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Approximating Reachable Sets for Neural Network-Based Models
in Real Time via Optimal Control
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Abstract— In this brief, we present a data-driven framework
for real-time estimation of reachable sets for control systems
where the plant is modeled using neural networks (NNs). We
utilize a running example of a quadrotor model that is learned
using trajectory data via NNs. The NN learned offline can be
excited online to obtain linear approximations for reachability
analysis. We use a dynamic mode decomposition (DMD)-based
approach to obtain linear lifting of the NN model. The linear
models thus obtained can utilize optimal control theory to obtain
polytopic approximations to the reachable sets in real time. The
polytopic approximations can be tuned to arbitrary degrees of
accuracy. The proposed framework can be extended to other
nonlinear models that utilize NNs to estimate plant dynamics.
We demonstrate the effectiveness of the proposed framework
using an illustrative simulation of quadrotor dynamics.

Index Terms— Approximation methods, machine learning,
reachability analysis.

I. INTRODUCTION

AS THE systems of interests of control engineers get
more complex, and data get inexpensive to obtain in

large quantities, machine learning finds increasing applica-
tions in control systems. Furthermore, obtaining simulated
data for multiple trajectories of the system of interest is
often easier than designing physical control. For instance,
neural networks (NNs) often find applications to model plants,
actuators, controller logic, and even for modeling the human
operator’s intent and logic. To this end, data-driven approaches
to discover underlying physical models for dynamical systems
are very useful.
Besides, set-based properties of safety, reachability, and

controllability provide strong analytical bases to quantify
system performance (especially under uncertainties). Of these,
estimating reachability property is closely tied with other
properties, such as viability, controllability, and safety [1].
In addition, reachability can be utilized for optimal control
synthesis and high-level decision-making [2]. Reachable sets
can be computed analytically by solving Hamilton Jacobi
(HJ) partial differential equations (PDEs). Such HJ-based
solutions of reachable sets are time-consuming and suffer from
the “curse of dimensionality,” making real-time applications
difficult. To alleviate this, various numerical approximation
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techniques have been proposed to compute approximate reach-
able sets without explicit solutions to the associated HJ
PDEs. These techniques employ polytopic approximations [3],
Pontryagin’s optimal control [4], and numerical differential
equation solvers [5], to name a few. Based on these, a number
of reachable set computation tools are available that utilize
numerical techniques for approximate reachable sets and tubes
(such as [6], [7], [8]), both forward and backward in time.
On the other hand, the ability to design control signals,

and comment upon system properties under operational noise,
parameter uncertainties, and system nonlinearities, is of a lot of
importance. As a result, NNs are applied in the entire control
system design process of system identification [9], output
tracking [10], control synthesis [11], state estimation [12],
and devising supervisory control logic [13]. Recently, NNs
have been applied to learn nonlinear dynamical models of
varying complexity. A robotic arm’s inverse dynamics is
inferred in [9] using iterative learning on real data from an
iCub robotic arm. In [13], a learning-based scheme is used
to infer supervisory control logic for cybersecurity analysis
of supervisory control systems. Bansal et al. [14] synthesized
control signals to control a quadrotor by learning its dynamics.
More generally, utilizing machine learning techniques for
system identification has been noted to be particularly useful
in numerous recent system modeling and identification texts,
such as [15], [16], and [17]. However, despite the widespread
usage of NNs in solving dynamics and control problems,
the absence of reachable set computation/approximation tools
for NN-based models prohibits a reliable application of NN
under uncertainties and operating conditions that demand
safety guarantees. Since the machine learning models use data
from an unknown dynamical system, numerical approaches
to compute approximate reachable sets can be extended to
the learned models themselves. To this end, the Koopman
Operator theory has been used to learn NNs, as it provides a
method to find a computationally scalable, equivalent linear
lifted model [18]. Conversely, learning-based methods are
also used to learn the Koopman operator itself, for control
synthesis [19]. Nevertheless, linear control methods can be
utilized on such linear lifted models to estimate reachable
sets as polytopes, and an optimal control problem can be
formulated to propagate these polytopes over time. The poly-
topic reachable set approximation can be made arbitrarily
accurate [4]; therefore, the reliability of the proposed method
is conditioned on the accuracy of the following: 1) the NN
being able to approximate unknown plant models and 2) the
Koopman operator being able to lift the NN model to a
higher dimensional manifold and approximate it as a linear
system.
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A. Related Works

The general problem of computing output bounds of an
NN can be readily related to reachable set computation
for learned dynamical models. Output bound computation
for NN-based controllers using specific activation functions
has been achieved by solving mixed-integer linear programs
(MILPs) [20] and relaxed linear programs (LPs) [21]. This
makes the amenability toward real-time applications particu-
larly low. Such methods exploit the properties of individual
perceptrons in an NN, connected via rectified linear unit
(ReLU) activations to obtain output bounds. Huang et al. [22]
employ Bernstein polynomials to obtain Taylor approxima-
tions of NN-based control systems to obtain reachability flow
pipes. In [23], exact reachable sets are computed for a control
system employing ReLU activation functions-based NNs, with
specific switched linear dynamics. The above methods utilize
explicit system dynamics, or specific activation functions to
obtain reachable sets for NN models. Most NNs employed to
learn system dynamics can be arbitrarily nonlinear. On the
other hand, reachable set computation/approximation using
HJ methods or polytopes is extant in controls literature [1],
[3], [4]. Being exact model-based methods, they rely on the
complete knowledge of the dynamical modes of the system,
an assumption no longer true for NN-based system modeling.
To the best of our knowledge, there do not exist methods
that extend optimal control theory based on local linear
system approximations of the given NN to obtain approximate
reachable sets for the NN models.

B. Contributions

The main contributions of the proposed method are listed
as follows.
1) We utilize a dynamic mode decomposition (DMD)-

based framework to obtain approximate linear models
for the given learned nonlinear dynamics. This allows
us to use optimal control theory to obtain polytopic
approximations to the reachable sets for the approxi-
mately equivalent linear system.

2) The proposed framework is numerically efficient and
much more amenable to real-time applications than
solving MILPs or relaxed LPs at each time step. We
demonstrate this using a realistic and detailed example
of real-time reachable set approximation for a quadrotor
model—a widely studied system for identification and
control using NNs.

3) Finally, the framework can employ “plug-and-play”
reachability modules from other reachability assessment
tools for the approximately equivalent linear systems.
That is, the introduced polytopic reachable set approx-
imation methods can be replaced by other reachability
modules, as shown in Fig. 1.

The rest of this brief is organized as follows. In Section II,
we formulate the reachability problem for a learned model.
Section III contains the main framework to estimate reachable
sets for nonlinear models learned by an NN. The approximate
reachable set computation is posed as an optimal control
problem to obtain polytopic reachable sets. In Section IV,

Fig. 1. Schematic of the proposed data-driven framework for approximate
reachable set computation.

we implement the reachability estimation framework on an
illustrative quadrotor example. We first consider a nominal
quadrotor reachability case and then consider a separate sce-
nario of estimating reachable sets when two of the rotors have
failed. Finally, Section V presents our concluding remarks.
Notations: For two vectors u and v, their inner product is

denoted by 〈u, v〉. For a matrix A, we denote its transpose by
AT and its Frobenius norm by ‖A‖F . For two sets A and B ,
we denote their Minkowski sum as A⊕B � {a+b | a ∈ A, b ∈
B}. For a finite set A, if a random variable x is distributed
uniformly in the set A, we write x ≈ UA.

II. PROBLEM FORMULATION

Consider the nonlinear dynamical system given as follows:
ẋ(t) = f (x(t), u(t)), and x(0) ∈ X0, u(t) ∈ �, t ≥ 0

(1)

where x ∈ X ⊆ R
nx is the state, x0 is the initial state in a

known initial set X0, and the control input u ∈ R
nu resides

in the set � at all times t . Given some input-state data in the
form of Xk � {x0, . . . , xN }, Uk � {u0, . . . , uN } over multiple
trajectories k = 0, . . . , nT , the unknown dynamical map f
is learned using the trajectory data. The trajectory data is
sampled from ẋ = f (x, u) in (1) at some sampling rate �t ,
such that (xi , ui) � (x(i�t), u(i�t)) for i = 1, . . . , N .
A data-driven method, such as an NN, is employed to

estimate the unknown dynamics f from the time series data
trajectories as follows:

˙̃x(t) = f̃�(x̃(t), u(t)). (2)

Here, x̃(t) is the state obtained by the NN from the data
Xk,Uk , and it approximates the true state x(t) as long as
f̃� ≈ f . The approximate dynamics f̃� is parameterized
by �, which contains the parameters of the learning method
employed (i.e., NN weights and biases). Without loss of
generality, we assume the initial state x̃(0) ∈ X0 and control
input u ∈ �. The reachability problem for the NN model is
then to find

R f̃ (τ ;X0) �
{
x̃(τ ) | ˙̃x = f̃�(x̃, u), x̃(0) ∈ X0, u ∈ �; �

}
(3)

at some time τ , given initial conditions X0 and admissible
control set �. Note that the problem to compute R f̃ (τ ;X0)
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is nontrivial due to the arbitrary, unstructured nonlinearities
present in the NN modeling (parameterized by �).
Remark 1 (NNs as Universal Approximator [24]):

Given time series trajectory data Xk,Uk , a causal NN
with parameters � can be employed to approximate f
appropriately. Obviously, f̃� → f as the number of
available trajectories nT → ∞; therefore, x̃(τ ) → x(τ ) for
0 ≤ τ ≤ N�t .
So, if we can find the set R f̃ (τ ;X0), it gives us a good

approximation of the reachable set for the nonlinear system
in (1). Since we do not concern ourselves with devising a new
learning scheme, we shall restrict our discussion toR f̃ (τ ;X0).
Moving forward, we assume the dynamics of the system to
be given by f̃�, as the NN can be trained accurately due to
Remark 1.

III. REACHABILITY FRAMEWORK FOR NN MODELS

In this section, we will assume the nonlinear dynamical
system has been learned using available NN techniques and
focus on approximating reachable sets of NN dynamics f̃�
using a relatively computationally cheap method. To this end,
we revise a formulation of DMD that allows for control
inputs [25]. This allows us to build finite-dimensional approx-
imation to the infinite-dimensional Koopman operator, to get
equivalent linear time-varying system models.

A. DMD With Control

Let us look at a data-driven method for approximating the
Koopman Operator, called DMD. Nominal forms of DMD
involve trajectory data (called “snapshots”) consisting of state
evolutions over time xk . The trajectory data get mapped under
a linear operator as xk+1 ≈ Axk . DMD with control (DMDc)
was proposed to include input-state relations to such trajectory
evolutions in [25]. Given an input-state data point xk, uk ,
DMDc attempts to find the pair of operators A, B , such that
xk+1 ≈ Axk + Buk for data points on state xk ∈ R

nx and
input uk ∈ R

nu . The data matrices at time step k are temporal
snapshots of the trajectory, of width w ∈ N, given by

�k,w �

⎡
⎣ | |
xk · · · xk+w

| |

⎤
⎦, ϒk,w �

⎡
⎣ | |
uk · · · uk+w

| |

⎤
⎦.

(4)

The snapshot with data points propagated one step in time can
then be represented as follows:

�k+1,w = �k,w

[
�k,w

ϒk,w

]
, where �k,w �

[
A B

]
. (5)

Note that the mapping � varies over time and is parameterized
by the snapshot width w. The DMDc solution to (5) can
be viewed as a least-square regression problem to find a
� ∈ R

nx×(nx+nu), such that

�k,w = argmin

∥∥∥∥�k+1,w − �k,w

[
�k,w

ϒk,w

]∥∥∥∥F, or

�k,w = [
A B

] = �k+1,w

[
�k,w

ϒk,w

]†

(6)

where [·]† denotes the pseudoinverse. Extracting columns from
the least-square solution in (6), we get a linear time-varying
system, such that xk+1 ≈ Akxk + Bkuk .

A numerically efficient way to compute the least-square
solution utilizes singular-value decompositions of data snap-
shot matrices [25]. Over time, matrices Ak, Bk can be esti-
mated in real time with a time-moving window of width w.
In our case, the moving window obtains snapshot data from
the input-state relation learned by the NN. Note that the state
snapshot data can be easily obtained by exciting the learned
model f̃� by sampling an arbitrary control input from � that
forms �k,w and noting NN output into the propagated state
data snapshot �k+1,w . This gives an independent framework
that uses excitations of the NN model to obtain approximate
linear models, depicted in Fig. 1.

B. Approximate Reachable Set Computation Using DMDc
Model

Now that we have linear approximations of the form xk+1 =
Akxk + Bkuk , and we will focus on obtaining reachable sets
for the linear time-varying system (A(t), B(t)). Here, the
system matrices A(t) and B(t) satisfy exp {A(t)�t} = Ak

and
∫ �t
0 exp {A(s)s}B(s)ds = Bk for t ∈ [k�t, (k + 1)�t).

That is, Ak and Bk get updated at time step k + 1 upon
receiving new snapshot data via (5); hence, A(t) and B(t) get
updated at time (k + 1)�t . Let 	(t, 0) be the state-transition
function associated with the linear system (A(t), B(t)). That
is, 	̇(t, 0) = −A(t)	(t), and 	(0, 0) = I . Let R	(τ ;X0,�)
be the reachable set of the system (A(t), B(t)) at time τ . If the
DMDc approximation is accurate, it should suffice to concern
ourselves with approximating R	(τ ;X0,�).
Without loss of generality, we assume that the admissible

control set and the initial state set are polytopes as follows:

X0 =
n1⋂
i=1

{
v ∈ R

nx | 〈ci (0), v〉 ≤ γi(0)
}

� =
n2⋂
i=1

{
u ∈ R

nu | 〈di , u〉 ≤ εi
}

(7)

defined for arbitrary vectors v. In addition, ci and di are normal
vectors parameterizing the hyperplanes defining each face of
the polytopes in (7). Let the hyperplanes Hi ≡ 〈ci (0), v〉 =
γi(0) touch the set X0 at points x∗

i (0) for i = 1, . . . , n1.
The above polytopic assumption is not limiting, as arbitrarily
convex, compact sets X0 and � can be bounded by tight
polytopes as (7). Clearly, the following hold true:

x∗
i (0) = argmax

v∈X0

{〈ci (0), v〉} , and

γi(0) = max
v∈X0

{〈ci (0), v〉}. (8)

A polytopic reachable set approximation looks at only the
points of contact x∗

i (0) of reachable sets of the linear system
(see [3], [4]). Similarly, let x∗

i (τ ) be the point of contact of
R	(τ ;X0,�) at the hyperplane Hi(τ ) defined as follows:

H ∗
i (τ ) = {

x | 〈ci(τ ), x∗
i (τ )〉 = γi(τ )

}
(9)

for i = 1, . . . , n1, at time τ > 0. Such an argument can
be made for compact and convex sets X0 and �. From [4],
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this ensures that the reachable set R	 remains compact and
convex at all times. This allows us to find hyperplanes H ∗

i (τ )
to support the reachable set. Using an argument similar to (8),
the point of contact between H ∗

i (τ ) and R	 at an arbitrary
time τ can be defined as follows:
x∗
i (0) = argmax

v∈R	(τ ;X0,�)

〈ci (τ ), v〉

= argmax

{
〈ci (τ ), v〉 s.t. v(t) = 	(t)x(0)

+
∫ t

0
	(t, s)B(s)u(s)ds, u(t) ∈ �, t≤τ

}
.

(10)

Also, from (8), the distance between H ∗
i (τ ) and R	 can be

expressed as follows:
γi(τ ) = max

v∈R	(τ ;X0,�)
〈ci (τ ), v〉

= max

{
〈ci (τ ), v〉 s.t. v(t) = 	(t)x(0)

+
∫ t

0
	(t, s)B(s)u(s)ds, u(t) ∈ �, t≤τ

}
.

(11)

For a given set of initial points of contact x∗
i (0), (10) and (11)

depend only on the choice of u ∈ �, thereby forming an
optimal control problem.
Theorem 1: Let the optimal control u∗

i (τ ) be the solution
to argmaxu(τ ) 〈ci (τ ), B(τ )u(τ )〉. Then, for ċi = −A(τ )T ci(τ )
with the initial condition γ ∗

i (0), the hyperplane H ∗
i (τ ) ≡

〈ci (τ ), x∗(τ )〉 supports reachable set R	.
Proof: The proof follows from Pontryagin’s maximum

principle [3]. The contact point x∗
i (τ ) evolves as ẋ∗

i =
A(t)x(τ ) + B(t)u∗

i (τ ) for the given optimal control. For
the linear system A(t), B(t), the costate λ(t) evolves as
λ̇(t) = A(t)T λ(t). Choose ci (τ ) = λi (τ ), where λ̇i (τ ) =
−A(τ )Tλi (τ ) combined with the initial condition λi (0) =
γ ∗
i (0) and suppress time indices for brevity. Note the time

derivative of 〈λi , x〉 equals

d

dτ
〈λi , x〉 = 〈λ̇i , x〉 + 〈λi , ẋ〉

= 〈−ATλi , x〉+〈λi , Ax +Bu〉 = 〈λi , u〉 ≤ 〈λi , u
∗
i 〉

⇒ d

dτ
〈λi , x

∗
i 〉 = d

dτ
γ ∗.

Combined with the initial conditions on the points of con-
tact, i.e., 〈λi (0), x∗

i (0)〉 = γ ∗
i (0), one gets 〈λi (τ ), xi(τ )〉 ≤

〈λi (τ ), x∗
i (τ )〉 = γ ∗

i (τ ). Hence, the hyperplane defined by c∗
i

and x∗
i touches the reachable set.

Remark 2: From [4], the polytopic approximation can be
made arbitrarily accurate. In fact, at time τ

convex hull
{
x∗
1 , . . . , x

∗
n1

} ⊂ R	(τ) ⊂ ∩n1
1 {λi , x} ≤ γ ∗

i

that is, the convex hull of the supporting points provides an
under-approximation of the reachable set. At the same time,
the hyperplanes provide the over-approximation of the same.
The polytopic reachable set approximation is a well-known

numerically efficient method that is utilized by numerous

Fig. 2. Comparison of the temporal data snapshots, as learned by the NN
versus the DMDc approximation.

reachable set computation tools. The τ -time reachable “tube”
resulting from this method can be defined as the Minkowski
sum ⊕τ

s=0R	(s;X0,�). Combined with the DMDc-based
method to obtain linear approximations of the NN model,
this provides us with a scalable way to estimate reachable
sets for NN models. Clearly, the proposed numerical method
relies on the universal approximation capabilities of NNs [24].
Similarly, DMDc (more generally, DMD) converges in oper-
ator norm to the Koopman operator with increasing number
of data points [26]. Indeed, given enough data points, and
snapshot widths big enough, arbitrarily accurate reachable set
approximations can be achieved. This is true, in general, for
most data-driven schemes. In reality, the proposed framework
provides a computationally cheap way to compute approximate
reachable sets for the learned models, as the only additional
computation steps involve matrix inversions in DMDc, and
matrix exponentiation in propagating λ.
A depiction of the data snapshots and the subsequent map-

pings discovered by the NN model and the DMDc method are
shown in Fig. 2. The learned model attempts to take temporal
trajectory data to a higher dimensional manifold, usually gov-
erned by the so-called “feature space,” parameterized by the
NN parameters �. On the other hand, the DMD-based method
attempts to find approximations to the infinite-dimensional
Koopman operator, which considers the temporal trajectories
in some “observable space,” where the trajectory evolution is
(approximately) an action of a linear operator [25], [27]. This
is because DMD tries to find finite-dimensional truncations
of the Koopman operator. Hence, the proposed framework is
amenable to a real-time implementation and is presented in
Section IV for a quadrotor.
Remark 3: Once the model is learned, the computational

expense is on the order of O([·]−1)+O(exp [·]) ≈ O(exp [·]).
These can be accomplished in relatively computationally inex-
pensive ways by existing linear algebra libraries (such as
PyLops [28] and Armadillo [29]).

IV. REACHABLE SETS FOR A QUADROTOR

Although locally linear models of the quadrotor are often
used for control synthesis [30], a fully nonlinear quadro-
tor model is required to capture its wide dynamical range.
We demonstrate our proposed framework using a fully
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nonlinear, 12 degree-of-freedom (DOF) quadrotor model,
based on [31]. In this section, we will look at the reachable
set computation problem of the 12 DOF, nonlinear dynamics,
for a given X0 and � over time.
The state vector ξ ∈ R

12 is given by the 3-D position
[x, y, z]T and its respective velocities [ẋ, ẏ, ż]T and the 3-D
angular attitude [φ,ψ, θ ]T , and respective angular velocities
[φ̇, ψ̇, θ̇ ]T . The 12 DOF state ξ evolves as follows:⎡

⎣ẍ
ÿ
z̈

⎤
⎦ =

⎡
⎣− u1

m (sin φ cosψ + cosφ cosψ sin θ)
− u1

m (cosφ sinψ sin θ − cosψ sinψ)
g − u1

m (cosφ cos θ)

⎤
⎦ (12)

⎡
⎣Ixx φ̈
Iyy θ̈
Izzψ̈

⎤
⎦ =

⎡
⎣u2
u3
u4

⎤
⎦ −

⎡
⎣

(
Izz − Iyy

)
θ̇ ψ̇

(Ixx − Izz)φ̇ψ̇(
Iyy − Ixx

)
θ̇ φ̇

⎤
⎦ (13)

where Ixx , Iyy , and Izz are the moments of inertia along the
three axes, g is the acceleration due to gravity, and m is
the quadrotor’s mass. Variables u1, . . . , u4 relate to the actual
angular velocity command at the four rotors ω1, . . . , ω4 as
follows:

⎡
⎢⎢⎣
u1
u2
u3
u4

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

k f k f k f k f

−lk f lk f lk f −lk f

lk f lk f −lk f −lk f

km −km km −km

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎣

ω2
1

ω2
2

ω2
3

ω2
4

⎤
⎥⎥⎥⎥⎥⎦

(14)

via the aerodynamic force and moment constants k f and km ,
respectively, and the distance of rotors from the center l
(see [31] for the derivation details). Determining the force
and moment constants k f and km , in itself, requires experi-
mental system identification, let alone the nonlinear dynamics
in (12)–(14). As a result, learning the nonlinear dynamics for
a quadrotor has been of interest in multiple works for control
synthesis.
We assume that we have access to nT number of input-state

trajectories Xk,Uk , each starting with a randomly initialized
state ξ0 ≈ UX0 . We consider an NN capable of learning
approximate dynamics f̃� from the time series input-state
trajectories Xk,Uk . To this end, we employ a causal multistep
NN to recover the nonlinear dynamics f̃�, based on [32]. The
key idea of a multistep NN is to use time series trajectory over
a number of steps, say ξk, ξk−1, . . . , ξk−m and ωi,k , . . . , ωi,k−m

for i = 1, . . . , 4, and find appropriate weights for a nonlinear
function that takes the m-step trajectory and maps it to ξk+1

(see [32] for more details). The actual functional approxi-
mation is offloaded to the multistep NN whose weights �
minimize the mean-squared error over each m-step slice of
the trajectory data, for a fixed m.
Here, we employ a multistep NN, which is a multilayer

perceptron NN based on [32], that is used to perform system
identification for differential equation-based dynamical sys-
tems. The NN attempts to approximate the system dynamics
ẋ = f (x) from its trajectory data {xk}Nk=0 by “unrolling” a
trajectory of length N and approximating the dynamical map
f̃� : xk → xk+1 for 0 ≤ k ≤ N − 1. We used a multistep
NN with three layers, including one hidden layer (12, 256,
and 12 neurons, respectively). The multistep scheme used was

Fig. 3. Reachable set computation problem for a quadrotor: state ξ at time
τ along some trajectory, starting from some initial set X0.

Adams–Moulton (i.e., using the trapezoidal rule to extend the
function between k and k + 1) to train over 100 trajectories,
with discretization time �T = 0.1s, activation function
tanh (·), and mean square error (MSE) loss function with
adaptive moment estimation (ADAM) as the optimizer. The
multistep NN took ≈80 s to train, using Python, on an Intel
Xeon CPU running at 2.20 GHz with a 13-GB memory and
a 56-MB cache size and was trained over 2000 epochs and
converges to an MSE loss of 1.26 × 10−3.

A. Reachable Set Computation

An example of the reachable set computation problem
for the quadrotor model in (12)–(14) is depicted in Fig. 3.
A randomly chosen initial state starts from a given initial set
(shown in green), and the collection of all possible evolu-
tions of the quadrotor’s state after time τ resides in the set
R f̃ (τ ;X0,�,�) (shown in yellow). In addition, the command
input to each rotor has an additive noise as follows:

ωi (t) = vi (t) + wi , wi (t) ∼ U[−0.25,0.25] for i = 1, . . . , 4

(15)

and the admissible control set is defined as follows:
� � {ω1, . . . , ω4 | ωi (t) = vi (t) + wi ,∀i} (16)

where the additive noise wi is assumed to be independent,
identically distributed at all times t . Equations (15) and (16)
allow us to model the actuator noise into the reachable set
approximation problem. That is, R f̃ (τ ;X0,�,�) contains all
possible states that can be reached in time τ , starting with
ξo ∈ X0, under the noisy rotor command input set �.

We first learn the nonlinear model f̃� for nT = 100 tra-
jectories, each initialized with a random position x, y, z ≈
U[−0.5,0.5] coordinate (in m) and a random pose φ,ψ, θ ≈
U[−0.1,0.1] (in radians). This defines the initial set X0 and also
provides explicit forms of hyperplanes Hi at time τ = 0.
To generate the training and testing datasets, we generated
trajectories, sampled randomly to initiate from X0, and applied
control sequences sampled randomly from � (as shown in
Fig. 5) to each of the four rotors.
Based on the DMDc-based framework in Section III,

approximate linear time-varying models (Ak, Bk) are devel-
oped for k = i�t and a sampling time of �t = 0.1s and
k = 0, . . . , 50. A comparison of the true, unknown position
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Fig. 4. 3-D state trajectories: true trajectories (in red), trajectories recon-
structed by the multistep NN (in blue), and DMDc reconstructed trajectories
(in black).

trajectories under mapping f , the predicted trajectories under
learned model f̃�, and the trajectories reconstructed using
DMDc under the mapping Ak, Bk are shown in Fig. 4. Clearly,
given a relatively small data set nT = 100, the multistep NN is
able to reconstruct the true trajectories accurately. In addition,
despite the nonlinearities in the learned model f̃�, for the
given small DMDc width nw = 8, DMD reconstructions are
also observed to be accurate.
Next, we represent the initial set X0 using n1 = 24 hyper-

planes and the admissible control set � using n2 = 8 hyper-
planes. Each hyperplane supports X0 at a contact point ξ∗

i , and
the τ -time reachability problem becomes the τ -time optimal
control problem using the lifted system Ak, Bk . That is, at a
time t = k�t , the lifted model Ak, Bk is used to solve
the optimal control problem in (10) and (11), propagating
ξ∗
i (k�t) under the optimal control input ω∗

i (t) = ω∗
i for

k�t ≤ t < k�t +τ . Propagating each contact point for time t
to t+τ gives the supporting structure for the τ time reachable
set. Given enough data, the multistep NN model approaches
the true, unknown dynamical map, and the DMD lifted system
approaches the learned model. This accuracy in approximation
is validated in Figs. 5 and 6.
The admissible control set � is given by vi (t) defined as the

sinusoidal angular velocity inputs to the four rotors with an
added noise, as shown in Figs. 5 and 6 (green envelope). The
solid green plots to the right in the figures depict the optimal
control input that propagates an arbitrary hyperplane’s contact
point ξ∗

i over time, by applying rotor control ω∗
1, . . . , ω

∗
4,

as shown. The points of contact of the hyperplanes are depicted
in red, at each time step 0,�t, 2�t, . . . for a simulation
duration of 5 s. Inner approximations to the reachable tubes
are simply Minkowski sums of the convex hulls in red.
An arbitrary trajectory starting from an ξ(0) sampled from
UX0 is reconstructed using the multistep NN, shown as a black
solid line.
Despite the reasonable accuracy of the trained multistep NN

(in Fig. 4), DMDc reconstruction finds accurate equivalent

Fig. 5. Inner approximations of reachable sets (convex hulls of points ξ∗
i )

in the y–z plane.

Fig. 6. Inner approximations of reachable sets (convex hulls of points ξ∗
i )

in the z–x plane.

TABLE I

COMPARING LP, MILP, AND THE PROPOSED METHODS

linear system models and is, therefore, able to find approx-
imate reachable sets that are fairly accurate, in real time.
As noted in Section I-A, there do not exist related methods
that extend optimal control theory to obtain approximate
reachable sets for NN models. The closest methods require
exact, detailed NN models while employing LPs [21] and
MILPs [20] to obtain reachable sets or output bounds. As the
proposed method does not require any internal details of NN
architecture, treating it as a black box, a direct comparison
is not very meaningful. However, one can compare computa-
tional costs of the said methods as noted in Table I.
Note that each layer L in the NN architecture with n

variables introduces O(Ln) variables for the LP- and MILP-
based methods. Since the MILP problems are NP-hard, the
method in [20] has a worst case complexity as bad as brute
force search (hence, an exponential worst case computational
complexity). The LP-based method has a computational com-
plexity ofO[L(4nL)2.5] (i.e., the computational cost of solving
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Fig. 7. 3-D state trajectories under rotor failure at rotors 2 and 3: true
trajectories (in red), trajectories reconstructed by the multistep NN (in blue),
and DMDc reconstructed trajectories (in black).

Fig. 8. 3-D attitude trajectories under rotor failure at rotors 2 and 3: true
trajectories (in red), trajectories reconstructed by the multistep NN (in blue),
and DMDc reconstructed trajectories (in black).

one LP for each layer). On the other hand, the associated
computational costs for the proposed method are based only on
the cost of exp [·] ≈ O[(n+nh)3] for nh hyperplanes. Despite
being computationally cheaper, the LP-based method provides
hyperrectangular approximations to the reachable sets (hence,
loose overapproximations) and is closer to interval reachable
set methods, such as [33] and [34]. Also, introducing the
MILP and LP encodings requires extra overhead computations.
Finally, the propagation of the points of contact for each hyper-
plane can be done independently. Therefore, the proposed
method is more amenable to parallelization, as opposed to
the interlayer dependency of variables in the MILP and LP
formulations.

Fig. 9. Rotor failure at rotors 2 and 3: inner approximations of reachable
sets (convex hulls of points ξ∗

i ) in the x–y plane.

Fig. 10. Rotor failure at rotors 2 and 3: inner approximations of reachable
sets (convex hulls of points ξ∗

i ) in the y–z plane.

Fig. 11. Rotor failure at rotors 2 and 3: inner approximations of reachable
sets (convex hulls of points ξ∗

i ) in the z–x plane.

B. Reachable Set Computation Under Rotor Failure

Computing reachable sets under actuator failures is an
important step to assess the compromised system’s capabil-
ities. In this scenario, rotors 2 and 3 suffer from a total
failure and appear only as noise in the input channel. This
significantly modifies the admissible control set �. Due to the
rotor failures, the NN model strays from the true trajectory,
as shown in Fig. 7. This is further exaggerated in the φ,ψ , and
θ trajectories, shown in Fig. 8. Note that both the NN model
and the DMDc model are not close to the true angular pose
trajectories, but the DMDc model is still close to the learned
model.
As a result of the rotor failure, the quadrotor’s reachable

sets are very different from the nominal case. The admissible
control sets � [shown in Figs. 9–11 (green envelopes)] are
completely different due to ω2 and ω3 being bounded noise,
while the remaining rotors provide the nominal angular veloc-
ity command. This is also reflected in the resultant optimal
control for an arbitrary hyperplane’s point of contact, shown
in the solid green lines. The convex hulls of the points of
contact denote inner approximations of the reachable sets.
Despite the highly nonlinear model, including rotor failures,

and relatively small data set (both nT and nw), reachable set
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computation can be achieved with relatively high accuracy and
at a per-step computational increment of <0.5 s Therefore, the
proposed method works well for real-time approximations of
reachable sets.

V. CONCLUSION

In this brief, we presented a novel, data-driven framework
for computing approximate reachable sets for nonlinear mod-
els learned using neural networks. A computationally efficient
lifting-based method was proposed to find linear approxima-
tions of the learned model by exciting the NN at each time
step. The proposed data-driven scheme was demonstrated to be
computationally cheap and was found to be amenable to usage
in conjunction with other reachability tool sets. Being data-
driven, the proposed framework can be made more accurate
if more data are available. Moreover, real-time application of
the framework was observed in a realistic quadrotor exam-
ple. Approximate reachable sets were computed for a causal
NN trained to learn the quadrotor’s dynamics. In addition,
modified reachable sets were computed for the quadrotor in
a scenario that models rotor failures. The proposed scheme
was demonstrated to be of particular importance to safety
critical scenarios where real-time approximation and update
of reachable sets are required.
As our immediate future work, we plan to investigate the

space complexity of the framework and comment upon data
required for a predescribed level of accuracy in reachable set
computation. Similarly, we plan to examine space complexity
for a desired level of robustness against parameter variation.
We also plan to look into developing efficient codes to
facilitate a wrapper allowing plug-and-play usage with existing
reachability toolboxes.
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