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Highlights

o Linearly modulated OSL experiments of brittle fault rocks
o OSL trap parameters and lifetimes vary as a function of distance from fault plane
o OSL and TL sensitivities vary as a function of distance from fault plane

o Material transformation from faulting affects quartz OSL properties at a mm-scale
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Figure 1: (a) Digital elevation model with the Hurricane fault and 1930-2020 earthquake catalog;
purple circles indicate epicenter and are scaled to earthquake magnitude. White star denotes
study area (modified after Koger and Newell, 2020 and Taylor et al., 2021) (b) Simplified geologic
map modified from Biek (2003). White box is the study area. (Modified from Taylor et al., 2021)
(c—d) Field photographs of targeted, mirrored fault surfaces; (e) cartoon diagram showing the
sample and the 2 mm thick sample slabs analyzed in this study.
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Figure 4: (a) Thermoluminescence glow curves following 25 Gy, measured during the 420 °C
pre-heat step. (b-c) TL sensitivity calculated from the glow curves as a function of depth from the
fault plane for the 110 °C peak (b) and 275 °C peak (c). Small symbols are single aliquot

measurements and large symbol is the sample mean.


https://www.editorialmanager.com/radmeas/download.aspx?id=63663&guid=bcc4fe99-3ce0-472f-b444-b51170fb7b84&scheme=1
https://www.editorialmanager.com/radmeas/download.aspx?id=63663&guid=bcc4fe99-3ce0-472f-b444-b51170fb7b84&scheme=1

Figure 5 Click here to access/download;Figure;Figure 5-fig-cap.pdf =

Figure 5

flgid alteration and comminution
N

Q
Q
®©
‘©
S
7}
=
=
©
S
[0}
i)
7]
£

Figure 5: Thin section photomicrograph in cross-polarized light of the fault rock (taken adjacent
to slabs analyzed). The fault plane is at the left side of the image. The yellow and brownish colors
are FeO, light to dark grey grains are quartz, lightest grey matrix is mostly calcite, and black are
void spaces. There is significant comminution of the quartz particles and evidence of fluid
alteration within the first ~3 mm from the fault plane


https://www.editorialmanager.com/radmeas/download.aspx?id=63664&guid=f29bfaeb-4f45-47f1-94f3-a0304da94f61&scheme=1
https://www.editorialmanager.com/radmeas/download.aspx?id=63664&guid=f29bfaeb-4f45-47f1-94f3-a0304da94f61&scheme=1

Supplementary File

Click here to access/download
Supplementary File
Rad-Meas_Supp_figs.pdf


https://www.editorialmanager.com/radmeas/download.aspx?id=63658&guid=f9ed7fd7-d15d-49d6-a5c3-d42f0bc2aab5&scheme=1

Declaration of Interest Statement

Declaration of interests

XiThe authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[OThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:



REVISED Manuscript (text UNmarked) Click here to view linked References =

[ERN

Investigation of quartz luminescence properties in bedrock faults: fault slip processes

2 reduce trap depths, lifetimes, and sensitivity

3 Margaret L. Odlum*!, Tammy Rittenour?, Alexis K. Ault?, Michelle Nelson?, and Evan J. Ramos?®
4  'Department of Geoscience, University of Nevada, Las Vegas, Nevada, USA

5 2Department of Geosciences, Utah State University, Utah, USA

6 S3Department of Earth, Environmental and Planetary Sciences, Rice University, Texas, USA

7  Corresponding author: margo.odlum@unlv.edu

8
9 Abstract
10 Quantitative constraints on the timing and temperatures associated with Quaternary fault

11  slip inform earthquake mechanics and seismic hazard analyses. Optically stimulated luminesce
12 (OSL) and thermoluminescence (TL) are tools that can provide these constraints from fault gouge
13  and localized slip surfaces. This study investigates the quartz luminescence properties of five 2-
14  mm-thick slices of rock as a function of distance perpendicularly from a discrete, m-scale mirrored
15 fault surface that cuts quartz-rich conglomerate along the Hurricane fault, UT, USA. We use
16  pulsed annealing linearly modulated OSL experiments to determine the response of OSL signals
17  to annealing temperatures. Results were used to estimate trap depths (eV) and trap lifetimes
18  (Myr). We also calculated changes in OSL and TL sensitivity across the fault-perpendicular
19 transect. All five subsamples show a strong initial fast component peak following annealing steps
20  of 200-300 °C, which is absent following higher pre-heat steps of 320-420 °C. The fast component
21  trap lifetimes and depths indicate they are stable over the Quaternary and suitable for OSL dating.
22  Data exhibit increasing trap depth, trap lifetime, and sensitivity with distance from the fault surface.
23 We suggest mechanical processes, fluids, and/or elevated temperatures during seismicity work
24 constructively to transform fault materials and affect the quartz luminescence properties at a mm-
25  scale from this fault surface. Results highlight the importance of assessing the scale of fault-related
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1. Introduction

Documenting the timing of Quaternary fault slip and evidence of coseismic frictional
heating is important for understanding active tectonics and earthquake dynamics, and assessing
seismic hazards (e.g., Savage et al., 2014; McDermott et al., 2017; Scharer and Yule, 2020;
Burgette et al., 2020). Optically stimulated luminescence (OSL) and thermoluminescence (TL)
analyses use specific minerals, such as quartz and feldspar, which can trap unbound electrons
within crystalline defects when minerals are exposed to ionizing environmental radiation (e.g.,
Huntley et al., 1985; Rhodes, 2011; Murray et al., 2021). The trapped electrons are evicted when
the mineral is exposed to light or heat, or experiences mechanical stress or high pressures (see
review by Murray et al., 2021). During seismic slip, trapped electrons in minerals within fault
material may be evicted due to friction-generated heat and/or mechanical deformation (e.g.,
Singhvi et al., 1994; Rink et al., 1999; Spencer et al., 2012; Kim et al., 2019; Yang et al., 2019).
Luminescence measured in the lab, by stimulating mineral grains with light (OSL) or heat (TL), is
proportional to the time since the last resetting, allowing the OSL and TL signals to provide
information on timing and/or temperatures of these events. OSL and TL have an effective dating
range of 10'-10° years (e.g., Rittenour, 2008; Rhodes, 2011) and an ultralow temperature
sensitivity of ~35 — 60 °C (Guralnik et al., 2013) which makes these techniques especially well-
suited for Quaternary fault geochronology and thermometry.

Previous luminescence studies have constrained the timing of past seismic events
accommodated in fault gouge (Singhvi et al., 1994; Spencer et al., 2012; Ganzawa et al., 2013;
Tsakalos et al., 2020) and shown reduction in OSL and TL signals in experimentally sheared
samples (Toyoda et al., 2000; Kim et al., 2019; Yang et al., 2019; Oohashi et al., 2020).
Laboratory experiments explored the relationships between slip rates and signal loss, and
attribute OSL and TL signal loss to friction-generated heat (Yang et al., 2019; Oohashi et al.,
2020). The effects of mechanical stresses and grinding as a resetting mechanism have been
explored in fault gouge (Toyoda et al., 2000; Hiraga et al., 2002), but have not been investigated
in highly localized slip surfaces that develop in bedrock. In natural fault rocks, faulting processes
and fluid-rock interactions can change the physical and chemical properties of the rocks (Caine
et al., 1996; Faulkner et al., 2010; Rowe and Griffith, 2015; Ault, 2020). These changes may affect
the luminescence properties of quartz including the types of traps, signal profiles (i.e., proportions
of fast, medium, or slow-decay components), quartz sensitivity, and trap depths and lifetimes.
Understanding these properties, and how they may be affected by fault-slip related processes
such as coseismic temperature rise, fluid-rock interactions, and grain size reduction, is critical for

interpreting OSL and TL results from natural fault rocks.
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In this study, we investigate and quantify the luminescence properties and luminescence
signal components of quartz in fault rocks that are relevant to optical dating and trapped charge
thermochronometry using a linear modulated (LM) OSL technique (Jain et al., 2003; Singarayer
and Bailey, 2003). We apply a high-spatial resolution (mm-scale) sampling approach to a m-scale
fault mirror (polished and straited plane) along the seismogenic Hurricane fault, southwestern UT.
Samples from the silicified, quartz-rich conglomerate host rock were not previously exposed to
light. We demonstrate that the quartz luminescence-component properties change significantly
with perpendicular distance from the fault surface and coincide with physical changes in the quartz
grains that developed during past fault-slip events. Constraining the luminescence components
in fault rocks is important for understanding OSL and TL signal changes and signal loss, as well
as the applicability of OSL and TL methods for deriving fault-slip paleotemperatures and/or dating

the timing of fault-slip events.

2. Hurricane fault, samples, and sample preparation

The Hurricane fault is a north—south trending, 250 km-long segmented west-dipping
normal fault that extends from southern Utah to northern Arizona (Fig. 1A). Deformation along
Hurricane fault initiated during the late Miocene or early Pliocene in association with Basin and
Range extension in the western USA (Stewart and Taylor, 1996; Fenton et al., 2001; Lund et al.,
2007; Biek et al., 2010). The Hurricane fault is part of the Intermountain Seismic Belt and is
seismically active, and there have been at least 20 earthquakes >M4 occurring in southwestern
Utah over the past century (Fig. 1A; Christenson and Nava, 1992).

In the study area, the fault juxtaposes the Timpoweap Member, including the Rock Canyon
Conglomerate, of the Triassic Moenkopi Formation in the footwall and the Lower Red Member of
the Moenkopi Formation in the hanging wall (Fig.1B; Biek et al., 2010). The studied bedrock fault
is located along Utah state highway 9 near La Verkin, UT, (37.22 N, -113.26 W) where the fault
is expressed as several en echelon, meters-high (~1-6 m), mirrored fault surfaces (Fig. 1). The
striated fault-rock surfaces have smooth, highly reflective surfaces known as fault mirrors, with
areas of hematite mineralization (Taylor et al., 2021). Prior detailed multiscale textural and (U-
Th)/He thermochronometry from patches of hematite precipitated along a mirrored fault plane
~112 m north from our sample provided evidence of up dip propagation of earthquake ruptures
through ~300 m depth at ~0.65-0.40 Ma (Taylor et al., 2021).

We targeted a sample within the Rock Canyon Conglomerate that contained two parallel,
mirrored fault surfaces (outer and inner mirrors, Fig. 1C-E) that strike SSE and are subvertical.

Importantly, a portion of the inner mirror was not exposed to light (i.e., host rock on both sides of
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the fault are present). The exposed portion of the inner fault surface that was visible was
characterized as a striated, highly reflective silica-rich fault mirror (Fig. 1C, D). We assume that
the concealed portion of this same fault plane is similar, so our sampled conjugate fault surface
likely exhibits the same surface morphology. The fault-rock sample was collected at night under
a light-safe tarp and immediately wrapped in aluminum foil, secured with tape, and placed in a
light-safe container.

All sample preparation and analysis took place at the Utah State University (USU)
Luminescence Laboratory. In a dark lab, the outermost 2.5 cm along the edges of the rock were
cut off using a tile saw to remove any potential light exposed portions. A 5.5 x 4-cm-portion of the
remaining rock was subsampled in a fault perpendicular transect by cutting 2-mm-thick slabs
parallel to the fault surface for 3 cm (for a total of 15 subsamples) using a slow-speed, water-
cooled saw in a dark lab. The slabs were soaked in 30% HCI for 12-24 hours to remove any
carbonate cement and then gently disaggregated with a ceramic mortar and pestle. The 90-250
Mm size fraction was separated by wet sieving and then treated with 30% HCI for 1-12 hours to
remove any remaining CaCOs. Quartz was isolated using sodium polytungstate heavy liquid (2.7
g/lcm®) and subsequently etched in 48% HF followed by 37% HCI to remove any fluorite
precipitants. A subset of the final separates was imaged using a field-emission scanning electron
microscope equipped with energy x-ray dispersive detector in the USU Microscopy Core Facility

to ensure they were pure quartz.

3. Experimental details

We analyzed five subsamples from 0-2 mm (USU-3442), 2-4 mm (USU-3443), 12-14 mm
(USU-3448), 18-20 mm (USU-3451), and 28-30 mm (USU-3456) away from the fault surface
using a pulsed annealing, linear modulated OSL (PA-LM-OSL) experiment (Table 1).
Luminescence measurements were made on Risg TL/OSL Model DA-20 readers, with stimulation
by blue-green light emitting diodes (LED; 470 £ 30 nm) and luminescence signal detection through
7.5-mm UV filters (U-340).

Three aliquots of sand-sized (90-250 ym) quartz grains covering 5 mm diameter regions
(~500 grains/aliquot) on stainless steel discs were analyzed from each of the subsamples. Our
analytical routine (Table 1) followed a similar procedure of Bulur et al. (2000) and Singarayer and
Bailey (2003) where aliquots were preheated to increasingly higher preheat temperatures to look
at the thermal stability of the luminescence signals in each subsample. Following a laboratory
dose (~50 or ~25 Gy) aliquots were heated to temperatures that ranged between 200 °C and 420

°Cin 20 °Cincrements (5 °C/s ramp rate, held for 10 s), each followed by a LM-OSL measurement
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to determine the remnant OSL of the fast-decay signal component (Fig. 2). The LM-OSL analysis
was performed for 400 s at 125 °C with blue LEDs light (A = 470 nm) with stimulation power
increased linearly from O reaching a maximum of 50 mW/cm?. To ensure signals were fully
bleached between each step, an additional continuous wave OSL of 100 s at 320 °C was carried
out between each measurement to bleach the OSL to negligible levels. A subsequent LM-OSL
analysis following a dose of 20 Gy and 160 °C preheat was used to monitor sensitivity changes
throughout the measurement procedure and compare OSL sensitivity among samples (test dose
step). We also measured the TL during the pre-heating steps to investigate TL responses and
sensitivities among samples.

The temperature-dependent retention lifetime of a trap type, assuming first order kinetics,

is given by Equation 1 (Singarayer, 2002; Singarayer and Bailey, 2003).
T= s‘lexp(f%) (Equation 1)

where T is the lifetime (s), s is the frequency factor (s™), E is trap depth (eV), T is temperature
(K), and k is Boltzmann’s constant (~ 8:615 x 10™° eV K™") (Singarayer, 2002; Singarayer and
Bailey, 2003).

The sensitivity-corrected OSL was plotted as a function of preheating temperature to
obtain pulse-annealing curves (Fig. 3A). Assuming the total LM-OSL emitted is proportional to the
remnant trapped charge, n, the remnant OSL following pre-heating to a temperature T can be

described by Equation 2 (derived in Singarayer, 2002):

SkTOZ

n= noexp [( 3E

—skT? —-E
Zexp() + (

exp(;—fo))] (Equation 2)
The variable no is the initial trapped charge concentration, Ty is the ambient room

temperature (~20 °C = 288 K) and S is the heating rate. We use this equation to generate curve

fits to the pulsed annealing data that inform estimates of the trap parameters E and s, and then

calculate trap lifetimes at 20 °C using Equation 1.

4. Results
Data from three aliquots from each subsample were normalized for sensitivity differences

and the corresponding LM-OSL signals were averaged to produce a composite LM-OSL curve
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(Fig. 2). This mean LM-OSL curve for each subsample was used to calculate the thermal

stabilities, trap lifetimes, and sensitivities.

4.1 Pulsed annealing (PA) curves: The PA-LM-OSL curves show a large variation in
brightness between samples, but the dominant signal-component peaks occur in a similar position
and the overall shape of the curves are similar. For example, the curves following pre-heating to
200-300 °C are characterized by an initial strong peak from ~0-15 seconds (fast component), with
a maximum intensity around ~8-9 seconds, followed by second, lower intensity peak typically from
100-150 seconds. The curves after pre-heating to 320-420 °C show little to no fast-component
signal (Fig. 2; S1-S5).

The LM-OSL curves were separated into first order components using fit LMCurve, a
routine for the nonlinear least squares fits to LM-OSL curves (Kitis et al., 2008; Kreutzer, 2022) in
the R “Luminescence” package (Friedrich et al., 2021). Fitting is given by Equation 3 (Kitis et al.,
2008; Kreutzer, 2022):

y= [(exp(O.S) X Imy X ximl) X exp (_—xz)] +, .., + [(exp(O.S) X Im; X ximl) X exp( —x° )]

2%xm? 2+xm3

(Equation 3)

where 1 <i< 8 and

Xm; = max(t)
\l b;

Im; = exp(—O.S)%

We used the default starting parameters for the optical de-trapping probability (b) and
dimensionless factor proportional to the initially trapped charge concentration (n) deduced from
published values of quartz samples (Jain et al., 2003). The curve separation yields values for the
peak position and peak maximum intensity for each component following the formulas in Kitis and
Pagonis (2008). For our subsamples, LM-OSL curves following pre-heating to 200-300 °C can be
fit with two components (representing a fast and slow decay component; Fig S1-S5). Samples
USU 3442, 3443, 3451, and 3456 can be fit with three components after the 200 C pre-heat step
(Fig. S6). The second component from the three-component fit does not overlap with the first
component at the fitted peak intensity. The curves following higher pre-heating steps of 320-420
°C do not yield fits for a fast-component owing to little to no remnant fast-component.

Results from annealing steps that produced signal component fits (<300 °C) illustrate that
the first peak observed in the LM-OSL curves represents a single component, which we interpret

as the easily bleachable ‘fast’ component. This is supported by continuous wave OSL (CW-OSL)
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signals from the same samples following a dose of ~50 Gy and pre-heat step of 200 °C (Fig. S7).
The first component peak positions are between 8-10 seconds (~2% power or 1 mW/cm?), and
the intensity from the fit_ LMCurve function is used as the remnant OSL for the fast component.
The intensity of the fast component was used to calculate the remnant OSL for each pre-
heat step and was normalized to the first 200 °C annealing pre-heat step. Pulsed annealing
curves, derived from the normalized and sensitivity-corrected fast component of the LM-OSL,
were derived as a function of preheating temperature (Fig. 3A). All five subsamples show similar
decay shapes, with sharp decays at annealing pre-heat temperatures >280 °C. Subsamples USU
3442, 3443, and 3448 are stable up 240 °C and display depletion beginning at 260 °C.
Subsamples USU 3451 and USU 3456 are stable up to 260 °C. The signal is near zero (or

background) for all samples with 320 °C and higher pre-heat treatments.

4.2 Thermal stabilities and trap lifetimes: The pulsed annealing curves were fit using
Equation 2. We used a nonlinear regression technique in MATLAB to produce the curve fits and
solve for trap depth, E, and the frequency factor, s (Fig. 3A; Table 2). All subsamples yield similar
estimates for s of ~5.2 x 10" s™'. The estimated values for E range between 1.68 to 1.75 eV.
Values of E are highest in the two samples farthest from the fault slip surface. These estimates
are consistent with E and s values from sedimentary quartz (Singarayer and Bailey, 2003) and
from natural amorphous and microcrystalline silicon dioxide (generally termed “silex”) (Schmidt
and Kreutzer, 2013). The E and s values were then used to calculate the trap lifetimes using
Equation 1. The trap lifetimes range between ~50 — 740 Myr with the trend as a function of
distance from the fault plan mirroring trends in trap depths (greatest trap lifetimes farthest from

the fault plane).

4.3 OSL and TL sensitivity: Sensitivity changes in individual aliquots during the experiment
are minor for pre-heat steps up to 380 °C (<15%), with increased sensitivity (typically <20%) after
the 400 and 420 °C pre-heat steps. The OSL sensitivity was calculated from the mean of the fast
component peak of the LM-OSL curve following a given dose of 20 Gy and 160 °C preheat. These
measurements were performed after each incremental LM-OSL pre-heat annealing step. Figure
3 shows the average subsample fast component intensities. Subsample average fast-component
OSL sensitivities are ~2-20 counts/Gy/mm?, with highest sensitivity in the sample farthest from
the slip surface (Fig. 3D). Figure 4A illustrates the TL glow curves, following the given radiation
dose and measured during the 420 °C pre-heat steps and the signal intensities of the 110 °C and

275 °C peaks are shown in Fig. 4B and 4C, respectively. There is a clear trend in increasing TL
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sensitivity with depth away from the slip surface in the glow curves and both the 110 °C and 275

°C peaks.

5. Discussion
5.1 Variations in quartz luminescence parameters

LM-OSL curves from all five samples can be fit with prominent fast and slow decay
components. The pulsed annealing LM-OSL curves show that the OSL signal increases slightly
during the 220-240 °C pre-heat steps and above 280 °C the signal decreases rapidly until it is
close to zero (or background) at 320 °C. This is consistent with most of the fast component OSL
signal originating from a trap that corresponds to the rapid bleaching thermoluminescence (TL)
peak at about 325 °C (310°C at 5°C s™'; Smith et al., 1986; Wintle and Murray, 1999). The ability
to fit the pulsed annealing curves with Equation 2 supports the prediction that the fast component
follows first-order kinetics. Estimates for E and s from the pulsed annealing LM-OSL data-fits
indicate all samples have thermal stabilities and trap lifetimes sufficient to allow dating through
the Quaternary.

The LM-OSL curves and the component fits indicate the presence of a harder to bleach,
or slower decay, component(s) at annealing temperatures of 200-300 °C (Fig. 2). The calculated
trap depths and lifetimes are lower than the fast component. Samples USU 3442, 3443, 3448,
and 3451 are not adequately stable for dating sediments on Quaternary timescales (see
supplemental material Fig. S8 and Table S1) (Singarayer and Bailey, 2003).

We observe variations in the pulsed annealing curves, estimated trap depths, trap
lifetimes, and sensitivities between subsamples and, particularly, as a function of distance from
the slip surface. We note that the quartz grains are detrital and therefore have natural variability
in provenance (i.e., volcanic, plutonic, metamorphic, or recycled sedimentary quartz). We assume
that this natural variability is present and evenly distributed within our samples. Thus, variations
in the luminescence parameters observed in our experiments are attributed to the post-
depositional and post-lithification history the quartz experienced. Importantly, the trap depths and
lifetimes vary as a function of depth from the fault surface. For example, both parameters are
lowest in the first 14 mm from the fault surface and increase significantly at distances >18 mm
(Fig. 3B, 3C). The calculated trap lifetimes increase by a factor of ~2-3 between 0-14 mm and
>18 mm (Fig. 3C). Subsamples from 18-20 mm (USU 3451) and 28-10 (USU 3456) mm depths
yield similar values and are the most thermally stable, which we interpret are representative of

the undeformed host rock values. We suggest that the decrease in thermal stability and lifetimes
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in subsamples USU 3442, USU 3443, and USU 3448 are due to fault slip related processes that
affected the rock volume and quartz within ~14 mm of the slip surface.

There are only minor sensitivity changes during the experiments for pre-heat steps up to
380 °C, but there is an increase in sensitivity (typically <20-100%) after the 400 and 420 °C pre-
heat steps. Temperature-induced changes in the OSL sensitivity of natural quartz can occur and
have been attributed to thermal annealing (e.g., Botter-densen et al., 1995, 1996; Wintle and
Murray, 1999). Prior studies indicate that this sensitization is most significant at temperatures of
500-800 °C, with only minor effects observed in the temperature ranges of our annealing pre-heat
temperatures (Botter-Jensen et al., 1995). Experiment pre-heat treatments <500 °C and
sensitivity increases only observed during the final two pre-heat steps collectively support that the
variations in sensitivity between samples are natural and not laboratory heating induced.

Similar to the trap depths and lifetimes determined from the pulsed annealing curves, both
OSL and TL sensitivities from test doses show a general positive relationship between sensitivity
and distance from the fault surface (Figs. 3D and 4). Several pre-dose (that is, not induced in the
laboratory) factors can affect quartz sensitivity including the physical, chemical, and thermal
environment during crystallization (Sawakuchi et al., 2011), and heating, photobleaching, and(or)
irradiation in nature (Wintle and Murray, 1999; Batter-Jensen et al., 1995; Pietsch et al., 2008;
Mineli et al.,, 2021). These treatments cause charge-transfer between defects and(or) the
formation of new centers that modulate charge trapping and recombination process (e.g., Sharma
et al., 2017) and luminescence pathways can be altered over geologic times (Rink, 1994).
Sensitivity can also be affected by chemical impurities in the quartz (e.g., Al, Fe; Takashi et al.,
2006) and it is anti-correlative to water content (Sharma et al., 2017). Because the sensitivity is
related to the nature and concentration of intrinsic defects like vacancies and interstitials in the
crystal lattice of a mineral, we infer that quartz crystallinity can affect sensitivity. Microcrystalline
and amorphous silica would have lower sensitivity than macrocrystalline quartz. We hypothesize
that observed differences in sensitivity reflect physical differences (caused by post-depositional

alterations) in the quartz (silica) as a function of to distance from the fault surface.

5.2 Luminescence characteristics relation to faulting:

Our results indicate that OSL and TL sensitivity are lower within 14 mm of the fault surface
and increase 218 mm away from the fault. This reflects the post-depositional thermal, chemical,
and physical history of this quartz, in particular immediately adjacent to the slip surface. The three
subsamples closest to the fault place show decreased thermal stability and lifetimes of the traps

when compared to the farthest subsamples (e.g., USU 3456). We suggest that physical, and
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possibly chemical, transformations of the quartz assisted by mechanical, thermal, and fluid-related
processes operative during slip along the fault surface are responsible for the differences in
luminescence properties.

We observe petrologic and textural evidence of physical changes to the host rock and
fluid alteration within the first few mm of the fault surface (Fig. 5). In thin section, extreme grain
comminution (i.e., grain size reduction) and presence of Fe-oxide near the fault surface reflect
mechanical changes to the quartz and alteration, respectively (Fig. 5). We hypothesize that fault
slip and fluids present during deformation reduced the grain size and likely impacted the
crystallinity of the quartz minerals, affecting the nature and concentration of luminescence traps).
Hydrous crystalline silica and amorphous silica have been observed along other silica-rich fault
mirrors associated with extreme grain size reduction (i.e., mechanical amorphization; e.g.,
Kirkpatrick et al., 2013; Houser et al., 2021). The presence of hydrous and/or amorphous silica
along our investigated fault surface may manifest in the observed trends in luminescence
properties with distance from the fault. Detailed micro- to nanoscale characterization of the quartz
grains near and away from the fault surface is required to confirm this hypothesis.

Our results highlight that, in localized bedrock faults, mechanical processes including
amorphization, fluids, and(or) elevated temperatures that likely accompany seismicity (Taylor et al.,
2021) transform fault materials and affect the quartz luminescence properties over mm-length
scales. Laboratory deformation experiments demonstrate that shearing at seismic slip rates can
induce partial to complete OSL and TL signal loss, attributed to frictional temperature rise (Yang et
al., 2019; Oohashi et al., 2021). Our data indicate that, in natural fault rocks, mechanical processes
(e.g., comminution, mechanical amorphization) and fluid alteration (e.g., precipitation of FeO,
silicification) also affect the luminesce properties. Investigating these properties is critical not only
for characterizing and comparing natural OSL and TL signals and equivalent doses, but also for

informing the physical and geochemical transformations that occur during faulting.

6. Conclusions

Pulsed annealing linearly modulated OSL and TL measurements of quartz from high spatial
resolution samples as a function of distance from a brittle fault surface were used to estimate the
trap depth, frequency factor, trap lifetimes, and sensitivities of quartz luminescence signals. Here
we target a localized fault mirror along the Hurricane fault that cuts a quartz-rich conglomerate.
Results indicate that trap depth, lifetime, and OSL and TL sensitivity are generally lowest within 14
mm of the fault surface and increase at distances 218 mm from the fault interface. We interpret

these patterns to reflect the post-depositional history of the fault rock, most likely arising from
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physical changes in the quartz that resulted from faulting. These processes include comminution,
mechanical amorphization, fluid-rock interaction, and frictional heating that likely worked
constructively to change originally detrital quartz grains within ~14 mm of the fault surface. Data
suggest rock texture and mineral structure changes affect the quartz luminescence properties.
Our work illustrates it is important to quantify these properties to understand OSL and TL signals
and to ultimately use quartz luminescence techniques to calculate ages and/or temperatures from

fault rocks.

Acknowledgements

This work was supported by a National Science Foundation Postdoctoral Fellowship awarded to
MLO (award #1952905). We are grateful for reviews from Reza Sohbati and Sumiko Tsukamoto
for thoughtful reviews that led to an improved manuscript. We thank Tomas Capaldi, Dennis
Newell, and Madison Taylor for their help in the field and insightful discussions, and Maggie Erlick

and Michael Strange for assistance in the lab.

Figure Captions:

Figure 1: (a) Digital elevation model with the Hurricane fault and 1930-2020 earthquake catalog;
purple circles indicate epicenter and are scaled to earthquake magnitude. White star denotes
study area (modified after Koger and Newell, 2020 and Taylor et al., 2021) (b) Simplified geologic
map modified from Biek (2003). White box is the study area. (Modified from Taylor et al., 2021)
(c—d) Field photographs of targeted, mirrored fault surfaces; (e) cartoon diagram showing the

sample and the 2 mm thick sample slabs analyzed in this study.

Figure 2: Pulsed annealing LM OSL at 470 nm from five quartz samples at different distances

from the fault place measured at 160 °C, following 25 Gy and preheats between 200-420 °C.

Figure 3: (a) Calculated pulse annealing curves (remnant LM-OSL versus preheat temperature)
for the fast component of each sample. Circle symbols are empirical data (symbols), and lines
(solid and dashed) are fits to the data. (b) Estimated trap depths in eV from the model fits in a. (c)
Estimated fast component trap lifetimes in Myr calculated using Equation 1 in the text. (d) LM-

OSL fast component sensitivity following 25 Gy and a preheats between 160 °C.
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366  Figure 4: (a) Thermoluminescence glow curves following 25 Gy, measured during the 420 °C
367 pre-heat step. (b-c) TL sensitivity calculated from the glow curves as a function of depth from
368 the fault plane for the 110 °C peak (b) and 275 °C peak (c). Small symbols are single aliquot

369 measurements and large symbol is the sample mean.
370

371  Figure 5: Thin section photomicrograph in cross-polarized light of the fault rock (taken adjacent
372  to slabs where analyzed quartz came from). The fault plane is at the left side of the image. The
373  yellow and brownish colors are FeO, light to dark grey grains are quartz, lightest grey matrix is
374  mostly calcite, and black are void spaces. There is significant comminution of the quartz particles

375 and evidence of fluid alteration within the first ~3 mm from the fault plane.

376

377 Table 1

STEP TREATMENT PURPOSE

1 Initial bleach at 320 °C (470 nm LEDs @

38 mW/cm?) for 100s

2 Beta irradiate for 250 sec Give ~25 Gy lab dose
Pre-heat sample to 200 °C (+ 20 °C in

Bleach natural signal

Annealing step to check for luminescence

3 each consecutive run) and hold for 10s; .
. . change in response to temperature treatment
measure TL during heating
4 Measure LM-OSL (0-50 mW/cm?) for Characterize the signal components of the
400 secat125C remnant OSL

Bleach at 320 °C (470 nm LEDs @ 38
mW/cm?) for 100s
6 Beta irradiate for 250 sec give ~25 Gy lab dose for repeated test dose
Pre-heat sample to 160 °C for 10s

bleach any remaining signal

! (measure TL during heating) Pre-heat for test dose

Measure LM-OSL (0-50 mW/cm?) for o .
8 400 sec at 125 °C LM-OSL sensitivity monitor of fast component
9 Bleach at 320 °C (470 nm LEDs @ 38 bleach any remaining signal

mW/cm?) for 100s
10 return to step 2
378 Table 1: Pulsed annealing, linear modulated OSL (PA-LM-OSL) experiment details.

379
380
381
382
383
384
385
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Table 2

E
Subsample Depthfromfault b(s?) o(cm?) s(s?) (eV) Lifetime at 20 °C (Ma)
USu 3442 0-2 mm 2.67 3.13E-17 5.20E+13 1.73 340
USU 3443 2-4 mm 3.24 3.80E-17 5.20E+13 1.68 53
USU 3448 12-14 mm 2.79 3.28E-17 5.20E+13 1.72 226
USU 3451 18-20 mm 2.98 3.50E-17 5.20E+13 1.74 626
USU 3456 28-30 mm 2.66 3.13E-17 5.20E+13 1.75 737

Table 2: Estimates of fast component parameters. Detrapping probability (b) and photoionization
cross section (o) from the fit_LMcurve function outputs. E and s, derived from fitting the pulsed
annealing curves in Fig. 3A.
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