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Complex socio-environmental interdependencies drive bio-
logical invasions at both regional and global scales1,2. These 
invasions damage ecosystems worldwide, threatening biodi-

versity and ecosystem services3,4 and causing annual losses of over 
US$46 billion and rising5. Over the coming decades, increases in 
global interconnections and associated trade are expected to drive 
many more invasions6.

Widespread biological invasions, which cover large spatial 
scales, are a major environmental crisis whose long-term solution 
will require advancing beyond existing tools for managing estab-
lished invasions7. New, approximate methods for controlling spread 
at large scales are needed because existing accepted methods for 
finding exact optima for these spatial resource allocation prob-
lems (for example, using optimal control, mixed integer-linear and 
nonlinear programming8–14) cannot scale efficiently to large sys-
tems15. These current methods are also often hindered by the chal-
lenge of limited data. Both the distribution of invasive species and 
the socio-ecological processes driving spread are at best partially 
observed even in established invasions7,16.

Network approaches are a promising way to analyse complex 
socio-environmental systems (SESs)17. Over the past decade, net-
work science has made advances in understanding how to optimally 
control spread in complex networks, where the ‘network protection 
problem’ is fundamental with applications in information security, 
epidemiology, politics and marketing18. Recognition that optimiza-
tion approaches for network protection cannot scale to large net-
work sizes due to problem complexity has led to intensive research 
effort focused on ‘network-guided management’: heuristic and 
approximate methods for solving this problem19–22 including using 
network metrics to prioritize management actions23.

Despite clear parallels between network protection and inva-
sive species management, and network approaches becoming more 
commonly applied to invasive species or SESs, network-guided 
management has not been widely adopted for managing biologi-
cal invasions. Specifically, the parallel exists because an invasion 
can be represented as a network, with sites that an invasive species 
can occupy representing nodes of a network and edges represent-
ing pathways of spread (for example, via human movement using 
gravity models24 or via biological dispersal using habitat connectiv-
ity models25). As such, there is growing interest among researchers 
and practitioners in using network characteristics to understand 
invasions. Network characteristics affect spread both at landscape 
scales26 and continental or global scales, where invasions are most 
often mediated by human movement and trade1. For example, con-
sistent with network theory, experimental work reveals that spread 
is facilitated by network hubs or central patches through which 
many dispersal pathways flow and is hindered by more clustered 
network structures27. However, these insights are not widely used 
to inform management. One explanation for this is that rigorous 
comparisons between network-guided management and accepted 
methods to obtain optimal solutions have been done only for newly 
established invasions in small systems—a situation where manage-
ment guided by network structure performs poorly8. Despite their 
poor performance for newly established invasions8, network-guided 
management has been suggested for landscape-scale management 
of spreading species28, including aquatic invasive species (AIS) that 
spread via human trade and movement29. To understand if network 
approaches provide value over accepted methods for optimal man-
agement of large networks with established invasions, however, rig-
orous comparisons are needed but have not yet been done.
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Here, we aim to bridge the gap between advances in network 
science on spread prevention in complex networks and real-world 
management of invasions in SESs. Specifically, our approach con-
nects recent enquiry into using network structure to guide man-
agement of invasive species with existing understanding of optimal 
management of species invasions. We focus on a case of managing 
a large-scale invasion via allocation of inspection and decontami-
nation stations (‘inspection stations’ hereafter) across a network, 
with the objective of minimizing the number of uninspected but 
potentially infective connections, a common problem in invasive 
species management14,30. We evaluate performance of management 
based on network structure (that is, centrality metrics, Table 1; see 
ref. 23) relative to the optimal management from an integer-linear 
programming solution14,30. Since managers are often constrained by 
knowledge of infestation status and processes (for example, current 
invasion distribution and dispersal patterns), we also examine how 
performance degrades with reduced information on invasion status 
or spread magnitude, relative to the optimal solution which requires 
full information. Additionally, we characterize performance across 
a range of budgets. Thus, our analysis advances knowledge about 
the outstanding question of whether network metrics can effectively 
guide management and whether some metrics could work better 

than others in more information-rich versus information-poor 
management settings.

Management context
We focus on the large-scale management problem of preventing 
zebra mussel (Dreissena polymorpha) spread in Minnesota, United 
States (Fig. 1a). Zebra mussels are one of the most costly invasive 
species in the United States, causing changes to ecosystem pro-
cesses31, extirpating native mussel species32 and damaging infra-
structure33. In Minnesota, zebra mussels are a prohibited invasive 
species, yet have spread to more than 270 lakes or rivers since their 
first report in 1989, with more than half of those infestations occur-
ring since 2016 (ref. 34 and Supplementary Section 1). This rapid 
spread has been largely human-mediated, facilitated by movement 
of boats and equipment35,36. The objective we examine, minimiz-
ing short-term spread via optimal location of inspection stations at 
lakes, is implicitly aimed at achieving the more fundamental goal 
of reducing long-term damages from invasion spread34. Given that 
significant state funding is delegated to the county level (US$10 mil-
lion annually for AIS prevention; ref. 34), decisions on where to 
locate most inspection stations are made by county managers34. 
Indeed, co-authors N.B.D.P. and R.G.H. were approached by state 
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Fig. 1 | Our analytical approach. a, Networks of boat movement are constructed at the county level for Minnesota counties with ten or more lakes (n = 58; 
Supplementary Table 1) shaded here by the number of lakes in the county, which corresponds to network size. Dakota County (bold outline) is used for 
illustration in c. b, Network-guided management (placement of inspection stations) using heuristics based on centrality metrics (Table 1) is compared both 
to optimal inspection (using integer-programming) and random management. c, In addition to examining performance of network-guided management 
with full information (dashed outline), we evaluate performance in three cases with only partial information on either or both the boater movement 
network (social information) and the invasion status of each lake (ecological information). See Table 2 for more detailed definitions of full and low social 
and ecological information.
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and county managers to both characterize boat movements37 and 
develop decision support tools for cost-effective county-level man-
agement of watercraft inspection programmes30. Here, for each of 
the 58 counties in Minnesota with ten or more lakes, we examine 
the performance of network-guided approaches relative to an opti-
mal solution obtained via integer-linear programming (Methods). 
Our set-up allows us to also examine how performance varies across 
counties that differ in system size (number of nodes).

Analytical approach
Our analytical approach centres around the optimal placement 
of boat inspection stations on a network of infested and unin-
fested lakes connected by boater movements. We compare the 
optimal solution from integer-linear programming to network 
metric-guided management with sites prioritized on the basis of the 
structure of the boater movement network. Our general approach 
involves six key steps.

	(1)	 Construct the network. Given that the primary mode of zebra 
mussel spread is through human movement (of boats)35, we 
define a network with lakes that are infested or not as nodes 
and the number of boats moving between lakes as weighted, 
directed edges that mediate spread of infestation (Methods and 
Supplementary Section 2; ref. 37). Within the overall network 
there is an ‘infested subnetwork’—the network of potentially 
infective movements from infested lakes to uninfested lakes 
(Fig. 1b). We construct a network for each county with ten or 
more lakes (n = 58; Supplementary Table 1).

	(2)	 Compute the optimal inspection strategy for each county. The 
management objective is to maximize the inspections of poten-
tially infective boats (boats moving from infested to uninfested 
lakes). We focus on county-level management, which controls 
90% of the inspection stations in Minnesota. County managers 
decide where to locate inspection stations given a fixed budget, 
often with minimal coordination between counties or with the 
state. Thus, we solve for each county’s optimal inspection pat-
tern, subject to a fixed budget, using integer-linear program-
ming (Methods) where the objective is to maximize the num-
ber of potentially infective boats inspected (Supplementary 
Section 3).

	(3)	 Compute network-guided inspection strategies for each county. 
We evaluate management strategies guided by several centrality 
metrics that are measures of network structure (Table 1). These 
include two strategies used in network protection contexts for 
the objective of reducing long-term spread: prioritizing by 
highest degree or betweenness centrality23. These metrics also 
have been identified as useful predictors of node importance 
for invasive species spread1,27. We also propose and apply a new 
metric that combines the hub and authority scores of ref. 38; 

our hub + authority score (H + A) favours nodes that are either 
sources of infestation or targets of infestation on a directed net-
work. In total, we examine five heuristic network-guided strate-
gies (Supplementary Sections 4 and 5), presenting results in the 
main text for three focal strategies that prioritize nodes with 
highest network centrality (Table 1 and Methods).
To evaluate management strategies guided by centrality met-
rics, we rank the lakes (nodes) in each county according to each 
centrality metric and place interventions in order of priority on 
the basis of these ranks until the budget runs out. We calculate 
the relative performance of these strategies (Fig. 1b), that is, the 
proportion of potentially infective boats inspected compared to 
optimal inspection (Supplementary Section 7).

	(4)	 Construct cases with reduced ecological and social informa-
tion. The optimal solution provides an upper bound on the per-
formance of network-guided management but because data are 
a key constraint in managing large, complex socio-ecological 
systems, we seek insight into whether network-guided manage-
ment can perform well when planners use network-guided ap-
proaches with less detailed social or ecological information. We 
focus on four cases with varying levels of social and ecological 
information (Fig. 1c and Table 2): full social and full ecological 
information; full social and low ecological; low social and full 
ecological; and low social and low ecological. In both full and 
low social information cases, the directed topology of the net-
work is known. With full social information, the edge weights 
are known and a weighted edge from one lake to another rep-
resents the number of boats moving from that lake to the other. 
With low social information, the presence or absence of edges 
between two lakes are known. An edge from one lake to anoth-
er represents at least one boat movement from that lake to the 
other, while no edge represents zero boat movements. With full 
ecological information, lake infestation status is known. Com-
bined with the directed topology, this means that the infested 
subnetwork—the network consisting of only potentially infec-
tive movements between infested lakes and uninfested lakes— 
is known with full ecological information. With low ecological 
information, only the position of each lake in the network is 
known, not its infestation status. See Table 2 and Supplemen-
tary Section 6 for more detail.

	(5)	 Evaluate median and lower-quartile performance across coun-
ties for a range of budgets. For all network metrics and infor-
mation levels we consider a range of relative budgets, expressed 
as a proportion of the maximum budget adequate to inspect 
all potentially infective boats in the county. Our unit of obser-
vation is a county. To measure overall performance we exam-
ine the median (0.5 quantile) and lower-quartile (0.25 quan-
tile) outcomes. We also computed average performance across 
counties within the lowest quartile and the proportion of coun-
ties where methods performed optimally or failed (defined as 
relative performance <0.66; Methods and Supplementary Sec-
tion 8).

	(6)	 Assess performance as a function of network size. Our last step 
exploits the variation in network size across counties, measured 
as the number of lakes within a county. Specifically, we use the 
results from the prior steps to examine whether performance 
changes with an increase in network size.

Results
Across all metrics and information levels metric-guided strate-
gies achieved median performance of at least 0.80 of the optimal 
for reasonable budgets (relative budgets <0.25; Supplementary 
Table 3). Metric-guided strategies also vastly exceeded the random 
benchmark, which achieved much lower performance relative to 
the optimal (median 0.15, lower quartile 0.10) for the same budgets  

Table 1 | Network centrality metrics: definitions for network 
centrality metrics used in our three focal strategies, which 
prioritize nodes with highest centrality value

Method Description

Degree Degree is the number of direct links (incoming and 
outgoing) incident on a node. In weighted networks, 
the equivalent is weighted degree or strength.

H + A Sum of two eigenvalue-based metrics that account 
for incoming links (authority score) and outgoing links 
(hub score). Unlike degree, the contribution of a direct 
link is weighted by the linking node’s score.

Betweenness The number of shortest paths between all other nodes 
that pass through a node.
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(Supplementary Table 5). As resource constraints in invasive  
species management mean budgets are almost never sufficient to 
control every site15, we focus on results with a low relative budget 
(0.1 the amount required to inspect all infested boats); however, 
the qualitative patterns described below held for all relative bud-
gets below 0.25 (Supplementary Tables 2 and 3). Performance of 
metric-guided management generally improved with higher bud-
gets (Supplementary Figs. 2 and 3). Optimal management also 
improved with higher budgets but showed diminishing returns 
(Supplementary Fig. 1). Synthesizing the results across metrics, 
information levels and network size leads to four main findings, 
which we describe in the following subsections.

Network-guided management achieves near-optimal perfor-
mance. With full information, degree and H + A achieved per-
fect (100%) median performance for reasonable budgets. Degree 
achieved near-perfect performance across all counties: comparing 
inspected lakes between degree and the optimal solution reveals 
that, for relative budgets below 0.25, degree selected the same inspec-
tion patterns as the true optimum 87% of the time (Supplementary 
Fig. 4 and Supplementary Table 3). A ‘recalculated’ degree strategy 
selected the exact same inspection patterns for all relative budgets 
below 0.5 (Supplementary Section 5). Differences between degree 
and H + A emerge at the lower quartile with performance of degree 
(100%) exceeding H + A (97%). Still, H + A performs well across 
all counties with the average performance of the lower quartile of 
counties 89% of optimal.

Performance varies by metric. Betweenness performed worse than 
degree and H + A. Across the counties, its median and lower-quartile 
performance for a realistic budget of 0.1 of the amount required to 
inspect all infested boats was 93% and 84% of optimal, respectively 
(Supplementary Table 2). Average performance across counties in 
the lower quartile was 72% of optimal. Other metrics explored in 
the Supplementary Information perform even worse, particularly 
in the lower quartile, revealing that performance can be tied to the 
choice of metric.

Performance is high but variable with less information. Metric 
performance was reduced when less detailed social and ecologi-
cal information was used in the metric calculation (Fig. 2a) but 
for a realistic budget of 0.1 these patterns differed depending on 
which type of data was removed (Supplementary Table 2). In the 
case with full social information but low ecological information, 
the performance of degree (median 94%, lower quartile 83%) and 
H + A (median 96%, lower quartile 87%) strategies were both high. 
The performance of betweenness was lower (median 69%, lower 
quartile 50%) (Supplementary Table 2). In comparison, with low 
social but full ecological information the ranking of metrics by 
their median and lower-quartile performance shifted. Betweenness 
(median 93%, lower quartile 84%) and H + A (median 92%, lower 
quartile 88%) performed best, with degree slightly lower (median 
88%, lower quartile 72%). Also notable is that the average of the 
counties in the lower quartile was similar for H + A in each of these 
partial information scenarios (67% with low environmental, 77% 
with low social) and failure rates remained below 10%. In contrast, 
for betweenness and degree, average performance in the lower 
quartile dropped to near 50% or lower in one scenario or another 
and failure rates were higher. For low social/low ecological, all focal 
metrics performed approximately the same, with median perfor-
mance above 80%, lower quartile ≈65% and average across the 
lower-quartile counties 44–53%. These qualitative patterns held for 
reasonable budgets (relative budgets <0.25, Supplementary Table 3).  
Very similar results to the low social/low ecological case were 
observed even with only undirected topology (‘minimal’ informa-
tion; Supplementary Section 6).

Performance generally does not decrease in larger networks. 
Metric performance generally improves or shows no significant 
change as network size, measured as the number of lakes, increases 
(Fig. 2b; Supplementary Fig. 6 for other budgets). Increases in per-
formance with network size are common at the lowest information 
levels. In the low social/low ecological case, the lower (0.25 quantile) 
performance for all focal metrics was significantly higher (P < 0.05) 
for counties with larger networks (Fig. 2b; Supplementary Fig. 6 for 
other budgets). This finding also holds for even less information, 
when only the undirected topology is known (‘minimal’ informa-
tion; Supplementary Section 6 and Supplementary Fig. 5). The one 
case where network size showed slight, but negative, association 
with performance is with full information for H + A (statistically 
significant decline in 0.25 quantile performance). However, the 
magnitude of this change over the range of network size was small 
compared to the larger positive association between performance 
and network size seen with low levels of ecological information.

Discussion
Our study demonstrates that network-based approaches can guide 
nearly optimal invasive species management, including in large 
systems with constrained resources for management. We find 
that by managing based on some network metrics, a manager can 
achieve performance close to or equivalent to optimal—particu-
larly using degree and H + A (defined in Fig. 1, results in Fig. 2a). 
Performance was more variable in cases with relatively low budgets 
and low levels of social or ecological information. In these cases, 
there was relatively strong median performance across metrics but 
greater differences in performance of counties in the lower quar-
tiles across metrics, including cases where average performance 
of the counties in the lower quartile was lower than 50% of opti-
mal. On one hand, our results provide empirical evidence that 
network-guided management can achieve good performance even 
with limited information but the lower-quartile results suggest 
that appropriate metric selection is important for achieving these 
outcomes. Finally, we find that the performance of metric-guided 
management strategies generally does not decrease with network 
size and generally increases with network size and with low levels of 
information—that is, in the contexts where identification of opti-
mal solutions can be most computationally challenging. Stability 
of performance across network size also suggests that metrics can 
be tested for performance on smaller-scale systems to provide 
insights into preferred metrics to use in larger systems. Together, 
these results suggest that network-guided management is a prom-
ising approach for managing large-scale invasions, including those 
characterized by limited budgets or less detailed information about 
the social-ecological system.

Table 2 | Varying social and ecological information: our four 
focal cases of full or partial information result from varying the 
level of detail on ecological and social information between two 
levels defined in this table

Information level Definition

Full social Weighted-directed network of boat movements 
(edges represent the number of boats moving 
from source to target lake).

Low social Unweighted-directed network of boat movements 
(edges represent one or more boats moving from 
source to target lake).

Full ecological Lake position in network and invasion status.

Low ecological Lake position in network only.

See also Fig. 1 and Supplementary Section 6.
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Our research adds to a growing body of work applying network 
science to the management of complex SESs. The utility of central-
ity metrics for guiding invasion management, as found in our study, 
is expected from longstanding network theory (for example, ref. 21) 
but their potential to guide management has not been realized for 
invasive species management at large scales. For small and newly 
invaded systems, others8 found that centrality metrics can actually 
mislead management. However, large-scale invasions in real man-
agement contexts are inherently a large-network problem. While 
prior studies on invasive species in large networks assessed how well 
network metrics predict spread (for example, refs. 1,28) and examined 
performance of metrics in prioritizing management actions (for 
example, ref. 29), they did not rigorously compare the performance 
of network-based management to known-optimal interventions as 
we do here. In another conservation context (conserving species in 
a food web), at least one prior study compared the performance of 
network metric-guided management to an optimal approach39 but 
did not test the performance for invasion management and under 
varying information, budgets and network size, as in this study.

Here, we test network-guided management’s efficacy for the 
objective of minimizing the number of uninspected but potentially 
infective boats (boats moving from infested to uninfested lakes) 
but other management problems could be explored in future work. 
Our objective captures the current means objective in our study 
region and is equivalent to minimizing one-period spread, which is 

implicitly aimed at achieving a more fundamental goal of reducing 
long-term damages from invasion spread34. Invasive species man-
agement involves many approaches to reducing long-term impacts, 
with diverse management activities including surveillance, contain-
ment and removal, and with goals spanning prevention to eradica-
tion15. Each option represents a distinct resource allocation problem, 
involving different time horizons, tools and management objectives. 
Assessing the performance of network metrics for an objective like 
long-term damages would require integrated, dynamic SES models 
that describe changes in boater movement over time. A fuller pic-
ture of performance could also include empirical ex-post evaluation 
of management efficacy.

The relative performance of different metrics for network-guided 
management probably depends on the management objective. Here, 
the higher-performing metrics (degree and H + A in Fig. 2a) select 
nodes with a high weighted degree, which corresponds directly to 
high numbers of inspected boats. In contrast, the lower-performing 
betweenness centrality depends on all paths in the network and 
therefore selects nodes that may not have a high degree and thus 
may not correspond to a high number of inspected boats. Work 
on the network protection problem offers further support to this 
idea that the best-performing metric will depend on the objective. 
For example, when controlling spread on a network via protecting 
nodes18 but with the objective of minimizing the rate of spread in the 
long-term, betweenness centrality outperforms strategies based on 
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degree centrality23. Thus, our empirical results highlight the poten-
tial importance of selecting metrics that ‘match’ the management 
objective and support a broader literature exploring this idea. For 
future research on network-guided management of invasive species 
or other applications of network-guided conservation, leveraging 
and translating predictions from network epidemiology (reviewed 
in ref. 18) is a promising approach.

Another outstanding topic for future research is how the perfor-
mance of metric-based heuristics depends on interactions between 
invasive species’ dispersal characteristics and the data used to con-
struct the network. The ordering of metric performance in cases 
with low levels of network information may be especially sensitive 
to these features. In our application, the spectral H + A metric had 
the most consistent performance across varying information levels. 
This indicates that in the partial information cases we considered 
(that is, low social/full ecological or full social/low ecological; Fig. 2)  
H + A captures details in the network structure that result in a 
high ranking for nodes that turn out to be the highest degree in 
the full information case—that is, on the weighted infested sub-
network. Future work could investigate if this finding is specific to 
our context, including the network definition (from data collected 
over 2014–2017; ref. 37), the definition of invasion state (invaded 
in 2019), and the ecological properties (for example, temporal and 
spatial dispersal abilities) of this invasive species. In our application, 
centrality metrics on the network are predictive of invaded status37. 
While this has been observed for AIS on other human transport 
networks29, it may not be the case for some invasions. Whether our 
findings extend to more general cases should be investigated, poten-
tially through simulation approaches from network epidemiology 
(for example, ref. 18). Another promising extension would be apply-
ing our methods to networks derived from other sources. Gravity 
models have often been applied to AIS (for example, refs. 40,41) and 
these models could be used to create an approximate network24 that 
could then be used for network-guided management.

Network approximations may be particularly valuable for spatial 
prioritization in very large systems, including for providing decision 
support for management, for several reasons. For one, integer-linear 
programming (ILP) approaches that have been successfully applied 
to small- and medium-sized problems in conservation plan-
ning (for example, conservation prioritization with MARXAN42, 
sparing-sharing in tropical forests with ILP43) have computational 
and data constraints that limit their use for large-scale systems. 
Second, complementary work by others44 demonstrates the effec-
tiveness of network-guided management for real-world decision 
support by embedding near-optimal prioritization based on a net-
work metric in a web-tool developed with intensive stakeholder 
engagement. Finally, output from network approaches such as ours 
could be integrated with broader frameworks for assessing invasion 
risk on the basis of factors such as habitat suitability, stream connec-
tions and impacts35,45. Ongoing engagement between managers and 
researchers, such as in Minnesota, provides a promising context for 
pursuing such extensions46.

In summary, our results suggest that network-guided manage-
ment could provide an important tool for addressing management 
challenges posed by widespread invasions, which are becoming 
common due to globalization and other global changes. Our study 
demonstrates the potential value of methods developed in other 
areas of network science with a richer history of working in large 
complex systems for invasion management. These approaches 
also have relevance for other environmental contexts, such as fire, 
fisheries or endangered species management, where management 
occurs within complex systems that test the limits of traditional 
optimal control tools (for example, ref. 47). Overall our results show 
that network approaches hold promise for improving manage-
ment outcomes in contexts where modelling and/or data resources  
are limited.

Methods
We compare optimal versus network-guided invasive species management at a 
landscape scale, considering siting of boat decontamination stations within 58 
counties, jointly containing 9,182 lakes, in Minnesota, United States.

Data and network representation. We use a network generated from ≈1.6 million 
reported boater movements between lakes in Minnesota over the period 2014 
to 2017 and zebra mussel infestation status from 201937. This network consists 
of lakes (nodes) connected by directed movements of boaters (edges). Edge 
weights represent estimated numbers of boaters moving between two connected 
lakes37. On the basis of lake infestation status, we categorize all network edges 
as either potentially infective (a movement from an infested body of water to an 
uninfested body of water based on observed infestation status) or non-infective 
(Supplementary Sections 1 and 2).

Defining county-level networks and infested subnetworks. We construct 58 
county-level networks from the Minnesota-wide data, including all counties with 
greater than ten lakes. We account for out-of-county and in-to-county boater 
movement by adding two nodes to each county network that serve as synthetic 
lakes: the first corresponding to all non-county lakes that are uninfested and the 
second corresponding to all non-county lakes that are infested. We aggregate all 
edge-weight that crosses a county line into the incoming and outgoing links to 
these two synthetic nodes. In this way, we define a county-level network as an 
adjacency matrix A(k) (for k in 58, the number of counties that we examine). These 
county-level networks vary widely in summary statistics related to the network and 
infestation status, including number of edges, number of trips and proportion of 
potentially infective trips (Supplementary Table 1).

For each county, we further define an infested subnetwork, which is a subgraph 
of each full county network A(k), consisting of only the potentially infective edges 
and their connected lakes. Each edge in this subnetwork is a directed edge from an 
infested lake to an uninfested lake. The subnetwork connects a subset of lakes in 
the county network as an adjacency matrix Ã(k). The entry Ã(k)

ij  corresponds to the 
number of potentially infective trips from lake i to lake j.

Problem formulation. Although boater movement connects lakes across counties, 
resource allocation decisions primarily occur within counties, so we study a 
decision problem at that scale. The decision problem for county k is to determine 
the location of inspection stations, given a limited budget B(k), to maximize the 
number of boats inspected that are moving from infested lakes anywhere to 
uninfested lakes within the county. We assume uniform costs to inspect any given 
lake (the cost of inspection stations are the same for each lake).

Optimal solution and random-inspections benchmark. As a reference point 
and the upper bound on the performance of our network metrics we solve for 
the optimal solution for a fixed budget as an integer-linear programme, an 
approach that has previously been applied to optimize inspection for invasive 
species14,30. Indeed, the ILP formulation for the optimal solution that we use here 
was developed to support AIS management in several Minnesota counties (ref. 30; 
Supplementary Section 3). For each county k, we use the adjacency matrix of the 
infested subnetwork Ã(k) to define the infested matrix N(k) with rows corresponding 
to the infested lakes, within the county and the infested synthetic lake and columns 
corresponding to the uninfested lakes only in the county. Each entry Nij gives the 
number of boats moving from infested lake i to uninfested lake j. We define the 
decision problem of locating inspection stations as a sum across entries in this 
matrix, subject to constraints for the budget and to disallow inspection of synthetic 
lakes as an integer-linear programme (Supplementary Section 3).

As a lower bound on performance, we also computed the performance of 
randomly located inspection stations, where for a budget of B(k), we chose B(k) 
lakes at random from all lakes in county k. To determine the mean performance 
of a random strategy for a given budget, we initially compute the mean 
performance for 100 replicates, then add replicates in increments of five until 
mean performance across all replicates changes by less than one inspected 
boat. Plots for the random strategy show the final mean performance; for most 
county-by-budget combinations, this procedure resulted in a final mean taken 
over 105 to 570 replicates.

Network metric solution. We compute metric-guided strategies degree, H + A and 
betweenness (Table 1) as described in the Supplementary Sections 4 and 5). For 
each metric and each information level, we select nodes for inspection sequentially 
until the budget (total number of nodes that can be inspected) is reached. For 
all metrics we select nodes on the basis of the ranking from the initial state of 
the network (Supplementary Algorithm 1). We also examined a ‘recalculated’ 
method23: compute the metric for all nodes, select the node with the highest metric 
score for inspection, update the network to exclude the selected node, recalculate 
the metric for all remaining uninspected nodes, then select the remaining node 
that has the highest score, continuing with this process until the budget is reached 
(Supplementary Algorithm 2). For the objective and metrics we examine here, 
the ‘recalculated’ method shows little improvement over the initial state method 
(Supplementary Section 5 and Supplementary Fig. 7).
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Computing relative performance of non-optimal strategies. To compare the 
performance of network-guided management (using heuristics based on centrality 
metrics) to the optimal allocation, we compute the number of potentially infective 
boats that are inspected under each strategy. We calculate relative performance as 
the number of infective boats inspected using metric-guided management divided 
by the number of infective boats inspected using the optimal integer-programming 
approach (Supplementary Section 7). We apply this approach for each county k 
and for each budget up to the minimum budget required to inspect all potentially 
infective boats given full information and solving the inspection problem for 
the optimal solution. We denote this budget B(k)

cover (Supplementary Section 3). 
We use the maximum budget to define each of the k county’s relative budget 
b(k) = B(k)/B(k)

cover, which facilitates comparing amongst counties of different 
sizes. We evaluated performance by calculating the median (0.5 quantile) relative 
performance across all counties for each budget as well as mean lower-quartile 
(0.25 quantile) performance. We also computed the proportion of counties 
where the performance is perfect, that is, matching the optimal exactly and the 
proportion of failures (defined as relative performance <0.66; Supplementary 
Section 8). These values are reported in Supplementary Tables 2–5.

Relationship between performance and network characteristics. Quantile 
regression estimates relationships between predictors and parts of the outcome 
distribution other than the mean48. To test associations between relative 
performance both at the median (0.5 quantile) and lower quartile (0.25 quantile) 
and network characteristics (size or the number of nodes; average degree) we 
computed quantile regressions, using R package quantreg. We performed linear 
quantile regressions for the median and lower quartile (quantiles 0.5, 0.25)  
and tested for significance using confidence intervals produced via inverting  
a rank test49. This method quantifies whether network characteristics show a 
significant association with increases or decreases in both average and lower- 
end performance.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting summary linked to this article.

Data availability
The network data used in this study were previously reported37 and are available 
at https://conservancy.umn.edu/handle/11299/216936. The minimal dataset 
supporting this study, including network data, lake metadata including infestation 
status and geospatial data delineating county boundaries are available50.

Code availability
Analysis used R v.4.0.2 (2020-06-22) using packages dplyr (v.1.0.7), purrr (v.0.3.4), 
ggplot2 (v.3.3.3), igraph (v.1.2.5), quantreg (v.5.61) and Rglpk (v.0.6-4). Full 
analysis code underlying all analyses are available50.
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