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An Inverse Optimal Control Approach for
Learning and Reproducing Under Uncertainties

Sooyung Byeon™, Dawei Sun

Abstract—This letter presents a novel inverse optimal
control (IOC) approach that can account for uncertainties
in measurements and system models. The proposed I0C
approach aims to recover an objective function including a
time-varying term, called variability, from a given demon-
stration. All uncertainties of the demonstration and the
system model can be lumped into the variability such that
the optimality condition violation is further reduced. The
inferred objective function including the variability has two
advantages over the objective function inferred by exist-
ing I0C approaches: first, the variability can enhance the
capability of describing the given demonstration since it
represents how the uncertainties of the system affect the
objective function; and second, the proposed IOC approach
can reproduce the trajectories such that we can predict the
behavior of the system even with system modeling errors.
We show that the variability exists and is unique under
attainable assumptions. lllustrative numerical examples are
presented to demonstrate the proposed method.

Index Terms—Inverse optimal control,
tainty, variability, trajectory reproduction.

lumped uncer-

[. INTRODUCTION

HIS letter presents a novel inverse optimal control (IOC)

approach for learning from an observed demonstration
that is perturbed by unknown uncertainties and reproduc-
ing trajectories in different situations. The IOC has been
successfully applied to inferring an objective (i.e., cost or
reward) function such that a demonstration (i.e., trajectory [1]
or sequence [2]) is optimal for the inferred objective func-
tion. Since the objective function is a succinct representation
of the demonstration, the IOC has been widely accepted in
robotics [3], economics [2], human motor skills modeling [4],
and human intent inference [5]. Two other imitation learning
categories, learning trajectory [6] and learning control pol-
icy [7], are also useful, but they require a diversity of observed
demonstrations and are limited to generalizing the learned
information in unseen situations.
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The state-of-the-art IOC works have encompassed the data-
driven approach to explain a demonstration in the optimal
control framework. There are two categories of the recent
IOC approaches based on the necessity for solving the (for-
ward) optimal control problem in the learning process [1], [2].
The first category of the IOC approaches, called the bilevel
method, iteratively updates the objective function and solves
the optimal control problem for an updated objective function
to fit the demonstration into the optimal solution [8]. However,
this letter is computationally demanding when solving the
optimal control problem iteratively. Motivated by this limi-
tation, the second category of the IOC approaches, called the
minimum principle method, utilizes the optimality conditions
which must be satisfied by the demonstration. The Karush-
Kuhn-Tucker (KKT) condition based method [9] enables us
to parameterize the unknown objective function from the full
trajectory of the optimal control problem. The Pontryagin
minimum principle based method [1], [10] only requires an
incomplete trajectory, and thus, it can solve the IOC problem
with an unknown finite-time horizon or infinite-time horizon.
An online method for control constrained IOC problem is also
available [11].

However, there are two major limitations to the current IOC
approaches in general. First, existing IOC formulations rarely
identify uncertainties explicitly. For the linear quadratic regu-
lator (LQR) case, it is possible to parameterize the objective
function such that the inferred parameter is statistically con-
sistent [12]. However, for more general cases, this approach
might not be applicable. One noticeable approach for the
nonlinear system dynamics is to infer a feasible set of the
objective functions [13]. Finding all feasible objective func-
tions may improve the ability to describe the system and
demonstration, but the method [13] relies on a complex algo-
rithm and it finds a conservative set. Second, existing I0C
works have rarely reproduced trajectories of the system under
uncertainties. Reproducing trajectories means to retrieve an
encoded optimal control strategy learned by the IOC approach
to predict the behavior of the system in a new situation [6]. The
majority of the IOC studies have focused on inferring a true
objective function from the given demonstration and knowl-
edge of a nominal system. However, if the nominal system
model includes an unknown modeling error, the true objective
function and the nominal system model might fail to predict
the system behavior. A model-free IOC approach [14] has been
studied, but it accounts for the LQR case only.
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We propose a novel IOC approach for learning from demon-
stration and reproducing the system’s trajectory by inferring
an objective function with a time-varying term, called vari-
ability. By introducing the variability, we can enhance the
descriptiveness of the IOC approach to the given demonstra-
tion while avoiding using a complex set of parameters (e.g.,
over interpolation). The variability is designed to account for
the combined effects of all uncertainties that induce optimal-
ity violation, motivated by the idea of lumped uncertainty
in robust control [15]. Also, the inferred objective function
and the variability can be utilized to predict the behavior of
the system in different situations, e.g., different initial condi-
tions. Our main contribution is to formulate and solve a novel
IOC approach that enhances the capability for interpreting the
demonstration and can describe the system behaviors in unseen
situations. Furthermore, the range of the variability provided
by the proposed approach can be used to reproduce the trajec-
tory tubes [16] which assess the variation in the trajectories
caused by uncertainties, and are useful for some applications
related to safety verification.

The rest of this letter is organized as follows. Section II
formulates the IOC problem. Section III presents the novel
IOC approach using the variability. We demonstrate numerical
examples in Section IV. Section V concludes the study.

[1. INVERSE OPTIMAL CONTROL FORMULATION

We consider the nonlinear difference equation for the
discrete-time system model:

(D

where x; € R” denotes the state, uy € U C R” denotes the
control input within the feasible convex set U, and k € Z is
the time step. The true system model f* : R” x U — R"
is assumed to be continuous and differentiable. An unknown
objective function is defined as:

X1 = " (Xk, wp)

T-1

J(x0.73, w071, 0%) £ gr(xr) + Y 0% g(xp, wp)
k=0

2

where T denotes the time horizon, x[o, 77 and ufo 7] denote the
state trajectory and control trajectory for 0 < k < T, respec-
tively. Let uy = O without loss of generality. 6* € ® C R”
denotes the true parameter of the objective function with a
feasible parameter set ®, and g : R” x U — R’ is the basis
function. gr : R” — R denotes the final state objective func-
tion. The final (goal) state can be specified by X7 = Xgou1 € R"
or be free. The objective function is a linear combination of
the parameter and the basis function which has been widely
accepted in the IOC research [1], [8], [11] since it makes
the computation easier while maintaining the generality of the
objective function. The optimal control problem is:

inf  J(X[0,77, W0, 7], %)

u[0,7]

such that X 1 = f*(xx, wp),
Yk € [0, T1],

u; € U,
X()ER"

3)

where Xg denotes the initial condition and is known.
Let {x’["0 T],u’["o T]} be the solution of the optimal control

problem (3) and {x[0,7], ujo,7]} be the observed demonstration
that is perturbed by measurement noise.

The IOC problem is defined as inferring an optimal parame-
ter which minimizes the optimality violation from a potentially
incomplete and noisy demonstration {X[o,z, Ujo,;;} where 0 <
| < T and T can be unknown to the IOC problem. Note that
a special case with [ = T (complete trajectory with known
time horizon) can be handled without loss of generality [2].
For the rest of this letter, we assume the true system model f*
is unknown for the IOC problem but only a nominal system
model that includes the system modeling error

“

is known where f : R*” x U — R" is assumed to be
continuous and differentiable. The Pontryagin minimum prin-
ciple provides necessary conditions for the optimal control
problem (3) [11]. The Hamiltonian H is given as:

X1 = f (X, ug)

H Xk, g, i1, 0) 2 07 g(xe, we) + AL f (e, wg)

(&)

for all kK > 0, 6 € ® denotes the nominal parameter of the
objective function, and Axy; € R”" denotes the costate. For
simplicity, let us use abbreviations Hy £ H(xg, ug, M+1,0),
8k e g(Xk, ug), and fi £ f(Xx, ux). The minimum principle
gives the following necessary conditions for optimality.

M = VxHp = Vxgi0 + Vxfiki+1,
0 = VuHi = Vugi0 + Vufirit 1,

Vk e [0,1—1]
Vk € K

(6)
(N

where VyH;y € R" and VyH; € R™ denote the partial
derivatives of the Hamiltonian for x and wu, respectively.
ngk c Rnxr’ fok c Rnxn, Vugk c Rmxr’ and Vufk e Rmxn
are similarly defined. K; is defined as follows.

Definition 1 (Inactive Control Constraint Time Steps [11]):
A set of time steps K; is defined as

K2 {k:0<k<Ilu e intU)} 8)

where intU denotes the interior of the control constraint U.

In general, the IOC problem is defined as estimating 6 that
minimizes the violation of the optimality condition (7) from
the noisy demonstration {X[o 1, [0 7}, nominal system model
f with system modeling error, and basis function g [2]:

inf VaHi|?

inf > I VaHll
kek;

such that A = VxHg,

Vke[0,]—1] 9

where ||-|| denotes the Euclidean norm.

We present an existing solution to the general IOC problem
to utilize the solution for the proposed IOC approach and to
make this letter self-contained. We assume the following to
reformulate the IOC problem as a static optimization problem.

Assumption 1 (Jacobian Invertibility): Vyf € R™" and
Vxfk € R™" are invertible for all k > 0.

Note that Assumption 1 is widely accepted in the IOC stud-
ies [1], [2]. If Assumption 1 holds, the optimality conditions
in (6) and (7) can be rewritten as

N I 0 67 .
A - 2 G 10
et [ml] [—fok—‘vxgk vxf,:‘][xk] e (10)
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%
Vg Vatl|,” | 2 Piasr =0 (an
k+1
for all k € K;. The mixed constraint approach [2], [11] allows
a slight violation in (7) while (6) holds exactly. To solve the
mixed constraint IOC problem, another objective function:

Ji(zo) £ ) IIFiGizoll* = 2§ Qizo (12)
kEK]
where
k
gk AL l_[Gl c R(n-‘rr)x(n-‘rr) (13)
i=0
Q£ ) (FiGo" (FiGy) € RUH>(n) (14)
kekK;

is defined and Q; is a positive semidefinite matrix. It is known
that rank(Q;) is monotonically increasing for time step k£ > 0,
and Q; has full rank if the given demonstration is informa-
tive [2]. If Q; has full rank, a unique IOC solution 6 can be
determined by solving the following quadratic programming:

inf Ji(zp)

subject to Zzp =60 € ©
zo=[6T AT|T

O={eckR :0)>=1,0">0 (15

where Z 2 [I 0] e R™™™+) and ||6)|> = 1 denotes the
normalization of 6 to eliminate the scalar ambiguity [14]. 6!
denotes the first element of # and we assume that the first
basis function is relevant to the objective function in (2) and
thus, ! is nonzero. Note that (12)-(15) represent a solution
method for (9) [2].

Although the solution to (15) provides a reasonable estimate
0, there are two limitations. First, the IOC approach only pro-
vides a (potentially biased) estimate of the parameter 0 that
could be too restrictive to describe the objective function under
uncertainties. For instance, for an intent inference problem
in [5], an agent’s intent is mapped into a single parameter 6.
However, if the demonstration is perturbed by uncertainties,
the parameter could be inconsistent even if the intent is con-
sistent. Instead of mapping a single parameter to an intent,
it is more reasonable to associate each intent with a set of
parameters to assess the effect of uncertainties. Second, the
existing IOC approaches have rarely considered the trajectory
reproduction problem with a time-varying objective parame-
ter. From an application perspective, the IOC can be used to
predict the future behavior of the system in a new situation
based on the given demonstration [17], [18]. However, if the
nominal system model f is perturbed by the modeling error,
even if the true parameter 6* is known, an accurate prediction
is not feasible.

IIl. VARIABILITY FOR LUMPING UNCERTAINTIES
A. Problem Reformulation

We generalize the objective function in (2) by introducing
the variability A6y € R” to define a new I0C problem. The
variability is designed not only for improving the descriptive-
ness of the objective function but also maintaining the structure
of the objective function, i.e., a weighted combination of the

basis function. This design prevents the use of overly complex
parameters to describe an observed demonstration from the
IOC perspective, and thus, it provides a good balance between
the descriptiveness and complexity of the objective function.
The variability can ameliorate the capability of reproducing
trajectories by encoding the uncertainties that are reproducible
under similar situations. Also, we can exploit an inferred range
of variability to reproduce a set of trajectories, which can
assess the variation of system behaviors under uncertainties.
We define the time-varying parameter 6; € R":

Ok 20+ Ab, Vkel0,T] (16)

where 6 is the solution to (15). Note that the proposed method
relies on the existing IOC method in Section II to obtain 0 as
an initial point. Then, the objective function with 6 is:
T—1
Jao (X071 00,11 60.77) = gr(xp) + Y _ 0 g(xi. w) (17)
k=0
and the Hamiltonian in (5) is also redefined accordingly:

HXge, W, A1, 0k) 2 0] (ki W) + A1 f (i, ug) - (18)

that can be simplified as H, 2 I:I(Xk,uk,kk+1,9k). Now,
we propose a feasibility problem for finding the objective
parameter 6 = 6 + A6, Yk € [0, I], where 6 solves (15).

inf C
AB[0,11,[0,1+1]
such that A, = VxH, Vk €0, ]
0= Vuflk, Vk € K; (19)

for a constant C € R. A key difference from the existing IOC
formulation in (9) is that the minimum principle violation can
be further reduced even if the given demonstration is perturbed
by uncertainties. If Assumption 1 holds, the costate can be
propagated by:

Mert = =Vufy ' Vagrf + Vi i, V€ 10,11 (20)

where XA¢ is the solution to the IOC problem (15). Then, we
can derive two constraints to satisfy the minimum principle
exactly with the variability:

A = VxHi = VxH, — Vigi A0, Yke[0,1]  (21)
0 = VuHy = VyHi + Vugi A6y
= Vugi0 + Vufiri+1 + Vugi Ak, Yk € K. (22)

Note that two different IOC problems (9) and (19) can have the
same costate dynamics, i.e., Ay = VxHy = VxH} by imposing
a designed constraint VxgirAfr = 0. Equations (21) and (22)
can be reformulated for all k € K;:
Vx8k A 0 A

Aby = Vg AGy = =v (23
|:Vugk:| k= VSRS |:_Vugk9 — Vufirit1 € (23)
where Vgr € R and v; e R™™ can be deter-
mined using the IOC solution {6, A} in (15), demonstration
{X[0,11, u0,1}, and the costate propagated by (20). We define
the variability as the minimum weighted norm vector:

A6y = arg IE(%HHAQkH%V subject to  (23) 24)
k

where ||A9k||%v = AO,{TWAOk. W e R™" denotes the user
defined weight matrix and is positive definite.
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B. Existence and Uniqueness of Variability

To guarantee the existence and uniqueness of the variability
A6, we assume and define the followings.

Assumption 2 (The Dimension of Basis Function): The
dimension of basis function r is equal to or greater than
the sum of state and control input dimensions n + m, i.e.,
n+ m < r. Note that it is easy to satisfy Assumption 2 since
the dimension of the basis function can be arbitrarily large at
the cost of more time steps required to meet the rank condition
rank(Q;) = n + r [11]. For an irrelevant element of the basis
function g’, the corresponding parameter is zero, i.e., 6* = 0.

Definition 2 (Full Rank Time Steps): Let Assumption 2
hold. A set of time steps R; is defined as

R 2 1{k:0<k<I rank(Vgy) = n+ m} (25)

and k € R; implies that Vg; has full rank at time step k.

The full rank condition of Vg is not restrictive if the
demonstration is informative (i.e., the persistence of excita-
tion [2]). Any arbitrary basis function element can be added
to make Vg have full rank as discussed in Assumption 2.
Then, the existence and uniqueness of the variability can be
shown.

Theorem 1: Let Assumption 2 hold and the variability A6k
follows (23) and (24). Then, for all k € K; N R), the variability
A6 exists and is unique as:

A =WVl (vgw Vel ly,. (26)

For all k ¢ K; N Ry, let A6 = 0 without loss of generality.

Proof: (Existence) Let Vg,T< € R™™(+M pe the Moore—
Penrose pseudoinverse of the matrix Vgg. It is known that
the linear system (23) has at least one solution A6 if and
only if ngVg}ka = v [2], [19]. Since Assumption 2 holds,
for all k € Ry, ngVg,t = [, € R™", Thus, at least one Af
satisfies (23).

(Uniqueness) We have shown that there is at least one A6
such that (23) is satisfied. Among all general solutions, the
minimum weighted norm solution to (24) is uniquely given
as (26) in [15] (Chap. 3). |

Remark 1: The derivation of (26) is based on the assump-
tion that the variability A6 is smaller than the parameter
estimate 6, i.e., |AGc|lw < w||@|lw where u < 1 is a small
real positive constant. If ||Af|w is too large, it implies the
basis function is inadequate or uncertainties are too severe.
The variability reveals the degree of optimality violation of
the given system and demonstration by its norm.

Remark 2: The variability depends on {xy, ui} since the
constraints (23) depend on the demonstration. Identifying an
explicit function A6;(Xg, ux) from multiple demonstrations
could be an interesting future work.

C. Reproducing Trajectory

To reproduce a new trajectory from the learned parame-
ter O, we present an optimal control problem. A standard
optimal control problem in (3) can be solved with a tra-
jectory optimization tool (e.g., CasADi [20]). However, the
proposed time-varying objective parameter in (17) is usu-
ally not well fitted into the standard optimization problem,

and thus we need to address the trajectory reproduction.
Let X = [x! K7 € R and f : R x U — RH!
be the augmented state and the augmented system model,
respectively:

X1 = [:1111] = [f(:]:_lik)] 2 f Ry, wp).

The time dependent variability 6; can be formulated as the
function of the augmented state, i.e., 9y = 6(Xx), where 6(Xy)
is a continuous and differentiable function. The piecewise
cubic Hermite interpolating polynomial can be used to pre-
serve the shape and guarantee differentiability of 6; [21]. The
objective function (17) can be evaluated by

27)

T-1

T a6 ®o.11, w071, Ojo.17) = gr(xr) + Y 00 g(xp wp). (28)
k=0

Let Xy be the initial state of the trajectory reproduction. We
aim to reproduce a whole sequence {X[o,7], U077} by solving:

inf  Jae Kpo.17, 0,77 610.77)
o, 1)
such that Xy Zf(ik, w), welU

Vke[0,T], Xoe€R" (29)

where X £ [x] k] e R

IV. NUMERICAL EXAMPLES

To evaluate the proposed IOC approach, we present numer-
ical examples with a two-link robot arm shown in Fig. 1. We
employ the same physical dimension from [1], [21]: the length
of each arm I} = I, = 1 m; the length from each joint to the
center of each arm r; = rp = 0.5 m; the mass of each arm
m; = my = 1 kg; and the moment of inertia of each arm
L=L=05 kgomz. The state, control input, and true system
model are given as [22]:

. 1T T
@], w=[n ]
M, ()& + Cp(at, ) + gr(a) = T

(30)
€19

X = [oq oy

where @ = [e; @2]” € R? and & = [&;  &2]7 € R? denote
the angle and angular velocity of each arm in rad and rad/s,
respectively. 7 = [r; 1]7 € R? denotes the torque input
to each arm in N - m. M, () € R2%Z ig the positive definite
inertia matrix, C,(a, &) € R%2*2 denotes the Coriolis matrix,
and g, (o) € R? denotes the gravity vector. We discretize the
dynamics with time interval Ar = 0.01 s [1] and the total
time step is 7 = 200. The control constraint is specified as
U = [—15 15]%. The true objective parameter 6* € R° and
corresponding basis function are given as (adopted from [1]):

0* =[0.884 0442 0147 0 0 0 0 O o]T (32)

2 2 2 2 2 a2 3 rS]T(33)

sk=[17 Y un o o 4 & T
with the zero final objective, i.e., g7(x7) = 0. The goal state
is set to Xgoa = [40° 50° 0°/s 0° /s]T. Note that this example
holds Assumption 2 since n+m =6 <r =9.
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Fig. 1. Two-link robot arm with physical dimension.
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Fig. 2. Observed demonstration with Gaussian noise level ¢ = 1072.

A. Learning From Demonstration

We test whether the proposed IOC approach can learn the
appropriate objective parameter 6 from a noisy demonstration
and a nominal system f with system modeling errors.

1) Demonstration: Let ({X[o,7], ujo,7;} be the observed
demonstration with zero-mean Gaussian noise. The level of
noise in standard deviation is ¢ = 1072 for the state and
control input. The initial state is given as xo = [0 0 O 017.
The demonstration is obtained by solving (3) with (31)-(33).
CasADi [20] is used as a trajectory optimization tool and the
source codes in [1] are used as a baseline of the numerical
example. Fig. 2 shows the demonstration {X[o,77, ujo,77}.

2) Learning Objective Parameter: The proposed I0C
approach is used to recover the objective parameter 6.
A nominal system model f is given with 5% errors for
{l1, r1,my, I} and —5% errors for {l5, r», my, I}, respectively.
The weight matrix is given as W = [y. 6 is recovered by
the conventional IOC in (15) and 6 is recovered by the
proposed 10C approach in (19). Fig. 3 shows that the recov-
ered Oy is represented as a set of distributed points, and a
convex hull can show simplified information about the recov-
ered objective parameter. The center of 6; deviates from
0 which means the proposed approach can obtain the cen-
ter of the feasible parameter set that is not available from
the conventional IOC approach. Interestingly, the convex hull
is away from the true objective parameter 6* with 6 =
[0.829 0.416 0.152 0.288 —0.060 —0.154 0.077 0.002 0.000]”
and 0 includes nonzero values for irrelevant basis functions in
the true model (32) and (33). The maximum || Af||w is 0.018,
which is smaller than ||@]|lw = 1, i.e., the volume of the convex
hull in Fig. 3 is small, and thus, Remark 1 holds.

n a
- I
0.44 -
o ¢ _
0.435 O =0+ Aby. L 0.42
¢ Center of 6, ‘ 0418
-~ 043 r Convex hull o
> < 0.416
0.425
0.414
042 T3 0.412
oas | ) - 041
0.826 0.827 0.828 0.829 0.83 0.831 0.832
0.41 I |
0.83 0.84 0.85 0.86 0.87 0.88

91

Fig. 3. First and second elements of true objective parameter
(6*1,6*2), recovered objective parameter (97, 62), and (8} 62).

o ~
4 -~ ~ <
> ~
# i T 1 ~
& e v from demo. %
2 / ~
= = @y from demo. ~

ay tube by 6o
ay tube by 67

o, @ (rad)

0 20 40 60 80 100 120 140 160 180 200
Time step (k)

Fig. 4. Trajectory tubes reproduced by the convex hull of the inferred
parameters 6 k. The tubes are obtained by reproducing trajectories using
0y for all kin convex hull indices and taking minimum and maximum
values of all reproduced trajectories for each time step.

3) Reproducing Trajectory Tube From Convex Hull: We
numerically examine that the obtained convex hull of 6; can
reproduce trajectory tubes containing the given demonstration.
The trajectory tubes [16], which represent a range of the pos-
sible system behaviors under uncertainties using the convex
hull of the inferred 6; (in Fig. 3) and the fixed goal state
Xgoal, are presented. In Fig. 4, the tubes are produced using
the convex hull of the parameter 6, i.e., taking minimum and
maximum of the reproduced states Xjo 7] using 6 for all k
in convex hull indices. The proposed IOC approach can pro-
vide the trajectory tube without knowledge of uncertainties.
Note that the convex hull can efficiently account for multiple
demonstrations from different initial states and different time
horizons. Fig. 4 shows that the convex set of the 6 is effec-
tive to predict the system behavior as a range of trajectories.
The trajectory tube can be used to examine the safety of the
system by inspecting an overlap between the trajectory tubes
and dangerous environments (e.g., obstacles).

B. Reproducing in Different Initial Conditions

We reproduce trajectories with random initial states and
multiple sets of uncertainties using the conventional 10C
approach (15) and the proposed approach (19). For learning
the objective parameters, a single demonstration is provided
to two IOC approaches (i.e., as a training data set) with
xo = [0 0 0 0]7. This demonstration is generated by solv-
ing (3) with the true system model f* and true parameter 6*
and perturbed by multiple levels of Gaussian measurement
noise. The true parameter 6* and the learned parameters 6
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Fig. 5. Monte-Carlo simulation results with varying initial states, levels of noise, and multiple modeling errors. Each cell represents the prediction
errors in RMSE between demonstrations x}fs‘t (which are not available to IOC approaches) and reproduced trajectories xx, Yk < [0, 200]. Evaluated

RMSEs using 30 reproduced trajectories are averaged at each cell.

and 6y are used for reproducing the system trajectories from
multiple initial states, X = [x y 0 017, where x and y are
uniformly distributed within [—5°, 5°]. The reproduced tra-
jectories X[o, 7 can be obtained by solving the optimal control
problem with the nominal system model f with multiple lev-
els of modeling error and three different parameters 6*, 6,
and 6, respectively. For comparison, the demonstrations XE%StT]
for each initial state Xy by solving (3) with f* and 6* are
provided (i.e., testing data sets). A total of 30 reproduced tra-
jectories with respect to each condition are simulated. Fig. 5
shows that the proposed IOC approach can reproduce the
trajectories with smaller root mean square errors (RMSEs),
compared to using the true objective function and the con-
ventional IOC approach in all ranges of noises and system
modeling errors. The evaluated RMSEs show that the objec-
tive function inferred by the proposed IOC approach improves
the prediction accuracy by 22.36% and 16.16% (mean)
compared to the two other approaches, respectively. Fig. 5
clearly shows that the proposed IOC approach can account
for uncertainties in trajectory reproduction by encoding the
variability.

V. CONCLUSION

We proposed a novel IOC approach to enhance the capa-
bility of the IOC by introducing a time-varying parameter,
called the variability, for describing an objective function
under uncertainties. The variability provides more information
about the objective function and improves the quality of trajec-
tory reproduction. The proposed approach is computationally
efficient and guarantees the existence and uniqueness of the
variability under reasonable assumptions.
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