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Abstract—This article presents a data-learned linear Koopman
embedding of nonlinear networked dynamics and uses it to enable
real-time model predictive emergency voltage control in a power
grid. The approach involves a novel data-driven “basis-dictionary
free” lifting of the system dynamics into a higher dimensional linear
space over which a model predictive control is exercised, making it
both scalable and rapid for practical real-time implementation. A
Koopman-inspired deep neural network (KDNN) encoder–decoder
architecture for the linear embedding of the underlying networked
dynamics under distributive control is presented, in which the
end-to-end components of the KDNN, comprising of a triple of
transforms is learned from the system trajectory data in one go: a
neural network (NN)-based lifting to a higher dimension, a linear
dynamics within that higher dimension, and an NN-based projec-
tion to the original space. This data-learned approach relieves the
burden of the ad hoc selection of the nonlinear basis functions (e.g.,
radial or polynomial) used in conventional approaches for lifting
to a higher dimensional linear space. We validate the efficacy and
robustness of the approach via application to the standard IEEE
39-bus system.

Index Terms—Data-driven method, Koopman operator, model
predictive control (MPC), neural network (NN), voltage control.

I. INTRODUCTION

A. Motivation and Related Works

D
ESIGNING an efficient control methodology for power

grids faces tremendous challenges because of their dis-

tributed networked architecture and complex nonlinear dynam-

ics governed by differential-algebraic equations (DAE). Gen-

erally, power systems have different layers of controls for dif-

ferent operation modes; among those, emergency controls are

of utmost importance for grid security and resilience. Owing to

the complexity, the prevalent special protection systems (SPS)

for emergency controls are mostly rule-based and easy to im-

plement but limited in their level of resilience. As a result,

more recently, researchers have explored optimization-based

methods, such as model predictive control (MPC) to develop an

analytical approach relying on system dynamics and real-time
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measurements. But, due to the massive integration of renew-

able generations, dynamic loads, and inverter-based resources,

model complexities and uncertainties are increasing, so hav-

ing an exact model is difficult. Plus, due to nonlinearity and

high-dimensional dynamics, model-based optimizations have

high computational burdens, making them time-consuming and

not amenable to real-time execution. To this end, the emerging

data-driven approaches offer opportunities to control designs in

complex networked cyber-physical systems (CPSs) [1], [2]. The

data-driven approaches not only avoid the need for knowing the

model in advance but also make the control computation fast and

real time, trading a small modeling accuracy for a substantial

gain in computation speed. Among the data-driven approaches,

model-free deep reinforcement learning (DRL) is gaining im-

portance [3], [4]. However, providing analytical guarantees for

DRL-based control is still ongoing research and is currently not

ready for direct interactions with real-world power grids [5].

Here, we develop a data-driven approach for power systems

modeling that lifts the nonlinear dynamics to a higher dimen-

sional linear space and performs the MPC on this linear em-

bedding, making it free of analytical models (that are generally

unavailable for complex power grids), scalable, and real-time

(for having the control computed in the linear state-space). Also,

the lifting is done in a certain NN-based encoder–decoder archi-

tecture that avoids the conventional ad hoc selection of basis

functions (polynomial or radial) for lifting. We first briefly sum-

marize the conventional MPC-based existing works in power

systems applications, their computational limitation, and the cur-

rent lifting approaches for linear embedding and their limitations

as well.

1) MPC-Based Approaches in Power Systems: An overview

of MPC in power systems can be found in [6]. Quasi-steady-

state (QSS) model approximation and sensitivity-based ap-

proaches are presented in [7]. MPC formulations with trajectory

sensitivity-based approximation of nonlinear DAE are provided

in [8], [9], and [10] for emergency voltage control. In [11], a

speed-up of trajectory sensitivity computation utilizing the “very

dishonest newton (VDHN)” method for the jacobian update is

utilized in the MPC context. In recent studies, linear state-space

models of power systems are leveraged in MPC-based load

frequency control [12], [13], active frequency response [14],

and optimal power allocation of energy storage devices [15].

In summary, MPC-based methods are promising for emer-

gency control of power systems, but their real-world application

using online optimization over nonlinear DAE faces a major
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computational issue, making the MPC inapplicable in real time.

This computational bottleneck cannot be overcome even by

incorporating different approximation techniques, for instance,

sensitivity-based linearization [10].

2) Koopman-Based Lifting and Their Applications in Power

Systems: To leverage the scalability of control design in the

setting of linear state-space models, Koopman operators have

been proposed to provide a higher dimensional linear represen-

tation of a nonlinear system [16]. The lifting uses nonlinear basis

functions, and the lifted linear dynamics, when projected to the

original space, provide an approximation to the original nonlin-

ear dynamics [17], [18]. Finding the suitable basis functions for

the lifting operation is a nontrivial problem: in fact, the standard

approaches utilize an ad hocly predefined dictionary of basis

functions (e.g., polynomial or radial) that are not necessarily

optimal. The Koopman-based lifting and control design based on

it have been explored in power systems applications: [19] solved

an MPC-based transient stabilization problem utilizing classical

swing dynamics of power systems [20]. A Koopman-based

model predictive power system stabilizer (PSS) is designed

in [21]. The authors in [22] integrate Koopman-based system

identification and controller design for oscillation damping. The

Koopman-based controller for decentralized frequency control

problem with the time-delayed embedding of measurements is

studied in [23]. In [24], data-driven characterization of power

system dynamics is investigated using the Koopman operator

theory. Overall, the following can be summarized.

1) The Koopman-based embedding in power systems is

mostly based on simplified models of power system dy-

namics so that a predefined dictionary of basis functions

(e.g., see [19, eq. (2)]) can be used.

2) Building an appropriate dictionary of basis functions for

complex power system dynamics comprising higher-order

generator models, exciter models, load models, etc., is

challenging, and this restricts the application of Koopman-

based methods in power system control design. This issue

has also been observed in other complex nonlinear appli-

cations.

3) In recent research [25], [26], [27], [28], [29], [30], [31],

DNN-based basis functions have been explored mostly

in non-networked systems. Within the power systems (an

example of a networked system), only [32] considers

learning-based lifting for transient stability problems, but

based on a simplified model of the swing dynamics (sim-

ilar to the simplified model used in [19]).

B. Our Approach and Key Contributions

Motivated by these observations, we present a Koopman-

inspired deep neural network architecture, termed KDNN, for

a linear embedding of the nonlinear voltage dynamics, by

drawing data from the system evolution based on its complete

differential-algebraic dynamics (without any approximation)

and design an MPC-based emergency voltage control over

the linear embedding. The approach presented is applicable

to any networked system. The proposed KDNN employs an

encode–decoder architecture, embedding an interim linear stage.

The validity of the proposed KDNN-based MPC scheme is

established by implementing an emergency voltage recovery

scheme following a severe fault in the IEEE 39-bus system. The

performance and robustness of the scheme are demonstrated via

±20% load variations around the nominal model as well as under

different contingencies. In summary, the key contributions of the

work presented include the following.

1) A Koopman-inspired linear embedding to map the nonlin-

ear voltage dynamics to a lifted linear state-space for the

emergency voltage control in power systems, considering

the higher order generator models, exciter models, load

models, etc. (unlike the previous works which used the

simplified swing dynamics), and also allowing the recov-

ery of bus voltages through control actions (e.g., reactive

power compensation).

Our approach is “basis-dictionary free” unlike the stan-

dard approaches that pick ad hoc basis functions (polyno-

mial or radial) that are not necessarily optimal. To this end,

we formulate an encoder–decoder architecture comprising

of the following:

a) NN-based data-learned basis functions for lifting;

b) data-learned linear Koopman operators associated with

the lifted states and control inputs;

c) data-learned projection function used for mapping

down to the original state space.

This encoder–decoder-based neural architecture is trained

in an end-to-end manner in one go, learning directly

from data the unknown basis function, the linear Koop-

man operators, and the projection function together. Such

end-to-end learning also eliminates the risks of numerical

issues associated with iterative learning of neural basis

functions versus the least-square estimation of Koopman

operators, as is the case in [32].

2) We provided a detailed noise robustness analysis of the

neural lifting by providing bounds on the lifted states given

the bounds on the original voltage states, meaning that by

design, the lifting is bounded input bounded output stable.

3) The MPC computation for emergency voltage control is

directly performed in the lifted linear state space, which

makes the MPC scalable as well as real time for power

system application: We demonstrate a 36-fold speed-up of

control computation on the IEEE 39-bus system.

II. FORMULATION OF PROPOSED METHODOLOGY

This section starts by considering the nonlinear power system

dynamics representation in the DAE form that implicitly models

the bus voltage dynamics under corresponding controls. We then

briefly overview the Koopman operators and present the pro-

posed data-driven KDNN architecture for embedding the nonlin-

ear voltage dynamics into a higher dimensional linear space. Fi-

nally, we formulate the MPC framework in the lifted linear space

to stabilize voltage trajectories following any disturbances.

A. Power System Model

The dynamics of a power system can be captured in the form

of a nonlinear DAE, given as follows:

Ẋ = F (X,Y, U); 0 = G(X,Y, U) (1)
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where X := state variables, Y := algebraic variables, and U :=
control inputs. Here, we are interested in the voltage stability

control, so the relevant dynamics is the response of bus voltages

V ⊆ Y to the control input U (reactive VAR compensation in

our setting). Note that the DAEs (1) are an interacting system of

simultaneous equations written compactly employing vectors:

its state equations F are corresponding to the state variables,

whereas the vector of all the network constraints involving volt-

ages, active, and reactive powers form the algebraic equations

G.

As noted previously, the use of the nonlinear model (1) is

not scalable for real-time MPC-based voltage stabilization, and

instead, we aim to learn the relevant part of the dynamics, namely

the controlled voltage dynamics, utilizing the data obtained from

the DAE model trajectories in the proposed KDNN framework.

Since the system trajectory data are available in discrete time,

we examine the voltage dynamics in discrete time, indexed by

integer variable k ≥ 0, as

Vk+1 = T (Vk, Uk) (2)

where Vk := [V 1
k , . . . , V

n
k ]T is the voltage vector and Uk :=

[U1
k , . . . , U

m
k ]T is the control vector at kth control instant in a n-

bus power grid withm number of control inputs. The underlying

voltage dynamics, as a function of controls distributed over the

entire network, in vector form is given as (2), whose dimension

is the number of network nodes.

In a practical setting, the control implementation occurs at

a larger time period Tc, compared to the voltage discretization

time period, Ts. We let H = Tc/Ts denote the length of voltage

trajectory history between any two control instants. The controls

are held constant between the two control instances, while the

voltage dynamics continue to evolve, forming a time series of

lengthH between any two control instants. Thus, at each control

instant k, the “voltage-state” is taken to be the time-series of

voltage values between the control instants k − 1 and k, that can

be captured in a matrix form:V hist
k = [V i

k,j ], where i = 1, . . . , n,

and j = 0, . . . , H − 1. In contrast, the control input Uk takes a

new value only at the instant k. Henceforth, with a slight abuse

of notation, we use Vk to represent V hist
k .

Next, we discuss the lifting of the nonlinear mapping T (·, ·)
of (2) to a higher dimensional linear state space by way of

employing the theory of Koopman operators.

B. Preliminaries on the Koopman Operator

Let us consider discrete-time nonlinear dynamics as

xk+1 = f(xk, uk) (3)

where x ∈ R
n, u ∈ R

m, and f is the vector field. We adopt

the lifting mechanism presented in [18], which only lifts the

state variables x to a higher dimension, leaving the control

variables u unlifted. According to the Koopman operator theory

for finite-dimensional linear approximation of the nonlinear sys-

tem defined by (3), there exist N >> n, real-valued nonlinear

basis functions (lifting functions)Gi : R
n → R for i = 1, . . . , N

forming G = [G1, . . . ,GN ]�, which lifts the original state space

to the higher dimensional state-space so that in the lifted space,

the system follows the linear dynamics

G(xk+1) = A G(xk) + B uk (4)

where A ∈ R
N×N and B ∈ R

N×m are the Koopman operators

associated with the state and control spaces, respectively.

One way to obtain the Koopman operators for a finite-

dimensional approximation such as (4) is to utilize the method

of extended dynamic mode decomposition (EDMD) [17],

[18], where a predefined dictionary of basis functions is as-

sumed known. The approach requires collecting T tuples

{(xk, uk, xk+1)
T
k=1} from various trajectory data of the given

nonlinear system under different initial conditions. The col-

lected trajectory data are arranged as: X = [x1, . . . , xT ],X
+ =

[x2, . . . , xT+1],U = [u1, . . . , uT ], where the ith elements

X(i),X+(i), and U(i) satisfy the dynamics (3), namely,

X
+(i) = f(X(i),U(i)). For a given dictionary of mappings:

Ḡ(x) =
[
Ḡ1(x) · · · ḠN (x)

]�
, the lifted space state rep-

resentations are: Xlift =
[
Ḡ(x1) · · · Ḡ(xT )

]
, and X

+
lift =[

Ḡ(x2) · · · Ḡ(xT+1)
]
. Then, the matrices A and B can be

obtained by solving a least-square optimization problem

min
A,B

||X+
lift −AXlift − BU||F (5)

where ‖ · ‖F denotes the Frobenius norm of a matrix. The solu-

tion of (5) gives

[A B] = X
+
lift[Xlift U]† (6)

where † denotes the Moore–Penrose pseudo-inverse of a matrix.

In standard EDMD formulation, the projection from the higher

dimensional space to the original lower dimensional space is

achieved by C ∈ R
n×N , computed by solving

min
C

||X− CXlift||F (7)

which yields C = XX
†
lift. The computation of (6) is sometimes

prohibitive for large datasets (T >> N), in which case it is

beneficial to instead solve a “normal form” equation obtained

by multiplying V :=
[
Xlift

U

] [
Xlift

U

]�
on both sides of (6) to ob-

tain [A B]V = W , where W := X
+
lift

[
Xlift

U

]�
. Then, [A B] =

WV†, in which the dimension of W and V are N × (N +m),
and (N +m)× (N +m), respectively, and are independent of

the number of data samples T . Analogously, we can solve the

normal form associated with C = XX
†
lift to get C = ŴV̂†, with

Ŵ = XX
�
lift, and V̂ = XliftX

�
lift having dimensions n×N and

N ×N , respectively, that are again independent of T .

C. Proposed NN-Based Koopman Embedding

Instead of relying on any predefined dictionary of basis func-

tion choices, here we explore the power of artificial intelligence

(AI) in data-driven learning of the basis functions, represented

as deep neural networks (DNNs), as in [27]. Viewing the linear

embedding to be a special case of a DNN, our approach learns

not only the lifting functions (mapping to a higher dimension)

but also the linear embedding (in the higher dimension), as well
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Fig. 1. End-to-end KDNN architecture.

as the projections (mapping to the original lower dimension), all

three in one go.

Following the Koopman operator theory that approximates

(3) as (4), we can write the voltage dynamics (2) in the lifted

linear space as

G(Ṽk+1) = A G(Ṽk) + B Uk (8)

where Ṽk = Vk − Vref. Note that this implies that at the reference

point, Ṽk = 0.

Our encoder–decoder KDNN architecture to realize (8) is

presented in Fig. 1, where the matrix structure of Ṽk (same as

Vk) of dimension [n,H] is flattened to form an vector input of

length n = n×H .

1) Construction of the Encoder: The flattened vector input

Ṽk is passed through a fully connected neural network (FCNN)

layer (feed-forward structure) withN neurons and element-wise

nonlinear activation function tanh(·). This transformation lifts

the actual state, voltage-series Ṽk, to a higher dimensional

state Zk = G(Ṽk), where G(·) represents the nonlinear function

associated with the NN-based encoder operation.

2) Linear Embedding: Once lifted to a suitable higher di-

mension, the linear transformation of G(Ṽk) by the Koopman

operator A(·) is an instance of another FCNN (with identity

activation function) to be trained as shown in Fig. 1. Similarly,

the input Uk is also processed through the Koopman operator

B(·), which is yet another instance of an FCNN with an identity

activation function (see Fig. 1). The output of these two oper-

ations is added in the lifted space to obtain A G(Ṽk) + B Uk,

which equals G(Ṽk+1) as per (8).

3) Construction of the Decoder: Finally, to project to the

original state-space, we utilize a decoder architecture G−1(·)
shown in Fig. 1. The decoder, an FCNN layer withn neurons and

element-wise nonlinear activation function tanh(·) denoted by

G−1(·), does the inverse operation of the encoder G(·), and takes

G(Ṽk+1) = A G(Ṽk) + B Uk as input and maps it to predicted

Ṽ pred

k+1.

4) Loss Function for End-to-End Training: The end-to-end

KDNN is parameterized by θ, and can be expressed as F(·, θ).
We formulate a loss function based on four mappings, that

makes the trained KDNN robust to errors.

1) Ṽ
pred,(a)
k+1 obtained from {Ṽk, Uk} through (8), and decoder

mapping G−1(·) is compared against ground-truth Ṽk+1.

2) The encoder value G(Ṽk) is passed through G−1(·) to

obtain the estimated version Ṽ
pred,(b)
k , which is compared

against the ground-truth Ṽk.

3) Ṽk+1 is passed through the encoder G(·) and decoder

G−1(·) to obtain the estimated version Ṽ
pred,(c)
k+1 , which is

compared against the ground-truth Ṽk+1.

4) G(Ṽk+1)
(a)

obtained using (8) in step (1), and G(Ṽk+1)
(c)

obtained by passing Ṽk+1 through the encoder G(·) in step

(3).

Accordingly, the mean squared error loss function is formu-

lated as follows:

L(θ) = 1

L

∑

i

[(
Ṽk+1 − Ṽ

pred,(a)
k+1

)2

i
+
(
Ṽk − Ṽ

pred,(b)
k

)2

i

+
(
Ṽk+1 − Ṽ

pred,(c)
k+1

)2

i
+
{
G(Ṽk+1)

(a) − G(Ṽk+1)
(c)

}2

i

]

(9)

where L denotes the batch size and i denotes the ith sample of a

single minibatch. We used minibatch stochastic gradient descent

to train F(·, θ).

D. Formulation of MPC Problem

Here, the objective of the control design is to minimize the

postdisturbance voltage deviations with respect to a user-defined

reference value Vref = 1.00 p.u. For this, we employ MPC,

which, at each control instant, computes an optimal sequence of

control inputs for the remaining control horizon by optimizing a

predicted future behavior of the underlying system, implements

the first control action of the computed sequence, and then,

repeats the same process with the new measurements at the

next control instant [10]. This iterative control computation,

employing new state measurements, helps to correct the effects

of modeling error as compensated by the new measurement

taken. Using the trained KDNN architecture, we can extract

the functions G(·),A(·), and B(·) that are then utilized in the

computation of the MPC in the lifted linear space as formulated

next.

The measured voltages Vk are lifted to Zk := G(Ṽk) =
G(Vk − Vref). Note that at Vk = Vref, Ṽk = 0, which implies

that Zref = G(V − Vref) = tanh(0) = 0, for zero bias in neural

lifting (see Section III). Accordingly, at any control instant k,

the model-predictive optimization problem in the lifted space is

an instance of linear quadratic regulator as follows:

min
Uk,...,Uk+Nk−1

Nk−1∑

i=0

[
Z�
k+i+1 Q Zk+i+1+U�

k+i R Uk+i

]
(10a)

s.t. Zk+i+1 = A Zk+i + B Uk+i ∀i ∈ [0, Nk − 1] (10b)

Umin ≤ Uk+i ≤ Umax ∀i ∈ [0, Nk − 1] (10c)

Zk+Nk
∈ Zterminal (10d)
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where Nk is the number of remaining control instants at the

instant k, Q ∈ R
N×N and R ∈ R

m×m are the user-specified

weight matrices (with N being the dimension of lifted space,

and m being the dimension of the control space), Umax and Umin

are the lower/upper control bounds, and Zterminal is the desired

final set in the lifted space, as detailed in Section III. Showing

stability of the proposed MPC then boils down to showing that

Zterminal is contained in the region of attraction of the equilibrium

under the computed MPC. On the other hand, for the feasibility

of the MPC, some states in Zterminal must be reachable from the

initial state. The computation of the region of attraction and that

of forward reachability can be found in existing literature such

as [33], [34], [35], and [36].

III. PROPERTIES OF NEURAL LIFTING

A. Terminal Constraints and Tracking in Lifted Space

We first show that the terminal constraints in the original space

can be mapped to constraints in the lifted space.

Proposition 1. (Terminal Constraints): The terminal con-

straints on voltage, namely, Ṽmin ≤ Ṽi ≤ Ṽmax can be mapped

to a corresponding constraint set Zterminal in the lifted space,

under positive weights and zero bias in the neural lifting.

Proof: Noting that the lifting function corresponds to a single-

layered fully connected feed-forward network, given a voltage

V , or equivalently, Ṽ = V − Vref , the lifted state Z = G(Ṽ ) ∈
R

N can be expressed as

Z = φ(WṼ + b) ≡ tanh(WṼ + b) (11)

where W ∈ R
N×n is the weight matrix, b ∈ R

N is the bias

vector, and φ(·) ≡ tanh(·) is the activation function.

Under the positivity of the entries of the weight ma-

trix W = [Wij ], namely, Wij ≥ 0∀ i, j, and zero bias, b =

0, given the element-wise bound on voltage, Ṽmin ≤ Ṽi ≤
Ṽmax ∀i = 1, . . . , n, we can obtain element-wise bound on Zj =

tanh(
∑n

i=1 Wj,iṼi) by employing the monotonicity of tanh(·)
as

Zj,min ≤ Zj ≤ Zj,max ∀j = 1, . . . , N (12)

where Zj,min := tanh(
∑n

i=1 Wj,iṼmin) and Zj,max := tanh

(
∑n

i=1 Wj,iṼmax). These element-wise bounds [Zj,min, Zj,max]
∀j yield the terminal constraint set Zterminal, as desired. �

Remark 1: Reference [37] notes that the tanh(·) activation

has a slope that is sector-bounded in [0, 1], and that can be ex-

pressed as a quadratic constraint (QC). Using this, it determines

a QC bound on Z given the bound on V . However, this requires

solving a semidefinite programming in a higher dimensional

lifted space that is numerically challenging. To mitigate this

issue, we have provided previously the element-wise simpler

bounds for the lifted states.

The next proposition justifies the reference tracking in the

lifted space, by showing that it implies reference tracking also

in the original space. Recall that the objective of the standard

nonlinear MPC is to minimize the deviation of the predicted

trajectory from the desired reference in the original space.

Proposition 2 shows that the encoder function G(·) (with zero

bias) preserves the closeness to reference, thereby justifying the

tracking in the lifted space [as in (10a)].

Proposition 2: For any ε > 0, ||Z||2 ≤ ε implies that there

exists δ > 0 such that ||V − Vref||2 ≤ δ. Conversely for any

ε′ > 0, ||V − Vref||2 ≤ ε′ implies the existence of δ′ > 0 such

that ||Z||2 ≤ δ′.
Proof: We start by proving the first statement. ||Z||2 ≤ ε,

implies that
∑

i Z
2(i) ≤ ε2 (here Z(i) denotes the ith

element of Z), which implies ∀i,Z(i)2 ≤ ε2 ⇒ (tanh((WV −
WVref)(i)))

2 ≤ ε2 ⇒ |(tanh((WV −WVref)(i))| ≤ ε. Due

to symmetry, |tanh(·)| = tanh(|·|). Hence, |tanh((WV −
WVref)(i))| ≤ ε ⇒ tanh|(WV −WVref)(i)| ≤ ε ⇒ |(WV −
WVref)(i)| ≤ tanh−1(ε), where the last implication follows

from the monotonicity and non-decreasing property of

tanh(·). Taking squared sum over all elements, we have∑
i|(WV −WVref)(i)|2 ≤ N × (tanh−1(ε))2 (recall N is the

dimension of Z), which is equivalent to ||WV −WVref||2 ≤√
N × (tanh−1(ε))2. Finally, from the property of norm,

we have ||V−Vref||2 ≤
√

N×(tanh−1(ε))2

σmin(W ) := δ > 0, where

the smallest singular value σmin(W ) > 0 for a full rank

W . This proves the first part; the second part can be

established in a similar manner, and it can be shown that

δ′ =
√

N × (tanh((ε′||W ||2)))2, where we need to utilize the

fact that ‖W (V − Vref)‖2 ≤ ‖W‖2 · ‖V − Vref‖2.

�

It follows from Proposition 2 that the reference tracking in the

original voltage space can be mapped to the reference tracking

in the lifted space.

B. Noise/Disturbance Robustness of Lifting Operation

Considering the safety-critical nature of power systems, certi-

fying the robustness of neural lifting against input uncertainties

is important. In this regard, we show here the boundedness of the

perturbation in the lifted space whenever the perturbation due to

noise or input disturbance in the original space is bounded.

Proposition 3. (Noise-Robustness): For a bounded noise per-

turbation of voltage inputs, namely when∀i ∈ n : Vi,min ≤ Ṽi ≤
Vi,max, and the control bounds [Umin, Umax] on the input U , the

perturbation in the predicted states of the lifted space is also

bounded under positive weights and zero bias in the neural

encoding.

Proof: Following the derivation of (12) in Proposition 1, we

have: Zj,min ≤ Zj ≤ Zj,max ∀j = 1, . . . , N , where Zj,min :=

tanh(
∑n

i=1 Wj,iVi,min) and Zj,max := tanh(
∑n

i=1 Wj,iVi,max).
Additionally, with the positivity of A ∈ R

N×N , with Aij ≥
0∀ i, j and B ∈ R

N×m, with Bij ≥ 0∀ i, j, and the disturbance

bounds [Umin, Umax] on the control input U , the predicted states

in lifted space Z+ = AZ + BU are bounded as

A Zmin + B Umin ≤ Z+ ≤ A Zmax + B Umax (13)

where Zmin := [Z0,min, . . . , ZN,min]
� and Zmax := [Z0,max,

. . . , ZN,max]
�. �

It follows from Proposition 3, that the effect of noise or

disturbance remains bounded when we move from the original

nonlinear space to the lifted linear space, i.e., the proposed neural

encoding is robust to noise and disturbance.
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Fig. 2. (a) IEEE 39-bus system. (b) Voltage plots for fault with no control.

IV. TEST CASES, IMPLEMENTATION, AND RESULTS

This section presents the proof-of-validation of our proposed

methodology with the IEEE 39-bus system. We start with the

description of the test system, followed by the main results.

A. Test System Description

We consider a modified version of the standard IEEE 39-bus

system to be able to study the emergency voltage control prob-

lems. The IEEE 39-bus system consists of ten generators from

bus-30 to bus-39 and 46 transmission lines. The generators have

Park-Concordia fourth-order state-space model with states rotor

angle δ, speed ω, q-axis transient voltage e′q and d-axis transient

voltage e′d. Except for the slack one at bus 39, the generators are

equipped with IEEE Type-1 excitation systems as mentioned

in [38] and [39]. The parameter values of transmission lines,

generators, excitation systems, base-load, and generation levels

are taken from [38]. More details on the generators and exciter

model can be found in the power system analysis toolbox (PSAT)

manual [39]. The load dynamics are modeled using exponential

recovery load [39], [40] for which load recovery time constants

TP = TQ = 30, steady-state load exponents αs = 0.1, αt = 2,

βs = 2.8, and transient load exponents βt = 4 are selected

according to [10], with certain modifications to increase the

criticality of load recovery. The system is simulated using the

open-source simulator PSAT [39].

For our study, we selected a subnetwork of 12 load buses

S = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15} [the red dotted re-

gion in Fig. 2(a)]. It is observed that after a fault at bus 15,

which gets cleared by tripping a line between buses 15 and 16

within six cycles of system operation, voltages in the vicinity of

the fault bus drop below the desired level almost immediately

[see Fig. 2(b)] and without any corrective control this may

cause a system collapse. Similar observations are also made

for faults at other buses, for instance, buses 4, 7, and 8; the

situation gets exacerbated under increased load conditions and

limited generator excitation. This necessitates an emergency

control mechanism, and we implemented our proposed MPC-

based voltage stabilization policy following faults to keep the

voltage trajectories close to a reference value Vref = 1.00 p.u.

The control inputs are reactive power compensation at buses 4,

5, 7, 8, 10, 12, 14, and 15 that can provide fast reactive support

of up to 0.25 p.u. in each control step. To stabilize the voltage

trajectories, we choose a five-step MPC with a control horizon

of 15 s, divided into five segments of 3 s each, i.e., Tc = 3.

B. Training of KDNN

1) Training Data: For training the proposed KDNN, we cre-

ated a large pool of training data by simulating the system under

various operating conditions. As given in (1), the nominal model

of a power system follows DAE dynamics, plus the nominal

system is subject to unknown load fluctuations and faults, and

we need to ensure that the training data capture those changes in

operating conditions. To capture the dependencies on changing

conditions, we introduce a parameter Θ extending the DAE

to Ẋ = F (X,Y, U,Θ), 0 = G(X,Y, U,Θ). In the training data

generation phase, random variations of control inputs U in the

range [0,0.25] p.u. were introduced, and further, the parametric

changes in Θ were introduced by way of load variations of

±20% around the nominal loads plus by applying three different

contingencies. For each Tf sec simulation (Tf ≈ 20 s for the

IEEE-39 Bus system), we randomly chose a Θ value, and

randomly chose controls at each of the five control instants (i.e.,

Θ, namely the load and the contingency, were held constant

in each short time period of Tf sec simulation). We repeated

this procedure of trajectory generation multiple times. Finally,

all these data were pooled together and used for the training

of KDNN, ensuring that the KDNN is exposed to different

operating conditions, thereby making it suitable for the dynamic

variations of the power systems. We also show the applicability

of our method by applying random load levels within ±20%
of nominal level, and five different contingencies. In total, we

utilized 1000 random load conditions and faults at buses 15, 4,

and 7, collecting a total of 1000× 5× 3 = 15000 data samples

in the form of {(Vk, Uk, Vk+1)} triples. We divided the data into

70 : 30 to create the training and test datasets.

2) KDNN Architecture: As shown in Fig. 1, the lifting func-

tion G(·) is built using an FCNN layer, where the number of

neurons of the FCNN layer decides the dimension N of the

lifted space. We considered a subnetwork of 12 buses, which

implies n = 12, and observation history length H = 4 between

any (k − 1)th tokth control instants (this is because the sampling

rate for voltage values is higher than the control application rate,

and so there are multiple voltage values between any two control

values). We testedN = 256 > 5× n×H . The activation func-

tion of the FCNN layer is tanh(·) representing the nonlinearity

of the layer G(·). The linear transformation matrices A and B
are also represented as single-layer FCNNs with 256 neurons,

while their activation function is identity.

3) Training Parameters and Data Preprocessing: The opti-

mizer chosen for the training is ADAM, with gradient momen-

tum β1 = 0.9/0.95 and rms momentum β2 = 0.999/0.95. The

loss function, batch size, learning rate, and performance metric

are: mean squared error (MSE) loss, 32, 10−3, and R2-score,

respectively. Prior to training the KDNN, the input and output

data were processed as follows: First,Vref = 1.00was subtracted

from the voltage valuesVk to obtain the corresponding Ṽk values.

Next, this adjusted data were normalized in the range [−1, 1]
preserving Ṽk = 0 at Vk = Vref. The control values Uk in the

[0,0.25] range were also normalized in the [−1, 1] range.

4) Training and Testing Performance: We utilized Tesnor-

flow to build and train the KDNN model. The training is done by

minimizing a composite loss function of four components men-

tioned in Section II-C. To ensure bounded-input bounded-output
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Fig. 3. (a) KDNN training loss. (b)–(d) KDNN test MSE for Ṽ
pred,(a)
k+1

,

Ṽ
pred,(b)
k

, and Ṽ
pred,(c)
k+1

, respectively. (e)–(g) KDNN test R
2-score for

Ṽ
pred,(a)
k+1

, Ṽ
pred,(b)
k

, and Ṽ
pred,(c)
k+1

, respectively.

property of the architecture for robustness to noise and other

perturbations, the training is performed ensuring the positivity

of weight matrices as well as matrices of the linear embedding

(as discussed and elaborated in Sections II and III). The training

losses in MSE are shown in Fig. 3(a).

To show the generalization property of our trained model, we

evaluated the model performance on testing data (which was not

used during training). For reconstruction of Ṽ
pred,(a)
k+1 , Ṽ

pred,(b)
k ,

and Ṽ
pred,(c)
k+1 using testing data and the trained model, we eval-

uated the performance in terms of MSE and the coefficient of

determination R2 ∈ [0, 1] (recall an R2 value of 1 indicates an

exact fit). The plots given in Fig. 3(b)–(d) for the test MSE and

Fig. 3(e)–(g) for the R2-score demonstrate that the generaliza-

tion performance of the trained model is satisfactory. Next noting

that both training and testing performances are satisfactory, we

utilized the trained KDNN to extract the functions G(·),A(·),
and B(·) for MPC computation in the lifted linear space.

5) Discussion on Model Training, Generalization Error, and

Overfitting: The proposed KDNN learns the mapping of the

voltage dynamics from the kth control instant voltage Vk

and control Uk to the next control instant voltage, Vk+1 =
T (Vk, Uk) under different operating conditions of the power

system. For the training of the KDNN, we carried out certain

key steps to ensure a good generalization performance.

1) We varied the load condition to within ±20% of the nom-

inal load condition, applied contingencies, and employed

random policies to execute control actions, storing the

triples, {Vk, Uk, Vk+1}. This provides enough richness to

the training data for reducing the generalization error.

2) We used Vk, which is a time series of voltage values in-

between the (k − 1)th and kth control instants, rather a

single voltage value as training data.

3) The loss function involved four different ways of measur-

ing error to provide multiple cross checks as presented in

Section II-C, (9).

4) Finally, to avoid scaling-related issues due to different

voltage levels at different buses, we subtracted the voltage

values with respect to a common reference point Vref and

normalized all data values in [−1, 1], respectively.

Fig. 4. KDNN training. (a) Without preprocessing. (b) With preprocessing.

We validated the effectiveness of data preprocessing of step

(4) by performing cross validation, dividing the available train-

ing dataset randomly into train data (80%) and validation data

(20%) during model training. The plots in Fig. 4 show that the

variance in validation loss is lower in the case of training with

the data preprocessing of step (4). Thus, preprocessing of dataset

with step (4) further helped us reduce the fitting error. Also, as

seen in Fig. 4(b), the training loss and validation loss closely

matched, showing no sign of overfitting.

C. MPC Computation at the Embedded Linear Space

We computed the MPC-based controls to minimize the volt-

age deviations from a reference Vref = 1.00 p.u. The design

parameters are Q = IN×N , while R = 0, as the controls are

reactive power (VAR) compensation, it does not incur any effec-

tive control cost for the power utility like load shedding (which

curtails active loads). Since the steady-state voltage needs to be

in the range of [0.95, 1.05] p.u., in the MPC formulation for the

final lifted state Zk+Nk
, we introduced the corresponding termi-

nal constraint Zterminal with Vterminal := [0.95, 1.05] and Vref = 1,

as detailed in Section III-A. For validating the robustness of the

proposed control design, (a) 5 different load levels (80%, 90%,

100%, 110%, and 120% of the nominal load (N.L.)), and (b) 8

different fault buses (bus-15, bus-4, bus-7, bus-5, bus-6, bus-8,

bus-10, bus-14) were selected. Note, all these faults were cleared

by tripping respective transmission lines, resulting in different

underlying network topologies. The MPC computations were

done in the linear embedded state space, solving the constrained

optimization (10). Next, the computed controls were applied to

the original nonlinear system. The voltage profiles for each of

the aforementioned cases are shown in Figs. 5–8, validating that

the proposed scheme successfully achieved the desired voltage

performance under different operating conditions, thereby con-

firming the effectiveness and robustness of the proposed method-

ology of designing controls using the KDNN-based lifted linear

embedding of the nonlinear dynamics. Also, note that the voltage

values at t ≈ 20 are within the safe limits: Vmin = 0.95 p.u. and

Vmax = 1.05 p.u.

We also computed the control actions at each control instants

and plotted the accumulated control actions for the five different

load cases in Figs. 9–12. The trend suggests that with the
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Fig. 5. Voltage plots for faults at Bus-15 and Bus-4.

Fig. 6. Voltage plots for faults at Bus-7 and Bus-5.

Fig. 7. Voltage plots for faults at Bus-6 and Bus-10.

load increase, the amount of VAR compensation (reactive power

compensation) increased, and this trend is expected.

D. Discussion on Noise Robustness

Section III-B provides the theoretical understanding of noise

robustness for the lifted states, and due to the high dimensional

problem structure, it is difficult to represent bounds on lifted

state variables. To validate this property, we carried out the MPC

computation considering that the measurement voltages are

affected by a Gaussian noise of mean 0, and standard deviation

1%. The voltage and control plots for (a) three random load

Fig. 8. Voltage plots for faults at Bus-8 and Bus-14.

Fig. 9. Cumulative control plots for faults at Bus-15 and Bus-4.

Fig. 10. Cumulative control plots for faults at Bus-7 and Bus-5.
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Fig. 11. Cumulative control plots for faults at Bus-6 and Bus-10.

Fig. 12. Cumulative control plots for faults at Bus-8 and Bus-14.

levels (within ±20% of nominal load) and (b) faults at bus-15

and 6 are shown in Figs. 13 and 14, respectively.

E. Comparison With Standard Approaches

1) Prediction Performance: Standard Koopman Versus

KDNN: As mentioned in [27], an early work in an NN-based

Koopman design, radial basis function, polynomials, and kernel

functions are mostly common basis functions in the Koopman-

operator-based control design. But the choice of an appropriate

basis function is an open problem, and this is our primary

motivation for utilizing NNs to use data to learn the appropriate

basis functions. Here, we demonstrate the benefit of the proposed

KDNN-based design compared to the standard EDMD method

mentioned in Section II-B for approximating nonlinear implicit

voltage dynamics. First, note that for the polynomial basis, the

Fig. 13. Voltage plots for faults at Bus-15 and Bus-6.

Fig. 14. Cumulative control plots for faults at Bus-15 and Bus-6.

choice of candidate basis set increases double-exponentially

with the dimension of original nonlinear dynamics, n×H , as

per the problem formulation. This makes creating an optimal

choice of dictionary nonscalable and hence prohibitive. So, for

comparison, we picked radial basis functions with a dictionary

size of 2000. The centers of the radial basis functions were

determined by K-means clustering over training data, while for

the spread parameter, we selected σ = 0.05. We then followed

(5)–(7) to find A, B, and C over the same training data utilized

to train the KDNN. Next, the computed matrices are used to

find the predicted values of the voltage dynamics over the same

testing data used for the KDNN testing. The mean squared errors

(MSEs) of both predictions and R2-score are plotted in Fig. 15,

which clearly shows the superiority of our KDNN-based learned

basis functions.

2) Traditional MPC Versus KDNN MPC: We compared the

performance of our proposed method with the state-of-art

MPC [10] for voltage recovery as well as control computation

time. Both traditional MPC [10] and our proposed method

uses the same MATLAB-based PSAT platform for the MPC

implementation. What differs is that while [10] employs a
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Fig. 15. Comparison of standard lifting and proposed lifting method.

TABLE I
COMPARISON OF PERFORMANCE FOR THE IEEE-39 BUS SYSTEM

Fig. 16. Comparison of voltage plots for faults at Bus-4 and Bus-7.

voltage trajectory sensitivity-based method that necessitates

time-consuming dynamic simulation and additional MATLAB

routines to compute the trajectory sensitivities, no such trajec-

tory sensitivity computation is needed in the proposed setting

as it solves only a linear MPC and that in fact results in the

speed-up of the overall MPC computation. One can define a

performance measure J as an aggregation of the squared sum

of the voltage trajectory deviations of the buses in S with

respect to the reference (Vref = 1.00 p.u.). We applied different

fault conditions under random load levels, and the resulting

performance measureJ as noted in Table I turns out to be almost

the same (maximum percentage error being ≈ 1.2%) for both

the traditional MPC [10] and the proposed KDNN MPC. A rep-

resentative voltage plot to show the similarity is given in Fig. 16.

The contrast between the control computation time for

trajectory-sensitivity-based state-of-art MPC [10] and that of

the proposed KDNN-based MPC is shown in Table II. The

KDNN-based approach shows an impressive 36-fold speed-up

of the control computation time. Also, the proposed method

takes 0.18 s to compute a control at each online decision instant,

making MPC real-time and practical for power systems for a first

TABLE II
COMPARISON OF COMPUTATION TIME FOR THE IEEE-39 BUS SYSTEM

time. It is important to note that even the traditional controllers,

e.g., UVLS relaying scheme, generally needs ∼0.5 s to decide

a control action [41]. We used standard Intel(R) Xeon(R) CPU

E3-1240 v6 at 3.70-GHz processor with 16-GB RAM for our

implementation and computation.

F. Discussion on Real-World Control Room Application

The training data for KDNN are obtained in a simulated

environment. The use of simulation is standard practice for

different offline studies within the power utility control room,

e.g., state estimation, contingency analysis, and dynamic secu-

rity analysis [42]. Moreover, with recent progress on test-bed

simulators, digital twins are also adopted to match the simulation

with real-time operation [43]. For the application of the proposed

method, the control room operators need to set a nominal model

of the system and generate offline training data for KDNN train-

ing as mentioned in Sections IV-A and IV-B; train the KDNN

architecture offline, and finally, during the online deployment

phase; and (c) collect the voltage measurements and solve the

optimization problem (10) using the functions G(·),A(·), and

B(·) extracted from the trained KDNN.

Gaps between the simulation models and the real-world sys-

tems may exist, and in case over time, if the underlying power

system dynamics differ greatly from its existing nominal model

(because of major operational changes/modifications), then the

existing nominal model itself must be updated by repeating the

offline simulation of the model and the training of the KDNN.

V. CONCLUSION

This article implemented a Koopman-inspired encoder–

decoder framework for the data-driven linear embedding of

networked systems dynamics, paving the way for designing a

control strategy in the lifted linear state-space, making the MPC

design scalable and real-time for power grids. We combined

the power of deep learning with the Koopman operator theory

for lifting nonlinear dynamics into a higher dimensional linear

space. Our data-driven approach autolearns the basis/projection

functions removing the burden of selecting those arbitrarily,

traditionally taken to be polynomials or radial bases. The test

results applied to the IEEE 39-bus system validated the proposed

scheme’s performance in terms of efficacy, robustness against

load variations and fault conditions, and further a 36-fold com-

putational speed-up making MPC real time. We also validated

the superiority of our approach compared to the standard EDMD

approaches for Koopman embedding, which employs predefined

basis functions. The proposed promising technique of unraveling

the implicit nonlinear dynamics, combining Koopman theory

and deep learning methods, opens up a new direction of control

design for complex nonlinear networked systems.
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[19] M. Korda, Y. Susuki, and I. Mezić, “Power grid transient stabilization
using Koopman model predictive control,” IFAC-PapersOnLine, vol. 51,
no. 28, pp. 297–302, 2018.

[20] P. Kundur, N. J. Balu, and M. G. Lauby, Power System Stability and

Control. vol. 7. New York, NY, USA: McGraw-hill, 1994.
[21] W. Han and A. M. Stankovic, “Koopman model predictive control-based

power system stabilizer design,” in Proc. 52nd North Amer. Power Symp.,
2021, pp. 1–6.
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