaking waves can be investigated profitably through
these high-fidelity numerical data. We analyse the role of these parameters in interfacial
processes, including air entrainment, bubble statistics and droplet statistics. We discuss
how energy dissipation, bubble and droplet statistics seem independent of the Reynolds
number above a certain value, for the strong plunging breakers, confirming the results
obtained previously at lower Reynolds numbers by comparison with experimental data.
Next, we investigate the role of the capillary length and other flow scales on the air
entrainment and spray production, which are most likely to mediate the development of
transverse instabilities in the breaking process. We emphasize that such a study is possible
only thanks to improvement in adaptive mesh refinement (AMR) techniques, along with
increasing computational power, which has enabled sufficiently high resolution.

The paper proceeds as follows. In §2, we describe the numerical methods and the
formulation of the physical problem, the transition from the initial planar configuration to
fully-developed 3-D flows, and the general processes that produce entrained bubbles and
ejected spray. In § 3, we investigate the development of the 3-D flow in direct comparisons
with 2-D computations, as well as the role of transverse instabilities and their influence
on the dissipation rate. We study the transition time and length scale of the breaking flow,
from its initial 2-D configuration, to the final 3-D turbulent one. Then, in § 4, we present a
bubble size distribution at higher Re, Bo and numerical resolutions than those found in the
numerical literature, and extend below the Hinze scale at lower Re, Bo. Droplet size and
velocity distributions are presented in § 5, before we conclude in § 6.

2. Problem formulation and numerical method
2.1. Basilisk library

We use the Basilisk library to solve the two-phase incompressible Navier—Stokes equations
with surface tension, in two and three dimensions. The successor of the Gerris flow solver
(Popinet 2003, 2009), Basilisk is able to solve a diversity of partial differential equation
systems in an AMR framework that decreases significantly the cost of high-resolution
computations, allowing an efficient representation of multiscale processes. Flow advection
is approximated using the Bell-Colella—Glaz method (Bell, Colella & Glaz 1989), and
the viscous terms are solved implicitly. The interface between distinct gas and liquid is
described by a geometric volume-of-fluid (VOF) advection scheme, with a well-balanced
surface tension treatment that mitigates the generation of parasitic currents (Popinet 2018).
A momentum-conserving implementation allows us to avoid artefacts due to momentum
‘leaking’ between the dense and light phases (Fuster & Popinet 2018; Zhang, Popinet &
Ling 2020). The governing equations can be written as

ap
— +V-(pou) =0, (2.1)
ot
du
0 (E —|—u-Vu) = —Vp+V - @QuD) + pg + okdsn, (2.2)
V e U = 0’ (23)
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where p, u, u, 0, D, g are the fluid density, velocity vector, dynamic viscosity, surface
tension, deformation tensor and gravitational acceleration vector, respectively. The density
and viscosity are allowed to vary according to a volume fraction field c(x, ¢) that in these
simulations takes the value zero in the gas phase and unity in the liquid phase. The variable
85 1s a Dirac delta that concentrates surface tension effects into the liquid—gas interface; «
is the curvature of the interface, and » is its unit normal vector.

2.2. Wave initialization

We consider breaking waves in deep water. The relevant physical parameters are the
liquid and gas p,,, pg, respectively, the respective dynamic viscosities (i, [4q, the surface
tension o, the wavelength Ay, initial wave amplitude a, and gravitational acceleration g.
The water depth &g, while finite, is assumed sufficiently large so that it does not affect
significantly the breaking physics. The eight significant parameters, which are expressed
in three physical dimensions, can thus be reduced into five dimensionless groups according
to Buckingham’s theorem; these are the density ratio p,/p,, viscosity ratio jt,/ Ly, Wave
slope S = ak, where k = 27 /Ay is the wavenumber, and the Bond and Reynolds numbers

as defined previously, Bo = Ap g/ck?, Re = , /g/lg/vw, where Ap = p,, — pa == pw, and

Vy = [/ pyw is the kinematic viscosity. The wave period is T = Ag/c = 21//gk, where
¢ = +/g/k is the linear phase speed for deep water gravity waves. The governing equations
(2.1)-(2.3) can be non-dimensionalized in terms of these groups. These definitions follow
the literature; see Chen et al. (1999), Iafrati (2009) and Deike et al. (2015, 2016).

The numerical resolution is indicated by the smallest cell size attained in the simulation,
given by A = 19/2%, where L is the maximum level of refinement used in the AMR
scheme. The refinement criterion is based on both the velocity field and the VOF
tracer field. The maximum resolution used in this study is L = 11, corresponding to a
conventional grid of (2'")3, or approximately 8.6 billion, total cells. Under the AMR
scheme, the grid size reduces to the order of 150 million cells at L = 11.

We initialize the breaking wave following Chen et al. (1999), lafrati (2011), Deike et al.
(2015, 2016), Wang et al. (2016) and Chan et al. (2020a,b), based on an unstable third-order
Stokes wave for the water velocity and zero velocity in the air. The flow is regularized
in the first time step. We note that the Stokes wave solution has been derived for an
irrotational inviscid free surface wave, hence remains an imperfect initial condition for
the full two-phase flow problem, accounting for viscosity and surface tension. However,
numerous studies have demonstrated that it provides an efficient and compact initialization
to study the post-breaking processes. Both 2-D and 3-D simulations are conducted in order
to investigate the transition from the laminar, planar and essentially 2-D initial evolution
to the final, turbulent, 3-D flow. Besides the dimensional difference, the 2-D simulations
are initialized identically to the 3-D simulations. In the 3-D simulations, no perturbation is
used to seed the transition from planar to non-planar evolution of the wave; this transition
is brought about by numerical noise during the breaking process.

2.3. Parameter space
The density and viscosity ratios are fixed to the values for water and air, p,,/p, = 850,
MUw/q = 51.15, and the input slope is fixed at a nominal value § = 0.55, leaving the
remaining two groups, Re, Bo to be varied. Thus we investigate the independent effects of
variation in surface tension through Bo, and viscosity through Re. The fixed value of S is
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Re Bo L Aofry  ANry AJl. rg/l. Cost (CPU-h)
40 x 103 200 11 284 0.139  0.043 0.312 1.75 x 10°
40 x 103 200 10 143 0.279  0.087  0.311 3.22 x 10*
40 x 103 500 11 501 0.489  0.069 0.280 2.58 x 10°
40 x 103 500 10 251 0.489 0.137 0.281 3.83 x 10*
100 x 103 500 11 501 0.245  0.069  0.280 5.26 x 10°
100 x 103 500 10 251 0.484 0.137 0.284 6.42 x 10*
100 x 103 1000 11 767 0.375  0.097 0.259 5.56 x 10°
100 x 10° 1000 10 384  0.738 0.194 0.263 8.76 x 10*
Total cost (CPU-h) 1.76 x 100

Table 1. Computational matrix of parameter space for 3-D breaking waves. The slope for each case is § =
0.63, modelling a strong plunging breaker. The column labels are as follows: Re, Reynolds number; Bo, Bond
number; L, maximum level of grid refinement; Ao/ry, ratio of wavelength to Hinze scale; A /rgy, ratio of
smallest grid size to Hinze scale; A /I, ratio of smallest grid size to the capillary length, defined as 13 =
1/(k*Bo), where k = 27/ is the wavenumber; ry /I, ratio of Hinze scale to capillary length.

chosen to be sufficiently large to force the wave into a plunging breaker (Deike et al. 2015).
We refer the reader to (Deike et al. 2016) for an extensive study on the role of the wave
slope S at constant Re, Bo. The parameters are shown in table 1, and correspond to low
(Bo = 200), medium (Bo = 500) and high (Bo = 1000) Bond numbers, and low (Re =
40 000) and high (Re = 100 000) Reynolds numbers. Cases run to test grid convergence
span moderate (L = 10) and fine (L = 11) resolutions, respectively. Some additional cases
at a variety of Reynolds numbers are also run for the energetics comparison in § 3. We
reach a maximum separation of defined scales (wavelength to Hinze scale) of a factor
~550. The grid size for the L = 11 case reaches 181 million cells, for a maximum runtime
(excluding scheduling and queueing times) of 1.4 months and a cost of half a million
CPU-hours. These highest resolution cases were run on the Stampede?2 cluster at the Texas
Advanced Computing Center of the University of Texas, typically on between 192 and
768 cores of the Skylake node system. (Portions of these simulations were also run on
the high-performance computing resources of the French National Computing Center for
Higher Education (CINES).) Lower-resolution cases (L = 10) were run on the TigerCPU
cluster at Princeton University using typically between 160 and 320 cores. Note that while
these simulations are expensive, they still save several orders of magnitude over a uniform-
or fixed-grid approach, which would require a prohibitively large grid size of 8.6 billion
cells in the highest-resolution case.

2.4. General flow characteristics

The wave evolves in a manner similar to that seen in previous studies with similar
initialization (Deike er al. 2015, 2016). Figure 2 shows a sequence of stills at different
stages of the breaking process. The initially planar wave steepens nonlinearly to a point
where it locally develops a vertical interface (figures 2a,b). The wave then overturns,
forming a jet that projects forwards into the upstream water surface (figure 2c¢), and impacts
onto it (figure 2d), breaking the initially planar symmetry. At this moment, a large tube of
air is ingested into the liquid bulk, which we refer to as the main cavity. The wave now also
forms a fine-scale 3-D structure at the point of impact, while ingesting the tubular cavity.
This cavity persists for some time until it breaks along its length into an array of large
bubbles (at t/T = 1-1.2; figures 2e, f). In the meantime, the continuing breaking process
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on the surface creates a splash-up jet, as the wave proceeds into the strongly dissipative
phase of the active breaking process (figure 2f) and develops into a fully developed 3-D
flow (figures 2g.h) from t/T = 1.4 onwards. At late times, most of the wave energy has
been dissipated in the breaking process, but the turbulent regions persist for some time,
during which a very large array of spray and especially bubbles is formed (figures 2f—h).
All the presented cases produce a large quantity of bubbles of various sizes, but spray is
produced abundantly, particularly at higher Bond numbers.

These qualitative aspects of the breaking wave dynamics are crucial for a faithful
representation of the breaking process. In this respect, the evolution and dynamics of the
breaker resemble closely those of laboratory experiments, notwithstanding certain Bond
and Reynolds number influences, and despite the different initializations across studies.
The overturning phenomenon is very similar to that seen in Bonmarin (1989), Rapp &
Melville (1990) and Drazen et al. (2008); the size and shape of the main ingested cavity
matches very closely that seen in a large array of theoretical, numerical and experimental
studies (Longuet-Higgins 1982; New 1983; New, Mclver & Peregrine 1985; Dommermuth
et al. 1988; Bonmarin 1989); and the subsequent droplet-producing splash sequence
mirrors closely that seen in Erinin et al. (2019) (see § 5). This accurate reproduction of the
breaker will be reflected further in various quantitative statistical comparisons with theory
and experiment in the remainder of this paper, and moreover builds high confidence in the
validity of our new results.

3. Energetics and transition to 3-D turbulent flow

We determine the effect of Re (and Bo) on the development of the 3-D turbulent flow
underneath the breaking wave by direct comparisons of the 3-D simulations with 2-D
counterparts.

3.1. Energy dissipation by breaking

The wave mechanical energy is E = Ep + Eg, where Ep = fV pg(z —z9)dV is the
gravitational potential energy, with a gauge zo chosen such that Ep = 0 for the undisturbed
water surface, Ex = fv p(u-u/2)dV is the kinetic energy, and the integrals are taken
over the liquid volume V (Deike ef al. 2015, 2016). The instantaneous dissipation rate
in the water is ¢ = Zi’j &jj, where g;; = (v,/2W) fv(aiuj + Eiju,-)2 dV, with 9; = 9/dx;.
We decompose ¢ into in-plane and out-of-plane components &;, + €,,s, Where g, =
Zi,j:m gjj contains just those contributions of the deformation tensor that lie entirely
in the streamwise (x) and vertical (z) directions, and &,,; = €3p — €, comprises the
remainder (i.e. the sum of terms ¢&;y, &y; for i = x, y, z, where y is the spanwise direction).
A planar flow features only the in-plane contribution e3p = ¢;,, and a 3-D flow features an
additional contribution &,,, (while in two dimensions, &yp = &;p,).

Figure 3(a) shows the budget of E over time for increasing Reynolds number (Re =
10%, 4 x 10*, 10%) and constant Bond number (Bo = 500), with a direct comparison
between the 2-D and 3-D cases. For each case, E remains approximately flat at the earliest
times, which corresponds to the pre-broken wave where the dissipation is due entirely to
the viscous boundary layer at the surface, which is properly resolved here given the high
resolution in the boundary layer near the interface, and has been verified for low-amplitude
waves (see Deike et al. 2015). Breaking begins as the wave steepens and overturns at
t/T >~ 0.6, and extends through /7 = 2 and afterwards, corresponding to the impact of
the wave, and the active breaking part with air entrainment and generation of turbulence.
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(b)

(e)

(h)

Figure 2. Snapshot renderings of the 3-D breaking wave water—air interface at different times, for the
case Bo = 500, Re = 100 x 103, at resolution L = 11. (a) For t/T = 0.37, nonlinear steepening and initial
overturning. (b) For t/T = 0.56, jet formation. (¢,d) For /T = 0.67, 0.8, impact and ingestion of main cavity.
(e) For t/T = 1.04, splash-up of main wave and rupture of main cavity. (f—h) For ¢/T = 1.2, 1.36, 1.52,
continuation and slowdown of main breaking process.
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Figure 3. Energy budgets for a breaking wave. (a) Energy budgets comparing 2-D and 3-D simulations

for Bo = 500 and Re = 1, 4, 10 x 10*. (b) Corresponding instantaneous resolved dissipation rate comparing
2-D and 3-D simulations for & for Bo = 500, Re = 4 x 10*. Grid convergence studies are presented in
supplementary material available at https://doi.org/10.1017/jfm.2022.330.

Only a small amount of energy is dissipated in the air, amounting to approximately 5 %
or less of the total energy budget. At small Re, viscosity is strong and the 2-D and 3-D
budgets are in close agreement throughout the breaking process. For larger Re (smaller
viscosity), the 2-D and 3-D curves begin to diverge strongly at time #/7 =~ 1.2, with the
discrepancy becoming more pronounced at larger Re. The percentage of energy dissipated
for this high-slope breaker is about 70 %, close to the amount of energy dissipated in
high-slope plunging breakers in laboratory experiments (Rapp & Melville 1990; Drazen
et al. 2008).

Numerical convergence of the simulations for the energy budget and instantaneous
dissipation rates are discussed fully in the supplementary materials. From those results,
the budget and dissipation rates at Re = 4 x 10* are converged numerically in three
dimensions between L = 10, 11, as well as for Re = 10° between L = 10, 11 in either two
or three dimensions. The comparison of dissipation rates is very good for 2-D simulations
between L = 11, 12 at all Re. Currently, it is not feasible to run a 3-D simulation at L = 12
at the highest Re, given the computational cost. We note that the precise time evolution of
the dissipation rate is sensitive to the precise shape at impact.

Numerical resolution of characteristic dissipative scale can also be discussed.
Considering Batchelor’s estimate for the viscous sublayer under the pre-broken wave,

8~ Ao/ /Re, our results indicate that at Re = 4 x 10, an effective resolution of 5 cells
(at L = 10) in the sublayer suffices for grid convergence. By the same estimation, we attain
6.5 cells in the viscous sublayer for Re = 107 at L = 11, suggesting grid convergence
at this increased resolution. A resolution criterion for traditional single-phase DNS in
the literature (Pope 2000; Dodd ef al. 2021) involves the Kolmogorov length scale n =
(va / £)1/4, with kmaxn > 1.5 considered sufficiently resolved, where &, = w2l /Ao is the
maximum resolved wavenumber. For the present simulations, for Re = 4 x 10%, 10, at
L = 11, this corresponds to kg0 =~ 3.4, 1.8, respectively, which satisfies the criterion; it
is similar to the resolution used in DNS of bubble deformation in turbulence (Farsoiya,
Popinet & Deike 2021). For details, see the supplementary materials.

Without a parallel (and currently not feasible) investigation of AMR convergence with
respect to uniform-grid representation at these high-resolution levels, and given that these
are individual realizations of multiphase turbulent flows, not ensembles, some caution
in the interpretation of the present data is required. Nonetheless, using these different
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Figure 4. Resolved instantaneous dissipation rates for breaking waves, showing in-plane and out-of-plane
contributions to the 3-D dissipation rate, along with the corresponding 2-D case, with Bo = 500, and

(@) Re =1 x 10%, (b) Re =4 x 10, (¢) Re =1 x 10°. The effective resolutions for each 3-D case are

10243, 20483, 20483, respectively. (d) Overlaid total instantaneous dissipation rates for each of the cases
(a)—(c), showing similar dissipation rate time evolution, especially for the two highest Re values. Larger Re
corresponds to a more rapid transition from a planar initial flow to fully-developed 3-D flow. Here, &(¢) is
normalized by &g, the turbulent dissipation rate predicted by the inertial scaling argument (1.3).

estimates of numerical convergence, the convergence characteristics are reasonable, given
the complexity of the problem.

3.2. Transition to 3-D turbulent flow

Figure 4 shows the time evolution of the components of the dissipation rate for increasing
Re. For each case, prior to breaking, the wave is planar and g, is the only (small)
contribution to &3p, but the evolution of ¢;,, £,,; on and after jet impact depends on the
particular Re. For Re = 104, figure 4(a) exhibits an almost entirely planar flow, with &,,,
becoming significant only late in the breaking process, when &;y,, £,,; both grow rapidly
to their respective peak values. Before this time, the total dissipation €3p approximately
matches g>p for much of the time that the flow is planar, but deviates at later times.

At higher Re = 4 x 10*, shown in figure 4(b), 3-D effects arise earlier and are much
more important: &,,; grows gradually from the moment of impact, and at the moment
of peak dissipation, ¢;, and &,,; are comparable. At late times, they remain similar in
magnitude, suggesting that the flow has become fully 3-D and turbulent by /7 = 1.3-1.4.
As before, e3p diverges from erp at the time of rapid growth of &, &5y, reaching a
maximum value almost double that of &;p.

Figure 4(c), showing Re = 10°, is similar to figure 4(b), but it does not exhibit any phase
of latent planar flow where &;,, > €,,;, and the transition to a fully 3-D flow is much faster
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after jet impact at ¢/7 = 0.6. Note that in this case, while each of ¢, &, 1s similar to &3p,
the in-plane and out-of-plane contributions are not analogous to 2-D processes.

Finally, figure 4(d) shows an overlay of each of the total instantaneous dissipation rates
from figures 4(a—c), suggesting that the total dissipation rate evolution and maximum
value are similar between the two highest Re cases. Note, however, that since these cases
are individual realizations of turbulent flow fields, these suggestions should be quantified
further by the production and analysis of turbulent ensembles, which are prohibitively
expensive to produce at these Reynolds and Bond numbers in the present investigation.

The values of e3p are similar for the highest Re, suggesting that the breaking process has
achieved an asymptotic behaviour in terms of dissipation rate. The dissipation rates shown

in figures 3 and 4 are normalized by that predicted by the scaling argument &g = (/gh)>/h
(see (1.3)), which describes experimental and numerical data for a wide range of breaking
waves (Drazen et al. 2008; Romero et al. 2012; Deike et al. 2016). As such, our results are
compatible with the inertial-argument experimental studies for a wide range of breakers,
and previous numerical studies.

We now investigate the development to 3-D flow underneath the breakers. Figure 5(a)
shows the relative increase of the out-of-plane contributions, &,,:/€3p, with time as well
as the concomitant decrease of &;,/e3p for increasing Reynolds number. The terminal
turbulent state is reached when either curve plateaus; this state occurs earlier for larger Re,
showing the rapidity of development from planar to 3-D flow. This indicates that viscosity
mediates the 3-D instabilities involved in the transition to turbulence at low Re.

We define a heuristic development time to 3-D turbulent flow, f3p, which is the time from
impact until the moment when &,,,/&;, = ¢, where ¢ is some representative percentage of
the turbulence dissipation rate. For ¢ = 0.5, the value of 13p is indicated in each case of
figure 5(a). The choice of ¢ is empirical. It is possible that mean velocity gradients in
the streamwise vertical plane (i.e. the in-plane mean gradients) contribute differently to
the dissipation rate than out-of-plane mean gradients. On the other hand, mean gradients
may in general play a much smaller role than that of turbulent fluctuations. Given these
considerations, and in the absence of ensemble data with which the relative contributions
of mean gradients and fluctuations can be quantified, we do not currently have a basis for
prescribing a physically informed value of ¢. Nevertheless, we can assess the sensitivity of
our time transition definition by varying ¢ across a range, which is here chosen from 0.4
to 0.6. Next, small fluctuations in &,,;/e3p could affect t3p, so we filtered the data with
moving averages of window sizes 3, 5, 7, 9 and 11 points to estimate how #3p responds
to gradual smoothing of the curve. The error bars are then estimated as the range of #3p
as estimated across both of these methods, and are shown in figure 5(b). We found that
for each data point, the range in estimates of #3p was determined solely by the variation
of ¢, highlighting its potential importance. The resulting error bars capture the plausible
variation in transition time suggested by our data, and we comment that ensemble data
will shed a clearer light on this issue.

Finally, we also studied dependence of f3p on numerical resolution for the cases:
Bo = 200, Re = 4 x 10* Bo = 500, Re = 2 x 10*; and Bo = 500, Re = 10°. We found
that variation of 73 remained within the error bars. For the case Bo = 3000, Re = 2 x 107,
numerical convergence cannot be assessed.

The transition to 3-D turbulence can be analysed in terms of a turbulent Reynolds
number. We plot the transition time in figure 5(b) for the various initial conditions as
a function of two representative turbulent Reynolds numbers: using the integral length
and velocity scales given by the breaking height 4 and ballistic velocity /gh (Drazen
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Figure 5. (a) Transition to fully 3-D flow, measured as the relative contribution to dissipation rate &,,:/&3p
(solid line) and €;,/&3p (dash-dotted line) as a function of time for various Re. The transition time is estimated
as &our/ein = ¢ = 0.5 and indicated as vertical dotted lines. Larger Re drives more rapid transition. (b)
Transition time f3p/tsneqr as a function of Re;,, for all cases: an asymptotic value seems to be reached at
high Re, coherent with experimental estimations (grey line). Inset shows the transitions dynamics with time
rescaled as (t — t;,) /t3p, with colours and line legend as in (a).

et al. 2008), an integral Reynolds number is Re;,; >~ g'/?h3/% /v,,. The Taylor length scale
characterizing the inertial range is estimated as A ~ a+/10/Re;y;, and fluctuations at this
scale are estimated as v = A/¢/(15v,,) (Sreenivasan 1984; Dimotakis 2005), with ¢ a
characteristic dissipation rate taken as the peak value of e3p/(Vpp). This yields an estimate
of the turbulent Reynolds number at the Taylor micro-scale Rey = Av/v,, >~ 43, 69, 102
for the wave Reynolds numbers 1, 4, 10 x 10%.

At Re = 4 x 10*, the Bo = 500, 1000 points are identical, while the case Bo = 200
shows a slightly lower value of #3p, suggesting that for Bond numbers above 500, surface
tension does not play a significant role in the transition to 3-D flow, and hence that Re is
the main controlling parameter of this process. The inset in figure 5(b) shows the relative
contributions as functions of the rescaled time (¢ — #;,,)/#3p, including the different Bo,
showing good collapse between all cases. The 3-D transition time can be rationalized in
the Re-asymptotic limit in terms of a Kelvin—Helmbholtz scaling. Considering a uniform
density shear layer driven by the breaker speed >~ ¢ = /g /k over the depth of the turbulent
cloud >~ h, we get tspeqr =~ 1/s, where s = kg U, with U >~ Ac, and A is an O(1) constant
and kxy =~ 2/h. This shear time z,q4, 1s used to normalize the axis in figure 5(b), and since
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the O(1) constant is not precisely known, we indicate #., With a shaded zone between 1
and 2 on figure 5(b).

The transition time #3p seems to plateau at the highest Reynolds number that we were
able to test, Rey =~ 50-100. Further support of the asymptotic regime in Re number is given
by considering laboratory experiments of breaking waves (Rapp & Melville 1990; Loewen
& Melville 1994; Deane & Stokes 2002; Drazen et al. 2008), with 49 ~ 1-2 m, leading
to Re ~ 10, and wave slopes 0.4-0.5 inducing a turbulent flow with Re; ~ 500 (Drazen
& Melville 2009). From optical and acoustic records in these experiments, we estimate
the transition time as t?g’ >~ 0.35 £ 0.1s, consistent with tﬁZi ar t;‘)p. The transition to
Re-independent flow suggests a mixing transition Reynolds number Re, (Sreenivasan
1984; Dimotakis 2005) in the flow underneath the breaking wave, supported by the
similarity of e3p curves in figures 4(b) and 4(c), and the possibly asymptotic behaviour
in figure 5(b). This suggests that Rey >~ 50-100 in the developed flow corresponds
to a transition to Re-independent turbulent flow under a breaking wave, which would
be consistent with observations of the mixing transition in grid-generated turbulence
(Sreenivasan 1984) and scalar transport in turbulence (Pullin 2000; Dimotakis 2005).

4. Air entrainment and bubble statistics
4.1. Cavity shape at entrainment

In this section, we describe air entrainment and bubble statistics. We begin by discussing
the shape of the cavity at impact, which controls the size of the main cavity and the
associated maximum volume of air entrained (Lamarre & Melville 1991; Deike et al.
2016). Studies using a fully nonlinear potential flow formulation, i.e. inviscid conditions
and neglecting surface tension effects, have been able to reproduce the shape of the
breaking wave at impact to a high level of precision (Dommermuth et al. 1988), with
discussion on the elliptical or parametric cubic shape of the cavity (Longuet-Higgins 1982;
New 1983). However, these methods do not resolve the post-impact process. Lamarre
& Melville (1991), Blenkinsopp & Chaplin (2007) and Deike et al. (2016) discuss that
the maximum volume of air entrained is constrained by the length of breaking crest L..
In particular, A (the cross-sectional area of the initially ingested cavity in the breaking
process) controls the amount of entrained air initially available for subsequent breakup into
a bubble size distribution. It has been assumed that the cross-sectional area of entrained
air scales as A o wh? /4 (Duncan 1981; Lamarre & Melville 1991; Blenkinsopp & Chaplin
2007; Deike et al. 2016), arguing implicitly that the height of the wave is large compared
to the width of the jet.

As already noted in previous work, when considering a two-phase solver able to resolve
post-impact, moderate Bo leads to a jet thicker than observed in the laboratory (Chen
et al. 1999; Song & Sirviente 2004). Such moderate Bond numbers were nevertheless
considered in most previous studies when dealing with 3-D breaking waves. This is
because larger Bo exhibits increased separation between the wavelength and Hinze scales,
and thus incurs a prohibitive numerical expense if all scales are to be resolved (Deike et al.
2016; Wang et al. 2016). Here, we use the high numerical efficiency gained through AMR
and increased computing power, and are thus able to resolve breakers showing greater
separation between length scales. Figure 6(a) shows again that as Bo increases, the wave
jet becomes thinner and projects further forward ahead of the wave. When increasing the
Bond number, the jet at impact appears thinner and more closely similar to jets observed in
laboratory experiments. It is important to remark that by comparison of the orange and red
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curves in figure 6(a), at Bo = 500, the jet thickness is independent of Reynolds number,
which confirms that jet thickening is due to capillary effects.

The thicker jet can be interpreted by comparing the wave height with the capillary
length. For breakers in the laboratory, 2 ~ 10 cm and /. = /y/pg ~ 3 mm (the capillary
length), so that /I, ~ 33; in the DNS for Bo = 200, we have h//. ~ 7, which indicates the
importance of capillary effects. By increasing to Bo = 1000, we get to i/l ~ 16, which
is closer to laboratory conditions (but still smaller than waves from large-scale breakers in
the field).

We therefore propose a correction of entrained area A based on the width of the
jet I;. First, the cavity shape is not truly circular but approximates closely an ellipse

(alternatively, a parametric cubic function, Longuet-Higgins 1982) with aspect ratio /3
and its major axis rotated at an angle of approximately /4 to the horizontal (New 1983;

New et al. 1985). The cavity area is then A = npz/(4«/§), where p is the major axis of
the ellipse. If we now assume that due to the thickness of the jet, the major axis is given
by p >~ 31/4(h — Kl,), where K is a positive O(1) constant, which we set to 1, we obtain
A=7nh—-—m/ (k\/}_%))2 /4. This retrieves the usual relation for the cavity volume in the
limit Bo — oo.

Figures 6(b—d) show wave profiles at the moment of impact with a superimposed
“/3-ellipse’ rotated at 7/4 and with the major axis given by our estimate, 3'/4(h —
71/ (k+/Bo)). For higher Bond numbers (500, 1000), the ellipse fits very well, suggesting
that our proposed cavity scaling is appropriate at high Bond numbers. Note that for the
lowest Bond number (200), it approximates the shape of only the very rear of the cavity.
This suggests that the Bo = 200 case is qualitatively distinct from higher Bo cases, in that
capillary effects are sufficiently strong to change the morphology of the plunging breaker.
Nevertheless, the good fit observed at higher Bond numbers supports the conjecture by
New (1983), further supported by Dommermuth e al. (1988), that the evolution of the
overturning wave is independent of the details of the interior flow. Furthermore, since
the +/3-ellipse has been observed frequently in the above-cited literature, our result also
confirms that this evolution is independent of the details of the initial conditions.

This leads to the cavity correction for the entrained volume, defined as the ratio of the
actual entrained cavity V over its asymptotic value at high Bo number Vp:

Z _(h— 7/ (kv/Bo))?
Vo h? '

This new scaling is compared with numerical data in figure 6(e) and shows good agreement
at high Bond numbers, with weaker agreement at lower Bond numbers as expected from
figures 6(b—d). Note that 2-D and 3-D simulations are considered in figure 6(e), and the
cavity shape is identical, since the 3-D transition of the flow takes place after impact, as
discussed in § 3. The cavity shape is well grid converged, as shown in the supplementary
material.

C= .1

4.2. Number of bubbles

We now discuss the formation of bubbles and the time evolution of their number from
impact. Numerical convergence is verified for the time evolution and time-averaged bubble
size distribution in the supplementary material.

Figure 7(a) shows the total number of bubbles A as a function of time (¢t — t;,)/T.
More bubbles are produced with increasing Bo, showing an order of magnitude variation
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Figure 6. (a) Profiles of the volume-of-fluid interface at the moment of wave impact, obtained from 2-D
simulations. Blue: Bo = 200, Re = 10°. Orange: Bo = 500, Re = 4 x 10*. Red: Bo = 500, Re = 105, Purple:
Bo = 1000, Re = 10°. For each case, L = 11. Note the dependence of cavity size on Bond number, but not
on Reynolds number (compare red and orange curves). (b—d) Wave profiles at the moment of impact with
superimposed fitting ellipses: (b) Bo = 1000, (¢) Bo = 500, (d) Bo = 200, with Re = 10° in all cases. (¢) Plot
of cavity area over different Bond numbers. Dashed line indicates corrective scaling from (4.1).
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Figure 7. (a) Total number of bubbles as a function of time (¢ — #;,,) /7. (b) Number of bubbles of size greater
than the Hinze scale, r > rg, as a function of time. In both @ and b, more bubbles are observed for higher
Bo number, corresponding to the larger cavity. The bubble count is similar for the two Re number tested at
Bo = 500. (¢) Detailed count breakdown for two cases, in log-log scales, showing the number of bubbles larger
than the Hinze scale, r > rg, and the total count, as a function of time, measured from the moment of breaking,
for various cases. A nearly linear increase in number of bubbles is observed. (d) Turbulent dissipation rate as a
function of time, showing both the total dissipation rate and the out-of-plane contribution, for the same cases
as (¢). Maximum ¢ is obtained when the cavity has collapsed fully.

in peak bubbles produced, while the production is less sensitive to Reynolds number. The
total number of bubbles begins increasing at the moment of impact, and peaks at the end of
the active breaking stage, between 0.757 and T after impact. Particularly at higher Bond
numbers, there is an increase in production rate at 0.47, which persists until ~ 0.757.
Similar observations are made when considering only the super-Hinze scale bubbles r >
ry, as shown in figure 7(b). The number of super-Hinze scale bubbles is much smaller
than the total count, between 20 at Bo = 200 to 750 at Bo = 1000.

The increase of bubble production rate at (t — t;,,) /T = 0.4 correlates with the breakup
of the main cavity. Figure 8 shows a view of the surface from below from (¢ — #;,,) /T =
0.06 to 0.48. In figures 8(a,b), the main cavity is mostly intact, with some minor shedding
of bubbles appearing off a limb of the cavity in (figure 8b). Due to the turbulence around
the cavity, it deforms and ruptures dramatically in figure 8(c), creating a large number
of bubbles of many sizes. The remaining parts of the cavity then destabilize further in
figure 8(d), and eventually break up entirely by 0.77 after impact. Note that a significant
number of bubbles are produced before this time: figure 8(a) shows a snapshot of the
breaker from below, where many small bubbles have been entrained at the leading edge of
the breaker, but well before the main cavity (visible to the rear of the wave) has begun to
disintegrate. Some chains of larger bubbles are also visible near the main cavity and under
the primary splash-up.
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Figure 8. Snapshots of the liquid—gas interface, from below, for the case Bo = 1000, Re = 10°, at times (f —
tim)/T of (a) 0.06, (b) 0.28, (c) 0.38, (d) 0.48, immediately after breaking, showing the fully resolved scales of
bubble phenomena. Note in particular the very small bubbles visible at and in front of the leading edge of the
breaker. At later stages, the air cavity collapses and leads to a wide range of bubble sizes.

Returning to figure 7(c), we see the breakdown between sub- and super-Hinze scale
bubbles for two particular cases, Bo = 200 and Bo = 500, both at Re = 40 000. The total
count is dominated by sub-Hinze scale bubbles. The number of bubbles increases rapidly
and at a roughly constant rate from the moment of impact until 0.77 or 0.87 after impact,
when it begins to decay. The increase in production between 0.47 and 0.77 is subtle (on
the log-log scale); before then, the bubble production rate appears to follow a broadly
linear trend (indicated by the dashed black line).

Finally, figure 7(d) shows the energy dissipation rate during the breaking process for
the same two cases as figure 7(c), similarly to figure 4. Note again that the energy
dissipation rate increases rapidly from 0.47 to 0.67 after impact, along with the
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out-of-plane contribution. The turbulence dissipation rate (as well as its out-of-plane
contribution) is maximum when the cavity is fully broken.

This discussion suggests that two effects are controlling the bubble production and
resulting size distribution: (i) the initial air entrainment and impact, which will control
initial sub-Hinze scale production; and (ii) the fragmentation process of the cavity, which
depends on the cavity size and the turbulence being produced during impact.

We discuss more closely the relative roles of the initial sub-Hinze production and the
later multiscale fragmentation processes of the main cavity, and examine the statistics of
the bubble populations. For each case, the number N and sizes of bubbles are sampled at
various times ¢ and binned by equivalent bubble radius r into bins of size Ar, resulting
in a time-dependent size distribution N(r/ry, t/T), where rg is the Hinze scale given by
(1.8), and T is the wave period, and which has been normalized by bin size such that
S N(r/ra,t/T)dr >~ Y N(r/rg, t/T) Ar = N (¢/T), where N (¢/T) is the total number of
bubbles at time ¢, and summation is done across all radius bins.

Figure 9 shows the contours resulting from plotting N(r/rg, t/T) over time and radius,
for the cases: (a) Bo = 200, Re = 4 x 10%; (b) Bo = 500, Re = 4 x 10%; (¢) Bo = 500,
Re = 10°; (d) Bo = 1000, Re = 10°. In each case, for (t — tim)/T < 0O there are no bubbles
because the wave has not broken. The moment of impact corresponds with the generation
of an array of sub-Hinze scale bubbles along with a single large ‘bubble’, visible as an
isolated line on the plot, which is the main cavity (see § 2.4). (Individual or small numbers
of similarly sized bubbles are visible as isolated lines on the plot.) This persists until ( —
tim)/T = 0.4; it is illustrated by figure 8(a). At (t — t;,)/T = 0.4, the cavity destabilizes
and breaks into an array of large bubbles (see figures 8c,d), which themselves break up
and further populate the size distribution, so that at /7 = 0.6-0.7 there is a broad array
of large and small bubbles, with the distribution weighted towards the small bubbles. At
late times, ((f — t;,)/T = 1 onwards), the number of large bubbles reduces as they break
up or reach the surface and burst. The small bubbles remain mostly entrained in the liquid
for the remainder of the simulation. For a sufficiently long simulation time, all the small
bubbles would eventually rise to the surface and burst; however, the resolution of these
bursting events would require even higher resolution (on the individual bubble) (Berny
et al. 2020) and are not considered here. We note that the dynamics of entrainment of the
small bubbles at impact will present similarities with the physics of air entrainment by
falling jets, as discussed by Kiger & Duncan (2012).

Significant qualitative differences in the distributions between the different cases are
apparent only with respect to Bond number; larger Bo corresponds to a smaller Hinze
scale ry, so that the distributions are generally larger relative to ry. A clear indicator is
the size in r/ry of the main cavity. Reynolds number Re does not affect the shape of the
bubble size distribution (compare the two Bo = 500 cases) at Re = 4 X 10%, 10°, since the
mean turbulent dissipation rate €; (which informs rp) is not sensitive to Re for sufficiently
large Re; see § 3.

4.3. Bubble size distribution over the active breaking time: scalings

Having discussed qualitatively the bubble production and size distribution as a function
of time, we now turn to quantitative evaluations of the size distribution and its scale
dependence. We focus on time-averaged distributions over the active breakup time, as
statistical convergence of the data in the time evolution remains challenging and would
require ensemble averages (requiring substantive computing time). We aim to scale the
number of bubbles in the system. Figure 6 shows that the cavity shape changes at small Bo
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Figure 9. Contours of bubble size distribution over time: (a) Bo = 200, Re = 40 x 103; (b) Bo = 500,
Re = 40 x 10%; (¢) Bo = 1000, Re = 100 x 103; (d) Bo = 500, Re = 100 x 103. For each case, L = 11. With
increasing Bond number, the main cavity size increases compared to the Hinze scale. The bubble statistics are
similar for the two Re numbers at Bo = 500. Small sub-Hinze scale bubbles are produced at impact, while a
broad bubble cascade occurs once the cavity collapses.

due to capillary effects, resulting in a smaller cavity, and a smaller volume of air entrained.
This is confirmed by the bubble count in figure 7.

The time evolution of the bubble size distribution can be described as an extension of
the model proposed by Deike et al. (2016) for the super-Hinze bubble size distribution,
based on a turbulence—buoyancy balance

N(r,t) =B AL M r—10/3rn—12/3’
27t Wg

(4.2)
where A is the cross-sectional area of the initially ingested cavity in the breaking process,
L. is the length of breaking crest, e(t — A1) is the energy dissipation rate, At is the
time between breaker impact and peak energy dissipation rate, which corresponds to the
cavity collapse time, and W =~ h/7 is a dissipation-weighted vertical mean velocity of the
bubble plume over the active breaking period, with t the active breaking period, and B a
dimensionless constant.

Following Deike et al. (2016), the time scale of the cavity collapse is evaluated as At ~
r,zn/ Tl 3, where r,, is the cavity size, evaluated using the scaling of the cavity length scale,
rm = h —l;; i.e. at high Bo number, it will be independent of the Bond number (that is,
the cavity of large-scale breakers does not depend on surface tension), while at moderate
to low Bond number, surface tension effects become important. The cross-sectional area A
controls the amount of entrained air available initially for subsequent breakup into a bubble
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size distribution, which we estimate from the cavity shape (see (4.1)), so that AL, =V «

r,anc. This leads to the geometric scaling N(r) x rﬁ/ 3, which indeed indicates that the

number of bubbles will increase with the size of the cavity.
Introducing the Hinze scale as characteristic length scale, (4.2) can be written in
non-dimensional form as

B ~10/3 2/3
N(r/rig, t/T) = 25 = A7) <L> v (r—H> . 4.3)
T

Wg 'y g \Tm

As described in Deike et al. (2016), the factor e(t — At)/(Wg) describes the time
evolution while the number of bubbles is determined by the strength of the breakup
process and the scale separation between the initial cavity size and the Hinze scale,
VI /rm)*? o (o /r) P (Le frh).

We note that the controlling parameter in bubble breakup is the Weber number, which
defines the ratio between the inertial turbulent stresses and the surface tension. When
analysing the cavity collapse, a Weber number can be defined, based on the cavity radius
of r,,, that depends on Bo but, as we have suggested above, approaches a constant value

h/2 for sufficiently large Bo. The cavity’s Weber number is then We,, = Cpe~%/*h/3 /o,
where C; is a constant, and ¢ is the energy dissipation rate. Since the dissipation rate ¢
scales with the wave height &, we obtain We,,, = C1pgS?/ok> = Cy Bo S*; and we further

note that the scale separation r,,/rg is linked to the Weber number by r,,/rg (Wen)3/5.
This links the driving Weber number of the bubble statistics and breakup processes with
the Bond number and slope of the wave.

Separate studies of bubbles and droplets breakup in turbulence have demonstrated
that one can observe the N(r) o r~19/3 scaling in contexts other than breaking waves
(Mukherjee et al. 2019; Soligo, Roccon & Soldati 2019; Riviere et al. 2021), suggesting a
universal character of the breakup cascade, provided that the injection size is much larger
than the Hinze scale, r;,, > ry. Numerical and experimental results have shown that the
number of child bubbles formed by the breakup of a large super-Hinze bubble in turbulence
follows a simple power-law scaling, expressed in terms of the bubble Weber number,
N o (ru/rg)%, with a between 1 and 2 (Vejrazka et al. 2018; Riviere et al. 2021), which

appears compatible with our results; since from (4.3), (1/ r?{) (ra/ )23 ~ Lcrﬁi/ 3 ”177/3 ~

(rm/r)*3(L¢/ry). Note also that the DNS from Riviere ef al. (2021) observe a nearly
linear increase of the number of bubbles during the fragmentation process at high Weber
number, analogous to the behaviour observed for the cavity collapse.

We consider the time-averaged version of (4.3), analogous to the equation proposed by
Deike et al. (2016), to rescale the data onto a universal scaling

B ¢ OBy T
Nsuper(r/rH) = (_> 3 (E) ) 4.4)

mwe\m) 7

for super-Hinze scale bubbles. The sub-Hinze scale follows a r~3/? scaling. Since the

super- and sub-Hinze distributions must be continuous at the Hinze scale, we obtain

B ¢ PNV )\
Noyp(r/re) = — — | — =3 - . 4.5)
2w Wg \ry ry \TH
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4.4. Bubble size distribution over the active breaking time: comparison with laboratory
experiments

We rescale the experimental distribution by the estimated cavity volume, as Deane &
Stokes (2002) report a bubble size distribution n(r) in units of number of bubbles per bin
size, per unit volume. For the present comparison, we consider that initially, all bubbles
are contained in the cavity volume V.

The time-averaged bubble size distribution, for all Re and Bo cases, over the active
breaking time #/7 € [0, 1.2] are shown in figure 10, and compare with the laboratory
experiments from Deane & Stokes (2002). For all Bo numbers, the bubble size distribution
follows the direct cascade scaling for super-Hinze bubbles, N(r/ry) o (r/ rer) 103 We
resolve up to one order of magnitude below the Hinze scale at L = 11, in the Bo = 200
case. For all cases, within this range, the size distributions have developed a shape that

is clearly less steep than the super-Hinze results, close to the r—3/2 scaling, but the
transition between the two regimes is not as sharp as observed in the experimental data.
Note that our simulations stop at the end of the active breaking period, and as such do
not describe the late-time plume evolution and steepening of the bubble size distribution,
which evolves due to both degassing and further breakup, as discussed by Deane & Stokes
(2002), Deike et al. (2016) and Gaylo, Hendrickson & Yue (2021). For Bo = 200, where
the numerical resolution is sufficient to allow for a discussion of the sub-Hinze scale
bubbles, we observe a scaling compatible with the experimental data set from Deane
& Stokes (2002), N(r/rg) « (r/rH)_3/ 2 The size distribution is normalized such that
[ N(r/re)d(r/rg) = N, the total number of bubbles. The partitioning in volume of air
entrained is about 94 % within the super-Hinze range of scale, and about 6 % of the
air within the sub-Hinze bubbles, similar to the discussion of Deane & Stokes (2002).
Figure 10 shows that the distribution in the super-Hinze regime between the Bo = 1000
and experimental Deane & Stokes (2002) data agrees reasonably well in the super-Hinze
region and suggests that the asymptotic regime in Bo observed for the cavity volume in
figure 10 has been reached. All data in figure 10 are reasonably well collapsed onto a single
curve, including the experimental data of Deane & Stokes (2002), given the uncertainties
in the measurements and estimations of the various terms in the scaling model.

5. Droplet statistics
5.1. Stages of droplet production

We now discuss droplet production. Although all breaking waves in this study produce
some droplets, large numbers of droplets appear only at larger Bo. Figure 11 shows
qualitatively some of the different production mechanisms observed in these cases:
some droplets are produced immediately on impact (figure 11a); a secondary splash-up
(figure 11b); a sustained surface splashing in the developed breaker (figure 11c¢); and
some jet droplets, which are partially resolved in these simulations (figure 11d). Numerical
convergence of our data is discussed in detail in the supplementary material.

Figure 12(a) shows the sizes of droplets produced by the secondary splash relative to the
mesh size, suggesting that many of these droplets in particular have radii of approximately
the smallest mesh size, hence they have to be considered with caution. Figure 12(b) shows
a fragmenting jet produced later in the breaking process, with only the largest droplets
exhibiting a radius of more than double the mesh size. The largest droplets appear during
the sustained splashing phase (corresponding to figure 11¢), and statistics for such droplets
are converged numerically.
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Figure 10. Time-averaged bubble size distributions over the full time window, N(r/rg), together with the
experimental data from Deane & Stokes (2002). Experimental data are plotted over r/ry on the abscissa, and
scaled according to (4.4). All data collapse reasonably onto a single curve given the complexity of the problem.
The sub-Hinze volume is about 6 % of the total entrained volume.

The total droplet production over time is shown in figure 13. Fewer droplets are produced
for all cases compared to the bubble count (figure 7), and for Bo = 200, fewer than
100 droplets are produced over time, which prevents any statistical convergence of the
distribution. The number of droplets produced increases with Bo, and for Bo = 500, both
Re values show a similar time evolution in the number of drops, with about 200 drops at
most. The Bo = 1000 case shows the largest droplet counts, with many droplets produced
at early times after impact and up to 800 drops.

For the higher Bond number cases, figure 13(a) shows two prominent peaks in the
droplet production. The first sharp peak occurs at approximately the same time for both
Bo = 500, 1000, at (¢t — t;,,)/T =~ 0.2. Figure 11(b) shows qualitatively the flow around
this time for the Bo = 1000 case: shortly after the initial impact, which produces a small
amount of droplets, there is a secondary impact between the splash-up and the bulk of the
wave; this causes a second splash-up, which projects directly upwards from the surface and
produces many droplets. For Bo = 200, while this same process occurs, surface tension is
too strong to allow this secondary splash-up to generate droplets. This corresponds with
the first peak in figure 13(a), and explains why it appears only for large Bond numbers.
The peak is sharp because the droplets are produced in a single well-defined process, and
they are destroyed quickly as they fall back to the surface. The second peak is broader
and occurs for all cases at around (¢ — t;,,) /T = 0.5 to 0.6. The state around this time is
shown qualitatively for Bo = 1000 in figure 11(c). It occurs as the wave proceeds through
its active breaking phase, and is made up of many small-scale splashing events and the
bursting of large bubbles that were ingested earlier in the process. Since this process is
longer and not as well-defined in space or time, the peak in figure 13(b) is accordingly
broader.

Figure 13(b) shows the energy dissipation rates for the same cases as in figure 13(a). In
contrast to the close connection between the bubble statistics and energy dissipation rate,
there is no clear correlation between the dissipation rate and the droplet production.

We now discuss the droplet statistics. The droplets are gathered and binned similarly to
the bubbles, into distributions N;(rq/l., t/T), where [. is the capillary length. The droplet
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(b

Figure 11. Snapshots of the liquid—gas interface at different magnifications and different times, showing

different stages of droplet production, for the case Bo = 1000, Re = 10°. (a) At (t — t;,,)/T = 0.06, splashing
produced by the initial impact at the front of the breaker. (b) At (t — t;,,) /T = 0.2, secondary splash-up shortly
after impact, producing a peak in droplet count. (¢) At (¢t — t;,,)/T = 0.52, sustained droplet production later
in the active breaking phase. (d) At (¢ — t;,,) /T = 1.1, jet droplet production at late times.

populations are influenced strongly by the strength of the breaker (Erinin ez al. 2019), and
by the impact of the (ballistic) jet, particularly at early times, suggesting that we should
use the gravity-capillary length as the relevant length scale. Note also that the lack of
clear dependence on Reynolds number in the drop production suggests that viscosity does
not play a role in the drop formation process. Figure 14 shows the contour maps for the
droplet size distributions for the cases: Bo = 200, Re = 4 x 10*: Bo = 500, Re = 4 x 10*;
Bo = 500, Re = 10°; Bo = 1000, Re = 10°. These corroborate the picture drawn from
figure 13: there are two main peaks of droplet production, which produce short-lived drops;
the first peak is sharp and the second is broader. We also observe that these peaks, and
especially the second peak, are the source of large droplets. There is a slight Bond number

942 A27-27


https://doi.org/10.1017/jfm.2022.330

https://doi.org/10.1017/jfm.2022.330 Published online by Cambridge University Press

W. Mostert, S. Popinet and L. Deike
()

(©) _ | ()

Figure 12. Snapshots of the liquid—gas interface for two droplet production stages, showing an overlaid section
of the numerical mesh, for the case Bo = 1000, Re = 10°. (a,b) At (f — tim) /T = 0.2, production of fine
droplets by the secondary splash-up. Many of these droplets are resolved to less than four mesh cells per
droplet diameter, for which numerical convergence is difficult to achieve. (¢,d) At (t — t;,) /T = 1.2, jet and
droplet production after bubble bursting. Note that the largest droplets exceed four mesh cells per diameter.
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Figure 13. (a) Total number of droplets plotted over time for various cases, measured from moment of
impact. (b) Energy dissipation rates for the same cases, showing the total contribution.
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Figure 14. Contours of droplet size distribution over time: (a) Bo = 200, Re = 40 x 103; (b) Bo = 500,
Re = 40 x 10%; (¢) Bo = 500, Re = 100 x 10°; (d) Bo = 1000, Re = 100 x 103. For all cases, L = 11.

dependency seen in the sizes of the droplets produced in the first peak; that is, increased
Bond number produces more droplets (as in figure 13a) as well as larger ones.

5.2. Time-averaged distribution and comparison with Erinin et al. (2019)

We now seek to compare the present numerical data with experiment. For this purpose,
we consider the droplet size distributions time-averaged over (¢t — t;,;,)/T € [0.2, 1]. The
experimental data presented in Erinin et al. (2019) are reported as a droplet count per
bin size, per unit length of breaking crest. In order to compare with the numerical data,
we multiply the Erinin et al. (2019) data by the wave tank width (1.15 m), which yields
an absolute number of drop distribution, per unit bin size. We consider only the Part
I data from Erinin ef al. (2019), which correspond to the earlier splashing stage that is
best resolved in our data, and we do not consider the later drop production stage, which
corresponds to jet drop production. We observe a reasonable agreement between our
numerical data and those of Erinin et al. (2019) in the range of drop size 0.08r4/I. to
rq/le, in terms of total number of ejected drops and scaling with radius. This observation
is extremely encouraging, as we note that the breaker from Erinin ef al. (2019) is at a
slightly smaller wave slope than our breakers, and a slope (or wave height, or falling jet
speed) dependency is expected. Note that again, the effect of Reynolds number is small,
since the two Bo = 500 cases at Re = 4 x 10%, 10° collapse well.

To compare the scale of drops being produced, we normalized the drop size by the
capillary length /., and therefore present N;(r;/l.) as a function of rgz/l., shown in
figure 15. We observe a remarkable general agreement in shape in the overall number of
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Figure 15. Time average of droplet size distributions over the time window #/7T € [0.2, 1.0], and
experimental data from Erinin ez al. (2019). Experimental and numerical data are scaled consistently.

drops, as well as the range of drops produced, while the data of Erinin et al. (2019) extend
to smaller droplets that we are not yet able to resolve. Some Bo dependency is evident
in the numerical data, which can be attributed to the enhanced surface tension effects
that reduce the fragmentation process at low Bo. As with the bubble size distributions,
there probably exists a high Bo regime independent of surface tension, but this critical
Bo value has not yet been identified. The expected dependency in slope also complicates
the analysis. Understanding these effects requires both experimental and numerical data
at various slopes. However, these open questions do not reduce the importance of having
achieved direct numerical simulations of drop production by a splashing process, which
are well-resolved numerically and agree reasonably well with the experimental data in
terms of the range of drop size produced and their total number — despite significant
differences in the details of the initialization between them. We do remark that the presence
of wind, not accounted for in this study, would likely generate spume, which would affect
the droplet size distributions, but would require the resolution of the turbulent boundary
layer forcing the wave.

5.3. Droplet velocity statistics

Finally, we consider the statistics of droplet velocities. Figure 16(a) shows a contour plot of
the droplet velocities (normalized by the deep water phase speed c,;, = +/g/k) over time. It
shows that smaller velocities of the order of v ~ ¢, are prevalent throughout the breaking
process, with larger droplet velocities ~ 3c,,—4cp;, appearing during the secondary splash
(see figure 11b) and the sustained splashing later in the breaking period (see figure 11c).
Comparison with figure 14(d) shows that these larger velocities are attained at the same
time that large droplets appear. Indeed, the joint distribution of velocities and droplet
radii, during the time of the sustained splashing ((t — #;;,)/T =~ 0.6) shown in figure 16(c),
suggests that the highest speeds are attained by the largest droplets, though there are not
many such droplets. Large droplets may also be very slow. Most droplets are small (as
confirmed by the marginal size distribution, shown in figure 16(b) and matching earlier
figures), but they vary broadly in speed. Finally, the marginal velocity distribution is shown
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Figure 16. (a) Contour of droplet velocities for the case Bo = 1000, Re = 10°, plotted over time on the
horizontal axis, and velocity normalized by the wave phase speed on the vertical axis. (b) The droplet size
distribution at time (¢ — t;,,) /T = 0.6 averaged over a time width Az/T = 0.1. Dashed line: power law with
exponent —2, as in region I of Erinin et al. (2019). (c¢) The velocity distribution for the same time as (b). Lines
are fits for gamma (solid) and log-normal (dotted) distributions. () The joint size—velocity distribution for the
same time as (b).

in figure 16(d), showing a peak in droplets that have low speeds ~ ¢, with a drop-off at
very small speeds and a skew toward high speeds. The distribution is not governed by
a power law, unlike the size distributions, but appears to be best described by a gamma
distribution (solid line) or by a log-normal distribution (dotted line), both of which have
been observed in many fragmentation processes (Ling ez al. 2017; Villermaux 2020).

It should be noted that the velocities presented in figure 16 are those of all droplets in
the gas phase, and therefore represent droplets at all points in their ballistic trajectories.
The data therefore do not in general represent only ejection speeds per se. Nevertheless,
it can be assumed that the largest droplet velocities observed in figures 16(a,c) are those
of ejecting droplets, since no larger velocities are ever observed. Thus the fastest ejection
speeds in the data are of the order of 3c,,—4cpp,, and they mostly occur for droplets larger
than approximately 0.15/, and up to 0.4/.—0.5/.. Complete statistical separation of the
just-ejected droplets from the rest of the droplet population remains to be conducted in a
future study.

6. Concluding remarks

We have presented high-resolution simulations of breaking waves using DNS of the
two-phase Navier—Stokes equations with surface tension exhibiting transition in a
multiphase environment from laminar to turbulent flow, for a wide range of Reynolds
numbers. By varying Bond and Reynolds numbers at high numerical resolution, we discuss
the energetics of the breaker as well as statistics for bubble and droplet populations. For
the energy, we have analysed the transition to 3-D flow in terms of the volume-integrated
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dissipation rate in the water phase, and showed a Reynolds number dependency for values
of the wave Reynolds number less than 103, which corresponds to a mixing transition
at a turbulent Reynolds number Re, =~ 100, analogous to results in a variety of canonical
single-phase turbulent flows. We characterize the transition time scale, which is associated
with a shear mechanism, the horizontal breaker speed and the vertical breaker height. The
result thus appears generic for highly energetic breaking waves at high slope. The shear
layer instability mechanism driving the transition is local and is expected to be independent
of the type of breaker (spilling or plunging). Other features of the energetics, such as a
large peak in dissipation rate during the active breaking phase, can be explained in terms
of the breakup of the main cavity entrained by the plunging breaker. This contextualizes
critically prior observations in the literature that the energetics of numerical 2-D breakers
approximate those of 3-D breakers (Song & Sirviente 2004; lafrati 2009, 2011; Deike et al.
2015).

Regarding the bubble statistics, we resolve across multiple scales extending from the
main cavity to below the Hinze scale, particularly at low wave Bond numbers, and find
reasonable agreement with experiments (Deane & Stokes 2002) across the full range of
resolved bubble sizes. We describe capillary effects on the plunging jet and ingested cavity,
and characterize an asymptotic Bond number. We extend the bubble size distribution
model from Deike et al. (2016) to account for variation due to capillary effects in the size of
the main cavity ingested by the breaker, and in the subsequent fragmentation and breakup
cascade of the cavity. Incorporated in the scaling, and as noted by Deike et al. (2016), is
the close connection between the bubble statistics and the energy dissipation rate in the
bulk liquid. The scaling shows good collapse of the data and, again, good agreement with
experiments.

We also present statistics on the droplet populations produced by the breakers. We find
good agreement in the shape of the droplet size distributions with the recent experiments
of Erinin et al. (2019), although some slope and Bond number effects are present and
remain to be quantified precisely. Statistics on the droplet velocities are discussed, and it
is found that the fastest-ejecting droplets travel at up to four times the phase speed of the
wave, and are also some of the largest droplets; these are produced during the most intense
splashing periods of the breaker.

The bubble and droplet size distributions seem to be both independent of the Reynolds
number, once above the critical Reynolds number identified in studying the 3-D turbulence
transition. Consistent results in simulations and experiments for the bubble and droplet
size distributions, when scaled by the characteristic length scale of the problem, reinforce
the discussion in the literature (Deike et al. 2015, 2016) that the details of these breakers
are essentially local in the sense that whatever the initial conditions of the breaker, the
dissipative, bubble and droplet properties depend only on parameters of the wave at the
point of breaking, and not on the pre-breaking history of the wave.

We note that the results discussed here are grid converged, thanks to the use of adaptive
mesh refinement techniques, which allow an effective grid size of 2048° grid points. These
results show the ability to resolve the mixing transition in the turbulent flow in multiphase
DNS of 3-D breaking waves, and pave the way for realistic direct simulations of turbulent
two-phase flows.

Supplementary material. Supplementary materials are available at https://doi.org/10.1017/jfm.2022.330.
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