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Guiding large-scale management of invasive
species using network metrics

Jaime Ashander ®'7®4, Kailin Kroetz'?, Rebecca Epanchin-Niell ©3, Nicholas B. D. Phelps®4,

Robert G. Haight® and Laura E. Dee ®¢

Complex socio-environmental interdependencies drive biological invasions, causing damages across large spatial scales. For
widespread invasions, targeting of management activities based on optimization approaches may fail due to computational
or data constraints. Here, we evaluate an alternative approach that embraces complexity by representing the invasion as a
network and using network structure to inform management locations. We compare optimal versus network-guided invasive
species management at a landscape-scale, considering siting of boat decontamination stations targeting 1.6 million boater
movements among 9,182 lakes in Minnesota, United States. Studying performance for 58 counties, we find that when full infor-
mation is known on invasion status and boater movements, the best-performing network-guided metric achieves a median and
lower-quartile performance of 100% of optimal. We also find that performance remains relatively high using different network
metrics or with less information (median >80% and lower quartile >60% of optimal for most metrics) but is more variable,
particularly at the lower quartile. Additionally, performance is generally stable across counties with varying lake counts, sug-
gesting viability for large-scale invasion management. Our results suggest that network approaches hold promise to support

sustainable resource management in contexts where modelling capacity and/or data availability are limited.

omplex socio-environmental interdependencies drive bio-

logical invasions at both regional and global scales'”. These

invasions damage ecosystems worldwide, threatening biodi-
versity and ecosystem services** and causing annual losses of over
US$46billion and rising®. Over the coming decades, increases in
global interconnections and associated trade are expected to drive
many more invasions’.

Widespread biological invasions, which cover large spatial
scales, are a major environmental crisis whose long-term solution
will require advancing beyond existing tools for managing estab-
lished invasions’. New, approximate methods for controlling spread
at large scales are needed because existing accepted methods for
finding exact optima for these spatial resource allocation prob-
lems (for example, using optimal control, mixed integer-linear and
nonlinear programming®'*) cannot scale efficiently to large sys-
tems'. These current methods are also often hindered by the chal-
lenge of limited data. Both the distribution of invasive species and
the socio-ecological processes driving spread are at best partially
observed even in established invasions”'.

Network approaches are a promising way to analyse complex
socio-environmental systems (SESs)"”. Over the past decade, net-
work science has made advances in understanding how to optimally
control spread in complex networks, where the ‘network protection
probleny’ is fundamental with applications in information security,
epidemiology, politics and marketing'®. Recognition that optimiza-
tion approaches for network protection cannot scale to large net-
work sizes due to problem complexity has led to intensive research
effort focused on ‘network-guided management: heuristic and
approximate methods for solving this problem'-* including using
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network metrics to prioritize management actions™.

Despite clear parallels between network protection and inva-
sive species management, and network approaches becoming more
commonly applied to invasive species or SESs, network-guided
management has not been widely adopted for managing biologi-
cal invasions. Specifically, the parallel exists because an invasion
can be represented as a network, with sites that an invasive species
can occupy representing nodes of a network and edges represent-
ing pathways of spread (for example, via human movement using
gravity models* or via biological dispersal using habitat connectiv-
ity models®). As such, there is growing interest among researchers
and practitioners in using network characteristics to understand
invasions. Network characteristics affect spread both at landscape
scales and continental or global scales, where invasions are most
often mediated by human movement and trade’. For example, con-
sistent with network theory, experimental work reveals that spread
is facilitated by network hubs or central patches through which
many dispersal pathways flow and is hindered by more clustered
network structures”. However, these insights are not widely used
to inform management. One explanation for this is that rigorous
comparisons between network-guided management and accepted
methods to obtain optimal solutions have been done only for newly
established invasions in small systems—a situation where manage-
ment guided by network structure performs poorly®. Despite their
poor performance for newly established invasions®, network-guided
management has been suggested for landscape-scale management
of spreading species®, including aquatic invasive species (AIS) that
spread via human trade and movement”. To understand if network
approaches provide value over accepted methods for optimal man-
agement of large networks with established invasions, however, rig-
orous comparisons are needed but have not yet been done.
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Fig. 1| Our analytical approach. a, Networks of boat movement are constructed at the county level for Minnesota counties with ten or more lakes (n=58;
Supplementary Table 1) shaded here by the number of lakes in the county, which corresponds to network size. Dakota County (bold outline) is used for
illustration in €. b, Network-guided management (placement of inspection stations) using heuristics based on centrality metrics (Table 1) is compared both
to optimal inspection (using integer-programming) and random management. ¢, In addition to examining performance of network-guided management
with full information (dashed outline), we evaluate performance in three cases with only partial information on either or both the boater movement
network (social information) and the invasion status of each lake (ecological information). See Table 2 for more detailed definitions of full and low social

and ecological information.

Here, we aim to bridge the gap between advances in network
science on spread prevention in complex networks and real-world
management of invasions in SESs. Specifically, our approach con-
nects recent enquiry into using network structure to guide man-
agement of invasive species with existing understanding of optimal
management of species invasions. We focus on a case of managing
a large-scale invasion via allocation of inspection and decontami-
nation stations (‘inspection stations’ hereafter) across a network,
with the objective of minimizing the number of uninspected but
potentially infective connections, a common problem in invasive
species management'**". We evaluate performance of management
based on network structure (that is, centrality metrics, Table 1; see
ref. »°) relative to the optimal management from an integer-linear
programming solution'**. Since managers are often constrained by
knowledge of infestation status and processes (for example, current
invasion distribution and dispersal patterns), we also examine how
performance degrades with reduced information on invasion status
or spread magnitude, relative to the optimal solution which requires
full information. Additionally, we characterize performance across
a range of budgets. Thus, our analysis advances knowledge about
the outstanding question of whether network metrics can effectively
guide management and whether some metrics could work better

than others in more information-rich versus information-poor
management settings.

Management context

We focus on the large-scale management problem of preventing
zebra mussel (Dreissena polymorpha) spread in Minnesota, United
States (Fig. la). Zebra mussels are one of the most costly invasive
species in the United States, causing changes to ecosystem pro-
cesses’’, extirpating native mussel species” and damaging infra-
structure®. In Minnesota, zebra mussels are a prohibited invasive
species, yet have spread to more than 270 lakes or rivers since their
first report in 1989, with more than half of those infestations occur-
ring since 2016 (ref. ** and Supplementary Section 1). This rapid
spread has been largely human-mediated, facilitated by movement
of boats and equipment’™. The objective we examine, minimiz-
ing short-term spread via optimal location of inspection stations at
lakes, is implicitly aimed at achieving the more fundamental goal
of reducing long-term damages from invasion spread*. Given that
significant state funding is delegated to the county level (US$10 mil-
lion annually for AIS prevention; ref. **), decisions on where to
locate most inspection stations are made by county managers™.
Indeed, co-authors N.B.D.P. and R.G.H. were approached by state
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Table 1| Network centrality metrics: definitions for network
centrality metrics used in our three focal strategies, which
prioritize nodes with highest centrality value

Method

Degree

Description

Degree is the number of direct links (incoming and
outgoing) incident on a node. In weighted networks,
the equivalent is weighted degree or strength.

H+A Sum of two eigenvalue-based metrics that account
for incoming links (authority score) and outgoing links
(hub score). Unlike degree, the contribution of a direct

link is weighted by the linking node's score.

Betweenness The number of shortest paths between all other nodes

that pass through a node.

and county managers to both characterize boat movements” and
develop decision support tools for cost-effective county-level man-
agement of watercraft inspection programmes®. Here, for each of
the 58 counties in Minnesota with ten or more lakes, we examine
the performance of network-guided approaches relative to an opti-
mal solution obtained via integer-linear programming (Methods).
Our set-up allows us to also examine how performance varies across
counties that differ in system size (number of nodes).

Analytical approach

Our analytical approach centres around the optimal placement
of boat inspection stations on a network of infested and unin-
fested lakes connected by boater movements. We compare the
optimal solution from integer-linear programming to network
metric-guided management with sites prioritized on the basis of the
structure of the boater movement network. Our general approach
involves six key steps.

(1) Construct the network. Given that the primary mode of zebra
mussel spread is through human movement (of boats)®, we
define a network with lakes that are infested or not as nodes
and the number of boats moving between lakes as weighted,
directed edges that mediate spread of infestation (Methods and
Supplementary Section 2; ref. *’). Within the overall network
there is an ‘infested subnetwork'—the network of potentially
infective movements from infested lakes to uninfested lakes
(Fig. 1b). We construct a network for each county with ten or
more lakes (n=58; Supplementary Table 1).

(2) Compute the optimal inspection strategy for each county. The
management objective is to maximize the inspections of poten-
tially infective boats (boats moving from infested to uninfested
lakes). We focus on county-level management, which controls
90% of the inspection stations in Minnesota. County managers
decide where to locate inspection stations given a fixed budget,
often with minimal coordination between counties or with the
state. Thus, we solve for each county’s optimal inspection pat-
tern, subject to a fixed budget, using integer-linear program-
ming (Methods) where the objective is to maximize the num-
ber of potentially infective boats inspected (Supplementary
Section 3).

(3) Compute network-guided inspection strategies for each county.
We evaluate management strategies guided by several centrality
metrics that are measures of network structure (Table 1). These
include two strategies used in network protection contexts for
the objective of reducing long-term spread: prioritizing by
highest degree or betweenness centrality”. These metrics also
have been identified as useful predictors of node importance
for invasive species spread"?’. We also propose and apply a new
metric that combines the hub and authority scores of ref. *%;
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our hub + authority score (H+ A) favours nodes that are either
sources of infestation or targets of infestation on a directed net-
work. In total, we examine five heuristic network-guided strate-
gies (Supplementary Sections 4 and 5), presenting results in the
main text for three focal strategies that prioritize nodes with
highest network centrality (Table 1 and Methods).

To evaluate management strategies guided by centrality met-
rics, we rank the lakes (nodes) in each county according to each
centrality metric and place interventions in order of priority on
the basis of these ranks until the budget runs out. We calculate
the relative performance of these strategies (Fig. 1b), that is, the
proportion of potentially infective boats inspected compared to
optimal inspection (Supplementary Section 7).

(4) Construct cases with reduced ecological and social informa-
tion. The optimal solution provides an upper bound on the per-
formance of network-guided management but because data are
a key constraint in managing large, complex socio-ecological
systems, we seek insight into whether network-guided manage-
ment can perform well when planners use network-guided ap-
proaches with less detailed social or ecological information. We
focus on four cases with varying levels of social and ecological
information (Fig. 1c and Table 2): full social and full ecological
information; full social and low ecological; low social and full
ecological; and low social and low ecological. In both full and
low social information cases, the directed topology of the net-
work is known. With full social information, the edge weights
are known and a weighted edge from one lake to another rep-
resents the number of boats moving from that lake to the other.
With low social information, the presence or absence of edges
between two lakes are known. An edge from one lake to anoth-
er represents at least one boat movement from that lake to the
other, while no edge represents zero boat movements. With full
ecological information, lake infestation status is known. Com-
bined with the directed topology, this means that the infested
subnetwork—the network consisting of only potentially infec-
tive movements between infested lakes and uninfested lakes—
is known with full ecological information. With low ecological
information, only the position of each lake in the network is
known, not its infestation status. See Table 2 and Supplemen-
tary Section 6 for more detail.

(5) Evaluate median and lower-quartile performance across coun-
ties for a range of budgets. For all network metrics and infor-
mation levels we consider a range of relative budgets, expressed
as a proportion of the maximum budget adequate to inspect
all potentially infective boats in the county. Our unit of obser-
vation is a county. To measure overall performance we exam-
ine the median (0.5 quantile) and lower-quartile (0.25 quan-
tile) outcomes. We also computed average performance across
counties within the lowest quartile and the proportion of coun-
ties where methods performed optimally or failed (defined as
relative performance <0.66; Methods and Supplementary Sec-
tion 8).

(6) Assess performance as a function of network size. Our last step
exploits the variation in network size across counties, measured
as the number of lakes within a county. Specifically, we use the
results from the prior steps to examine whether performance
changes with an increase in network size.

Results

Across all metrics and information levels metric-guided strate-
gies achieved median performance of at least 0.80 of the optimal
for reasonable budgets (relative budgets <0.25; Supplementary
Table 3). Metric-guided strategies also vastly exceeded the random
benchmark, which achieved much lower performance relative to
the optimal (median 0.15, lower quartile 0.10) for the same budgets
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(Supplementary Table 5). As resource constraints in invasive
species management mean budgets are almost never sufficient to
control every site', we focus on results with a low relative budget
(0.1 the amount required to inspect all infested boats); however,
the qualitative patterns described below held for all relative bud-
gets below 0.25 (Supplementary Tables 2 and 3). Performance of
metric-guided management generally improved with higher bud-
gets (Supplementary Figs. 2 and 3). Optimal management also
improved with higher budgets but showed diminishing returns
(Supplementary Fig. 1). Synthesizing the results across metrics,
information levels and network size leads to four main findings,
which we describe in the following subsections.

Network-guided management achieves near-optimal perfor-
mance. With full information, degree and H+ A achieved per-
fect (100%) median performance for reasonable budgets. Degree
achieved near-perfect performance across all counties: comparing
inspected lakes between degree and the optimal solution reveals
that, for relative budgets below 0.25, degree selected the same inspec-
tion patterns as the true optimum 87% of the time (Supplementary
Fig. 4 and Supplementary Table 3). A ‘recalculated’ degree strategy
selected the exact same inspection patterns for all relative budgets
below 0.5 (Supplementary Section 5). Differences between degree
and H+ A emerge at the lower quartile with performance of degree
(100%) exceeding H+ A (97%). Still, H+ A performs well across
all counties with the average performance of the lower quartile of
counties 89% of optimal.

Performance varies by metric. Betweenness performed worse than
degree and H+ A. Across the counties, its median and lower-quartile
performance for a realistic budget of 0.1 of the amount required to
inspect all infested boats was 93% and 84% of optimal, respectively
(Supplementary Table 2). Average performance across counties in
the lower quartile was 72% of optimal. Other metrics explored in
the Supplementary Information perform even worse, particularly
in the lower quartile, revealing that performance can be tied to the
choice of metric.

Performance is high but variable with less information. Metric
performance was reduced when less detailed social and ecologi-
cal information was used in the metric calculation (Fig. 2a) but
for a realistic budget of 0.1 these patterns differed depending on
which type of data was removed (Supplementary Table 2). In the
case with full social information but low ecological information,
the performance of degree (median 94%, lower quartile 83%) and
H+ A (median 96%, lower quartile 87%) strategies were both high.
The performance of betweenness was lower (median 69%, lower
quartile 50%) (Supplementary Table 2). In comparison, with low
social but full ecological information the ranking of metrics by
their median and lower-quartile performance shifted. Betweenness
(median 93%, lower quartile 84%) and H+ A (median 92%, lower
quartile 88%) performed best, with degree slightly lower (median
88%, lower quartile 72%). Also notable is that the average of the
counties in the lower quartile was similar for H+ A in each of these
partial information scenarios (67% with low environmental, 77%
with low social) and failure rates remained below 10%. In contrast,
for betweenness and degree, average performance in the lower
quartile dropped to near 50% or lower in one scenario or another
and failure rates were higher. For low social/low ecological, all focal
metrics performed approximately the same, with median perfor-
mance above 80%, lower quartile ~65% and average across the
lower-quartile counties 44-53%. These qualitative patterns held for
reasonable budgets (relative budgets <0.25, Supplementary Table 3).
Very similar results to the low social/low ecological case were
observed even with only undirected topology (‘minimal” informa-
tion; Supplementary Section 6).

Table 2 | Varying social and ecological information: our four
focal cases of full or partial information result from varying the
level of detail on ecological and social information between two
levels defined in this table

Information level Definition

Full social Weighted-directed network of boat movements
(edges represent the number of boats moving
from source to target lake).

Low social Unweighted-directed network of boat movements

(edges represent one or more boats moving from

source to target lake).
Full ecological Lake position in network and invasion status.

Low ecological Lake position in network only.

See also Fig. 1 and Supplementary Section 6.

Performance generally does not decrease in larger networks.
Metric performance generally improves or shows no significant
change as network size, measured as the number of lakes, increases
(Fig. 2b; Supplementary Fig. 6 for other budgets). Increases in per-
formance with network size are common at the lowest information
levels. In the low social/low ecological case, the lower (0.25 quantile)
performance for all focal metrics was significantly higher (P <0.05)
for counties with larger networks (Fig. 2b; Supplementary Fig. 6 for
other budgets). This finding also holds for even less information,
when only the undirected topology is known (‘minimal’ informa-
tion; Supplementary Section 6 and Supplementary Fig. 5). The one
case where network size showed slight, but negative, association
with performance is with full information for H+ A (statistically
significant decline in 0.25 quantile performance). However, the
magnitude of this change over the range of network size was small
compared to the larger positive association between performance
and network size seen with low levels of ecological information.

Discussion

Our study demonstrates that network-based approaches can guide
nearly optimal invasive species management, including in large
systems with constrained resources for management. We find
that by managing based on some network metrics, a manager can
achieve performance close to or equivalent to optimal—particu-
larly using degree and H+ A (defined in Fig. 1, results in Fig. 2a).
Performance was more variable in cases with relatively low budgets
and low levels of social or ecological information. In these cases,
there was relatively strong median performance across metrics but
greater differences in performance of counties in the lower quar-
tiles across metrics, including cases where average performance
of the counties in the lower quartile was lower than 50% of opti-
mal. On one hand, our results provide empirical evidence that
network-guided management can achieve good performance even
with limited information but the lower-quartile results suggest
that appropriate metric selection is important for achieving these
outcomes. Finally, we find that the performance of metric-guided
management strategies generally does not decrease with network
size and generally increases with network size and with low levels of
information—that is, in the contexts where identification of opti-
mal solutions can be most computationally challenging. Stability
of performance across network size also suggests that metrics can
be tested for performance on smaller-scale systems to provide
insights into preferred metrics to use in larger systems. Together,
these results suggest that network-guided management is a prom-
ising approach for managing large-scale invasions, including those
characterized by limited budgets or less detailed information about
the social-ecological system.
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Fig. 2 | Relative performance of network-guided management—measured as the number of infective boats inspected using metric-guided management
as a proportion of those inspected in the integer-programming solution—for relative budget 0.1. Performance is shown for full information (dashed
outline) and three cases with only partial information (lower levels of social and ecological information) for three metrics (Table 1; ‘btw’ is betweenness).
The legend colours apply to both panels. a, The distribution of performance across counties (n=58) illustrated with boxplots (centre line, median; box
limits, upper and lower quartiles; whiskers, 1.5x interquartile range) overplotted on county values (circular points). Random inspection also is included for
comparison; there, triangular points represent mean performance across many random inspection placements (Methods). See Supplementary Table 2 for
numeric values of median performance (0.5 quantile of the full performance distribution) and mean lower-quartile performance. b, Relationship between
performance and network size across 58 counties (circular points); lines shown are quantile regression results for the 0.50 and 0.25 quantiles. For clarity,
random inspection is not included. *, Significant regression slope of the 0.25 quantile (solid line); +, significant regression slope of the 0.50 quantile

(dashed line) (no overlap of 95% confidence interval with 0).

Our research adds to a growing body of work applying network
science to the management of complex SESs. The utility of central-
ity metrics for guiding invasion management, as found in our study,
is expected from longstanding network theory (for example, ref. *')
but their potential to guide management has not been realized for
invasive species management at large scales. For small and newly
invaded systems, others® found that centrality metrics can actually
mislead management. However, large-scale invasions in real man-
agement contexts are inherently a large-network problem. While
prior studies on invasive species in large networks assessed how well
network metrics predict spread (for example, refs. **) and examined
performance of metrics in prioritizing management actions (for
example, ref. »°), they did not rigorously compare the performance
of network-based management to known-optimal interventions as
we do here. In another conservation context (conserving species in
a food web), at least one prior study compared the performance of
network metric-guided management to an optimal approach® but
did not test the performance for invasion management and under
varying information, budgets and network size, as in this study.

Here, we test network-guided management’s efficacy for the
objective of minimizing the number of uninspected but potentially
infective boats (boats moving from infested to uninfested lakes)
but other management problems could be explored in future work.
Our objective captures the current means objective in our study
region and is equivalent to minimizing one-period spread, which is
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implicitly aimed at achieving a more fundamental goal of reducing
long-term damages from invasion spread’. Invasive species man-
agement involves many approaches to reducing long-term impacts,
with diverse management activities including surveillance, contain-
ment and removal, and with goals spanning prevention to eradica-
tion". Each option represents a distinct resource allocation problem,
involving different time horizons, tools and management objectives.
Assessing the performance of network metrics for an objective like
long-term damages would require integrated, dynamic SES models
that describe changes in boater movement over time. A fuller pic-
ture of performance could also include empirical ex-post evaluation
of management efficacy.

The relative performance of different metrics for network-guided
management probably depends on the management objective. Here,
the higher-performing metrics (degree and H+ A in Fig. 2a) select
nodes with a high weighted degree, which corresponds directly to
high numbers of inspected boats. In contrast, the lower-performing
betweenness centrality depends on all paths in the network and
therefore selects nodes that may not have a high degree and thus
may not correspond to a high number of inspected boats. Work
on the network protection problem offers further support to this
idea that the best-performing metric will depend on the objective.
For example, when controlling spread on a network via protecting
nodes'® but with the objective of minimizing the rate of spread in the
long-term, betweenness centrality outperforms strategies based on
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degree centrality”. Thus, our empirical results highlight the poten-
tial importance of selecting metrics that ‘match’ the management
objective and support a broader literature exploring this idea. For
future research on network-guided management of invasive species
or other applications of network-guided conservation, leveraging
and translating predictions from network epidemiology (reviewed
in ref. ') is a promising approach.

Another outstanding topic for future research is how the perfor-
mance of metric-based heuristics depends on interactions between
invasive species’ dispersal characteristics and the data used to con-
struct the network. The ordering of metric performance in cases
with low levels of network information may be especially sensitive
to these features. In our application, the spectral H+ A metric had
the most consistent performance across varying information levels.
This indicates that in the partial information cases we considered
(that is, low social/full ecological or full social/low ecological; Fig. 2)
H+ A captures details in the network structure that result in a
high ranking for nodes that turn out to be the highest degree in
the full information case—that is, on the weighted infested sub-
network. Future work could investigate if this finding is specific to
our context, including the network definition (from data collected
over 2014-2017; ref. *’), the definition of invasion state (invaded
in 2019), and the ecological properties (for example, temporal and
spatial dispersal abilities) of this invasive species. In our application,
centrality metrics on the network are predictive of invaded status™.
While this has been observed for AIS on other human transport
networks®, it may not be the case for some invasions. Whether our
findings extend to more general cases should be investigated, poten-
tially through simulation approaches from network epidemiology
(for example, ref. '¥). Another promising extension would be apply-
ing our methods to networks derived from other sources. Gravity
models have often been applied to AIS (for example, refs. ***') and
these models could be used to create an approximate network?** that
could then be used for network-guided management.

Network approximations may be particularly valuable for spatial
prioritization in very large systems, including for providing decision
support for management, for several reasons. For one, integer-linear
programming (ILP) approaches that have been successfully applied
to small- and medium-sized problems in conservation plan-
ning (for example, conservation prioritization with MARXAN™,
sparing-sharing in tropical forests with ILP*’) have computational
and data constraints that limit their use for large-scale systems.
Second, complementary work by others* demonstrates the effec-
tiveness of network-guided management for real-world decision
support by embedding near-optimal prioritization based on a net-
work metric in a web-tool developed with intensive stakeholder
engagement. Finally, output from network approaches such as ours
could be integrated with broader frameworks for assessing invasion
risk on the basis of factors such as habitat suitability, stream connec-
tions and impacts®*. Ongoing engagement between managers and
researchers, such as in Minnesota, provides a promising context for
pursuing such extensions.

In summary, our results suggest that network-guided manage-
ment could provide an important tool for addressing management
challenges posed by widespread invasions, which are becoming
common due to globalization and other global changes. Our study
demonstrates the potential value of methods developed in other
areas of network science with a richer history of working in large
complex systems for invasion management. These approaches
also have relevance for other environmental contexts, such as fire,
fisheries or endangered species management, where management
occurs within complex systems that test the limits of traditional
optimal control tools (for example, ref. 7). Overall our results show
that network approaches hold promise for improving manage-
ment outcomes in contexts where modelling and/or data resources
are limited.

Methods

We compare optimal versus network-guided invasive species management at a
landscape scale, considering siting of boat decontamination stations within 58
counties, jointly containing 9,182 lakes, in Minnesota, United States.

Data and network representation. We use a network generated from ~1.6 million
reported boater movements between lakes in Minnesota over the period 2014

to 2017 and zebra mussel infestation status from 2019*. This network consists

of lakes (nodes) connected by directed movements of boaters (edges). Edge
weights represent estimated numbers of boaters moving between two connected
lakes”. On the basis of lake infestation status, we categorize all network edges

as either potentially infective (a movement from an infested body of water to an
uninfested body of water based on observed infestation status) or non-infective
(Supplementary Sections 1 and 2).

Defining county-level networks and infested subnetworks. We construct 58
county-level networks from the Minnesota-wide data, including all counties with
greater than ten lakes. We account for out-of-county and in-to-county boater
movement by adding two nodes to each county network that serve as synthetic
lakes: the first corresponding to all non-county lakes that are uninfested and the
second corresponding to all non-county lakes that are infested. We aggregate all
edge-weight that crosses a county line into the incoming and outgoing links to
these two synthetic nodes. In this way, we define a county-level network as an
adjacency matrix A® (for k in 58, the number of counties that we examine). These
county-level networks vary widely in summary statistics related to the network and
infestation status, including number of edges, number of trips and proportion of
potentially infective trips (Supplementary Table 1).

For each county, we further define an infested subnetwork, which is a subgraph
of each full county network A®, consisting of only the potentially infective edges
and their connected lakes. Each edge in this subnetwork is a directed edge from an
infested lake to an uninfested lake. The subnetwork connects a subset of lakes in
the county network as an adjacency matrix A®). The entry A(;) corresponds to the
number of potentially infective trips from lake i to lake j.

Problem formulation. Although boater movement connects lakes across counties,
resource allocation decisions primarily occur within counties, so we study a
decision problem at that scale. The decision problem for county k is to determine
the location of inspection stations, given a limited budget B¥, to maximize the
number of boats inspected that are moving from infested lakes anywhere to
uninfested lakes within the county. We assume uniform costs to inspect any given
lake (the cost of inspection stations are the same for each lake).

Optimal solution and random-inspections benchmark. As a reference point

and the upper bound on the performance of our network metrics we solve for

the optimal solution for a fixed budget as an integer-linear programme, an
approach that has previously been applied to optimize inspection for invasive
species'**’. Indeed, the ILP formulation for the optimal solution that we use here
was developed to support AIS management in several Minnesota counties (ref. *%;
Supplementary Section 3). For each county k, we use the adjacency matrix of the
infested subnetwork A® to define the infested matrix N® with rows corresponding
to the infested lakes, within the county and the infested synthetic lake and columns
corresponding to the uninfested lakes only in the county. Each entry N; gives the
number of boats moving from infested lake i to uninfested lake j. We define the
decision problem of locating inspection stations as a sum across entries in this
matrix, subject to constraints for the budget and to disallow inspection of synthetic
lakes as an integer-linear programme (Supplementary Section 3).

As a lower bound on performance, we also computed the performance of
randomly located inspection stations, where for a budget of B®, we chose B®
lakes at random from all lakes in county k. To determine the mean performance
of a random strategy for a given budget, we initially compute the mean
performance for 100 replicates, then add replicates in increments of five until
mean performance across all replicates changes by less than one inspected
boat. Plots for the random strategy show the final mean performance; for most
county-by-budget combinations, this procedure resulted in a final mean taken
over 105 to 570 replicates.

Network metric solution. We compute metric-guided strategies degree, H+ A and
betweenness (Table 1) as described in the Supplementary Sections 4 and 5). For
each metric and each information level, we select nodes for inspection sequentially
until the budget (total number of nodes that can be inspected) is reached. For

all metrics we select nodes on the basis of the ranking from the initial state of

the network (Supplementary Algorithm 1). We also examined a ‘recalculated’
method”: compute the metric for all nodes, select the node with the highest metric
score for inspection, update the network to exclude the selected node, recalculate
the metric for all remaining uninspected nodes, then select the remaining node
that has the highest score, continuing with this process until the budget is reached
(Supplementary Algorithm 2). For the objective and metrics we examine here,

the ‘recalculated’ method shows little improvement over the initial state method
(Supplementary Section 5 and Supplementary Fig. 7).
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Computing relative performance of non-optimal strategies. To compare the
performance of network-guided management (using heuristics based on centrality
metrics) to the optimal allocation, we compute the number of potentially infective
boats that are inspected under each strategy. We calculate relative performance as
the number of infective boats inspected using metric-guided management divided
by the number of infective boats inspected using the optimal integer-programming

approach (Supplementary Section 7). We apply this approach for each county k
and for each budget up to the minimum budget required to inspect all potentially
infective boats given full information and solving the inspection problem for

the optimal solution. We denote this budget B%) _(Supplementary Section 3).
We use the maximum budget to define each of the k county’s relative budget

b® = p®/B®  which facilitates comparing amongst counties of different
sizes. We evaluated performance by calculating the median (0.5 quantile) relative
performance across all counties for each budget as well as mean lower-quartile
(0.25 quantile) performance. We also computed the proportion of counties
where the performance is perfect, that is, matching the optimal exactly and the
proportion of failures (defined as relative performance <0.66; Supplementary

Section 8). These values are reported in Supplementary Tables 2-5.

Relationship between performance and network characteristics. Quantile
regression estimates relationships between predictors and parts of the outcome
distribution other than the mean*. To test associations between relative
performance both at the median (0.5 quantile) and lower quartile (0.25 quantile)
and network characteristics (size or the number of nodes; average degree) we
computed quantile regressions, using R package quantreg. We performed linear
quantile regressions for the median and lower quartile (quantiles 0.5, 0.25)

and tested for significance using confidence intervals produced via inverting
arank test”. This method quantifies whether network characteristics show a
significant association with increases or decreases in both average and lower-
end performance.

Reporting summary. Further information on research design is available in the
Nature Research Reporting summary linked to this article.

Data availability

The network data used in this study were previously reported*” and are available
at https://conservancy.umn.edu/handle/11299/216936. The minimal dataset
supporting this study, including network data, lake metadata including infestation
status and geospatial data delineating county boundaries are available™.

Code availability

Analysis used R v.4.0.2 (2020-06-22) using packages dplyr (v.1.0.7), purrr (v.0.3.4),

ggplot2 (v.3.3.3), igraph (v.1.2.5), quantreg (v.5.61) and Rglpk (v.0.6-4). Full
analysis code underlying all analyses are available™.
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