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The complex physics of glass-forming systems is controlled by the structure of the low-
energy portions of their potential energy landscapes. Here we report that a modified
metadynamics algorithm efficiently explores and samples low-energy regions of such
high-dimensional landscapes. In the energy landscape for a model foam, our algorithm
finds and descends meandering canyons in the landscape, which contain dense clusters
of energy minima along their floors. Similar canyon structures in the energy landscapes
of two model glass formers—hard sphere fluids and the Kob–Andersen glass—allow us
to reach high densities and low energies, respectively. In the hard sphere system, fluid
configurations are found to form continuous regions that cover the canyon floors up to
densities well above the jamming transition. For the Kob–Andersen glass former, our
technique samples low-energy states with modest computational effort, with the lowest
energies found approaching the predicted Kauzmann limit.

glasses |metadynamics | energy landscape | hard spheres

Many outstanding problems in understanding glasses have been related to their potential
energy landscapes (1), hypersurfaces describing a system’s total potential energy spanning
the high-dimensional configuration space formed by all the particles’ spatial coordi-
nates (2).These landscapes have a complex geometry, as indicated by an energy-dependent
distribution of basin hypervolumes (3, 4), highly tortuous steepest descent paths
(5, 6), and fractal clustering of local minima (6). Rapid quenching from a very high
temperature (equivalent to following a steepest descent path from a random configuration)
reports the landscape’s local minima, or inherent structures (ISes) (2), each weighted by
their associated catchment basin hypervolume (3, 7). The ensemble of such quenched
configurations (8) having the largest basin hypervolumes are distinctly different from
the lowest-energy ISes (9, 10) that control glass transitions (11–13). Navigating such
high-dimensional spaces and mapping the arrangement of glassy states remains a major
challenge. Further, the heterogeneous nature of glassy dynamics (14) makes the use of
collective descriptors of system dynamics ineffective. Methods like eigenvector-following
(15) and techniques for exhaustively enumerating ISes (16) allow the spatial arrangement
of glassy states to be explored but tend to be computationally expensive (17, 18) in
large systems. Swap Monte Carlo (9, 10, 19) and similar methods allow the canonical
sampling of glassy states but jump around configuration space, obscuring the states’
arrangement, and these methods are ineffective in bonded systems.Meanwhile, optimizers
such as basin-hopping (20) efficiently find the lowest states but operate on a modified
landscape without barriers, overlooking interesting characteristics of the landscape in
the process.

Here we modify a high-dimensional metadynamics (21) algorithm by Yip and
coworkers (22) and use it to discern the arrangement of ISes in glassy energy landscapes,
calling our approach the metadynamics-inspired multifractal sampling explorer
(MIMSE). When this algorithm is applied to a model of foams or soft glassy materials
(SGMs) (6), it finds meandering canyon-like structures in the landscape and descends
into them to find many ISes clustered on the canyons’ floors. Analyzing small ensembles
of biased trajectories reveals that these canyons have well-defined widths and become
narrower as they meander to progressively lower energies. To apply this approach to
a popular model of dense hard sphere (HS) fluids (9), we examine the corresponding
extended energy landscape for compressible or soft spheres. The algorithm again finds
and descends similar canyons, finding HS configurations (where the soft sphere potential
energy is zero) that cover the canyon floor.These zero energy configurations appear to form
a continuous, connected domain, which can be effectively found up to volume fractions as
high as 0.68. However, locating theseHS states from random points in configuration space
becomes exponentially costly at higher densities. Last, when applied to a simple model of
an atomic glass former, the Kob–Andersen (KA)model (23), our algorithm again finds and
rapidly descends canyons, reaching very low energies with modest computational effort.
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Exploring many canyons yields a distribution of canyon floor
energies the lowest of which approach the predicted Kauzmann
(24) energy limit—the energy at the Kauzmann temperature, the
notional point for an ideal glass transition. Surprisingly, the low-
dimensional canyon floors that contain the glassy configurations
were found to have the same effective fractal dimension in all three
systems’ landscapes.

The MIMSE Algorithm

MIMSE is an athermal, metadynamics-based approach (21) di-
rectly applied to the 3N -dimensional potential energy landscape
of N particles and uses sequentially added bias potentials to
overcome energy barriers (22). We use the fast inertial relaxation
engine (FIRE) (25) to relax the system configuration on the biased
energy landscape; tests using steepest descent gave similar results
but at higher computational cost. The bias potential employed
is a 3N -dimensional, bell-shaped, smooth quartic function with
the form

U (r) =

⎧⎨
⎩
U0

(
1−

(
‖
¯
r−

¯
rm‖

Uσ

)2
)2

, if ‖
¯
r−

¯
rm‖< Uσ

0, otherwise.
[1]

Here
¯
r represents the 3N -dimensional system configuration,

and
¯
rm is the IS minimum location around which the bias is

centered. The bias parameters Uσ and U0 represent the 3N -
dimensional radial extent and energetic height of the bias, respec-
tively. To ensure that the center of mass of the system remains at
rest, we modify the corresponding bias forces to ensure the total
force on the system is zero. To ensure stable configuration dynam-
ics, we use models with energy landscapes that are continuous and
differentiable.

Algorithmic flow starts at a local minimum of the landscape,
sampled typically from the quenched ensemble, described earlier.
Starting at such a minimum, a bias is added centered on its
location, forming a local maximum on the biased landscape. To
move away from this unstable maximum, the system is given
a small, random 3N -dimensional displacement (corrected so as
to preserve the position of the system’s center of mass). This
configuration is then relaxed to the nearest minimum on the
biased landscape using FIRE, and the process repeated by adding
a new bias at each subsequent minimum.

In conventional metadynamics, the bias radius is smaller than
the separation between neighboring ISes, leading to basin filling
and exhaustive enumeration of minima (21, 22). Here we use
larger bias radii, such that when a bias is added, many ISes
within Uσ of

¯
rm are covered by that bias, effectively forcing the

system over their associated nearby energy barriers. Values of Uσ

and U0 that lead to efficient landscape descent in energy are
found bymanual tuning using a divide and conquer-like approach
(Materials and Methods). For computational efficiency, a 3N -
dimensional neighbor list is maintained to track the different
biases affecting the system at its current 3N -dimensional position.
In practice, we find that reasonably old biases can often be
retired without difficulty, keeping computational and memory
costs manageable. Additional details of the algorithm are provided
in Materials and Methods.

As the algorithm proceeds, we distinguish among the minima
encountered and store and analyze the subset which lie outside
the bias potentials, which also correspond to physical ISes of the
unbiased energy landscape. This approach consistently yields ISes
in glassy landscapes.

SGM Energy Landscape

We first demonstrate our approach on a model for foam or
SGMs (26–28), whose energy landscape was characterized in an
earlier study (6). The system consists of a highly polydisperse
collection of N ∼ 350 compressible soft spheres interacting via
purely repulsive harmonic interactions when they overlap. We
choose a volume fraction, φ= 0.75, about 0.03 higher than the
threshold for solidity or jamming, φSGM

J , in this model (6). The
distribution of radii (R) resembles that of bubbles in a ripening
foam, described by a Weibull distribution with polydispersity
Δ= (〈R2〉 − 〈R〉2)1/2/〈R〉 � 0.64; see SI Appendix for model
details. To create initial configurations of this model, we select
random points in configuration space and relax them to their
nearest energy minimum using FIRE.This ensemble of quenched
ISes has a roughly Gaussian distribution of energies (Fig. 1 A,
Left).

Our key finding is that for certain bias parameters, MIMSE
rapidly descends down the potential energy landscapes of glassy
systems. Typical results for the SGM model landscape are shown
in Fig. 1, reaching energies that are much lower than the energies
of quenched configurations after only a few hundred biases. These
proceed to lower energy logarithmically with additional effort,
reaching energies which, compared to the quenched energy distri-
bution, areZU ≈−5 SDs below the mean of the initial quenched

A

B

Fig. 1. Exploring a soft-glassy material landscape with MIMSE finds low-
energy ISes efficiently. (A) (Left) The probability distribution of energies for
an ensemble of 1,000 different quenched initial configurations, formed by
FIRE relaxation of random configurations. Applying MIMSE, the energy of
the configurations decreases rapidly, depending on bias radius, Uσ . (Right)
Rescaled energy relative to the mean and SD of the quenched energies Uq,
also known as the z score, ZU . (B) The descending energy trajectory appears
roughly logarithmic in time. (Inset) The number of biases that are required to
descend a given energy range (dashed lines in B) shows a strong dependence
on Uσ , which can be approximated by a power law over a narrow range.
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ISes (Fig. 1, Right). Notably, such significant descent in energy is
only found to occur in a window of bias radii, 2� Uσ � 5, and
the number of biases required to descend by a given energy shows
a strong dependence on the bias radius (Fig. 1 B, Inset). Larger
biases descend the landscape far faster than smaller ones, up to a
maximum radius. The energetic height of the bias U0 appears less
critical; descent down the energy landscape is observed in a wide
window, 10−3 � U0/Uσ � 103.

Our first task is to understand what features of the SGM
landscape enable our algorithm to descend to such low energies
and to explain the narrow window of bias radii where it occurs. To
this end, we formed ensembles of 1,100 FIRE trajectories, each de-
scending the same bias around the same starting IS minimum, but
initialized with different isotropically random 3N -dimensional
displacements, and examined the results as a function of bias
radius. We find that after initially moving radially away from the
center in random directions due to the strong bias force, these
paths then drift in the angular (3N − 1) dimensions according
to the gradient of the underlying landscape. Finally, these paths
terminate in 1,100 different energy minima near the edge of
the bias.

To descend the energy landscape, the FIRE minimizer must
be following gradients in the underlying landscape; perhaps the
window of bias radii is due to suitable gradients only being present
on corresponding length scales. To test this idea, we first compute
the average drift of the ensemble of trajectories, such as would be
caused by an underlying gradient. Specifically, for each trajectory
we first compute a 3N -dimensional unit vector û pointing from
the initial IS to the new energy minimum. Next, we compute the
Euclidean length of the average of these unit vectors, ‖〈û〉‖, akin
to the center of mass of the new minima, as a function of bias
radius, Uσ. The results for three starting ISes at different depths in
the landscape are shown in Fig. 2A. While the average drift shows
a broad peak for theUσ where energy descent is observed, a similar
amount of drift is seen for much smaller and larger radii, failing
to explain the lack of energy descent in those cases.

To gather clues about descent and barrier crossing in the under-
lying landscape, we applied a hierarchical single-linkage clustering
algorithm (29, 30) to the unit vector ensembles analyzed above.
The clustering algorithm characterizes clusters as sets of points
such that each point in a cluster has at least one other constituent
point within a given distance threshold (Materials and Methods).
The idea behind this analysis of clustering is that if a subset of
the trajectories are crossing a barrier, they will form a separate
cluster from the others. For small and larger Uσ values, we find
multiple clusters indicating the exploration of IS clusters separated
by barriers. For intermediate values of Uσ , we report that these
ISes form a single extended cluster. Remarkably, we now find
a one-to-one correspondence between the bias radii that give
efficient energy descent and the û vectors that form a single
cluster, for ISes at the three different energies considered (Fig. 2B).
Moreover, it may be noted that the maximum Uσ that forms a
single cluster gets progressively smaller at lower-energy domains in
the landscape, decreasing from 7 to 6 to 5 units. This observation
and the correspondence between bias radius and energy descent is
confirmed by another result: bias radii in the range 5 to 7 rapidly
descend the landscape at first but then get stuck, plateauing at
intermediate energies (SI Appendix, Fig. S1). Analysis of the same
vectors using complete linkage clustering fails to resolve these
clusters well, suggesting that they are extended and intertwined,
rather than compact and well separated.

These findings indicate how the algorithm works: for the ap-
propriate bias size, it is simply following clusters of ISes like a trail
of breadcrumbs to low-energy portions of the landscape. Finding

A

B

Fig. 2. Trajectory ensembles reveal landscape gradients and IS clustering.
Ensembles of 1,100 FIRE trajectories descending the same hyperspherical bias
potential after different, isotropically random initial displacements move radi-
ally before being affected by the underlying landscape and terminating near
the bias edge (schematics shown in Insets). The final relative displacements
are converted to unit vectors, û. (A) The norm of the average of the 1,100 unit
vectors ‖〈û〉‖ reveals the average drift due to an energy gradient, for three
different depths in the landscape, ZU ≈ −2.8 (squares), −3.8 (circles), and
−4.7 (triangles), showing a broad peak around Uσ ≈ 3. (B) Performing single-
linkage hierarchical cluster analysis (29) on the same û ensembles yields a
single cluster only for Uσ � 2, with an upper limit that depends weakly on
ZU . Landscape energy descent only occurs for bias radii and energies where
a single cluster is found, as explained in SGM Energy Landscape.

multiple clusters with too large biases indicates the crossing of
large-scale barriers into other domains, losing the trail. Finding
many clusters with too small biases indicates the crossing of small-
scale barriers but leaves the algorithm trapped, exploring within a
dense IS cluster at nearly the same location. Last, a fractal scaling
analysis, discussed in KA Glass Former and SI Appendix, of the
sampled configurations suggests that the set of low-energy ISes
occupy a subspace with a low effective dimensionality of ≈2.5.

The above analyses can be summarized schematically in Fig. 3A.
The landscape consists of meandering canyons or tubes [as sug-
gested by earlier studies (5, 6)], with the ISes forming extended
dense clusters along the canyon floors. These dense clusters act as
traps for MIMSE when the bias radius is too small. For optimal
bias radii, as shown in Fig. 3A, the biased FIRE path bounces
off the canyon walls (finding no ISes there), evolves under the
influence of the landscape gradient, and ends at a new minimum
farther down the canyon. Sometimes this path extends out of
the biased region completely, ending in a physical IS. Too large
biases push the configuration into adjacent canyons, apparently
preventing energy descent. Since the largest Uσ that descends the
landscape decreases at lower energies, it appears that the canyon
tapers as it descends to lower energies. Given that the canyon is
high-dimensional, the reduction in its hypervolume due to even a
slight decrease in width is enormous.
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A

B

Fig. 3. Schematic aerial view of the energy landscape showing canyons
(white region) with tortuous floors (dashed line) descending to lower energy
(left to right). (A) For the SGM system, ISes (black dots) are clustered along the
canyon floor, andMIMSE skips from IS to IS (solid red path), when biases (large
red circles) are sequentially applied (left to right). Red open circles represent
biased minima; unbiased minima (black arrows) are stored as output. (B) For
the HS glass, the canyon floor is covered by a slender connected domain
having zero energy (blue), as if flooded by a stream of water, and MIMSE skips
between configurations where the bias and the zero energy domain intersect
(small red circles). Some ISes in A may have zero energy (blue) but may be
either blocked by other ISes or too rare to sample.

HS Fluid

To determine if the energy landscapes of glass formers also contain
canyon structures that resemble those in the SGM system, we
apply MIMSE to two additional well-studied models. The first
is a model of HS fluids (9, 10, 31), having a size distribution
given by P(R)∼ R−3,R ∈ [Rmin,Rmax],Rmin/Rmax = 0.4492,
and N = 1,000 particles. Such a polydisperse system has been
shown to consistently avoid crystallization, instead undergoing
kinetic arrest into an HS glass as the volume fraction is increased
(9, 10).

Importantly, the HS potential segments configuration space
into two domains, a physical one with zero energy and a for-
bidden domain with one or more particle overlaps. To form a
continuous energy landscape, we consider a soft-sphere extension
to the HS model, with harmonic repulsion; see SI Appendix for
details. This model thus resembles the SGM model but has a
different particle radius distribution and volume fraction.We then
consider any configurations found with energy per particle less
than a small tolerance (U /N < Utol = 10−16) to be physical
HS configurations (9). For such states with zero energy, we use a
different order parameter to follow the progress of our algorithm
across the landscape, corresponding to the mean coordination or

contact number 〈z 〉. Since pair contacts containing unconstrained
or rattler particles can be trivially relaxed, 〈z 〉 is a measure of the
force bearing contacts. Its value is confirmed to be insensitive to
the choice of Utol (SI Appendix, Fig. S2).

We perform MIMSE relaxation experiments varying the vol-
ume fraction initially over a small range, 0.66< φ < 0.67. To
provide initial ISes, we FIRE relax random configurations. Since
this range is above the jamming or random close-packed volume
fraction for this model, φHS

J � 0.65, this initial quench step
consistently yields ISes having finite energy, residing on the soft
sphere portion of the landscape. Applied to these quenched states,
we find MIMSE again rapidly descends the energy landscape
(Fig. 4A) when the bias radius is in a small range (3� Uσ � 5),
indicating that there are canyons similar to those in the SGM
landscape.

For the lower range of volume fractions we study, φ� 0.667,
MIMSE is able to consistently reach states with zero energy,
corresponding to HS configurations (Fig. 4A). The first HS con-
figurations found are isostatic (or nearly so), with 〈z 〉 ≈ 6. Further
application of biases briefly yields a mixture of HS and finite
energy states, before reaching a part of the canyon where it samples
a continuous series of HS states. Continuing MIMSE results
in configurations with 〈z 〉 dropping by roughly three orders of

A

B

Fig. 4. MIMSE descends both the soft sphere and HS portions of the HS
glass landscape. (A) MIMSE efficiently descends down canyons, reducing
the energy (Left) of the soft-sphere system, ending in a nearly isostatic,
jammed HS state. Further application of biases (Right) shows that the average
coordination number of these zero-energy configurations, 〈z〉, drops signifi-
cantly, indicating structural relaxation, before reaching a steady state value.
(B) Running MIMSE on a range of different starting volume fractions shows
us that MIMSE requires a larger number of biases to reach the HS portion
of the landscape, becoming very computationally expensive for φ � 0.667.
The colors represent independent runs starting from four different random
initializations in configuration space. The dashed line is an exponential eye
guide. The arrow-headed lines denote lower limits derived from incomplete,
long simulations.
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magnitude after ∼103 biases (Fig. 4A). Notably, when sampling
the zero-energy domain, MIMSE finds a new, unbiased zero-
energy state after every bias addition and no finite energy ISes.
The g(r) of these configurations on the 〈z 〉 plateau resembles
the jammed case (SI Appendix, Fig. S2B), suggesting that the al-
gorithm is sampling a region of the landscape corresponding to
high pressures, adjacent to the jamming line (9, 32).

The behavior of the MIMSE algorithm while exploring such
HS states provides insights about their distribution in config-
uration space, summarized in Fig. 3B. Starting from an initial
quenched configuration, MIMSE descends a finite energy canyon
until it first reaches a portion of the canyon floor containing
small puddles of zero energy, before reaching a region where
nearly all ISes are covered by a slender, connected domain of HS
configurations. It is as if the canyon floor were flooded by a stream
or level set having zero energy. In this case, for every added bias, the
canyon walls funnel all FIRE paths to points on the intersection
of the edge of the bias and the edge of a zero energy domain
(Fig. 3B). FIRE then halts when the total energy per particle first
drops below Utol . The fact that the hyperspherical edge of every
bias intersects a zero energy domain leads us to hypothesize that
the domain is continuous (at least on the bias length scale used to
search the configuration space).

As φ increases, MIMSE must work harder to reach HS states.
Starting from a random quenched configuration, the number
of biases required to reach the HS states (proportional to the
contour distance traveled along the canyon floor) increases expo-
nentially with φ (Fig. 4B). Notably, some initial configurations
(and canyons) appear deeper than others, with a broad dispersion
in the amount of effort to reach the HS states. Indeed, for φ�
0.667, MIMSE does not consistently reach HS states with a
reasonable computational effort. It is as if the entire landscape has
been raised and the stream drained away to a deeper, unreachably
distant stretch of the canyon. In the opposite limit, the jamming
volume fraction φHS

J corresponds to lowering the landscape so far
as to flood the entire canyon, such that the HS domain covers
even the highest, quenched ISes on the landscape. Overall, the
finite energy portions of the canyons resemble that seen in the
SGM case (Fig. 3A). Moreover, the number of biases between
subsequent ISes on the soft sphere portion of the landscape
increases with φ, and the number of FIRE steps required per
bias increases by roughly 10-fold for φ� 0.666. This suggests a
φ-dependent change in the ruggedness of the landscape.

Our results thus far finding canyons leading deeper into the
landscape poses the question of how far (or deep in φ) do the HS
domain streams in these canyons go? Theoretically, the entropy of
the equilibrium HS fluid is expected to nearly vanish (become
subextensive) at an HS glass transition corresponding to φeq

K .
An extrapolation of simulation data for this system in ref. 9
suggests that this occurs at φ≈ 0.672, only slightly higher than
that reached by MIMSE above. Thus, it is natural to conjecture
that the canyons we are exploring might cease to contain HS states
(or run dry) for some higher value of φ.

To reach deeper portions of the canyons and find higher
volume fraction HS states, we combinedMIMSE with an adapted
affine compression/relaxation scheme (33, 34); see SI Appendix
for details. This method does consistently push the configuration
farther down the canyon and reach higher φ states, again limited
by computational effort. This approach typically yields HS states
with volume fractions of φ≈ 0.670± 0.001. Remarkably, how-
ever, 2 of 30 runs reached dramatically higher volume fractions,
φ= 0.681 and 0.691, the latter roughly 0.04 above φHS

J . Such
dense configurations have previously been generated using swap
Monte Carlo combined with compression methods (10). Notably,

unlike swap, the particle displacements used by our approach
resemble physically allowed moves. Our findings thus suggest
that a significant fraction of random quenched configurations (at
least 2/30) are connected to these ultradense states by physical
trajectories.

To explore the landscape around the MIMSE compression
generated states, we used them as initial states for MIMSE runs,
dilating them by various amounts. Without dilation, MIMSE
quickly jumps out of the HS domain, sometimes finding a few
adjacent HS states, and then only sampling soft sphere ISes. This
suggests that rather than a stream, the HS domains are puddles
smaller than or comparable in size to the bias radius. When
the configuration is dilated by Δφ≈ 1− 2× 10−3, however,
MIMSE again finds long streams ofHS states (and familiar canyon
walls) that are easy to navigate (finding a new HS IS after every
bias addition) adjacent to all the configurations including the
one at φ= 0.681 but not the densest φ= 0.691 configuration.
The landscape looks qualitatively different surrounding the latter
state. This intriguingly suggests a change in the landscape for
0.68< φ < 0.69, but clearly, further study is required.

KA Glass Former

Last, to determine if the canyons we find are also a feature of the
energy landscapes of atomic glasses, we consider the KA model.
This consists of a binary mixture having a total of N = 256
particles with xA = 0.8 at a total number density of ρtotal = 1.2.
To ensure force continuity, we employ a quadratically smoothed,
truncated form of the Lennard–Jones potential (35):

V (rij )=

⎧⎪⎪⎨
⎪⎪⎩
kεij

((
σij

‖rij‖

)12

−
(

σij

‖rij‖

)6
)

+ ν(‖rij ‖), if ‖rij ‖< rc
0, otherwise,

[2]

where εAA = 1.0, εBB = 0.5, and εAB = 1.5; σAA = 1.0,
σBB = 0.88, and σAB = 0.8; and ν(‖rij ‖) is a smoothing
function (see SI Appendix for details). As before, we first choose
random points in configuration space and FIRE relax them to
their first energy minimum to form a quenched ensemble of ISes
(Fig. 5 A, Left).

When an optimal bias radius is used, we find that MIMSE
efficiently descends to low-energy portions of the KA landscape
(Fig. 5A). As in the SGM case (Fig. 1) the algorithm also proceeds
to lower energy roughly logarithmically over the ISes sampled,
despite the KA landscape’s presumed differences from the earlier
case. As before, the maximum bias radius is much smaller than the
contour length of the configuration space path, consistent with a
meandering canyon-like structure. Descent, however, occurs in a
much narrower window of bias radius, 1.0� Uσ � 1.5. The KA
system also requires far more biases for each new IS sampled.
For the optimal bias parameters used, the distribution of the
number of biases per new IS is heavy-tailed with a median of
≈9 and 〈n〉 of ≈27, versus 〈n〉 ≈ 1.4 in the SGM case. In
addition to requiring more biases on average for each new IS, the
algorithm must occasionally apply a large number of biases (n >
103) to generate a new IS. Examination of the trajectories reveals
the configuration path doubling back upon itself multiple times
before crossing energy barriers.We interpret these differences from
the SGM system as the landscape of the KA system being more
rugged, requiring the filling of subbasins (having a broad range of
hypervolumes) with biases to cross the energy barriers necessary
to find each new IS. We typically terminate the MIMSE run after
a fixed amount of computational effort.
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A

B C

Fig. 5. MIMSE descends the landscape of the KA glass former. (A) (Left) The
probability distribution of energies for an ensemble of 1,000 quenched initial
configurations, formed by FIRE relaxation of random configurations. (Right)
We find that MIMSE successfully reaches low-energy configurations for bias
radii, Uσ ≈ 1. Both runs used U0 of 20. (B) Plotting a distribution of minimum
energies from ∼1,000 runs shows that it closely approaches the Kauzmann
limit (dashed line) (24). (C) The CDFs (36) of the pairwise separations of
the ISes for all three systems show that they form low-dimensional clusters
with very similar effective dimension: Df ≈ 2.4. Simulation parameters were
U0 = 3,Uσ = 3 (SGM); φ = 0.669, U0 = 0.85,Uσ = 3.98 (HS system with
U > 0); andU0 = 20,Uσ = 1.25 (KA). The nonuniform sampling of the ISes was
corrected as explained in SI Appendix.

The computational effort required to sample low-energy states
compares favorably to conventional methods. Earlier studies using
simulated annealing of the KA model (11) provide a relationship
between IS energy and fictive equilibrium temperature. Charac-
teristic temperatures such as the mode-coupling and Kauzmann
temperatures can thus be mapped to their corresponding IS
energies (24). Benchmarking our algorithm against a Langevin
dynamics implementation of simulated annealing finds an≈100-
fold improvement in computational speed to reach configurations
near the mode-coupling energy (U /N ≈−7.00).

Repeated MIMSE relaxations from a number of different start-
ing configurations yield a roughly Gaussian distribution of min-
imum energies (Fig. 5B). Since these runs are performed for a
fixed computational effort, this distribution is kinetically defined
by our algorithm and not a meaningful feature of the landscape
itself. A structural analysis of these low-energy configurations
using common neighbor analysis (37, 38) confirms that they are
amorphous. An earlier study using basin-hopping minimization
(20) yielded a sample of similar energy values for amorphous
structures in the same system (39), suggesting that MIMSE is
acting like existing optimizers. The empirically predicted value
of the Kauzmann energy, UK (24), is ∼3 SDs below the mean
of our distribution, UK/N ≈−7.08. Sampling several hundred
metabasins yields ISes very close to but not below the Kauz-
mann energy, consistent with this empirical prediction (Fig. 5B).

For comparison with conventional methods, a lengthy Langevin
dynamics simulation equilibrated at around the mode-coupling
temperature (24) yielded a much narrower distribution of IS
energies when quenched, U /N �−7.00± 0.008 and no states
anywhere near the predicted Kauzmann limit.

The fact that the algorithm can fill subbasins in the canyon
floor implies that the low-energy configurations occupy a low-
dimensional subspace embedded in the higher-dimensional con-
figuration space. To estimate the effective dimensionality of the
canyon floor, we compute the fractal dimension of the ISes we
find, correcting for their nonuniform sampling using methods de-
scribed inMaterials andMethods and SI Appendix. Specifically, we
compute the correlation dimension (36) of a subensemble of ISes,
i.e., the scaling exponent of the cumulative distribution function
(CDF) of the 3N -dimensional Euclidean distances between all
pairs of ISes. If the ISes form a fractal, the correlation dimension
would report the fractal dimension, Df , via CDF ∼ ‖Δ

¯
r‖Df .

The roughly power law scaling seen (Fig. 5C ) is consistent with
a fractal dimension, Df ≈ 2.4 (36). The slight curvature of the
plot suggests multifractal rather than true self-similar scaling. Un-
expectedly, the observed multifractal geometry of the KA canyon
floor appears to be very similar to that observed for canyon floors
in the SGM system and the soft sphere (U > 0) portions of
the HS system (Fig. 5C ). Further analysis of the SGM system
confirms a crossover to a slightly higher effective dimension at
shorter length scales (SI Appendix).

The canyons we report have ISes distributed along their floors
distributed within low-dimensional subspaces. While the system
is 3N -dimensional, only a subset of particles move significantly
between consecutive ISes, characteristic of a system with dynam-
ical heterogeneity. The low effective dimensionality of the canyon
floor, in the range 2 to 3, may indicate that only a few soft (or
unstable modes) dominate the transition between adjacent ISes.
If these configuration space directions become uncorrelated, we
would expect the effective dimension of the canyon to be that of a
randomwalkDf = 2.The slightly higher dimensionality observed
on still longer length scales could indicate caging of canyon path
by very large energy basins.

Discussion

We have found that our metadynamics algorithm provides in-
teresting insights into the large-scale structure of three glassy
energy landscapes, in particular the canyon-like subspaces that
both contain the glassy configurations and provide direct routes
leading to the landscapes’ low-energy states. While the floors
of these canyons contain dense clusters of ISes and resemble
the well-known rugged and barrier-filled landscapes of glasses,
our work reveals that these glassy domains are surrounded by
large, high-dimensional canyon walls effectively devoid of minima
and barriers, and the canyons contain energy gradients that lead
directly to lower energies in the landscape. Such simply connected
routes between glassy states and the lowest-energy states pose a
conundrum—how is it that simulated annealing struggles to find
very low energy states? The answer is presumably a free energy
barrier, as suggested by our finding that the canyons in the SGM
landscape become narrower at lower energies in the landscape.
In the HS case, we are tempted to associate the streams of HS
states we found with the results of ref. 5 for small packings
of HSes; they found most HS states comprised long, narrow
threads that terminate in high-density cores (which themselves
contain very few states). Our finding of narrow streams in the
landscape up to at least φ= 0.681, however, seems incompatible
with the prediction that the HS entropy becomes subextensive at
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a lower value. In the KA glass former, the algorithm is able to
consistently reach low-energy portions of the canyon, including
energies approaching the predicted Kauzmann limit. This finding
confirms that by virtue of its ability to follow the canyon walls
to lower energy, MIMSE can act like a global optimizer similar
to basin hopping (20). Finally, the presence of similar canyon-
like, low-dimensional subspaces with very similar multifractal
geometry in these seemingly different systems might explain the
range of qualitatively similar physical phenomenon and kinetics
in different glassy systems (13, 32, 40).

Future work will apply MIMSE to other glassy landscapes,
including bonded model systems. While informative, MIMSE
does not obey detailed balance, nor does it return samples cor-
responding to any canonical ensemble. We anticipate that future
work will fruitfully hybridize MIMSE with other methods, such
as swap (10, 19) or ghost particle (41) Monte Carlo, and parallel
tempering (42) to enable barrier crossing while obtaining canoni-
cal sampling. Recently, the loss landscape of deep neural networks
has been shown to have similar features (43) to that of a soft glassy
matter system; perhaps MIMSE will enable useful exploration of
such landscapes as well.

Materials and Methods

A detailed description of the algorithmic procedure is provided below. Code
has been deposited by the authors in GitHub, https://github.com/rar-ensemble/
MIMSE (44).

1) A random energetic minima sampled via FIRE from a random configuration
(quenched ensemble) is selected as the starting point.

2) A bias potential is added on to the system centered around the selected
minimum in 3N-dimensional configuration space. (Note that to ensure the
bias potential is center of mass preserving during evaluation of the bias, we
subtract the mass weighted sum of forces on all particles.)

3) The system is given a small, positional displacement in a random direction
in the configuration space, scaled such that at least one particle exceeds the
system force tolerance, Ftol . This displacement is adjusted to preserve the
center of mass location. The system is then quenched on the biased energy
landscape (Utot = U + Ui, bias, where i signifies the bias number).

4) Biases are added in succession until a new unbiased minimum is reached.
This is verified by ensuring that Utotal, bias/N< Utol .

5) The above process is repeated until a desired amount of the energy landscape
is sampled.

To undertake the above process with utmost efficiency and accuracy for our
systems of interest with highly rugged energy landscapes,we use a finite-ranged
bias potential,namely, a symmetric quartic function,as described in Eq.1. Param-
eters Uσ and U0 represent the 3N-dimensional Euclidean extent and energetic
height of the bias, respectively. Throughout our simulation, the center of mass
of the system remains at rest due to the bias force exerting no force on the
center of mass. This is enforced by subtracting the mass weighted total force
from individual bias force calculations. Despite this correction, our bias remains
isotropic in the 3N− 1 angular dimensions.

We study and select pairs of parameters that efficiently sample lower-energy
states effectively (and do so with a small number of biases per every new
unbiased minima). We use a divide and conquer–like search procedure to de-
termine an optimal pair of parameters for our algorithm. Our initial guesses
for both parameters are based on the relevant length scales and the potential
energy scales of the landscape. For example, in the SGM system, we search for

an optimal U0 between ∼ε/2 and ∼N2ε/2. Meanwhile, for Uσ , we search
between ∼〈R〉 and ∼

√
N〈R〉. In the range of Uσ , values were scanned over

logarithmically spaced intervals. At each Uσ value, a range of U0 values was
considered. Larger U0 values, much greater than the energy scale of the system,
make the determination of minima numerically inaccurate. Values over the
range that gave consistent exploration low-energy ISes was considered. A blind
systematic scan over a larger range ofUσ andU0 values gives a similar result. The
selection of parameters is further verified by studying the gradient and clusters
formed by trajectories emerging from a starting IS using different Uσ values
(Fig. 2).

To keep track of the biases, we use a modified extended 3N-dimensional
neighbor list that keeps track of all biases in high-dimensional space around the
system configuration within a cutoff distance Uc1. Further, we have a long-range
secondary cutoff lengthUc2 which defines our neighbor search boundary; biases
are retired when the system is farther than Uc2 from a particular bias. Thus, in
effect wemaintain neighbors (biases) withinUσ + Uc1 and update the neighbor
list by searching for biases within Uc2 from the system position. The update is
done when the system moves a Euclidean displacement more than Uc1, whose
value is chosen for computational efficiency. Parameter Uc2 is chosen so that
the ultimate trajectory of the system is not affected. It may be noted that both
of these parameters are system and bias size dependent and need to be tuned
for each system to balance the efficiency of the method with not retiring biases
prematurely.

Our metadynamics-based algorithm differs from that developed by Yip in
three keyways: 1)Weuse a smooth, truncated bias potential (Eq.1) instead of the
traditional Gaussian bias, that enables the use of a high-dimensional neighbor
list. This allows us to significantly reduce the computational overhead associated
with computing the total bias potential and also facilitates the retirement of
biases beyond a certain distance. 2) Further,wemake sure that the center of mass
of the system remains at rest throughout the simulation. We enforce this on the
bias potential and the random displacement after bias addition, which appears
to lead to significantly more efficient descent down the landscape. 3) Last, we use
an optimized minimzer, FIRE (25), that helps boost the computational efficiency
while exploring such glassy high-dimensional landscapes.

Thesemodifications and additions allow us to overcome the challenges posed
by our high-dimensional system. It must be noted that each system responds
differently to the biases in a way that depends on the characteristic energy and
length scales of that particular system.

MIMSE efficiently samples low-energy ISes in three different systems, ISes
sampled in each occupying a low-dimensional subspace. We characterize the
dimensionality of this subspace by computing the correlation dimension (36); it
corresponds to the logarithmic slope of the CDF of the 3N-dimensional Euclidean
distances between all pairs of points in the ensemble as function of those dis-
tances. However, since the ensemble of ISes or 3N-dimensional points sampled
by MIMSE are not uniform, we introduce a decluttering technique as follows.
We first determine theminimum3N-dimensional distance threshold required to
form one connected single-linkage-hierarchical cluster. We use this length scale
lmax to declutter our ensemble by discarding points that are spaced closer than
lmax (see SI Appendix for more details). We used the subensemble of remaining
points (which are now uniformly sampled on large length scales) to determine
the effective dimensionality.

Data, Materials, and Software Availability. Code and sample input files
have been deposited in GitHub (https://github.com/rar-ensemble/MIMSE) (44).
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