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Abstract—This article presents a data-learned linear Koopman
embedding of nonlinear networked dynamics and uses it to enable
real-time model predictive emergency voltage control in a power
grid. The approach involves a novel data-driven “basis-dictionary
free” lifting of the system dynamics into a higher dimensional linear
space over which a model predictive control is exercised, making it
both scalable and rapid for practical real-time implementation. A
Koopman-inspired deep neural network (KDNN) encoder—decoder
architecture for the linear embedding of the underlying networked
dynamics under distributive control is presented, in which the
end-to-end components of the KDNN, comprising of a triple of
transforms is learned from the system trajectory data in one go: a
neural network (NN)-based lifting to a higher dimension, a linear
dynamics within that higher dimension, and an NN-based projec-
tion to the original space. This data-learned approach relieves the
burden of the ad hoc selection of the nonlinear basis functions (e.g.,
radial or polynomial) used in conventional approaches for lifting
to a higher dimensional linear space. We validate the efficacy and
robustness of the approach via application to the standard IEEE
39-bus system.

Index Terms—Data-driven method, Koopman operator, model
predictive control (MPC), neural network (NN), voltage control.

1. INTRODUCTION
A. Motivation and Related Works

ESIGNING an efficient control methodology for power
D grids faces tremendous challenges because of their dis-
tributed networked architecture and complex nonlinear dynam-
ics governed by differential-algebraic equations (DAE). Gen-
erally, power systems have different layers of controls for dif-
ferent operation modes; among those, emergency controls are
of utmost importance for grid security and resilience. Owing to
the complexity, the prevalent special protection systems (SPS)
for emergency controls are mostly rule-based and easy to im-
plement but limited in their level of resilience. As a result,
more recently, researchers have explored optimization-based
methods, such as model predictive control (MPC) to develop an
analytical approach relying on system dynamics and real-time
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measurements. But, due to the massive integration of renew-
able generations, dynamic loads, and inverter-based resources,
model complexities and uncertainties are increasing, so hav-
ing an exact model is difficult. Plus, due to nonlinearity and
high-dimensional dynamics, model-based optimizations have
high computational burdens, making them time-consuming and
not amenable to real-time execution. To this end, the emerging
data-driven approaches offer opportunities to control designs in
complex networked cyber-physical systems (CPSs) [1], [2]. The
data-driven approaches not only avoid the need for knowing the
model in advance but also make the control computation fast and
real time, trading a small modeling accuracy for a substantial
gain in computation speed. Among the data-driven approaches,
model-free deep reinforcement learning (DRL) is gaining im-
portance [3], [4]. However, providing analytical guarantees for
DRL-based control is still ongoing research and is currently not
ready for direct interactions with real-world power grids [5].

Here, we develop a data-driven approach for power systems
modeling that lifts the nonlinear dynamics to a higher dimen-
sional linear space and performs the MPC on this linear em-
bedding, making it free of analytical models (that are generally
unavailable for complex power grids), scalable, and real-time
(for having the control computed in the linear state-space). Also,
the lifting is done in a certain NN-based encoder—decoder archi-
tecture that avoids the conventional ad hoc selection of basis
functions (polynomial or radial) for lifting. We first briefly sum-
marize the conventional MPC-based existing works in power
systems applications, their computational limitation, and the cur-
rent lifting approaches for linear embedding and their limitations
as well.

1) MPC-Based Approaches in Power Systems: An overview
of MPC in power systems can be found in [6]. Quasi-steady-
state (QSS) model approximation and sensitivity-based ap-
proaches are presented in [7]. MPC formulations with trajectory
sensitivity-based approximation of nonlinear DAE are provided
in [8], [9], and [10] for emergency voltage control. In [11], a
speed-up of trajectory sensitivity computation utilizing the “very
dishonest newton (VDHN)” method for the jacobian update is
utilized in the MPC context. In recent studies, linear state-space
models of power systems are leveraged in MPC-based load
frequency control [12], [13], active frequency response [14],
and optimal power allocation of energy storage devices [15].

In summary, MPC-based methods are promising for emer-
gency control of power systems, but their real-world application
using online optimization over nonlinear DAE faces a major

1937-9234 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: lowa State University Library. Downloaded on May 22,2023 at 19:18:30 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

computational issue, making the MPC inapplicable in real time.
This computational bottleneck cannot be overcome even by
incorporating different approximation techniques, for instance,
sensitivity-based linearization [10].

2) Koopman-Based Lifting and Their Applications in Power
Systems: To leverage the scalability of control design in the
setting of linear state-space models, Koopman operators have
been proposed to provide a higher dimensional linear represen-
tation of a nonlinear system [16]. The lifting uses nonlinear basis
functions, and the lifted linear dynamics, when projected to the
original space, provide an approximation to the original nonlin-
ear dynamics [17], [18]. Finding the suitable basis functions for
the lifting operation is a nontrivial problem: in fact, the standard
approaches utilize an ad hocly predefined dictionary of basis
functions (e.g., polynomial or radial) that are not necessarily
optimal. The Koopman-based lifting and control design based on
ithave been explored in power systems applications: [19] solved
an MPC-based transient stabilization problem utilizing classical
swing dynamics of power systems [20]. A Koopman-based
model predictive power system stabilizer (PSS) is designed
in [21]. The authors in [22] integrate Koopman-based system
identification and controller design for oscillation damping. The
Koopman-based controller for decentralized frequency control
problem with the time-delayed embedding of measurements is
studied in [23]. In [24], data-driven characterization of power
system dynamics is investigated using the Koopman operator
theory. Overall, the following can be summarized.

1) The Koopman-based embedding in power systems is
mostly based on simplified models of power system dy-
namics so that a predefined dictionary of basis functions
(e.g., see [19, eq. (2)]) can be used.

2) Building an appropriate dictionary of basis functions for
complex power system dynamics comprising higher-order
generator models, exciter models, load models, etc., is
challenging, and this restricts the application of Koopman-
based methods in power system control design. This issue
has also been observed in other complex nonlinear appli-
cations.

3) In recent research [25], [26], [27], [28], [29], [30], [31],
DNN-based basis functions have been explored mostly
in non-networked systems. Within the power systems (an
example of a networked system), only [32] considers
learning-based lifting for transient stability problems, but
based on a simplified model of the swing dynamics (sim-
ilar to the simplified model used in [19]).

B. Our Approach and Key Contributions

Motivated by these observations, we present a Koopman-
inspired deep neural network architecture, termed KDNN, for
a linear embedding of the nonlinear voltage dynamics, by
drawing data from the system evolution based on its complete
differential-algebraic dynamics (without any approximation)
and design an MPC-based emergency voltage control over
the linear embedding. The approach presented is applicable
to any networked system. The proposed KDNN employs an
encode—decoder architecture, embedding an interim linear stage.
The validity of the proposed KDNN-based MPC scheme is

IEEE SYSTEMS JOURNAL

established by implementing an emergency voltage recovery
scheme following a severe fault in the IEEE 39-bus system. The
performance and robustness of the scheme are demonstrated via
+20% load variations around the nominal model as well as under
different contingencies. In summary, the key contributions of the
work presented include the following.

1) A Koopman-inspired linear embedding to map the nonlin-
ear voltage dynamics to a lifted linear state-space for the
emergency voltage control in power systems, considering
the higher order generator models, exciter models, load
models, etc. (unlike the previous works which used the
simplified swing dynamics), and also allowing the recov-
ery of bus voltages through control actions (e.g., reactive
power compensation).

Our approach is “basis-dictionary free” unlike the stan-

dard approaches that pick ad hoc basis functions (polyno-

mial or radial) that are not necessarily optimal. To this end,

we formulate an encoder—decoder architecture comprising

of the following:

a) NN-based data-learned basis functions for lifting;

b) data-learned linear Koopman operators associated with
the lifted states and control inputs;

c) data-learned projection function used for mapping
down to the original state space.

This encoder—decoder-based neural architecture is trained

in an end-to-end manner in one go, learning directly

from data the unknown basis function, the linear Koop-

man operators, and the projection function together. Such

end-to-end learning also eliminates the risks of numerical

issues associated with iterative learning of neural basis

functions versus the least-square estimation of Koopman

operators, as is the case in [32].

2) We provided a detailed noise robustness analysis of the
neural lifting by providing bounds on the lifted states given
the bounds on the original voltage states, meaning that by
design, the lifting is bounded input bounded output stable.

3) The MPC computation for emergency voltage control is
directly performed in the lifted linear state space, which
makes the MPC scalable as well as real time for power
system application: We demonstrate a 36-fold speed-up of
control computation on the IEEE 39-bus system.

II. FORMULATION OF PROPOSED METHODOLOGY

This section starts by considering the nonlinear power system
dynamics representation in the DAE form that implicitly models
the bus voltage dynamics under corresponding controls. We then
briefly overview the Koopman operators and present the pro-
posed data-driven KDNN architecture for embedding the nonlin-
ear voltage dynamics into a higher dimensional linear space. Fi-
nally, we formulate the MPC framework in the lifted linear space
to stabilize voltage trajectories following any disturbances.

A. Power System Model

The dynamics of a power system can be captured in the form
of a nonlinear DAE, given as follows:

X =F(X,Y,U); 0=G(X,Y,U) (1)

Authorized licensed use limited to: lowa State University Library. Downloaded on May 22,2023 at 19:18:30 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

HOSSAIN et al.: DATA-DRIVEN LINEAR KOOPMAN EMBEDDING FOR NETWORKED SYSTEMS: MODEL-PREDICTIVE GRID CONTROL 3

where X := state variables, Y := algebraic variables, and U :=
control inputs. Here, we are interested in the voltage stability
control, so the relevant dynamics is the response of bus voltages
V CY to the control input U (reactive VAR compensation in
our setting). Note that the DAEs (1) are an interacting system of
simultaneous equations written compactly employing vectors:
its state equations F' are corresponding to the state variables,
whereas the vector of all the network constraints involving volt-
ages, active, and reactive powers form the algebraic equations
G.

As noted previously, the use of the nonlinear model (1) is
not scalable for real-time MPC-based voltage stabilization, and
instead, we aim to learn the relevant part of the dynamics, namely
the controlled voltage dynamics, utilizing the data obtained from
the DAE model trajectories in the proposed KDNN framework.
Since the system trajectory data are available in discrete time,
we examine the voltage dynamics in discrete time, indexed by
integer variable k£ > 0, as

Virr =T (Vi, Ur) 2

where V= [V},...,V*]T is the voltage vector and Uy, :=
(UL, ..., U7 is the control vector at kth control instant in a n-
bus power grid with m number of control inputs. The underlying
voltage dynamics, as a function of controls distributed over the
entire network, in vector form is given as (2), whose dimension
is the number of network nodes.

In a practical setting, the control implementation occurs at
a larger time period 7T, compared to the voltage discretization
time period, 7. We let H = T, /T denote the length of voltage
trajectory history between any two control instants. The controls
are held constant between the two control instances, while the
voltage dynamics continue to evolve, forming a time series of
length H between any two control instants. Thus, at each control
instant k, the “voltage-state” is taken to be the time-series of
voltage values between the control instants £ — 1 and k, that can
be captured in a matrix form: V™ = [V} /], wherei = 1,...,n,
and j = 0,..., H — 1. In contrast, the control input U}, takes a
new value only at the instant k. Henceforth, with a slight abuse
of notation, we use Vj, to represent V,1ist,

Next, we discuss the lifting of the nonlinear mapping 7 (-, -)
of (2) to a higher dimensional linear state space by way of
employing the theory of Koopman operators.

B. Preliminaries on the Koopman Operator

Let us consider discrete-time nonlinear dynamics as

Tpr1 = f(o, uk) 3)

where x € R", u € R™, and f is the vector field. We adopt
the lifting mechanism presented in [18], which only lifts the
state variables = to a higher dimension, leaving the control
variables u unlifted. According to the Koopman operator theory
for finite-dimensional linear approximation of the nonlinear sys-
tem defined by (3), there exist N >> n, real-valued nonlinear
basis functions (lifting functions) G; : R™ — Rfori =1,..., N
forming G =[Gy, ...,Gn]| ", which lifts the original state space
to the higher dimensional state-space so that in the lifted space,

the system follows the linear dynamics
G(wry1) = AG(zk) + Bug (4)

where A € RY*Y and B € RY*™ are the Koopman operators
associated with the state and control spaces, respectively.

One way to obtain the Koopman operators for a finite-
dimensional approximation such as (4) is to utilize the method
of extended dynamic mode decomposition (EDMD) [17],
[18], where a predefined dictionary of basis functions is as-
sumed known. The approach requires collecting 7T tuples
{(z, uk, wp11)E_, } from various trajectory data of the given
nonlinear system under different initial conditions. The col-
lected trajectory data are arranged as: X = [z1,...,z7], Xt =
[zo,...,2741],U = [u,...,ur], where the ith elements
X (i), Xt (i), and U(i) satisfy the dynamics (3), namely,
X+(i) = f(X(i),U(4)). For a given dictionary of mappings:

G(x) = |Gu(a)

resentations are: Xy =

_ T
QN(x)} , the lifted space state rep-
(G Glon)] and X =

[g(xg) g (xTH)}. Then, the matrices .A and B can be
obtained by solving a least-square optimization problem

min|[Xjf, — AXiq — BUJ|, ®)

where || - || denotes the Frobenius norm of a matrix. The solu-
tion of (5) gives

[A B] = X [Xur U (6)

where 1 denotes the Moore—Penrose pseudo-inverse of a matrix.
In standard EDMD formulation, the projection from the higher
dimensional space to the original lower dimensional space is
achieved by C € R™*¥, computed by solving

H%in HX - CXlift| |F @)

which yields C = XXITm. The computation of (6) is sometimes
prohibitive for large datasets (7' >> N), in which case it is
beneficial to instead solve a “normal form” equation obtained

L. Xyl [Xu] T )
by multiplying V := [ 111”} [ U“} on both sides of (6) to ob-

tain [A B]Y =W, where W := X}, ﬁ;ﬂr. Then, [A B] =
WV, in which the dimension of W and V are N x (N + m),
and (N +m) x (N + m), respectively, and are independent of
the number of data samples 7'. Analogously, we can solve the
normal form associated with C = XXITift to getC = WV, with
W= XX and V= X X, having dimensions n x N and
N x N, respectively, that are again independent of 7.

C. Proposed NN-Based Koopman Embedding

Instead of relying on any predefined dictionary of basis func-
tion choices, here we explore the power of artificial intelligence
(Al) in data-driven learning of the basis functions, represented
as deep neural networks (DNNSs), as in [27]. Viewing the linear
embedding to be a special case of a DNN, our approach learns
not only the lifting functions (mapping to a higher dimension)
but also the linear embedding (in the higher dimension), as well
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Fig. 1.

End-to-end KDNN architecture.

as the projections (mapping to the original lower dimension), all
three in one go.

Following the Koopman operator theory that approximates
(3) as (4), we can write the voltage dynamics (2) in the lifted
linear space as

G(Vi1) = AG(V2) + BU, ®)

where Vk = Vk -
point, Vk =0.

Our encoder—decoder KDNN architecture to realize (8) is
presented in Fig. 1, where the matrix structure of Vi (same as
Vi) of dimension [n, H] is flattened to form an vector input of
lengthm =n x H.

1) Construction of the Encoder: The flattened vector input
Vi is passed through a fully connected neural network (FCNN)
layer (feed-forward structure) with [V neurons and element-wise
nonlinear activation function tanh(-). This transformation lifts
the actual state, voltage-series f/k, to a higher dimensional
state Zj, = G(V4), where G(-) represents the nonlinear function
associated with the NN-based encoder operation.

2) Linear Embedding: Once lifted to a suitable higher di-
mension, the linear transformation of G (f/k) by the Koopman
operator A(-) is an instance of another FCNN (with identity
activation function) to be trained as shown in Fig. 1. Similarly,
the input U}, is also processed through the Koopman operator
B(-), which is yet another instance of an FCNN with an identity
activation function (see Fig. 1). The output of these two oper-
ations is added in the lifted space to obtain A G (f/k) + B Uy,
which equals G(Vj,11) as per (8).

3) Construction of the Decoder: Finally, to project to the
original state-space, we utilize a decoder architecture g*l(.)
shown in Fig. 1. The decoder, an FCNN layer with 7 neurons and
element-wise nonlinear activation function tanh(-) denoted by
G~1(-), does the inverse operation of the encoder G(-), and takes
Q(Vk+1) A G(Vi.) + B Uy, as input and maps it to predicted
Ve

4) Loss Function for End-to-End Training: The end-to-end
KDNN is parameterized by 6, and can be expressed as F (-, 6).

We formulate a loss function based on four mappings, that
makes the trained KDNN robust to errors.

Viet. Note that this implies that at the reference

IEEE SYSTEMS JOURNAL

1) Vkpff (@) obtained from {Vi, Uy} through (8), and decoder

mapping G~ 1(-) is compared against ground-truth Vies1-
2) The encoder value G(V}) is passed through G71(-) to

obtain the estimated version V(")

against the ground-truth Vie.
3) Vi1 is passed through the encoder G(-) and decoder

G~1(-) to obtain the estimated version V,ff:f ()

, which is compared

, which is
compared against the ground-truth Vk+1.
4) Q(Vk+1)(a) obtained using (8) in step (1), and g(f/;H_l
obtained by passing V41 through the encoder G(-) in step
3.
Accordingly, the mean squared error loss function is formu-
lated as follows:

()
)

B %Z {(f/k_H V]ffg (a))A (V VPred (b))l
N (Vk+1 B V]f_r:;i,(c))j + {Q(Vk+1)(a) _ g(karl)(C)}j
€)

where L denotes the batch size and 7 denotes the ith sample of a
single minibatch. We used minibatch stochastic gradient descent
to train F (-, 9).

D. Formulation of MPC Problem

Here, the objective of the control design is to minimize the
postdisturbance voltage deviations with respect to a user-defined
reference value Vi = 1.00 p.u. For this, we employ MPC,
which, at each control instant, computes an optimal sequence of
control inputs for the remaining control horizon by optimizing a
predicted future behavior of the underlying system, implements
the first control action of the computed sequence, and then,
repeats the same process with the new measurements at the
next control instant [10]. This iterative control computation,
employing new state measurements, helps to correct the effects
of modeling error as compensated by the new measurement
taken. Using the trained KDNN architecture, we can extract
the functions G(-), A(-), and B(-) that are then utilized in the
computation of the MPC in the lifted linear space as formulated
next.

The measured voltages V), are lifted to Z; :=G (Vk) =
G(Vi — Vier). Note that at Vi, = Vier, Vi = 0, which implies
that Zier = G(V — Vier) = tanh(0) = 0, for zero bias in neural
lifting (see Section III). Accordingly, at any control instant k,
the model-predictive optimization problem in the lifted space is
an instance of linear quadratic regulator as follows:

Np—1

Z [Zl;-i-i-l Q Zk+i+1+UkT+i R Ukﬂ-] (10a)
i=0

min
Uk, Ukt Nj -1

Sto Zgriv1 = A Zpri + BUpyy Vi€ [O, Nj, — 1] (10b)
Unin < Ui < Umax Vi € [0, Nj, — 1] (10c)
Zk#»N;C S Zterminal (1Od)
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where N is the number of remaining control instants at the
instant k, Q € RN*N and R € R™*™ are the user-specified
weight matrices (with /N being the dimension of lifted space,
and m being the dimension of the control space), Unax and Upin
are the lower/upper control bounds, and Ziimina 1S the desired
final set in the lifted space, as detailed in Section III. Showing
stability of the proposed MPC then boils down to showing that
Zierminal 1S contained in the region of attraction of the equilibrium
under the computed MPC. On the other hand, for the feasibility
of the MPC, some states in Z;mina must be reachable from the
initial state. The computation of the region of attraction and that
of forward reachability can be found in existing literature such
as [33], [34], [35], and [36].

III. PROPERTIES OF NEURAL LIFTING
A. Terminal Constraints and Tracking in Lifted Space

We first show that the terminal constraints in the original space
can be mapped to constraints in the lifted space.

Proposition 1. (Terminal Constraints): The terminal con-
straints on voltage, namely, f/min < f/l < Vmax can be mapped
to a corresponding constraint set Zrmina in the lifted space,
under positive weights and zero bias in the neural lifting.

Proof: Noting that the lifting function corresponds to a single-
layered fully connected feed-forward network, given a voltage
V, or equivalently, V =V — Vi, the lifted state Z = G (f/) IS
RY can be expressed as

Z = ¢p(WV +b) = tanh(WV +b) (11)
where W € RV*™ is the weight matrix, b € RY is the bias
vector, and ¢(-) = tanh(-) is the activation function.

Under the positivity of the entries of the weight ma-
trix W = [W;], namely, W;; > 0V 4,5, and zero bias, b=
0, given the element-wise bound on voltage, Vi, < Vi <
Vmax Vi =1,...,m, we can obtain element-wise bound on Z; =
tanh(3.7, W;.V;) by employing the monotonicity of tanh(-)
as

Zj,min SZj SZj,max Vi=1,...,N (12)
where  Z; min := tanh(ziﬁ:1 Wj,if/min) and Zj max = tanh
ooy Wj)ivmax). These element-wise bounds [Z; min, Z; max]
Vj yield the terminal constraint set Ziminal, as desired. |

Remark 1: Reference [37] notes that the tanh(-) activation
has a slope that is sector-bounded in [0, 1], and that can be ex-
pressed as a quadratic constraint (QC). Using this, it determines
a QC bound on Z given the bound on V. However, this requires
solving a semidefinite programming in a higher dimensional
lifted space that is numerically challenging. To mitigate this
issue, we have provided previously the element-wise simpler
bounds for the lifted states.

The next proposition justifies the reference tracking in the
lifted space, by showing that it implies reference tracking also
in the original space. Recall that the objective of the standard
nonlinear MPC is to minimize the deviation of the predicted
trajectory from the desired reference in the original space.
Proposition 2 shows that the encoder function G(-) (with zero

bias) preserves the closeness to reference, thereby justifying the
tracking in the lifted space [as in (10a)].

Proposition 2: For any € > 0, || Z]|, < e implies that there
exists ¢ > 0 such that ||V — V||, < d. Conversely for any
€ >0, ||V — Viet]|, < ¢ implies the existence of ¢ > 0 such
that || Z|], < ¢'.

Proof: We start by proving the first statement. ||Z||, < €,
implies that >, Z%(i) < €* (here Z(i) denotes the ith
element of Z), which implies V4,7 (i)* < €2 = (tanh((WV —
WVier)(i)))? < €2 = |(tanh(WV — WViet)(i))| < €. Due
to symmetry, |tanh(-)| = tanh(|-]). Hence, |tanh((WV —
WVier) ()] < € = tanh|(WV — WVep)(i)| < e = |[(WV —
WVet)(i)] < tanh™!(e), where the last implication follows
from the monotonicity and non-decreasing property of
tanh(-). Taking squared sum over all elements, we have
SUIWV — W) (i)]? < N x (tanh *(¢))? (recall N is the
dimension of Z), which is equivalent to ||IWV — W V|, <

\/ N x (tanh~'(e))2. Finally, from the property of norm,
V- Vil < 5O =6 >0,
the smallest singular value oy;(W) >0 for a full rank
W. This proves the first part; the second part can be
established in a similar manner, and it can be shown that
§' = /N x (tanh((¢'[[W]],)))2, where we need to utilize the
fact that [|[W(V' = Vier)[[2 < [[W[2 - [[V = Viet|2-

we have where

|

It follows from Proposition 2 that the reference tracking in the

original voltage space can be mapped to the reference tracking
in the lifted space.

B. Noise/Disturbance Robustness of Lifting Operation

Considering the safety-critical nature of power systems, certi-
fying the robustness of neural lifting against input uncertainties
is important. In this regard, we show here the boundedness of the
perturbation in the lifted space whenever the perturbation due to
noise or input disturbance in the original space is bounded.

Proposition 3. (Noise-Robustness): For a bounded noise per-
turbation of voltage inputs, namely when Vi € 70 : V; pin < \N/l <
Vi max» and the control bounds [Uin, Unmax] on the input U, the
perturbation in the predicted states of the lifted space is also
bounded under positive weights and zero bias in the neural
encoding.

Proof: Following the derivation of (12) in Proposition 1, we
have: Zjmin < Z; < Zjmax ¥j =1,...,N, where Zjnin 1=
tanh(Z?zl Wj,i‘/i,min) and Zj,max = tanh(Z?zl Wj’iv;"max).

Additionally, with the positivity of A € RV*V, with A;; >
0Vi,jand B € RY*™ with B;; > 0V 1, 7, and the disturbance
bounds [Upin, Unax] on the control input U, the predicted states
in lifted space Z* = AZ + BU are bounded as

A Zmin + B Umin S Z+ S A Zmax + B Umax (13)

where  Znin = [ZO,min; ceey ZN,min]T and  Zpax = [ZO,mam
ooy ZNomax] |- u

It follows from Proposition 3, that the effect of noise or
disturbance remains bounded when we move from the original
nonlinear space to the lifted linear space, i.e., the proposed neural
encoding is robust to noise and disturbance.
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Fig. 2. (a) IEEE 39-bus system. (b) Voltage plots for fault with no control.

IV. TEST CASES, IMPLEMENTATION, AND RESULTS

This section presents the proof-of-validation of our proposed
methodology with the IEEE 39-bus system. We start with the
description of the test system, followed by the main results.

A. Test System Description

We consider a modified version of the standard IEEE 39-bus
system to be able to study the emergency voltage control prob-
lems. The IEEE 39-bus system consists of ten generators from
bus-30 to bus-39 and 46 transmission lines. The generators have
Park-Concordia fourth-order state-space model with states rotor
angle 4, speed w, g-axis transient voltage e;, and d-axis transient
voltage e/;. Except for the slack one at bus 39, the generators are
equipped with IEEE Type-1 excitation systems as mentioned
in [38] and [39]. The parameter values of transmission lines,
generators, excitation systems, base-load, and generation levels
are taken from [38]. More details on the generators and exciter
model can be found in the power system analysis toolbox (PSAT)
manual [39]. The load dynamics are modeled using exponential
recovery load [39], [40] for which load recovery time constants
Tp = Ty = 30, steady-state load exponents oy = 0.1, oy = 2,
Bs = 2.8, and transient load exponents (; = 4 are selected
according to [10], with certain modifications to increase the
criticality of load recovery. The system is simulated using the
open-source simulator PSAT [39].

For our study, we selected a subnetwork of 12 load buses
S§=1{4,5,6,7,8,9,10,11,12,13,14, 15} [the red dotted re-
gion in Fig. 2(a)]. It is observed that after a fault at bus 15,
which gets cleared by tripping a line between buses 15 and 16
within six cycles of system operation, voltages in the vicinity of
the fault bus drop below the desired level almost immediately
[see Fig. 2(b)] and without any corrective control this may
cause a system collapse. Similar observations are also made
for faults at other buses, for instance, buses 4, 7, and 8; the
situation gets exacerbated under increased load conditions and
limited generator excitation. This necessitates an emergency
control mechanism, and we implemented our proposed MPC-
based voltage stabilization policy following faults to keep the
voltage trajectories close to a reference value Vs = 1.00 p.u.
The control inputs are reactive power compensation at buses 4,
5,7,8, 10, 12, 14, and 15 that can provide fast reactive support
of up to 0.25 p.u. in each control step. To stabilize the voltage
trajectories, we choose a five-step MPC with a control horizon
of 15 s, divided into five segments of 3 s each, i.e., T,. = 3.

IEEE SYSTEMS JOURNAL

B. Training of KDNN

1) Training Data: For training the proposed KDNN, we cre-
ated a large pool of training data by simulating the system under
various operating conditions. As given in (1), the nominal model
of a power system follows DAE dynamics, plus the nominal
system is subject to unknown load fluctuations and faults, and
we need to ensure that the training data capture those changes in
operating conditions. To capture the dependencies on changing
conditions, we introduce a parameter © extending the DAE
to X = F(X,Y,U,0),0 = G(X,Y,U,O). In the training data
generation phase, random variations of control inputs U in the
range [0,0.25] p.u. were introduced, and further, the parametric
changes in © were introduced by way of load variations of
+20% around the nominal loads plus by applying three different
contingencies. For each T’ sec simulation (T'y ~ 20 s for the
IEEE-39 Bus system), we randomly chose a © value, and
randomly chose controls at each of the five control instants (i.e.,
O, namely the load and the contingency, were held constant
in each short time period of T’y sec simulation). We repeated
this procedure of trajectory generation multiple times. Finally,
all these data were pooled together and used for the training
of KDNN, ensuring that the KDNN is exposed to different
operating conditions, thereby making it suitable for the dynamic
variations of the power systems. We also show the applicability
of our method by applying random load levels within +20%
of nominal level, and five different contingencies. In total, we
utilized 1000 random load conditions and faults at buses 15, 4,
and 7, collecting a total of 1000 x 5 x 3 = 15000 data samples
in the form of {(Vj,, Uk, Vi11)} triples. We divided the data into
70 : 30 to create the training and test datasets.

2) KDNN Architecture: As shown in Fig. 1, the lifting func-
tion G(-) is built using an FCNN layer, where the number of
neurons of the FCNN layer decides the dimension N of the
lifted space. We considered a subnetwork of 12 buses, which
implies n = 12, and observation history length H = 4 between
any (k — 1)thto kth control instants (this is because the sampling
rate for voltage values is higher than the control application rate,
and so there are multiple voltage values between any two control
values). We tested N = 256 > 5 x n x H. The activation func-
tion of the FCNN layer is tanh(-) representing the nonlinearity
of the layer G(-). The linear transformation matrices .4 and B
are also represented as single-layer FCNNs with 256 neurons,
while their activation function is identity.

3) Training Parameters and Data Preprocessing: The opti-
mizer chosen for the training is ADAM, with gradient momen-
tum 31 = 0.9/0.95 and rms momentum So = 0.999/0.95. The
loss function, batch size, learning rate, and performance metric
are: mean squared error (MSE) loss, 32, 1073, and R?-score,
respectively. Prior to training the KDNN, the input and output
data were processed as follows: First, Vi, = 1.00 was subtracted
from the voltage values V}, to obtain the corresponding V. values.
Next, this adjusted data were normalized in the range [—1, 1]
preserving f/k = 0 at Vi, = Vit. The control values U} in the
[0,0.25] range were also normalized in the [—1, 1] range.

4) Training and Testing Performance: We utilized Tesnor-
flow to build and train the KDNN model. The training is done by
minimizing a composite loss function of four components men-
tioned in Section II-C. To ensure bounded-input bounded-output
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property of the architecture for robustness to noise and other
perturbations, the training is performed ensuring the positivity
of weight matrices as well as matrices of the linear embedding
(as discussed and elaborated in Sections II and III). The training
losses in MSE are shown in Fig. 3(a).

To show the generalization property of our trained model, we
evaluated the model performance on testing data (which was not

used during training). For reconstruction of % pred’(a), f/kp red’(b),

k1
and VP ) using testing data and the trained model, we eval-

uated the performance in terms of MSE and the coefficient of
determination R? € [0, 1] (recall an R? value of 1 indicates an
exact fit). The plots given in Fig. 3(b)—(d) for the test MSE and
Fig. 3(e)—(g) for the R2-score demonstrate that the generaliza-
tion performance of the trained model is satisfactory. Next noting
that both training and testing performances are satisfactory, we
utilized the trained KDNN to extract the functions G(-), A(+),
and B(+) for MPC computation in the lifted linear space.

5) Discussion on Model Training, Generalization Error, and
Overfitting: The proposed KDNN learns the mapping of the
voltage dynamics from the kth control instant voltage Vj
and control U to the next control instant voltage, Vi1 =
T (Vi, Ug) under different operating conditions of the power
system. For the training of the KDNN, we carried out certain
key steps to ensure a good generalization performance.

1) We varied the load condition to within £20% of the nom-
inal load condition, applied contingencies, and employed
random policies to execute control actions, storing the
triples, {Vi, Uk, Vi+1}- This provides enough richness to
the training data for reducing the generalization error.

2) We used Vj, which is a time series of voltage values in-
between the (k — 1)th and kth control instants, rather a
single voltage value as training data.

3) The loss function involved four different ways of measur-
ing error to provide multiple cross checks as presented in
Section II-C, (9).

4) Finally, to avoid scaling-related issues due to different
voltage levels at different buses, we subtracted the voltage
values with respect to a common reference point Vs and
normalized all data values in [—1, 1], respectively.

%103 (@) %10~ (b)
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[ T - Validation loss m 1r - Validation loss
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Fig. 4. KDNN training. (a) Without preprocessing. (b) With preprocessing.

We validated the effectiveness of data preprocessing of step
(4) by performing cross validation, dividing the available train-
ing dataset randomly into train data (80%) and validation data
(20%) during model training. The plots in Fig. 4 show that the
variance in validation loss is lower in the case of training with
the data preprocessing of step (4). Thus, preprocessing of dataset
with step (4) further helped us reduce the fitting error. Also, as
seen in Fig. 4(b), the training loss and validation loss closely
matched, showing no sign of overfitting.

C. MPC Computation at the Embedded Linear Space

We computed the MPC-based controls to minimize the volt-
age deviations from a reference Vs = 1.00 p.u. The design
parameters are () = Iy, while R =0, as the controls are
reactive power (VAR) compensation, it does not incur any effec-
tive control cost for the power utility like load shedding (which
curtails active loads). Since the steady-state voltage needs to be
in the range of [0.95, 1.05] p.u., in the MPC formulation for the
final lifted state Z, v, , we introduced the corresponding termi-
nal constraint Zierminat With Vierminar := [0.95, 1.05] and Vier = 1,
as detailed in Section III-A. For validating the robustness of the
proposed control design, (a) 5 different load levels (80%, 90%,
100%, 110%, and 120% of the nominal load (N.L.)), and (b) 8
different fault buses (bus-15, bus-4, bus-7, bus-5, bus-6, bus-8,
bus-10, bus-14) were selected. Note, all these faults were cleared
by tripping respective transmission lines, resulting in different
underlying network topologies. The MPC computations were
done in the linear embedded state space, solving the constrained
optimization (10). Next, the computed controls were applied to
the original nonlinear system. The voltage profiles for each of
the aforementioned cases are shown in Figs. 5-8, validating that
the proposed scheme successfully achieved the desired voltage
performance under different operating conditions, thereby con-
firming the effectiveness and robustness of the proposed method-
ology of designing controls using the KDNN-based lifted linear
embedding of the nonlinear dynamics. Also, note that the voltage
values at t ~ 20 are within the safe limits: V},;, = 0.95 p.u. and
Vinax = 1.05 p.u.

We also computed the control actions at each control instants
and plotted the accumulated control actions for the five different
load cases in Figs. 9-12. The trend suggests that with the
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load increase, the amount of VAR compensation (reactive power
compensation) increased, and this trend is expected.

D. Discussion on Noise Robustness

Section III-B provides the theoretical understanding of noise
robustness for the lifted states, and due to the high dimensional
problem structure, it is difficult to represent bounds on lifted
state variables. To validate this property, we carried out the MPC
computation considering that the measurement voltages are
affected by a Gaussian noise of mean 0, and standard deviation
1%. The voltage and control plots for (a) three random load
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levels (within +20% of nominal load) and (b) faults at bus-15
and 6 are shown in Figs. 13 and 14, respectively.

E. Comparison With Standard Approaches

1) Prediction Performance: Standard Koopman Versus
KDNN: As mentioned in [27], an early work in an NN-based
Koopman design, radial basis function, polynomials, and kernel
functions are mostly common basis functions in the Koopman-
operator-based control design. But the choice of an appropriate
basis function is an open problem, and this is our primary
motivation for utilizing NN to use data to learn the appropriate
basis functions. Here, we demonstrate the benefit of the proposed
KDNN-based design compared to the standard EDMD method
mentioned in Section II-B for approximating nonlinear implicit
voltage dynamics. First, note that for the polynomial basis, the
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Fig. 13.  Voltage plots for faults at Bus-15 and Bus-6.
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Fig. 14. Cumulative control plots for faults at Bus-15 and Bus-6.

choice of candidate basis set increases double-exponentially
with the dimension of original nonlinear dynamics, n x H, as
per the problem formulation. This makes creating an optimal
choice of dictionary nonscalable and hence prohibitive. So, for
comparison, we picked radial basis functions with a dictionary
size of 2000. The centers of the radial basis functions were
determined by K-means clustering over training data, while for
the spread parameter, we selected o = 0.05. We then followed
(5)—(7) to find A, B, and C over the same training data utilized
to train the KDNN. Next, the computed matrices are used to
find the predicted values of the voltage dynamics over the same
testing data used for the KDNN testing. The mean squared errors
(MSEs) of both predictions and R2-score are plotted in Fig. 15,
which clearly shows the superiority of our KDNN-based learned
basis functions.

2) Traditional MPC Versus KDNN MPC: We compared the
performance of our proposed method with the state-of-art
MPC [10] for voltage recovery as well as control computation
time. Both traditional MPC [10] and our proposed method
uses the same MATLAB-based PSAT platform for the MPC
implementation. What differs is that while [10] employs a
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TABLE I
COMPARISON OF PERFORMANCE FOR THE IEEE-39 BUS SYSTEM
Scenarios Performance measure (7)
Traditional MPC [10] KDNN MPC
Fault at Bus-15 7.5769 7.6106
Fault at Bus-4 12.4760 12.5362
Fault at Bus-7 10.2480 10.3150
Fault at Bus-5 13.5311 13.6136
Fault at Bus-6 15.2707 15.4424
Fault at Bus-10 12.8511 12.8845
Fault at Bus-14 11.5472 11.6870
Fault at Bus-8 10.5985 10.6714
Fault at Bus-4 Fault at Bus-7
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Fig. 16.  Comparison of voltage plots for faults at Bus-4 and Bus-7.

voltage trajectory sensitivity-based method that necessitates
time-consuming dynamic simulation and additional MATLAB
routines to compute the trajectory sensitivities, no such trajec-
tory sensitivity computation is needed in the proposed setting
as it solves only a linear MPC and that in fact results in the
speed-up of the overall MPC computation. One can define a
performance measure [J as an aggregation of the squared sum
of the voltage trajectory deviations of the buses in S with
respect to the reference (Vi = 1.00 p.u.). We applied different
fault conditions under random load levels, and the resulting
performance measure 7 as noted in Table I turns out to be almost
the same (maximum percentage error being ~ 1.2%) for both
the traditional MPC [10] and the proposed KDNN MPC. A rep-
resentative voltage plot to show the similarity is given in Fig. 16.

The contrast between the control computation time for
trajectory-sensitivity-based state-of-art MPC [10] and that of
the proposed KDNN-based MPC is shown in Table II. The
KDNN-based approach shows an impressive 36-fold speed-up
of the control computation time. Also, the proposed method
takes 0.18 s to compute a control at each online decision instant,
making MPC real-time and practical for power systems for a first

IEEE SYSTEMS JOURNAL

TABLE II
COMPARISON OF COMPUTATION TIME FOR THE IEEE-39 BUS SYSTEM

Method Average time / MPC step
Traditional MPC in [10] 6.50 sec
KDNN MPC 0.18 sec

time. It is important to note that even the traditional controllers,
e.g., UVLS relaying scheme, generally needs ~0.5 s to decide
a control action [41]. We used standard Intel(R) Xeon(R) CPU
E3-1240 v6 at 3.70-GHz processor with 16-GB RAM for our
implementation and computation.

F. Discussion on Real-World Control Room Application

The training data for KDNN are obtained in a simulated
environment. The use of simulation is standard practice for
different offline studies within the power utility control room,
e.g., state estimation, contingency analysis, and dynamic secu-
rity analysis [42]. Moreover, with recent progress on test-bed
simulators, digital twins are also adopted to match the simulation
with real-time operation [43]. For the application of the proposed
method, the control room operators need to set a nominal model
of the system and generate offline training data for KDNN train-
ing as mentioned in Sections IV-A and IV-B; train the KDNN
architecture offline, and finally, during the online deployment
phase; and (c) collect the voltage measurements and solve the
optimization problem (10) using the functions G(+), .A(+), and
B(-) extracted from the trained KDNN.

Gaps between the simulation models and the real-world sys-
tems may exist, and in case over time, if the underlying power
system dynamics differ greatly from its existing nominal model
(because of major operational changes/modifications), then the
existing nominal model itself must be updated by repeating the
offline simulation of the model and the training of the KDNN.

V. CONCLUSION

This article implemented a Koopman-inspired encoder—
decoder framework for the data-driven linear embedding of
networked systems dynamics, paving the way for designing a
control strategy in the lifted linear state-space, making the MPC
design scalable and real-time for power grids. We combined
the power of deep learning with the Koopman operator theory
for lifting nonlinear dynamics into a higher dimensional linear
space. Our data-driven approach autolearns the basis/projection
functions removing the burden of selecting those arbitrarily,
traditionally taken to be polynomials or radial bases. The test
results applied to the IEEE 39-bus system validated the proposed
scheme’s performance in terms of efficacy, robustness against
load variations and fault conditions, and further a 36-fold com-
putational speed-up making MPC real time. We also validated
the superiority of our approach compared to the standard EDMD
approaches for Koopman embedding, which employs predefined
basis functions. The proposed promising technique of unraveling
the implicit nonlinear dynamics, combining Koopman theory
and deep learning methods, opens up a new direction of control
design for complex nonlinear networked systems.
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