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A simple dynamical model was used to explore the forest cover dynamics for two basins in the Sierra Nevada of
California, Illilouette Creek Basin (ICB) in Yosemite National Park and Sugarloaf Creek Basin (SCB) in Sequoia-
Kings Canyon National Park. Since the 1970s, fire management in these basins has attempted to restore a near-

Ee:tora?u;n | natural fire regime, after nearly a century of fire exclusion and suppression. The model describes two canopy
eturn interval R ) . | . . >
severity layers, representing mixed conifer and shrub-dominated landcover types, and is calibrated using landcover maps

and fire recurrence and severity data from the ICB. The calibrated model is used to explore several scenarios
pertaining to increasing fire severity and return interval in the ICB, and to explore the differences between the
ICB and SCB. The results indicate that (i) the ICB in 2012 had not yet reached steady state forest cover, (ii)
potential future changes in fire severity and frequency will yield reductions in forest cover, and (iii) differences in
forest cover change in response to fire regime restoration between basins can be explained by differences in fire

Exploratory model

histories.

1. Introduction

Prior to European settlement, California’s Sierra Nevada, like many
Mediterranean regions worldwide, supported ecosystems and cultures
that were ecologically and socially adapted to frequent fire (Taylor et al.,
2016; Collins and Stephens, 2007; Taylor and Skinner, 1998). European
colonization disrupted these adaptations, preventing cultural burning by
Indigenous groups, and suppressing natural, lightning-driven, ignitions
(Parsons, 1976; Stephens et al., 2007). For example, the US National
Park Service (NPS) in the Sierra Nevada held a fire suppression policy
from its founding in 1916 until the late 1960s (Rothman, 2007). Under
these policies, fire was almost absent in many areas (other than where
infrequent, high-severity wildfires occurred) for nearly 100 years
(Collins and Stephens, 2007; Collins et al., 2011; Miller et al., 2012).
Removing frequent fire from the landscape may have facilitated forest
expansion and shifted forest stands to become more homogeneous and
dense (Boisrameé et al., 2022). Ecological changes cascaded as recruit-
ment of fire-adapted vegetation species declined, and the vegetation
community composition shifted toward later successional species, with
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implications for other parts of the ecosystem, for example pollinator
diversity (Collins et al., 2011; Collins and Stephens, 2007; Ponisio et al.,
2016).

Following the Leopold committee’s recommendations that fire be
recognized as an ecological process within the US National Parks (Leo-
pold, 1963), the NPS was able to experiment with new fire management
approaches. Consequently, in the late 1960s/early 1970s, two remote
basins in Yosemite and Sequoia-Kings Canyon National Parks began to
burn again. In these basins, naturally occurring fire ignitions were no
longer suppressed, and fires were allowed to burn, provided that they
did not violate management criteria targeting, for instance, air quality,
fire hazards, or protection of sensitive ecosystems (North et al., 2012;
Boisramé et al., 2017; Collins and Stephens, 2007). These two basins,
Illilouette Creek Basin (ICB) in Yosemite National Park and Sugarloaf
Creek Basin (SCB) in Sequoia-Kings Canyon National Park, have now
been subject to approximately 50 years of a fire management strategy
that approximates a natural fire regime by avoiding suppression of
lightning-ignited fires when possible (often referred to as ‘managed
wildfire’). The multi-decadal duration of managed wildfire policies in
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Illilouette and Sugarloaf Creek basins provides an invaluable opportu-
nity to learn about the effects of fire on the landscape. Consequently, the
basins have been subject to intense research over the past 20 years
(Stephens et al., 2021).

Prior to European intervention in the fire regime, most fires in ICB
and SCB were thought to be lightning-ignited but Indigenous burning
could have occurred. Most fires during the managed wildfire period —
initiated in 1969 in SCB and in 1972 in ICB - have been lightning-
ignited. Both basins have remained free from logging and roads. We
focus on years 1972-2012 for two reasons: firstly, high quality vegeta-
tion mapping is available for this period (Boisramé et al., 2017); and
secondly, it avoids the extreme 2012-2016 California drought, during
which fire suppression was increased to reduce fire risks during abnor-
mally dry conditions. Fire remains relatively less frequent in the basins
than it was in the 1700-1900 period, as indicated by fire scar records in
trees (Collins and Stephens, 2007). SCB experienced less frequent fire
than ICB in all time periods, and a smaller increase in fire frequency in
response to the managed wildfire policy. The reasons for this are not
fully understood, but may be due to lower forest productivity in SCB, or
to the fact that fire suppression has been employed more frequently in
SCB during the managed wildfire period than in ICB (Stevens et al.,
2020).

The restoration of fire in ICB coincided with large-scale reductions in
conifer forest cover, from ~82% cover in 1969 to ~62% cover in 2012,
as estimated from forest plot surveys, vegetation mapping and aerial
photographic records (Boisrameé et al., 2017; Kane et al., 2014). How-
ever, similar changes in forest cover did not occur in the SCB, where
forest cover remained nearly constant at 83% between 1973 and 2012
(Stevens et al., 2020).

The research undertaken at ICB and SCB over the past 20 years has
produced rich datasets that can be used to explore the dynamic inter-
action of fire and forests. For example, detailed explorations of how fire,
land cover change and forest growth have altered the hydrological dy-
namics of ICB (and the sensitivity of these changes to climate change)
have previously been conducted using the process-based ecohydro-
logical model RHESSys (Boisrameé et al., 2019; Rakhmatulina et al.,
2021). Similar process-based models are available to describe fire igni-
tion and spread (Mann et al., 2016; Coen et al., 2020), as well as forest
disturbance and demography (Butler and Dickinson, 2010; Seidl et al.,
2011). However, highly resolved process-based models have well-
known limitations, including large data requirements to support cali-
bration and validation, computational expense, uncertainty associated
with typically high levels of parameterization, and challenges in inter-
preting cause-and-effect amidst complex interactions between modeled
processes. Models of this nature are suitable for making specific quan-
titative forecasts, and exploring individual scenarios in great detail. An
alternative modeling approach is exploratory modeling, which provides
an opportunity to relate data and process descriptions to the develop-
ment and testing of first-order hypotheses (Casagrandi and Rinaldi,
1999; Larsen et al., 2014; Larsen et al., 2016; Rastetter, 2017). In this
approach, complex models are replaced by simpler representations of
hypothesised underlying processes or dynamics. Such models can use-
fully synthesize observed phenomena (Wilkening et al., 2021; D’Odorico
et al., 2006). They sacrifice process complexity for several benefits:
lower computational complexity, clear and even analytical interpreta-
tion of the system dynamics and associations between cause and effect,
and lower requirements for parameterization, -calibration and
validation.

A number of important first-order questions about fire-vegetation
dynamics in the ICB and SCB, suitable for such exploratory modeling
investigations, remain unanswered. In this study, we developed a simple
dynamic model describing forest growth in response to fire, and used it
to synthesize observations from the basins to address these knowledge
gaps. Specifically, we aimed to understand:
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1. The long-term response of ICB vegetation cover to the managed
wildfire (1972-2012) regime,

2. The implications for the long-term vegetation cover of ICB, if the fire
regime were to change relative to the 1972-2012 period, and

3. Why the post-1970 fire regimes in ICB and SCB produced such
different vegetation outcomes to date.

The dynamical model we developed draws on elements of several
previous simple fire-vegetation models. It follows Casagrandi and
Rinaldi (1999) in representing vegetation as an upper and lower canopy,
which we interpret as corresponding to forest versus shrub layers.
However, we avoid the time-continuous description of fire used by
Casagrandi and Rinaldi (1999) and Ursino and Rulli (2011), and instead
adopt a stochastic description of discrete fire disturbance events, similar
to that used by D’Odorico et al. (2006). The model makes a major spatial
simplification in representing the basin as an ensemble of independent
point locations, each of which experiences an independent fire history.
This means that the model cannot represent the influence of topographic
position on fire ignition or severity, and is not suitable for spatial
interpretation. Instead, it can be used to predict spatially lumped out-
comes such as the basin-wide forest cover fraction, and the proportion of
the basin undergoing vegetation cover transitions (forest to shrub or vice
versa) in a given period.

The model further simplifies by prescribing fire return intervals and
severity. This limits its suitability to represent potential future fire re-
gimes, in which fire severity and frequency will likely be influenced by a
number of interacting climatic, vegetation, and human factors (Allen
etal., 2015; Abatzoglou et al., 2018). Similarly, the modeling framework
does not consider increasing global CO2 levels, CO; fertilization and
changing water use efficiency (Hoffmann et al., 2000; Duan et al., 2018;
Zhu et al., 2016), or dynamic feedbacks between fire regime and soil/
fuel moisture (Miller and Urban, 1999; Rakhmatulina et al., 2021).
Thus, long-term drivers of change in forest growth dynamics and fire
regimes associated with varying CO5 concentration and climate are
absent from the model. Despite these limitations, the model is amenable
to analytical solutions, provided suitable simplifying assumptions are
made, allowing for exploration of the system dynamics (e.g., parameter
sensitivities).

2. Methods

Casagrandi and Rinaldi (1999) proposed that the growth of season-
ally dry, fire-impacted forests could be represented by two coupled
differential equations describing the biomass (G, [kg/m?]) of an upper
(w) and lower (1) canopy. The biomass growth of the upper canopy is
logistic, and is not affected by the lower canopy biomass. The lower
canopy growth is described by a modified logistic model, in which
shading from the upper canopy reduces its growth rate via a suppression
term proportional to the upper canopy biomass (such that its maximum
rate occurs when there is no upper canopy present). We follow Ursino
and Rulli (2011) in allowing the growth rate to depend on the soil
moisture content within the root zone S [-], which ranges from 0 (no
water) to 1 (saturation). The sensitivity of this dependence is controlled
by an exponent 3, which ranges from 0 (no effect of soil water on growth
rates) to 1 (imposing a strong dependence between soil water and
growth).

Mathematically, these dynamics are represented by:

dG G

u e SP 1= 1
% s (1-%) o
dG G
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where r is the specific biomass growth rate [1/yr], and a represents the
degree of shade inhibition of shrubs by trees [m? kg™! yr~'1. k is the
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carrying capacity of biomass [kg/m?], which determines the steady state
biomass if fire is removed from the system (the upper canopy biomass G,
approaches k;, and the lower canopy biomass G; approaches k; if shade
suppression is also removed).

Fires are stochastically represented as a Poisson process, meaning
that the modeled time between two consecutive fires is exponentially
distributed (Li et al., 1999; Favier et al., 2004). We specify the expo-
nential rate parameter as A = 1/RI, where RI is the return interval (the
mean interval between ignitions). In each modeled year, a fire ignition
occurs at a given point with probability p = 1/RI. If no ignition occurs,
the upper and lower canopies continue growing. Fires produced by an
ignition event have a random severity (¢, or ¢;) which describes the
proportional loss of biomass in each canopy layer (i.e. AG, = ¢,G,and
AG; = ¢,G). The distribution from which fire severities are sampled is
described in Section 2.5.2 “Fire severity distribution”.

Treating the fire regime as exogenous neglects the influence of
topographic position on fire extent and severity (Bradstock et al., 2010;
Dillon et al., 2011), which cannot be accommodated in the 1-dimen-
sional modeling framework. During the 1972-2012 calibration period,
basin-scale effects of complex topography are implicitly accounted for
through model calibration to remotely-sensed fire severity data from the
ICB, as described in Section 2.5.2. This approach is reasonable provided
that modeled scenarios occur within conditions similar to the calibration
period - however, it does not address potential non-stationary relation-
ships between topography and fire severity under climate change
(Mackey et al., 2021).

In reality, soil moisture and biomass likely feedback upon both
ignition probabilities and severities (Rakhmatulina et al., 2021). Such
feedbacks, however, are (i) only one factor among many that influence
fire behavior, (ii) difficult to characterize, and likely less important than
drivers such as fire weather (Collins et al., 2009; Wayman and Safford,
2021). To avoid imposing an uncertain relationship between fire and
vegetation characteristics, we treat all fire parameters (RI and ¢) as
exogenous. Similarly, we assume that soil moisture at a point is inde-
pendent of the vegetation biomass (which is reasonable for the study
sites when considering shrub/forest transitions on annual timescales,
see Boisramé et al. (2018)), and we do not address feedbacks between
vegetation and hydrological dynamics in the model.

2.1. Analytical stochastic steady state solutions

Analytical solutions for the long-term mean biomass of upper and
lower canopies can be obtained subject to the simplifying assumptions
that fires occur deterministically every 7 years, with a fixed severity ¢
that is identical for the upper and lower canopies. These assumptions fix
the biomass density immediately before and after each fire, as illustrated
in supporting information Figure S1.

The logistic equation for the upper canopy has the analytic solution:

ku GIA{)

G, =
Gua + (ku -

Guye 7 3
where G, is the initial biomass (in this case, the biomass immediately
after each fire), t is the time in years, and r, = r,S? is an ‘effective’
growth rate of biomass, which combines the growth rate r, and growth-
limiting factor S” into a single term.

Integrating Eq. 3 from time t = 0 (immediately after a fire) tot =7
(immediately before the next fire), yields, after simplification, the mean
upper canopy biomass density é\u:
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Eq. 4 describes é\u as a function of the model parameters and the initial
biomass density G,,. To determine G,,, the biomass densities at times
t =0 and t = 7 can be related using Eq. 3:

Forest Ecology and Management 521 (2022) 120429

kuGuo

GM - Gua + (ku -

Guo)e " ©

By definition, G,; and G, are also related by the fire severity:
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Combining Egs. 5 and 7 and solving for G,:
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Substituting Eq. 9 into Eq. 4 yields the solution for Gu:
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An approximate analytic solution for the mean biomass density of the

lower canopy, G, may be obtained by replacing G, with G, in the lower
canopy equation (Eq. 2):
dG,
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The equation for the lower canopy can then be written in logistic form:

d
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where r; =S’ —aG, is a modified growth rate, and kj =kr)/nS’ is a
modified carrying capacity.

Integrating the solution to Eq. 12 (i.e., the solution to the logistic
equation, following the same approach as for the upper canopy) yields

an approximate solution for the mean lower canopy biomass density, G;:

G,:k;<1+#1og<1f¢>) 13)
rIT

As detailed in the supporting information Section S1, the errors in this
analytical solution compared to numerical simulations were < 3% when
the assumptions of fixed RI and severity were numerically imposed, and
< 9% when ignition was allowed to be random, with fixed severity.
While clearly a simplification, the analytic solution enables direct
exploration of how the stochastic steady state solutions depend on
changing vegetation, fire regime parameters and soil moisture regimes.

2.2. Study Area

Ililouette and Sugarloaf Creek are remote, mid-elevation, conifer-
dominated basins located in Yosemite and Sequoia-Kings Canyon Na-
tional Parks. They are similar in size (ICB: 150 km?; SCB: 125 km?) and
elevation (ICB: 1800-3000 m; SCB: 2000-3200 m), and have Mediter-
ranean climates featuring winter snow. ICB receives approximately
1000 mm of precipitation annually. There are no long-term in situ
weather observations available near SCB, however a variety of in-
dicators point to SCB being drier than ICB (Stevens et al., 2020). Conifer
forests in the basins are dominated by Pinus jeffreyi, Abies magnifica,
Abies concolor and P. contorta. Other common vegetation types include
whitethorn ceanothus Ceanothus cordulatus shrublands, wet and dry
meadows supporting mixed grasses and forbs, and extensive exposed
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bedrock (Collins and Stephens, 2007).
2.3. Research studies synthesized

In developing and parameterizing the numerical model for ICB and
SCB, we synthesized datasets and findings from nearly two decades of
research on the fire, forest and water dynamics of these basins. A full
history of the research conducted in the basins is summarized by Ste-
phens et al. (2021). Here, we specifically drew on work from several
projects, including vegetation classification and mapping projects
(Boisrame et al., 2017; Stevens et al., 2020), soil moisture mapping and
prediction efforts (Boisramé et al., 2018; Stevens et al., 2020), and an-
alyses of fire perimeters and severity (Collins et al., 2009; Boisramé
et al.,, 2017; Rakhmatulina et al., 2021), which we briefly summarize
next.

Vegetation classification, mapping and landscape ecological
analyses for the ICB and SCB (Boisramé et al., 2017; Stevens et al.,
2020): This work drew on object-oriented classification of aerial pho-
tographs of the basins, along with a validated vegetation map of
Yosemite National Park produced by the National Park Service. The
earliest photos pre-date the first fires occurring under the managed
wildfire policies, while later photos coincide with the creation of the
Parks Service vegetation map and field visits when vegetation was
mapped using handheld GPS units, allowing validation of the classifi-
cations used. In the numerical modeling study we use the landcover
maps produced for the years 1969 and 2012 from this project. The maps
identify regions of sparse meadow (including sparse shrub and/or her-
baceous cover), dense meadow (including wetlands and areas of dense
herbaceous cover), shrubland, aspen, and mixed conifer forest.

Soil moisture mapping and predictions for ICB and SCB,
(Boisramé et al., 2018; Stevens et al., 2020): This work used over 6220
individual soil moisture measurements across 90 sites and three years in
ICB, to train a random forest model to predict soil moisture using
topography, vegetation and fire history at a site. The random forest
model was then used to produce maps of summer soil moisture for the
basins. Vegetation type was the most important predictor of soil mois-
ture in the basins.

Analyses of fire perimeters and severity for ICB and SCN (Collins
et al., 2009; Boisramé et al., 2017; Rakhmatulina et al., 2021): Fire
perimeters were obtained from the Cal Fire, and included all fire extents
within Yosemite National Park since 1930. Within each fire perimeter,
Landsat observations were used to estimate fire severity, using the
RANDVI (Relative difference Normalized Vegetation Index) and RANBR
(Relative difference Normalized Burn Ratio) indices. RANBR requires a
short-wave infrared band, which is only available after 1984 (Collins
etal., 2009); prior to this we approximate RANBR with RANDVI. The two
indices produce comparable values in ICB and SCB (Rakhmatulina et al.,
2021). All RANBR/RANDVI values were derived from the Google Earth
Engine code described in Parks et al. (2018), using threshold values
entered from Miller and Thode (2007). These fire datasets have been
used in multiple studies of ICB and SCB including those characterising
fire regime, as well as its effects on vegetation, resilience and hydrology.

2.4. Model domain and initialization

We represented the ICB with an ensemble of 400 points sampled
from the vegetated portion of the ICB, where sampling excluded the
small (< 2%) fraction of the basin supporting dense meadow or aspen
(which are not represented in the model). We randomly sampled these
locations from a 30 x 30 m vegetation map of ICB and initialized 400
independent model simulations based on the conditions at these sites. To
initialize the model, vegetation type was selected for each point from the
1969 landcover map (Boisramé et al., 2017), and used to specify the
upper and lower canopy biomass densities, G, and G;. For points that
were classified as mixed conifer forest in the vegetation map, the upper
canopy was initialized at carrying capacity and the lower canopy was
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initialized at equilibrium with the wupper canopy, with G; =
k(1 —a-ky/r;/SP). For points that were classified as shrub or sparse
meadow, the lower canopy was initialized at its carrying capacity k;, and
the upper canopy was initialized at 10% of this biomass (G, = k;/10 kg/
m?), to ensure that some upper canopy biomass is initially present.
Shrub and sparse meadow classifications were grouped in this manner
because in both cases, the dominant vegetation type is a lower canopy
community. Soil moisture maps were previously produced for the same
model domain using a random forest model based on extensive soil
moisture sampling (Boisramé et al., 2018), and we drew the soil mois-
ture for each pixel from these maps. The distribution of the sampled soil
moisture is shown in supporting information Figure S6.

2.5. Model Parameterization

Vegetation and fire severity parameters were obtained from obser-
vations in ICB and literature reported values.

2.5.1. Vegetation parameters: growth rates and carrying capacities

The model contains four vegetation growth parameters: two carrying
capacities (k;,k,) and two growth rates (r,,,r;). We estimated these values
based on previous studies. Gonzalez et al. (2015) measured biomass
density in mixed conifer forests in the Sierra Nevada, from which we
estimated k, = 30 kg/m? (by converting the carbon density of 120 Mg
ha™! for mixed conifer forests to kilograms per m? and assuming a
carbon fraction of 0.47 g carbon (g biomass) ™) (Gonzalez et al., 2015).

We estimated the upper canopy growth rate of r, = 0.15 yr! using
the assumptions that sexual maturity for the coniferous forest occurs at
35 years (the median of the dominant conifer species in the basins;
Loudermilk et al., 2013; Maxwell and Scheller, 2020), and that conifers
reached 80% of the carrying capacity within this time frame. The lower
canopy growth rate of k; = 6 kg/m? was estimated from reported mea-
surements of the biomass density in Ceanothus cordulatus (Huff et al.,
2018). We estimated r; as 1.5 yr~!, assuming that the time to reach
sexual maturity in Ceanothus sp. is 4 years (Bullock, 1982), and that the
biomass densities would be 80% of carrying capacity at this time.

2.5.2. Fire severity distribution

The severity distribution of fires within ICB was estimated using
Landsat images of ICB (Boisramé et al., 2017; Collins et al., 2009). The
RANBR data within ICB fire perimeter maps was used to quantify
severity in these images using the methods of Miller and Thode (2007),
who classified fire severities (unchanged, low, moderate, and high) from
remotely sensed RANBR by comparing them to field observations of the
Composite Burn Index. We linearly rescaled the RANBR observations to
severity values ¢ using the bounds of the Miller and Thode (2007)
classes, with RANBR = 316 corresponding to ¢» = 0.5 and RANBR = 641
corresponding to ¢ = 0.99. The resulting distribution of fire severity is
shown in Fig. 1. Where RANBR > 641, we set ¢ = 0.99, resulting in the
bimodal distribution in Fig. 1. This severity distribution was sampled for
each ignition event to obtain ¢, and ¢; values.

2.6. Model Calibration

The remaining model parameters, namely the fire return interval RI,
the soil moisture sensitivity exponent f, and the competition term a,
were set by calibration. The parameters  and a are unknown: we cali-
brated f over arange of 0-1 (the space on which it is defined), and a over
a range of 0-0.06 (outside of which no realistic lower canopy biomass
values were obtained). While it would be preferable to avoid calibration
of the fire return interval and rely on observational values, the 40 year
1972-2012 period is not long enough to allow a robust estimation of RI
for use in a stochastic model. We therefore estimated RI through cali-
bration, and constrained the estimate using observed rotation periods,
defined as the number of years for an area equal to the size of the basin
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[ rescaled RANBR
4 severity 1x
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Fig. 1. Fire severity distributions: ‘rescaled RANBR’ shows the distribution
obtained by rescaling RANBR data from the ICB, using the severity classes
identified in Miller and Thode (2007), and ‘severity 1x’ shows the increased
severity scenario derived by extending the 40 year RANBR trend for the Sierra
Nevada by an additional 20 years (described in Section 2.5.2 “Severi.ty Sce-
narios”). [See online article for color version of this figure.]

to burn. The fire rotation interval is more appropriate for the 1-dimen-
sional model than the fire return interval, defined as the mean interval
between burns anywhere in the basin. For the ICB, the rotation intervals
were 24.7 and 32.9 years in pre-European and managed wildfire pe-
riods, respectively (see Table 1, which summarizes fire frequency
characteristics for the basins for the pre-European and managed wildfire
periods).

The model performance was assessed in terms of its ability to
reproduce four metrics:

1. The change in forest fraction between 1972 and 2012: Af,(40) =
—-0.2.

2. The fraction of the landscape that transitioned from shrub to conifer-
dominated between 1972 and 2012, f;_, = —0.06 (computed from
the vegetation maps).

3. The fraction of the landscape that transitioned from conifer to shrub-
dominated between 1972 and 2012, fu_,l =0.25 (also computed
from the vegetation maps).

4. The difference between the forest cover fraction in 1972 and the
model prediction of the forest cover fraction following 100 years of
fire suppression, Af,(100).

Evaluating theses metrics requires mapping the simulated biomass
fractions, G; and Gy, to the dominant landcover type - that is, into the
binary forest or shrub classes. We treated this classification as simply as
possible, setting cases with G; > 0.5G, as shrub-dominated, and other-

Table 1

Comparison of fire rotation and return intervals for the ICB and SCB basins in the
time periods considered in this study Miller and Thode, 2007. In calibrating the
model to ICB, the 1972-2007 period (line 5) was used to estimate the fire
rotation period. The return interval is not included for the managed wildfire
period for SCB, because only two fires were identified using tree rings in this
period, with a 12-year interval between the fires.

Basin  Time period  Fire Rotation Interval Fire Return Interval

(years) (years)
ICB 1700-1900 24.7 6.3
SCB 1700-1900 49.2 9.3

ICB 1900-1972 All fires suppressed All fires suppressed
SCB 1900-1968 All fires suppressed All fires suppressed
ICB 1972-2007 32.9 6.8

SCB 1969-2007 79.8 -
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wise as forest-dominated. This is an uncertain choice, but sensitivity
analysis revealed minimal changes in the model results when this ratio
was set to 0.25 (see supporting information Figure S7). We used this
classification to compute the fraction of forest-dominated simulations f,,
at any point in time, along with the transition metrics f;_, and f,_;.
Errors in these metrics are reported as the model predictions minus the
ICB observations. Thus a positive error in Af, indicates a model bias
towards over-predicting forest cover (equivalently, underestimating the
decrease in forest fraction during the suppression period).

To test the model against these metrics, we initialized the model with
1972 conditions, following the procedure described in Section 2.4
“Model domain and initialization”. The model was initialized for 1144
unique parameter sets, formed by all possible combinations of the pa-
rameters listed in Table 2. For each parameter set in the ensemble, 400
independent model simulations were initialized, one for each of the 400
sampled ICB points (for a total of 457,600 simulations). Fig. 2A illus-
trates an example model run, showing G, and G; as functions of time. For
a given parameter set i, we computed the forest fraction as a function of
time as:

_ _1n:400 (14)
Sfuilt = g Xuj| T

where x,; is a binary variable indicating whether simulation j is classi-
fied as ‘forest” at time t. We similarly computed G,; and él,i as the mean
biomass densities across the 400 simulations per parameter set.

The simulations were initialized in the year 1972 and run for 40
years for comparison with the year 2012. The simulations at year 40
were used to test the model performance against the first three test
metrics. For each parameter set, the errors associated with metrics 1-3
were obtained from the forest fraction in the year 2012 and the vege-
tation transitions between 1972 and 2012.

Addressing the fourth test metric required two assumptions. Firstly,
we assumed that running the model to steady state under a natural fire
regime would approximate the forest conditions prior to fire suppres-
sion. For this purpose, the simulations were run for an additional 960
years, at which point in time the forest cover trajectories had reached
stochastic steady states. That is, we assumed that simulation year 1000
can approximate forest cover in the year 1872, when fire suppression
was imposed. Next, we tested that the 1972 forest cover conditions
would be recovered by imposing fire suppression for 100 years on this
steady state condition, allowing for comparison of the predicted ‘fire
suppressed’ forest cover and the observed 1972 forest dataset. Subject to
these assumptions, we treated the simulation year 1000 as the initial
(1872) condition, and ran the model for an additional 100 years with no
fire ignitions. We then computed the errors associated with metric 4 as

Table 2

Model parameters for the calibration simulations. Where multiple parameter
values are listed, the simulations were run for factorial combinations of the
parameter values.

Variable  Units Values Description

Estimated vegetation parameters

ku kg m~2 30 Carrying capacity of the upper canopy

ki kg m~2 6 Carrying capacity of the lower canopy

Ty yr ! 0.15 Specific growth rate of the upper
canopy

n yr ! 1.5 Specific growth rate of the lower
canopy

Calibration parameters
a m?kg™! 0.0, 0.005, Factor limiting growth of the
yr ! 0.01, ...0.06 understory due to competition

between species for light

B 0.0, 0.1, ... Vegetation parameter that quantifies

1.0 drought tolerance
20, 22, ...34 Fire return interval (1/2 for random
ignition simulations)

RI yr
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Fig. 2. Panel A shows, for an example simulation, G, and G; as a function of time for a single point in space (400 such simulations were averaged per parameter set to

compute the forest fraction f, trajectories in Panel B). Panel B shows f, as a function of year, for all tested parameter sets (light blue) and the calibrated parameter
sets (dark blue), where fire suppression was implemented in model year 1000. On the right, forest fractions increase above the initial (1972) values under this
suppression scenario because the 1972 conditions do not represent steady state conditions (under fire suppressed conditions, the forest fraction approaches 100% in
steady state). Panel C shows the distribution of a and RI in the calibrated parameter sets, with color indicating j. Note that in this figure, only 27 of the 30 parameter
sets can be independently identified, due to overlapping data where different § are associated with the same « and RI. [See online article for color version of

this figure.]

the difference in forest fraction between simulation years 0 (i.e., using
observed 1972 vegetation) and 1100 (which uses the model estimate of
what vegetation cover would be in 1972).

2.7. Model prediction

We identified the 30 parameter sets with the lowest errors across all
four test metrics. This group, which we refer to as the calibrated
parameter ensemble, was used for all subsequent simulations. To use the
model for prediction, independent simulations were run for each
parameter set in the ensemble (with 400 simulations per parameter set,
corresponding to the 400 sampled locations within the basin), producing
30 separate model predictions. The ensemble-mean forest fraction (f,(t))
was then computed as:

) -540)

where N denotes the 30 parameter sets in the parameter ensemble.
Differences in the ensemble forest fraction between time points t; and t,
were computed per parameter set:

(st (1)) =3 200000 -0 a6

Significance was attached to these computations using bootstrapped
confidence intervals of the means (i.e., bootstrapping from the results of
the 30 selected parameter sets).

2.8. Topic 1: What is the projected long-term response of the ICB
vegetation cover to the managed wildfire (1972-2012) regime?

In the absence of temporal trends, a system subject to random
disturbance will reach a stochastic steady state, in which the statistics
describing the system do not change in time. After 40 years of managed
wildfire, analysis of vegetation maps in ICB suggested that this condition
was not yet reached (Boisramé et al., 2017). We therefore asked (i)
whether the ICB had reached a stochastic steady state after 40 years of
managed wildfire, (ii) if not, how ‘far’ (in terms of mean forest cover)
from a stochastic steady state condition the ICB was after 40 years of
managed wildfire, and (iii) what the landcover composition of the sto-
chastic steady state condition would be.

We evaluated these questions primarily by comparing the ensemble
predictions at times ranging from 40 to 1000 years of simulations. We

firstly confirmed that the model predictions were stationary after 1000
years of simulation. We then asked whether predictions at 40, 100, 200,
400, 600, and 800 years were significantly different from the stationary
conditions at year 1000, and if so, by how much. This approach re-
interprets the simulation year from the calibrated ensemble simulations
— instead of interpreting simulation year 1000 as calendar year 1872, we
interpret simulation years 40-1000 as calendar years 2012-2972. This
approach allows an assessment of whether contemporary (2012) vege-
tation is approaching stochastic steady state, whether it would be ex-
pected to do so within a reasonable policy horizon (100 years), and at
what point in time the vegetation dynamics would reach a stochastic
steady state.

The aim of these analyses is not to forecast future states of the basin:
future changes in landcover composition will reflect interactions be-
tween vegetation and fire regime, and external forcing such as
continuing increases in CO, and accompanying changes in hydro-
climate. For example, increasing atmospheric CO; levels may promote
faster growth rates (Donohue et al., 2013), while increased drought
frequency or severity may have the opposite effect (Allen et al., 2015). In
running the model simulations to steady state, we held the growth rates
of the upper and lower canopy layers constant. This means that the long-
term model predictions do not account for increasing CO; levels, or
other drivers of non-stationarity in forest growth behavior and fire re-
gimes that may occur in the coming years. What the analysis provides is
an estimate of a response timescale over which the forest would adjust to
fire frequency changes, if all other factors were stationary.

2.9. Topic 2: If the fire regime were to change relative to the 1972-2012
period, what would be the implications for the long-term forest fraction of
ICB?

We addressed this topic by considering 2 fire regime change sce-
narios, which altered fire frequency or fire severity independently
(described in 2.9.1 anf 2.9.2 and Table 3). For a given scenario, we
initialized the calibrated parameter ensemble equivalently to the cali-
bration simulations (i.e., 400 simulations per parameter set). Firstly, the
simulations were run for 50 years (to the year 2022), using the observed
severity distribution and calibrated return intervals. After 50 years, each
scenario was imposed as a step-change in the fire characteristics. We
assessed the effects of these imposed regime changes at simulation years
100 (2072) and 600 (by which time simulations were close to steady
state). As in Topic 1, these simulations are not intended to forecast
future states of the basin, but rather to estimate how forest would adjust
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Table 3

Scenarios implemented in ICB and SCB. For the ‘ICB potential scenarios’,
changes in RI or severity were applied in 2022, after 50 years of managed
wildfire. The RANBR trend referenced in the severity scenarios is described in
Section 3.3 “Severity scenarios”.

Scenario Description
ICB potential scenarios
RI +30% 30% increase in fire frequency (RI values decrease by 30%).
Severity 1x Sierra Nevada 1982-2018 RANBR trend continues for 20
years (added 90 RANBR units to the RANBR distribution and
applied the same transformation to obtain severity).
SCB test scenarios
RIx 2.4 Calibrated RI scaled by a factor of 2.4, based on the observed
difference in fire rotation periods.
RIx 2.4,10% Calibrated RI scaled by a factor of 2.4, with soil moisture
drier reduced by 10%

to changes in the current fire regime, all other factors being stationary.

2.9.1. Return interval scenario

Assuming that managed wildfire policies are retained in ICB, climate
change may result in increased frequency of ignitions (Westerling and
Bryant, 2008; Yue et al., 2014; Westerling, 2018). We followed West-
erling and Bryant (2008) and Rakhmatulina et al. (2021) in considering
the scenario in which fire frequency increases by 30%. This scenario was
implemented for the post-2022 period by reducing the return interval by
30% in each of the calibrated parameter sets.

2.9.2. Severity scenario

In the Sierra Nevada area surrounding ICB, fire severity has increased
in recent decades, with RANBR data for fires in this area from 1983 to
2018 revealing an increase in RABNR values of 4.5 + 3.7 year !
(Rakhmatulina et al., 2021). However, over the managed wildfire
period, ICB itself has not experienced a trend in fire severity (Rakhma-
tulina et al., 2021), making it challenging to predict future changes in
fire severity. We therefore elected to explore the model sensitivity to fire
severity by projecting the 1983-2018 Sierra Nevada trend 20 years into
the future, resulting in a 90 unit increase in RABNR (the ‘severity 1x’
scenario). To apply these projections as step changes, we uniformly
shifted the RANBR data for ICB by 90 or 180 units, and then rescaling to
severity ¢ as per Section 2.5.2 “Fire severity distribution”. These
transformations (see Fig. 1) result in an increase of the mean ¢ from 0.45
(observed) to 0.54 (severity 1x).

2.10. Topic 3: Why did the post-1970 fire regimes in ICB and SCB
produce such different vegetation outcomes to date?

A number of hypotheses have been proposed to explain the differ-
ences between the ICB and SCB responses to fire management. The
simplest of these include the greater fire frequency observed in ICB
compared to SCB, while more complex hypotheses postulate that stand-
replacing fire was more frequent in ICB than SCB, potentially due to
differences in overall climate, soil and basin productivity, and fire
management interventions themselves (Stevens et al., 2020; Stephens
etal., 2020). Although we cannot use the simple model presented here to
assess underlying feedbacks between vegetation and fire regime, we can
use it to ask whether similar basins exposed to different fire frequencies
over the managed wildfire period would produce the observed divergent
outcomes, all other factors being equivalent, or whether additional
changes (e.g. to forest growth rates) need to be included for the models
to reproduce the minimal changes observed in SCB. We followed this
strategy in part because there is not enough data to independently
calibrate the model for SCB. Thus, the SCB simulations use the ICB
calibrated parameter ensemble for a or f. Given the similarity in land-
cover and climate between basins, this is a reasonable assumption
(Collins et al., 2016). SCB and IBC had similar forest cover fractions
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when fire suppression was reversed, so SCB simulations were initialized
in the same way as ICB.

We then considered several scenarios. Firstly, we held all drivers
common between SCB and ICB, other than fire frequency, which was
adjusted to match ICB. To perform this adjustment, we scaled the return
intervals in the calibrated parameter set by a factor of 2.4, which is the
approximate ratio of the rotation periods between basins during the
managed wildfire period (Collins and Stephens, 2007).

Next, we considered altering the severity distributions; however, for
the managed wildfire period, the estimated proportion of area burned at
high severity was comparable between the basins (based on Landsat-
derived RANBR data; (Parks et al., 2018)).

Finally, we considered the various lines of evidence that point to SCB
being drier than ICB (Stevens et al., 2020), and how this, in addition to a
longer fire return interval, could affect forest cover changes. While field
measurements and associated models suggest higher mean soil moisture
in ICB compared to SCB (Stevens et al., 2020; Boisramé et al., 2018),
there is insufficient data to directly evaluate differences in the average
water availability between the basins. Instead, we used the normalized
difference vegetation index (NDVI) as a proxy for productivity and thus
soil moisture. We rescaled the soil moisture in ICB pixels by the ratio of
NDVI between the basins (NDVI in ICB was approximately 10% greater
than in SCB for the 1984-1985 period; (Stevens et al., 2020)) and
repeated the fire frequency simulations.

For all modeled scenarios, we compared the 1972 forest fraction to
model predictions after 40 years of managed wildfire policy.

2.11. Analytical predictions

To provide context for the forest-fire dynamics predicted by the
numerically modeled scenarios, we applied the analytical solution to the
ICB using the calibrated parameters. Making direct comparisons be-
tween modeled and analytical results required (i) replacing the distri-
bution of sampled severities with a single ‘effective’ fire severity, and (ii)

obtaining an estimate of the forest cover fraction fu from analytical
predictions of upper and lower canopy biomass. To estimate the effec-

tive fire severity, we inverted Eq. 10 for G, to obtain an effective upper
canopy severity, @u:

b,=1 —exp(r/RI(% - 1) ) a7

yielding a unique value of ¢, for each of the 30 calibrated parameter sets
(i.e., for each RI,  and a combination), using the mean S value for all
sampled pixels. We repeated this process for the lower canopy and
checked for agreement between the effective severities (see supporting

information Figure A). To estimate the forest fraction from predicted G;
and E;u, we fit a random forest model to all data from the numerical
simulations, predicting f, as a function of the ratio of G;/G,, a and $. This
was needed because the analytic model predicts E;l and au, but not )A‘u;
thus, model fit to the numerical simulations was used to relate these

quantities. The model performed very well, with a test set score of R >
0.99 using cross validation. Analytical solutions were therefore pre-

sented in terms of the direct analytical solutions for éu, and 61, and the
estimated fu associated with them.

3. Results
3.1. Calibration

Selection of the 30 parameter sets with the lowest errors produced
calibration errors less than 5.7% across all four test metrics (see sup-

porting information Figure S8 showing histograms of the calibration
errors). The forest fraction trajectories predicted from the calibrated
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parameter sets (dark blue lines in Fig. 2B) reproduce the 20% decrease in
ICB forest fraction between 1972 and 2012 and recover the initial
(1972) conditions following 100 years of fire suppression (simulation
years 1000-1100 corresponding to calendar years 1872-1972).

Associations between RI and f in the calibrated parameter set (see
Fig. 2C) reflect opposing influences of these parameters on the system
dynamics. Increasing RI favors higher G,, because the slower-growing
upper canopy benefits from longer periods of recovery. By contrast,
increasing f, which reduces the drought tolerance, suppresses the
growth rates of both canopies; however, in the case of the lower canopy,
the benefits of suppressing the upper canopy outweigh the costs of
reduced drought tolerance. Smaller return intervals are similarly asso-
ciated with larger a in the calibrated parameter set, because increasing a
suppresses lower canopy growth, which compensates for the faster
lower canopy growth rates. Thus, compensating effects of the parame-
ters with respect to G, and G; (and thus the forest fraction), result in
correlation within the calibrated parameters. In spite of these compen-
sating effects, small errors across all four test metrics suggest that the
parameters have been well identified (see supporting information
Table S2, which lists the calibrated parameters — a, and RI values —
along with the errors in the calibration metrics).

3.2. Steady state

To confirm that the vegetation trajectories reached a steady state
within 1000 years of simulation, we compared the forest fraction in the
final century of managed wildfire policy to the prior century (i.e., be-
tween simulation years 900-1000 and 800-900). The £, distributions
are not significantly different between these periods, in either the cali-
brated parameter ensemble or the ensemble of tested parameters (using
the Kruskal-Wallis H-test).

Summarizing the ensemble simulations, the results suggest that the
vegetation in ICB was not in steady state in 2012. The ensemble pre-
dictions of the forest fraction between 40 and 1000 years did not overlap
(Fig. 3A), and the ensemble average difference between timesteps did
not cross zero (Fig. 3B). The predicted stochastic steady state forest
fraction was (f,) = 0.43 + 0.02 (Table 4), with approximately 100 years
(from 1972) required for the ICB forest cover dynamics to approach
within 10% of these steady state conditions. In 2012, the basin forest
cover was approximately half-way between its fire-suppressed initial
and a stochastic steady state condition in dynamic equilibrium with the
(current) managed wildfire regime. (See Table 5).
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Table 4

Ensemble predictions of ICB forest cover (calibration parameter sets only) over
multiple simulation durations. The section ‘Ensemble prediction of (f,)’ shows
the ensemble prediction of the forest fraction f,,, with bootstrapped confidence
intervals in parentheses, for select simulation years ranging from 40 to 1000.
Rows labeled ‘Difference from t = 40 years’ show the ensemble average differ-
ence between 2012 (simulation year 40) and two subsequent timesteps (simu-
lation years 100 and 1000). The final section, labeled ‘Difference from t = 1000
years’ shows the ensemble average difference between the year 1000 and pre-
vious timesteps. The results suggest that the ensemble is in steady state by the
year 600; however, the difference between the years 200 and 1000 is already
small ((Af,) = —0.05 £ 0.02).

Simulation year (fu)

Ensemble prediction of (f,)

0 0.83 (0.83, 0.83)
40 0.65 (0.64, 0.66)
100 0.54 (0.53, 0.55)
200 0.48 (0.47, 0.50)
400 0.45 (0.43, 0.46)
600 0.43 (0.40, 0.45)
800 0.43 (0.40, 0.45)
1000 0.43 (0.41, 0.45)

Difference from t = 40 years

100-40 —0.11 (-0.12, —0.10)
1000-40 —0.22 (-0.24, —0.21)
Difference from t = 1000 years
1000-0 —0.40 (-0.42, —0.38)
1000-100 —0.11 (-0.13, —0.09)
1000-200 —0.05 (-0.07, —0.04)
1000-400 —0.02 (-0.03, —0.00)
1000-600 0.00 (-0.01, 0.01)
1000-800 0.00 (-0.01, 0.01)
Table 5

Summary of the tested scenarios in simulation years 100 (2072) and 600. (f,) is
the ensemble prediction of the forest fraction f,.

Scenario (fu) Change from 2012

Simulation year 100
Calibration
Decrease RI 30%
Increase severity 1x
Simulation year 600
Calibration
Decrease RI 30%
Increase severity 1x

0.55 (0.53, 0.56)
0.44 (0.43, 0.46)
0.50 (0.48, 0.51)

—0.11 (-0.12, —0.10)
—0.22 (-0.23, —0.21)
—0.17 (-0.18, —0.15)

—0.23 (-0.25, —0.21)
—0.46 (-0.48, —0.44)
—0.37 (-0.39, —0.34)

0.43 (0.41, 0.46)
0.20 (0.18, 0.22)
0.30 (0.27, 0.31)

1000 - 40 years

-04 -03 -02 -01 0.0
Forest fraction change, Afu

Fig. 3. (Panel A) Histograms show the calibrated ensemble prediction of the forest fraction at 40 and 1000 years. (Panel B) Histogram of the changes in forest

fraction Af, between 40 and 1000 years, where Af, was computed separately for each parameter set. In both panels, vertical lines show the bootstrapped 95%
confidence intervals for the mean. [See online article for color version of this figure.]
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3.3. ICB Scenarios

Increasing fire frequency produced significant declines in forest
fraction (f,): by simulation year 100, (f,) decreased by 22 + 2% for a
30% decrease in RI (see Fig. 4A). Compared to the return interval sce-
nario, the severity scenario resulted in a smaller but significant decline
of 15 + 2% in (f,) by simulation year 100 (see Fig. 4B).

3.4. SCB results

Fig. 4C shows the (f,,) trajectories for the two SCB test scenarios, with
the calibration simulations included for reference. The results indicate
that the different return intervals between ICB and SCB are sufficient to
explain the differences in (f,) in 2012. While (f,,) was reduced by 18%
between 1972 and 2012 in the ICB simulations, (f,) decreased by only
2% in the SCB RI x 2.4 simulations, highly comparable to observations
suggesting a decrease on the order of 1% for the same period (Stevens
et al., 2020). The prediction is not notably changed by reducing soil
moisture by 10%.

3.5. Analytical results

To understand the modeled scenarios in the context of possible fire
regimes, analytical response surfaces are shown in RI —¢space in Fig. 5.
As shown in these solutions, constant upper canopy biomass contours
curve through the RI —¢ space, so that upper canopy biomass is most
sensitive to fire severity at moderate-high return intervals (= 20 years),
and most sensitive to return interval at moderate-high severities (~ 0.7),
with biomass maximised at low severity and high return interval. A more
complex surface emerges for the lower canopy biomass, where the peak
understory biomass broadly falls along the contour for of G, ~ 5 kg/m?.
This represents an optimum between conditions where light competition
from a dense upper canopy suppresses understory growth (a situation
arising for long fire return intervals and low fire severities), and con-
ditions where fire is so frequent and severe as to suppress both upper and
low canopy biomass. Unsurprisingly, the ]A‘u response is similar to that of
G, although it saturates under conditions of relatively more frequent
and severe fire. (See Table 6).

Points marked on Fig. 5 show the specific model scenarios tested. The
analytical results demonstrate that under the managed wildfire regime,
the ICB lies in a reasonably ‘sensitive’ part of the parameter space, where
large changes in forest fraction result from modest changes in fire fre-
quency or return interval. Conversely, the SCB is located in a ‘flatter’
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region of the parameter space, where changes in return interval or in fire
severity are unlikely to generate large changes in estimated forest
fraction, even though the upper canopy biomass density may change
more dramatically (panel A). Note that these surfaces treat all forest
growth parameters as constant; different sensitivities to fire regime
would arise if forest growth were to change in addition to fire frequency
and severity. Illustrative responses to changes from calibrated parame-
ters are shown in supporting information Fig. 4.

4. Discussion

The study investigates the long term response of forest cover to
managed wildfire in two Sierra Nevada basins, its sensitivity to factors
that differ between these basins, and the effects of potential climate
scenarios in ICB. The model results reveal some of the value of explor-
atory models: despite its simplicity, the calibrated model results are
consistent with the available data relating to landcover composition and
responses to fire management in ICB. The model allows for synthesis of
numerous observations and datasets pertaining to the fire and vegeta-
tion dynamics in the basin, and interprets their implications in terms of a
variable of primary interest, the forest cover fraction. The model reveals
sensitivities to different aspects of the fire regime and climate, and
provides some clear indications for consideration when designing pol-
icy. This information complements detailed investigations undertaken
using highly parameterized process models (Boisramé et al., 2019;
Rakhmatulina et al., 2021), by allowing longer simulations and explo-
ration of more aspects of the fire regime than have been possible for
these basins to date.

The results firstly suggest that the ICB forest cover has not yet
reached a stochastic steady state condition. This is consistent with the
findings of Boisramé et al. (2017), who found no indication that rates of
change in several landscape ecology indicators for the ICB were slowing
by 2012. These model results suggest that approximately 200 years of
fire suppression would be needed for the forest properties of ICB to reach
stochastic steady state. This timescale is very similar to that needed for
complete forest recovery following a restoration of the natural fire
regime. That is - fire suppression and managed wildfire policies alter
forest cover in the ICB over comparable time scales.

The time scales of forest cover response to an increase in fire fre-
quency, however, are sensitive to the characteristics of the fire regime.
As revealed by analysis of SCB, fire return intervals above a certain
length may be insufficient to produce significant forest cover change in a
basin, even following restoration of managed wildfire regimes.
Conversely, shorter fire return intervals or increased fire severity
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Fig. 4. Forest fraction (f,) trajectories for (Panel A) the shorter return interval and increased severity scenarios in ICB (Panel B) the SCB test scenarios. The cali-
bration ensemble is included for reference. [See online article for color version of this figure.]
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Fig. 5. Analytic predictions of the upper canopy biomass G, (panel A), lower canopy biomass G; (panel B), and forest cover fraction ?u (panel C), as functions of fire
severity ¢ and return interval RI (all other parameters are equal to those used to calibrate the model). Circles show the ICB observations in parameter space, squares
the RI scenarios, diamonds the severity scenarios, and triangles the SCB RI scenario. [See online article for color version of this figure.]

Table 6

Summary of SCB results at 40, 100 and 600 years for two scenarios, where: (i)
the return interval was increased by a factor of 2.4 in the calibrated parameter
ensemble (‘RI x 2.4°), and (ii) the soil moisture was reduced by 10% in addition
to the adjusted return interval (‘RI x 2.4 and 10% drier’). Results from the
calibrated ensemble are included for reference.

(fu)

Scenario Change from 1972

Simulation year 40
Calibration

SCB; RI x 2.4

SCB; RI x 2.4 and 10% drier
Simulation year 100
Calibration

SCB; RI x 2.4

SCB; RI x 2.4 and 10% drier
Simulation year 600
Calibration

SCB; RI x 2.4

SCB; RI x 2.4 and 10% drier

0.65 (0.64, 0.66)
0.81 (0.81, 0.82)
0.79 (0.78, 0.79)

—0.18 (-0.19, —0.17)
—0.02 (-0.02, —0.01)
—0.04 (-0.05, —0.04)

0.54 (0.53, 0.55)
0.81 (0.80, 0.82)
0.78 (0.77, 0.79)

—0.29 (-0.30, —0.28)
—0.02 (-0.03, —0.01)
—0.05 (-0.06, —0.04)

0.43 (0.41, 0.45)
0.82 (0.80, 0.83)
0.82 (0.80, 0.83)

—0.40 (-0.42, —0.38)
—0.01 (-0.03, 0.00)
—0.01 (-0.03, —0.00)

accelerate the rate of forest cover conversion (Coop et al., 2020; Ste-
phens et al., 2021). These changes do not necessarily represent a viable
management approach, however, as the rapid rate of forest conversion is
also associated with lower steady state forest cover. For example, a 30%
reduction in fire return interval in ICB imposed in 2022 results in the
forest cover approaching a value similar to the ‘natural’ steady state over
a 50 year timeframe (Fig. 4A). However, in the long term (600 years),
such a frequent fire regime results in a very low stationary forest cover of
0.2 in the basin.

The simulations suggest that the distinction between ICB and SCB
forest cover trajectories is explained by the difference in fire regime
between the two basins. The simple model cannot, however, determine
why the fire return intervals are so distinct between the two basins.
There is a known management component associated with the use of fire
suppression in SCB, but it is not clear if the different fire regimes in the
basins are completely, or only partly attributable to these management
differences.

The modeled forest cover was very sensitive to the difference in fire
return interval between the basins. As revealed by the analytical results,
the steady state conditions are most sensitive to return interval for in-
termediate values of fire severity (&u ~ 0.7), with less sensitivity to re-
turn interval when fire severity is very high or low. Similarly, the results
are most sensitivity to fire severity for intermediate return intervals
(RI =~ 20 years). Consequently, where both return interval and severity
adopt moderate values, the outcomes for forest cover are likely to be

10

sensitive to changes in fire conditions. Furthermore, as shown in the
analytical results presented in the supporting information, and made
clear in the expressions Eq. 10 and 13, forest cover is also influenced by
growth rates.

While predicting the long-term forest cover is difficult, the findings
suggest cautious optimism in applying the managed wildfire approach to
new basins. Decreasing fire return intervals within fire suppressed for-
ests appear to be likely to produce long-term changes in forest cover.
Where fire return intervals are lengthy, the simplest management tool is
to increase the fire frequency. If this can be achieved while managing the
initial risk of extensive high severity fire, there is every reason to expect
forest cover to be reduced without severely impacting the local ecology
and ecosystem services in the process - an outcome which itself reduces
the risk of extensive high severity fire long-term. While the outcomes of
managed wildfire remain uncertain, the model results suggest that tar-
geting a reduction in fire return intervals is a viable pathway for
reversing the effects of fire suppression.

The results suggest that changes in fire regime associated with a
changing climate have the potential to alter the outcomes of a managed
wildfire policy. To date, increases in fire severity within the managed
basins have been negligible, and even projecting forward the changes in
fire severity experienced across the broader Sierra Nevada shows com-
parable influence on forest cover to the differences in return interval
between the basins. Most changes expected under a changing climate
would tend to reduce forest cover in the managed wildfire basins.

However, despite the appeal and simplicity of the exploratory model,
these ‘extrapolated’ results must be interpreted within the limitations of
the simple model structure and parameterization. Several processes that
could importantly influence vegetation cover trajectories, including
feedbacks between vegetation biomass and soil moisture, competition
between canopy layers suppressing the upper canopies species, and the
relationships between vegetation biomass and the fire characteristics of
the landscape, are all omitted from the model.

Future trends in fire severity will be determined by a number of
interacting factors, which are not included in the simple model frame-
work presented here. For example, increasingly frequent and hotter
droughts are expected to result in increasingly flammable fuel condi-
tions (Brando et al., 2014) and heavy downed woody fuels from drought
and bark beetle tree mortality can lead to increased fire severity (Ste-
phens et al., 2018; Stephens et al., 2022). Alternatively, increasing levels
of drought-related tree mortality may reduce risks of high-severity
stand-replacing fire by reducing ladder fuels (Hicke et al., 2012) and
canopy fuels (Stephens et al., 2018). Predicting how these factors will
play out in the Illilouette and Sugarloaf Creek Basins is challenging, and
was not attempted here.
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The role of CO, was similarly omitted from the long-term predictions
(Topic 1) and fire regime scenarios (Topic 2) estimating forest cover
changes over time. Global atmospheric CO5 levels have increased since
managed wildfire regimes were implemented and will continue to in-
crease. Increasing CO; influences vegetation growth (Ma et al., 2015;
Saha et al., 2015), and interacts with other climate effects (e.g., drought
stress, Duan et al., 2018) and edaphic conditions, favoring the growth of
some species over others under future conditions (Niinemets et al.,
2011). The projected long-term response of the ICB to the managed
wildfire regime does not consider variable growth rates in response to
rising CO», nor how higher CO, and associated changes in hydroclimate
(e.g., increasing drought severity) will interact to change vegetation
growth rates.

These omissions mean that the model is most appropriately used
within the context of its calibration, i.e., for forest cover in the range
0.65-0.83. Results that extrapolate outside this range — and several of
the results are based on such extrapolations — are necessarily specula-
tive. For example, as forest cover declines, the rate and extent of fire
spread through ICB may change, relative to the 0.65-0.83 forest fraction
case. Since spatial fire spread is not represented in the model, its effects
on forest cover dynamics is accounted for using the calibrated return
interval and forest growth parameters. The stationarity of these pa-
rameters across the simulated range of forest cover is not known - but it
would be expected, for instance, that when forest cover becomes very
sparse (Parks et al., 2015), fires might be spatially constrained by fuel
limitations, as is known to already occur in ICB (Collins et al., 2009;
Collins et al., 2016). Thus, the more extreme scenarios in which forest
cover approaches zero may be exaggerated due to spatial constraints
omitted from the model. Similarly, the stability of high forest cover
across the parameter space (e.g. the large blue areas on Fig. 5C) may be
exaggerated, as the probability of fires spreading rapidly across large
areas is not well captured when calibrating to the fragmented ICB
landscape. Consequently, the results are most reasonably interpreted
when considering small shifts in forest and fire properties relative to ICB.

The results suggest that, at present, the ICB has not yet reached a
stochastic steady state, and that its forest cover will likely continue to
decline if the managed wildfire regime continues. They suggest that
forest change through manipulation of fire regimes is a slow and vari-
able process, with a final outcome likely to be influenced by ongoing
changes in forest growth rates and fire regime properties. They suggest
that insufficient decrease in fire return interval compared to suppressed
conditions may result in little observable change in forests from today’s
conditions. Managed wildfire remains an appealing instrument for forest
restoration — but one which is likely to need ongoing monitoring and
research to fully understand and shape its impacts on the landscape.
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