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To search for experimental signals of the Gardner crossover, an active quasithermal granular glass is
constructed using a monolayer of air-fluidized star-shaped particles. The pressure of the system is
controlled by adjusting the tension exerted on an enclosing boundary. Velocity distributions of the internal
particles and the scaling of the pressure, density, effective temperature, and relaxation time are examined,
demonstrating that the system has key features of a thermal system. Using a pressure-based quenching
protocol that brings the system into deeper glassy states, signals of the Gardner crossover are detected via
cage size and separation order parameters for both particle positions and orientations, offering experimental
evidence of Gardner physics for a system of anisotropic quasithermal particles in a low spatial dimension.
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Glasses made of atoms, polymers, colloids, or grains
constitute an important class of materials, yet the under-
standing of their physics is far from complete [1,2]. In some
cases, a Gardner transition is predicted as a system is
quenched into deeper glassy states by lowering temperature
or increasing density [3,4]. At such a transition, metastable
basins in the energy landscape break up into a hierarchy of
sub-basins, leading to a marginal glass phase that affects all
physical properties of a glass, including linear and non-
linear mechanical response and low-temperature behavior
[5–7]. While the theoretical framework has been estab-
lished for spin glasses and structural glasses of high spatial
dimension [3,8–13], and has been studied extensively in
low-dimensional simulations [7,14–23], there have been
relatively few experiments [24–28]. Moreover, computa-
tional studies, as well as all the experiments showing direct
evidence of Gardner physics by following particle tracks,
have been restricted to systems with isotropic (spherically
symmetric) interactions, yet nearly all real-world glasses
have constituent particles of complex shapes, with both
translational and rotational degrees of freedom.
Scalliet et al. have shown that the existence of Gardner

physics depends on the form of particle interactions in
systems with spherically symmetric potentials [16,20]. This
raises the question of whether we might expect to find
Gardner physics in systems with nonisotropic interactions.
Two experiments have searched for Gardner signatures
indirectly in molecular glass formers: dielectric response
measurements of sorbitol and xylitol exhibited broadening
of intermediate relaxation consistent with a Gardner tran-
sition [25], while nonlinear susceptibility measurements in
glycerol [27] failed to find signs of Gardner physics. To fill
this gap, we present the first direct evidence for Gardner
physics in a 2D system with nonisotropic interactions, and

show that not only particle translations but also their
orientational degrees of freedom provide consistent indica-
tors of Gardner physics. While the existence of a sharp
Gardner transition in 3D is still debated [22,29], in 2D
systems such as ours, long-ranged fluctuations are expected
to reduce the transition to a sharp crossover [19].
Our experimental system consists of a monolayer of air-

fluidized particles under controlled pressure. Three major
differences exist in comparison to previous works. First, the
particles are star-shaped with five spokes (Fig. 1), which
not only breaks interaction isotropy but prevents crystal-
lization. The concavity of the particles enhances caging at a

20 mm

FIG. 1. Photograph of the pressure-controlled experiment with
star-shaped particles (inset). Air-fluidized particles are enclosed
by a boundary made of a chain of particles on a thin flexible
thread. The left end is pulled with a controlled force G ¼ Mg,
while the right end is anchored. See the Supplemental Material
[34] for an example video.
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lower density, which suppress localized cage-breaking
events that can impair Gardner physics. Second, air
fluidization injects energy with spatial and temporal uni-
formity by a sublevitating upflow of air that sheds turbulent
wakes to induce in-plane stochastic particle motion [30,31].
Injecting energy at the particle scale renders the system an
active matter and leads to behaviors with a strong thermal
analogy [31–33]. Unlike vibration-based approaches, air
fluidization does not generate large convection currents of
particles. As the particle weight is largely countered by the
air pressure, the basal friction with the substrate becomes
small. Third, a pressure-controlled protocol is imple-
mented, which previously has only been realized computa-
tionally [18,19]. This is important because in systems of
hard particles, the pressure depends extremely sensitively
on density in the Gardner regime. And the range between
the Gardner crossover and jamming is considerably nar-
rower in terms of density [24] than pressure. Pressure can
be more accurately controlled than density for finite
numbers of particles for locating the Gardner crossover.
Experimental details are as follow: The particles have

five evenly spaced spokes of length 4.5 mm, width
1.25 mm, and height 2.5 mm, surrounding a 4 mm diameter
circular disk. The nominal particle diameter is thus
σ ¼ 13.0 mm. The particles are 3D-printed with the
Polyjet technique using a black rigid resin with mass
density 1.18 g=cm3. The particles have mass m ¼ 0.12 g
and moment of inertia I ¼ 1.73 g=mm2. The fluidization
apparatus is based on a previous device [31–33,35], where
the particles are placed on a sieve with 150 μm mesh size.
The air velocity is set to 3.6 m=s to minimize particle-
substrate sliding friction without levitating the particles.
As shown in Fig. 1, the particles are enclosed by a

flexible boundary of 50 particles glued to a thin flexible
string with center-to-center spacing of 14 mm. These
boundary particles are also fluidized, resulting in better
uniformity of particle behaviors compared to rigid boun-
daries. The right end of the boundary is fixed while the left
end is pulled by a constant force, G ¼ Mg, where M is the
mass of a hanging weight and g ¼ 9.8 m=s2. This results in
a force balance of G ¼ 2T cos θ at the ends with T being
the string’s tension and θ being the half angle made by the
string. For the rest of the boundary, a Laplace-like relation
can be established for the particle pressure, P ¼ T=R, with
1=R being the boundary curvature. The shape of the
upper and lower halves of the boundary can be well fitted
to a circular arc, indicating a constant R. Thus, the pres-
sure of the system is controlled by the hanging mass
via P ¼ G=2R cos θ.

Two series of experiments were performed. First, to
study the thermal analogy and explore phase space, the
system is held at a constant pressure using various hanging
weightsG and numbersN of interior particles. In each case,
the system is equilibrated at the desired G for 10 min, after
which 1 min of data were taken. Second, to probe the

Gardner physics, a pressure-based quenching protocol was
developed (below). Digital videos were recorded at 110 fps
for the first set of experiments and at 12 fps for the
quenching experiments, with 50 pixels=σ resolution. The
center and one spoke of each particle were painted white to
enable particle tracking [36] with uncertainty of 0.004σ for
position and 0.014 rad for orientation. Internal particles that
are at least 3σ away from the boundary are tracked for
analysis, while boundary particles are used for calculating
θ, R, and the packing density ϕ. A dynamical coordinate
system is adopted with the x direction aligned with the
end-to-end vector.
At low density and pressure, the behavior is analogous to

a liquid in thermal equilibrium based on the distributions of
translational and rotational velocities, shown in Figs. 2(a)
and 2(b) for cases with varying N. After normalizing the
velocities by their root mean square value, all the data
collapse to the standard Gaussian distribution, indicating
thermal behavior. The end-to-end distance fluctuates
around a constant value, indicating mechanical equilib-
rium. Figure 2(c) examines the energy partition, showing
that the two translational degrees of freedom have the same
energy, mhv2i i=2, which is somewhat larger than the rota-
tional energy, Ihω2i=2. The difference between the rota-
tional and translational kinetic energies indicates that this
active system is not perfectly thermal. In another set of
such experiments, conducted with N ¼ 454 and higher G
ranging from 0.58 × 10−3 N to 9.11 × 10−3 N, the system
experiences a glass transition with the relaxation time
greatly increasing; here, quasithermal equilibrium cannot
be reached within a reasonable wait time.
As a check we performed auxiliary experiments by

enclosing the particles in a rectangular box and tilting
the apparatus by an angle of β [33,37] [inset of Fig. 3(a)]. In
this way, the local hydrostatic pressure is determined by the
depth, P ¼ NaðhÞmg sin β=W, where NaðhÞ is the number
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FIG. 2. Distributions of (a) the normalized translational speeds,
vi, with i ¼ x, y and (b) the angular velocity, ω, for internal
particles from cases with different number of particles,N, under a
constant hanging weight of G ¼ 0.58 × 10−3 N. The black
curves are the standard Gaussian distribution. (c) The transla-
tional energies mhv2i i=2 (red square for i ¼ x, blue circle for
i ¼ y) vs the average rotational energy Ihω2i=2. The solid line is
a linear fit with a slope of 1.7.
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of particles above a distance h and W is the width of the
box. The corresponding local packing density, ϕ, is
extracted via binning. Several data points at different
depths can be extracted from a single experiment, and
various cases with varying β and numbers of particles were
tested.
Figure 3(a) examines the equation of state for the system

using pressure, packing density, and an effective temper-
ature defined from the translational energy of the parti-
cles, Teff ¼ ð1=2Þmhv2x þ v2yi. The dimensionless pressure,
Pσ2=Teff , is plotted versus ϕ for both the pressure-
controlled and the inclined experiments, showing a good
agreement and thus validating our pressure-control
scheme. An equation of state based on a Free Volume

Theory [33,37,38] is fitted to the data, Pσ2=Teff ∝ ϕ=
½1 − ðϕ=ϕcÞ1=2�, where ϕc ¼ 0.441 is approximately the
point at which the pressure diverges and the jamming
transition occurs. Note that ϕc is about half that for circular
disks. The fitted equation of state describes the data well for
the system both in “equilibrium” (corresponding to the
experiments shown in Fig. 2) and out of equilibrium [33],
reinforcing the strength of the thermal analogy.
At ϕ close to ϕc, the pressure increases drastically,

indicating a glass phase. To identify the region of interest
for exploring Gardner physics, the relaxation time, τ, is
measured by the time for the mean-squared displacement
(MSD) of the particles to reach 1 σ2. Figure 3(b) shows the
dimensionless relaxation time, τ

ffiffiffiffiffiffiffiffiffiffi
P=m

p
, vs the dimension-

less effective temperature Teff=Pσ2. The results can be well
fitted to a stretched exponential [33] of form τ

ffiffiffiffiffiffiffiffiffiffi
P=m

p ¼
a exp ½b=ðTeff=Pσ2Þc�. As Teff=Pσ2 decreases, the relaxa-
tion time increases rapidly and the MSD curve develops a
plateau due to caging (Fig. 3(b) inset). Per convention, we
define the system to be in the glass phase when its inherent
structure does not relax in τg ¼ 24 h. Additional long-
duration experiments were performed to determine the
glass transition point, Pg ¼ 0.012 N=m, ϕg ¼ 0.425, and
τg

ffiffiffiffiffiffiffiffiffiffiffiffi
Pg=m

p ¼ 8.6 × 105, which corresponds to the experi-
mental configuration withN ¼ 454, andG¼1.36×10−3N.
Deep in the glass phase at even lower Teff=Pσ2, the MSD
slowly increases after the initial plateau, which agrees with
previous numerical simulations of hard spheres in the
Gardner phase [15,18].

To probe the Gardner crossover quantitatively, we
employ a quenching protocol in the glass phase (shaded
region in Fig. 3) with a far wider pressure range than
density range. We start with G0 ¼ 1.55 × 10−3 N and
quench the system to higher pressures in discrete steps.
For each step, the weight is held at G0 initially for 100 s,
then switched to a higher weight, Ghigh, and held for
another 100 s for the system to approximately reach a
mechanical equilibrium, setting the quenching pressure,
phigh. This repeated-quench protocol is accomplished by
tying two weights along the hanging string at different
heights, and using a moving platform to disengage or
engage the bottom weight. ThenG is alternated betweenG0

and Ghigh for another 10 cycles, with 20 s at G0 and 10 s at
Ghigh. We then move to the next Ghigh, with 11 values of
Ghigh tested ranging from 1.65 × 10−3 N to 8.72 × 10−3 N,
corresponding to the arrows labeled in Fig. 3(b). The
duration was selected to keep the experiment time signifi-
cantly shorter than the relaxation time.
Following each pressure quench, we calculate the cage

order parameters for particle positions, ri, as in previous
studies [14,15,24], and for particle orientations, αi. The first
parameter is the characteristic cage size, which is based on
the MSD in an individual quench, k, for both positions and
orientations,
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FIG. 3. State parameters for the granular system: (a) Dimen-
sionless pressure vs density for the pressure controlled (blue
square) and inclined (red circle) experiments, with fitted equation
of state (dashed curve). Inset shows the inclined experiment.
(b) Dimensionless relaxation time vs dimensionless effective
temperature for cases with measurable relaxation times. The
blue curve represents a fit to y ¼ a expðb=xcÞ with a ¼ 0.45,
b ¼ 0.69, and c ¼ 1=2. Inset shows the MSD for the pressure-
controlled experiments, with the thick green curve being the
MSD at the Gardner crossover. The shaded region marks the glass
phase and the arrows represent the Teff=Pσ2 of cases for testing
the Gardner physics, with the corresponding density ranging from
ϕ ¼ 0.429 to ϕ ¼ 0.441.
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Δk
rðt; twÞ ¼

1

N̂

X̂N

i¼1

jriðtþ twÞ − riðtwÞj2;

Δk
αðt; twÞ ¼

1

N̂

X̂N

i¼1

½αiðtþ twÞ − αiðtwÞ�2; ð1Þ

where N̂ is the number of internal particles. To minimize
the effect of possible global deformation, we calculate ri
using the relative position of a particle to the centroid of its
Voronoi neighbors [24]. We set the wait time tw to be 5 s
after the quench to Phigh. Both Δk

r and Δk
α quickly reach a

plateau as particles are caged, and we defineΔr ¼ hΔk
ri and

Δα ¼ hΔk
αi as the average of the plateau values over the 10

quenches.
To characterize the cage separation between two

quenches, k and k0, we calculate

Δk;k0
r ðtÞ ¼ 1

N̂

X̂N

i¼1

jrki ðtÞ − rk
0
i ðtÞj2;

Δk;k0
α ðtÞ ¼ 1

N̂

X̂N

i¼1

½αki ðtÞ − αk
0
i ðtÞ�2; ð2Þ

using the positions and orientations of the same particle in

the two quenches. We define ΔAB
r ¼ hΔk;k0

r i and ΔAB
α ¼

hΔk;k0
α i as averages over time (starting from the same tw)

and 45 combination of quenches. The order parameters are
normalized by nominal cage sizes, which is σ2 for position
and α20 for orientation with α0 ¼ 2π=5.
The results for the two cage order parameters calculated

at each quench step are shown in Fig. 4. At low Phigh, the
granular glass is in the stable glass phase where particles
can fully explore their cages, resulting in no difference
between the cage size Δr and the cage separation ΔAB

r . For
the orientation order parameters at the first two Phigh points,
ΔAB

α is slightly larger than Δα, which is likely the
consequence of the global deformation that occurs as the
system has not fully reached mechanical equilibrium.
Calculating ΔAB

α by only comparing adjacent quench pairs
reduces this difference, as shown in the inset to Fig. 4.
As Phigh increases, the cage size Δr and Δα decrease.

While the cage separations ΔAB
r and ΔAB

α follow the
cage sizes at low Phigh, they reach a plateau starting at
Phighσ

2=Teff ≈ 621 (labeled in Fig. 3), defining the Gardner
crossover pressure, PG ¼ 0.038 N=m, with a correspond-
ing density of ϕG ¼ 0.437. This gives ϕG=ϕc ≈ 0.99,
similar to the previously reported density ratio [24], and
PG=Pg ≈ 3.13. For Phigh > PG, the difference between the
size and the separation widens to larger than an order of
magnitude for both position and orientation. This indicates
that the granular glass is in a marginal phase, with each

quench trapping the system in a different sub-basin
[1,14,24].
Particles stay caged in each Phigh step, seen, e.g., in the

particle trajectories in the inset of Fig. 4, but at high
pressure they are trapped in a subregion of their cages
during each quench, as shown by an example of overlaid
trajectories of an individual particle. The splitting of Δ and
ΔAB is not caused by individual cage-breaking events but
by collective behavior of groups of particles. To further
demonstrate this, we calculate the dynamical susceptibility
[18,24], χ ¼ NhVar½ΔkðtwÞ�i=Δ2, and the cage susceptibil-

ity [15,22], χAB ¼ NVar½Δk;k0 ðtÞ�=Δ2
AB, for both particle

positions and orientations. Here, χ is calculated using
values at different starting times within each quench and
averaged over 10 quenches, and χAB is calculated using
values between 45 quench pairs and then averaged over a
small time window. The results are shown in Fig. 4, and the
susceptibilities for both positions and orientations increase
more than an order of magnitude toward the Gardner
crossover, indicating increasing correlation in particle
dynamics [18,19], and validating a sharp Gardner cross-
over. Beyond the Gardner crossover, the susceptibilities
exhibit nonmonotonic behavior, likely due to dynamical
slowing down with increasing pressure [18,19,22].
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FIG. 4. The transition to the Gardner phase is demonstrated by
the onset of a difference between the cage separation ΔAB (red
square) and the cage size Δ (blue circle) order parameters with
increasing Phighσ

2=Teff for (a) positions and (b) orientations. The
inset of (a) shows overlapping particle trajectories in the 10 high
pressure cycles along with the Voronoi cells for the initial cycle
for Phighσ

2=Teff ¼ 3732. The inset of (b) shows the cage order
parameters with ΔAB

α calculated only using adjacent cycles.
(c) The dynamical susceptibility, χ, and (d) the cage susceptibil-
ity, χAB, for the positions (blue circle) and orientations (orange
square) for each pressure.
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In summary, the results in this study show significant,
unambiguous experimental signals of the Gardner cross-
over in an active, quasithermal, nearly frictionless granular
glass of nonspherically symmetric particles in two spatial
dimensions. Although the translational and rotational
degrees of freedom have different average energies, they
both exhibit signals of the separation of the order param-
eters and increasing susceptibilities, and the location of the
crossover appears to coincide. Our findings underscore the
robustness of the Gardner crossover, which was predicted
in high dimensional thermal systems with only translational
degrees of freedom. Note that the experimental system is
relatively small, leading to what appears to be more of a
sharp transition than a crossover; system size effects
[18,19,22] on marginal stability should be further validated
experimentally. In addition, the exploration of sub-basins in
the energy landscape in the Gardner regime over longer
duration could lead to aging signals such as intermittent
increasing of the end-to-end distance. While Gardner
physics is expected in low dimensions for hard potentials,
the situation for soft potentials, such as those for atomic and
molecular glasses, is less clear [39,40], with signatures of
marginal stability possibly only observable in large enough,
poorly annealed systems. In our gas-fluidized system,
particle interactions are not strictly hard-core repulsions
because of aerodynamic interactions and slight out-of-
plane rotations of the vibrating particles, yet we observe
clear signatures of Gardner behavior. It would be interest-
ing to fabricate much softer particles of the same shape to
study the influence of interaction potential.
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