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Efficient catalyst screening using graph neural 
networks to predict strain effects on adsorption energy
Christopher C. Price1†, Akash Singh1, Nathan C. Frey2‡, Vivek B. Shenoy1*

Small-molecule adsorption energies correlate with energy barriers of catalyzed intermediate reaction steps, de-
termining the dominant microkinetic mechanism. Straining the catalyst can alter adsorption energies and break 
scaling relationships that inhibit reaction engineering, but identifying desirable strain patterns using density 
functional theory is intractable because of the high-dimensional search space. We train a graph neural network to 
predict the adsorption energy response of a catalyst/adsorbate system under a proposed surface strain pattern. 
The training data are generated by randomly straining and relaxing Cu-based binary alloy catalyst complexes 
taken from the Open Catalyst Project. The trained model successfully predicts the adsorption energy response for 
85% of strains in unseen test data, outperforming ensemble linear baselines. Using ammonia synthesis as an ex-
ample, we identify Cu-S alloy catalysts as promising candidates for strain engineering. Our approach can locate 
strain patterns that break adsorption energy scaling relations to improve catalyst performance.

INTRODUCTION
Structure-property relationships form the core of rational materials 
design; understanding how changes in atomic structure affect emer-
gent material properties is a primary goal of computational materials 
modeling (1, 2). The symmetric elastic strain tensor  quantifies the 
change of a material’s periodic unit cell from an initial reference 
state: the bulk ground state crystal structure that minimizes the free 
energy of formation at zero stress. At a material surface, disruption 
of bulk bonding changes the electron distribution at the surface and 
induces surface stress, which can be alleviated by shifts in the atomic 
positions corresponding to surface strain (3–5). These concepts ex-
tend to the rearrangement of surface atoms under any mechanical 
force. Surface structural changes can dominate the structure-property 
relationships at the nanoscale, where a substantial portion of the atoms 
are located near the surface, and mechanical forces can originate 
from epitaxial mismatch, bending, or other mechanically coupled 
effects such as piezoelectricity (6, 7). Assuming a coordinate system 
with a surface normal z component, surface strains are described 
by three of the Voigt dimensions that are parallel to the plane of the 
surface 1,2,6, but surface atoms can also relax in the out-of-plane 
direction where periodicity is broken. Analysis of this continuous 
three-dimensional (3D) surface strain space is typically limited to 
single-element structures with low-index surfaces and high-symmetry 
deformations (uniaxial or biaxial). This is because the search space 
is vast and low-index surfaces typically form spontaneously under 
bulk cleavage or epitaxial growth (8–12).

In small-molecule reactions such as ammonia synthesis, carbon 
dioxide reduction, or nitrogen dioxide reduction, an effective het-
erogeneous catalyst reduces the energy of transition states in bond- 
breaking or bond-building reactions, lowering the activation energy 
barrier and increasing the likelihood that the reaction proceeds in 
the desired direction (13). While these energy barriers are difficult 

to characterize directly, the adsorption energy of a molecular structure 
on a surface has been successfully used as a proxy to describe catalyst 
activity and assist in catalyst design (14). Linear scaling relationships 
identified for adsorption energies of different molecules across 
different surfaces reflect the similar bonding configurations of many 
small molecules on valence d-band materials (15, 16). However, these 
relationships imply that it is difficult to improve catalytic activity by 
simply changing the catalyst material because the relative adsorp-
tion energies of neighboring molecular intermediates in the reaction 
will not change (17, 18). Strain has been suggested as a promising 
strategy to break these scaling relationships by changing the surface 
bonding environment (19, 20), and there are multiple experimental 
observations indicating that strain can effectively manipulate catalyst- 
adsorbate interactions and modify catalyst activity across different 
reactions (9, 11, 21–26). This is especially promising given recent ad-
vances in core-shell nanoparticle synthesis and nano-heterostructure 
synthesis through deposition, allowing for strain control to be achieved 
in high–surface area systems ideal for catalytic applications (27–30). 
By breaking these scaling relations, including strain as a degree of 
freedom in catalyst design greatly increases the complexity of an 
already high-dimensional search space that includes the catalyst 
structure and composition, the surface facet, the adsorption site, and 
the adsorbate composition. Nanoparticles frequently contain high- 
index surfaces that hold high activity potential but are relatively under-
studied compared to conventional epitaxial surfaces of metals (31).

Supervised machine learning models can learn nonlinear func-
tions in high-dimensional spaces from a relatively small subset of 
representative training data. The success of machine learning ap-
proaches depends on the combination of the selected model and the 
featurization of the data, which is the process of preparing and fil-
tering data before it passes into the model. Recently, neural net-
works using strain tensors as inputs were applied to predict the 
strain response of the electronic structures of diamond and silicon 
using a training set of density functional theory (DFT) calculations; 
equivalent results using DFT alone would have required more than 
100 million additional calculations, which is several orders of mag-
nitude beyond what is achievable with current computational capa-
bility (32, 33). These models enable deep elastic strain engineering 
by learning the relationship between the target property (either the 
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bandgap or full band structure) and the strain tensor from a small 
amount of randomly dispersed training data, covering a region far 
outside the conventional small-strain linear elastic approximation. 
However, because the training data contain only one single-element 
material, extending these predictions to a new material requires ad-
ditional training data and a new model. Generating large, accurate, 
and statistically representative training datasets is a substantial bot-
tleneck in applying machine learning to crystalline materials (34); 
recently, the Open Catalyst Project (OCP) released a dataset of more 
than 1.2 million DFT-relaxed catalyst-adsorbate structures to address 
this challenge and facilitate prediction of adsorption energies for 
catalyst discovery and optimization (35). The dataset spans the 
critical contributing factors to adsorption energy: bulk composition 
and structure, surface facet, adsorbate site, and adsorbate composi-
tion. Modeling the adsorption energy requires fine-grained featuriza-
tions that contain information about the specific atomic positions 
around the coordination site in an machine learning model. One 
strategy is to construct these features explicitly, which improves 
model interpretation but can require a lot of precomputation for 
complex systems (36). A different strategy involves attempting to 
use the atomic positions directly and allow the model to learn 
from the atomic structures. Graph neural networks (GNNs) are a 
candidate model class for this problem because they operate on 
atomic structures-as-graphs, which preserve distance and neighbor 
information for all the atoms in a structure. Several GNN architectures 
have been developed and applied to predict molecular and crystalline 
properties, including the adsorption energy of a handful of mole-
cules on bulk structure bimetallic alloy surfaces (37–42). While using 
these models in the physical sciences remains an active research area, 
the possibility of generalizing over compositional and structural de-
grees of freedom is promising for materials applications.

In this work, we synthesize the discussed approaches to investi-
gate the effect of general surface strain engineering on adsorption 
energies of 27 important small-molecule adsorbates over a range 
of Cu-binary alloy surfaces taken from the OCP dataset. Cu alloys 
have generated recent broad interest in catalysis due to recent 
success in identifying high-activity Cu-based catalysts for carbon 
dioxide reduction using a combination of machine learning and 
experiments (43). High-throughput DFT calculations generate a 
strained training set by randomly applying strains to Cu-alloy catalyst-
adsorbate complexes. We find that a DimeNet++ GNN archi-
tecture combined with an additional neural network to include strain 
information succeeds on classification and regression tasks to de-
termine the adsorption energy response to strain. Extrapolating the 
model to predict the strain response of brand-new surface and ad-
sorbate combinations is more difficult, but our results enable sur-
face strain to be efficiently considered as a continuous engineering 
parameter in catalyst design.

RESULTS
Dataset generation and machine learning workflow
For a particular catalyst-adsorbate complex structure (Fig. 1A, Cat 
+ Ads), we will specify the compositions of the catalyst and the ad-
sorbate and the surface face with the shorthand X(hkl) : Y*, where X 
is the surface composition, hkl are the Miller indices of the surface 
facet, and Y* is the adsorbate with * specifying the initial adsorbing 
atom. X(hkl) will be used to denote a strained catalyst. The adsorp-
tion energy Eads is defined as the difference between the energy 

of the catalyst-adsorbate complex and the individual, separated 
catalyst (Cat) and adsorbate (Ads; Fig.  1A). In vacuum, Eads de-
pends on the structure and composition of the surface, the structure 
and composition of the molecule, and the coordination site (loca-
tion on the surface where the molecule interacts). The strained ad-
sorption energy ​​E​ads​ 

  ​​ is similarly defined as the difference between 
the adsorbate-strained surface complex X(hkl) : Y* and the individ-
ual strained surface X(hkl) and adsorbate. We seek to predict the 
change in adsorption energy ​ ​E​ ads​​( ) = ​E​ads​ 

  ​ − ​E​ ads​​​ of an adsorbate 
on a surface due to a rotation-free applied strain in the plane of the 

Fig. 1. Modeling workflow for data generation, training, and inference. (A) At-
omistic overview of the structures used to calculate the change in adsorption energy 
with surface strain. Blue rectangles indicate inputs to the machine learning model; 
green arrows indicate high-throughput DFT ionic relaxations. (B) Workflow for data-
set curation, assembly, and model training. From the Open Catalyst dataset, a 
subset of binary Cu alloy catalysts with adsorbates is selected (see Supplementary 
Materials). Random strains are generated for each alloy catalyst, and Eads is calcu-
lated to form the targets for the training set. Green boxes indicate datasets. Orange 
boxes are model outputs. Gray boxes are trainable models, and pink arrows show 
model training. (C) After successful model training, inference can be performed 
over strain space and surface-adsorbate combinations. Under one applied strain, 
the adsorption energy of initial states (IS), transition states (TS), and final states (FS), 
which scales with transition states, can shift in opposite directions, fundamentally 
changing reaction energy barriers.
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surface described by the strain tensor , with uniaxial components 
11 (1) and 22 (2) and shear component 12 (6). The sign and 
magnitude of Eads has been shown to depend on the surface com-
position, facet, adsorbate composition, and nature of the de-
formation even in relatively simple systems such as Pt(111): 
N (19, 44).

The dataset development and model training workflow are sum-
marized in Fig. 1B. To develop a model to approximate Eads(), we 
assemble a training dataset of strained Cat + Ads complexes using 
first-principles DFT calculations using the public OCP dataset as a 
starting point (Fig. 1B) (35). Recently, numerous copper alloy sur-
faces were identified as high-activity catalysts in CO2 reduction 
on the basis of their combined adsorption energies for *H and *CO 
(43, 45). Building on these results, we extract a compositional sub-
set of the OCP dataset consisting of binary copper alloy catalysts 
(CuxM1-x, where M is an alloying element) and 27 adsorbates as the 
scope for our strain investigation. A list of catalyst alloy elements and 
adsorbates in the training dataset is given in table S1. For each Cat + 
Ads complex in the filtered dataset, six unique strain tensors were 
randomly generated by selecting uniform random values for 1, 2, 
and 26 between −3% and 3%. The bulk lattice structure (no strain 
applied) was also included for each Cat + Ads complex to provide 
Eads. Each random strain tensor was applied to both the Cat struc-
ture and the Cat + Ads complex, generating a pair of structures that 
were relaxed to enable calculation of ​​E​ads​ 

  ​​. Taking the difference be-
tween ​​E​ads​ 

  ​​ and Eads gives the final training labels Eads. The original 
OCP catalyst-adsorbate supercells are large enough to minimize multi- 
adsorbate interactions across the periodic boundary conditions of the 
unit cell (35). Details of the structure formation and DFT relaxations 
unique to this work are given in Materials and Methods. Six strains 
were chosen to keep the energy calculations computationally tracta-
ble while including a diverse set of surfaces and molecules; random 
sampling was selected to generate a uniform distribution of strain 
orientations relative to the randomly distributed orientations of the 
adsorbate coordinate environments. The inputs to the machine learn-
ing model training are the relaxed zero-strain Cat + Ads structure 
(represented as a graph; details in Materials and Methods) and the 
strain tensor, and the output is the change in adsorption energy af-
ter strain and relaxation. Therefore, only the Cat + Ads structure 
relaxed at the bulk lattice parameters is required to make predic-
tions about the adsorption energy response across 3D surface strain 
space. Further discussion of the model architecture choices is pre-
sented in the “Dataset inspection and model selection to incorpo-
rate strain” section and the text in the Supplementary Materials. With 
a successfully trained model, this strain space can be efficiently ex-
plored across different catalyst-adsorbate systems to engineer reaction 
energy diagrams (Fig. 1C). For comparison, evaluating the adsorp-
tion energy with 0.5% resolution in the 3D strain space of −3 to 3% 
over 1, 2, and 6 would require 2200 grid points in strain space 
for each catalyst-adsorbate complex and more than 6.5 million total 
structures. Using our calculation cost for training data generation 
of ~18 hours per pair of Cat and Cat + Ads structures, this effort 
would consume 72,000 central processing unit (CPU)-years of DFT 
calculations versus 120 combined CPU-hours and graphics process-
ing unit (GPU)-hours required to train our model.

Dataset inspection and model selection to incorporate strain
After the high-throughput DFT dataset generation, we inspect the 
resulting distribution of Eads to evaluate whether machine learning 

is warranted; a detailed discussion and analysis of the dataset distri-
bution is given in section S1 and fig. S1. The training dataset shows 
no obvious trend in Eads across several catalyst and adsorbate de-
grees of freedom that a simple physics-based model can capture, 
supporting the hypothesis that machine learning could be useful. 
On the basis of this result, we seek to construct both classification 
and regression tasks for our model. A summarized target Eads dis-
tribution is plotted together in Fig. 2 (A and B), where Fig. 2B zooms 
into the central histogram bar in Fig. 2A. The data distribution con-
tains two long tails on both the positive and negative side that span 
several orders of magnitude, and there is a high concentration of 
values near zero corresponding to essentially no strain effect. For 
catalyst design by strain engineering, we are primarily interested in 
determining whether a strain will significantly increase, decrease, or 
have no effect on the adsorption energy of a particular adsorbate. 
Therefore, we bin the dataset into three categories: Eads < − 25 meV 
(class −, blue), ∣Eads∣ < 25 meV (class Z, gray), and Eads > 25 meV 
(class +, pink) to define a classification task for our model; Twenty- 
five milli–electron volts (kBT evaluated at T = 300 K) is chosen as 
the threshold to classify a significant strain response, and class Z 
is short for zero effect. We verify that each of these classes contains 
a representative distribution of the different Cat + Ads structures. 
Figure 2C shows the histogram of the fraction of member training 
examples that originate from a particular Cat + Ads complex in 
each class. For example, consider the Cu3Sb (210):*CHOH complex 
shown in Fig. 1A. If we apply four random surface strains (Fig. 2D) 
to this structure and two of them result in Eads < −25 meV (Fig. 2E), 
then they will contribute to the 0.4 bar of the − histogram in 
Fig. 2C. Likewise, strains with Eads > 25 meV contribute to the + 
histogram, and ∣Eads∣ < 25 meV strains (including all ground state 
structures and identity matrix strains by definition) contribute to Z. From 
these histograms, we conclude that most Cat + Ads complexes 
appear in multiple classes; therefore, accurate classification cannot 
be achieved on structural or compositional information alone. Only 
Z contains some complexes with 100% membership, and this is rea-
sonable because we expect that certain Cat + Ads complexes will be 
relatively immune to surface strain. The total class splits in the train-
ing set are given in table S2. The class distribution analysis confirms 
that classifying the strain response into broad buckets still requires 
both the structure and the specific strain pattern to successfully pre-
dict. For the regression task, we simply normalize the target Eads 
distribution to zero mean and unit SD and calculate the mean absolute 
error (MAE) of the predicted values against the true values (additional 
details in Materials and Methods).

To establish a performance baseline and justify adding model 
complexity, we test an ensemble linear baseline model by fitting a 
separate linear regression to each unique group of catalyst alloy-
element and adsorbate in the training data (80% of the dataset). We 
then use each individual regression model to predict the class of any 
matching alloy-element + adsorbate structures in the test data (10% 
of the dataset held out from training; see Materials and Methods). 
We ask the baseline model to do some generalization over the spe-
cific catalyst composition structure because this is a potential fea-
ture of the GNN that expands predictive capability. Figure 2E 
gives the normalized confusion matrix for this baseline classifier, 
which shows the fraction of true samples predicted to fall in each 
class by the model; each row sums to 1, and the correct model pre-
dictions appear along the matrix diagonal. This model performs better 
than random guessing but still misidentifies the class of ~45% of 
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the test data, with an F1 score of 0.58 for the classification task. The 
average MAE across each ensemble linear model for the regression 
task is 0.17 eV, above the typical threshold in catalysis of 0.1 eV. Ad-
ditional classification and regression metrics for the ensemble lin-
ear baseline are given in table S3. Because neither the classification 
nor regression baseline performance is sufficient to be practically 
useful, we proceed to training and testing GNN hypothesis.

Model selection, training, and performance
From the training set analysis, we recognize that we need a model 
that can generalize over both structural and compositional degrees 
of freedom. GNNs are a promising candidate for this application 
because differentiating the strain response across different surfaces 
and molecules requires incorporating detailed structural infor-
mation into the input. We adapted and modified the DimeNet++ 
model architecture, first introduced by Klicpera et al. and used 
in the Open Catalyst challenge, to predict adsorption energies 
from initial structure (35, 39, 40). The model architecture is shown in 
Fig. 3A. The graph represents atoms as nodes and the interactions 

between atomic pairs as edges within a cutoff radius, chosen to be 
7 Å with a maximum of 60 nearest neighbors (based on original 
hyperparameters in the Open Catalyst Dataset) (35). The network 
embeds each node (atom) of the graph as a set of directional pair-
wise interactions, and the edges are embedded using a set of spherical 
basis functions that incorporate bond angle information. The basis 
set choice and embedding strategy provides rotational invariance to 
the model; more details are available in (39, 40). After the graph 
representation of the Cat + Ads complex is passed through the 
standard DimeNet++ model, we pad the node level output with 
zeros to the size of the largest structure in the dataset and append 
the normalized strain tensor, injecting the second component of 
the input data. The combination of the DimeNet++ output and the 
strain tensor is lastly passed through a small fully connected neural 
network before the output is summed to give the final prediction. 
Adapting a GNN architecture originally designed for molecules to 
our low-symmetry Cat + Ads structures and strain inputs moti-
vated specific architecture choices, data augmentation strategies, and 
regularization schemes to obtain sufficient model performance. 

Fig. 2. Data distribution across strain pattern and composition supports classification task, plus ensemble linear classifier performance. (A) Total histogram and 
(B) zoomed histogram of Eads in the training dataset and assigned classes. Class − (Eads < −25 meV) is blue. Class Z (∣Eads∣ < 25 meV) is gray. Class + (Eads > 25 meV) 
is pink. (C) Histograms of fractional class membership grouped by Cat + Ads structure show even distribution of Cat + Ads structures across the three assigned classes. 
(D) Example of histogram generation; of five hypothetical strains for Cu3Sb:*CHOH, two fall in −, one falls in Z, and two fall in + [highlighted histogram bars in (C)]. 
(E) Confusion matrix for the ensemble linear regression baseline model on test data. The x axis gives the model predicted classes, and the y axis gives the true values; the 
diagonal gives the frequency of correct predictions within each class.
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Details and rationale behind these decisions are discussed in sections 
S2 and S3.

The performance metrics for the GNN + Strain classifier and the 
GNN + Strain regressor on test data (10% randomly withheld; 
details in Materials and Methods) from the training procedure are 
summarized in Fig. 3 (B and C). As in Fig. 2E, the normalized con-
fusion matrix in Fig. 3B gives the fraction of true samples in the test 
data that were predicted to fall in each class by the classifier; each 
row sums to 1, and the correct model predictions appear along the 
matrix diagonal. On the same set of training and testing data as the 

linear baseline, the GNN + Strain classifier outperforms the ensem-
ble linear baseline by at least 20% in every category. In addition, the 
error rate misidentifying − and + classes [thereby confusing a 
large positive (negative) Eads with a large negative (positive) Eads] 
is, on average, one-third of the same linear baseline error, and this 
is the costliest error to make when evaluating the impact of strain 
on a reaction diagram. The regression results are shown over the 
full test dataset in Fig. 3C (top) [zoomed in Fig. 3C (bottom)]; the 
MAE for the regression model is 0.08 eV, which is within the target 
range for machine learning approximators in catalysis (35). The 

Fig. 3. Model architecture, task definition, and task results on test data. (A) Model architecture used for classification and regression tasks. The relaxed zero-strain 
Cat + Ads structure is input to DimeNet++. The strain tensor is appended to the padded DimeNet++ output and passed through a fully connected neural network (Strain-
Block). Regularization is performed on node-level output by classifying nodes as adsorbate, surface, or bulk. Eads classification and regression are graph-level tasks. 
(B) Normalized confusion matrix for the GNN + strain model on test data. Each row matches a different true category, while each column matches a predicted category; 
the diagonal boxes give the percentage of correct predictions for each class. (C) Results from the GNN regression task, zoomed in bottom. Graph background colors give 
the true class, while point colors give the predicted class based on the regression. (D) Error analysis in the test data as a function of adsorbate composition and training 
representation. The x axis gives the error rate within each adsorbate, while the y axis gives the training data representation; *CN stands out as the outlying adsorbate. 
(E) Same as (D) but grouped by alloy element; no significant outliers are observed.
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points are colored according to the class predicted by the regressor, 
such that any points in a shaded region of a different color indicate 
a misclassification by the regression model, while matching points 
indicate a success. As expected, this model has more difficulty dis-
tinguishing positive and negative Eads near the MAE, which is 
where many of the samples lie. Overall, the regularized model archi-
tecture (detailed in table S4) performs well on both the classification 
and regression tasks. Supplied with a larger training dataset, perform
ance may further improve if these tasks are combined, for example, 
training a separate regressor model within each predicted class. Model 
performance decreased when the test data were constructed of new 
Cat + Ads compositions completely unseen in the training data; this 
type of extrapolation is a goal for the field of physical GNNs but 
requires larger datasets than the one generated in this work.

Incorrect predictions in the test data are further analyzed in Fig. 3D 
to assess the variance in the correct model predictions across com-
positional degrees of freedom. The x axis in Fig. 3D gives the percent 
predicted incorrectly within each adsorbate subgroup that appears 
in the randomly selected test data. All adsorbates fall within 10% of 
the average error rate except for *CN, and *CN is one of the least 
represented adsorbates in the total strain dataset. The triple bond of 
*CN is distinct from the bonding of the other adsorbates consid-
ered; we anticipate that this can make *CN an outlier in terms of 
strain-adsorption response and that the performance on this adsor-
bate would improve with additional training data examples. There 
are no other immediately discernible trends in the error rate with 
respect to adsorbate composition, which means that the model is 
generalizing across the strain response of different adsorbates well. 
The adsorbate composition showed the largest error variance with-
in the test data. Figure 3E gives the same analysis as Fig. 3D but split 
by catalyst alloy element, and there is no outlying high-error element 
despite large differences in element representation across the overall 
dataset representation highlighted in fig. S1C. Looking beyond com-
position, additional error analysis is given by calculating the Pearson 
correlation coefficients across several different interpretable features 
in fig. S2. These correlation coefficients measure the quality of a 
linear fit between the prediction error on the test data and the fea-
tures of the test data Cat + Ads structures, giving an indication of 
feature importance. The only feature that we identified with a cor-
relation coefficient magnitude greater than 0.15 is the cumulative 
absolute displacement of the adsorbate atoms under strain. This is 
physically reasonable, as strains that induce large changes in the ad-
sorbate configuration will have both outsized impacts on the adsorption 
energy but, more importantly, are underrepresented in the training 
dataset. Given additional training data and/or training data filtered 
by adsorbate atom displacement, our model framework can be 
adapted to obtain higher accuracy on these large deformation strain 
patterns, which could be a better pool of structural candidates for 
adsorbate strain engineering.

Inference identifies alloy compositions suitable for surface 
strain engineering
Recall that the dataset used for training and testing the model con-
tained six random strains for each Cat + Ads structure plus an ad-
ditional zero-strain structure matching the bulk lattice constants. 
Considering that the inclusive 3D strain space between −3 and 3% 
at 0.5% resolution requires 13 grid points in each direction or 2197 
total DFT calculations per Cat + Ads structure, this training set cov-
ers 0.3% of the total strain space for each Cat + Ads structure. For 

inference, we generate 500 random strains in this 3D strain space 
(22% of the total space at the same grid resolution) for each Cat + 
Ads structure in the dataset (~445,000 total strain + structure com-
binations) and use the trained classifier model to predict the catego-
ry for Eads for each strain. Inference across all points in the dataset 
takes ~6 hours on 1 GPU; comparable DFT calculations would re-
quire more than 15,000 CPU-years of computational effort.

The ammonia synthesis reaction N2 + 3H2 → 2NH3 is one of the 
most important industrial chemical reactions in the world and one 
of the most highly studied in catalysis (46). The overall reaction is 
exergonic, but on many catalysts, the reaction pathway begins as 
exergonic and ends as endergonic because of the presence of stable 
adsorbed intermediates (47, 48). The rate determining step of the 
most-studied dissociative pathway in Haber-Bosch conditions can 
be one of several intermediate steps including dissociation of N2 
and various H + NHx → NHx+1 steps depending on the catalyst and 
the catalytic environment. A general guiding principle toward im-
proving ammonia synthesis catalyst performance is reducing the 
cumulative magnitude of the endergonic steps within the reaction 
pathway (48–50). Cu-based catalysts have been a recent focus of 
electrocatalytic nitrogen and nitrate reduction studies, which intro-
duces the additional complexity of competing reactions such as 
hydrogen evolution (51–53). While many features of the reaction 
conditions ultimately contribute to the ammonia synthesis rate, the 
adsorption energy describes the foundational interaction between 
the catalyst and relevant intermediates from which further microki-
netic analysis can be conducted (54). We choose the intermediate 
reaction *H + *N → *NH as an illustrative example for identifying 
catalyst candidates with high-strain engineering potential. Figure 4A 
plots an average of the ground state energy of the reactants *H + *N 
(black lines) and product *NH (red lines) grouped by catalyst alloy 
composition. This gives an indication of the relative adsorption en-
ergies between surface compositions in the strain-free case. All the 
intermediate energies are exergonic relative to the formation ener-
gies of both N2 and NH3, so raising the adsorption energy of these 
three intermediates reduces the gross endergonic energy of the dis-
sociative mechanism (55).

Figure 5 (B to D) plots summary inference results for all the 
Strained Cat + Ads structures containing *H (Fig. 4B), *N (Fig. 4C), 
and *NH (Fig. 4D) in the inference dataset. For each adsorbate, we 
plot a histogram of the inference results over strain space, grouped 
by the alloy composition of each catalyst surface (x axis) and the 
predicted class (bar color). We group by alloy element because cat-
alyst composition is practically one of the first decisions made in 
catalyst selection and it has a relatively high correlation coefficient 
compared to other independent variables such as Cu composition 
and surface plane (fig. S3). As an example, Fig. 4B indicates that the 
adsorption energy of *H on Cu-Pd surfaces is relatively unrespon-
sive to strain because nearly all strains in the inference set fall in the 
gray class Z. On Cu-Sb surfaces, strain tends to increase the *H ad-
sorption energy (less favorable interaction), with a strong bias toward 
pink class + over class Z and class −. For *N in Fig. 4C and *NH 
in Fig. 4D, the distributions differ substantially from the *H graph, 
reflecting the fundamental change in the adsorbate coordination 
from *H to *N; for example, Cu-Sb alloys bias toward − for *N and 
*NH, indicating that strain tends to decrease the adsorption energy 
(more favorable interaction). Cu-S alloys exhibit a large number 
of strains that raise the adsorption energy of both *N and *NH, and 
Fig. 5A shows that the ground state adsorption energy is also more 
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positive for Cu-S alloys relative to the other compositions. Raising 
the adsorption energy of *NH with strain is particularly desirable 
because the average zero-strain reaction enthalpy on Cu-S surfaces 
is −1.29 eV. This indicates that the Cu-S alloys are suitable targets 
for our goal of raising the adsorption energy of the *H + *N → *NH 
intermediates to reduce the magnitude of endergonic steps in the 
ammonia synthesis reaction.

Phase diagrams of strain-adsorption energy capture subtle 
structural effects
High-level analysis of the inference results in aggregate identified Cu-S 
alloys as candidates to increase the adsorption energy of *NH. Copper 

sulfide catalysts of varying compositions have been recently studied 
for ammonia synthesis via the electrochemical nitrogen reduction 
reaction, which has been suggested to occur at least partially through 
a dissociative mechanism (56, 57). To further examine the nature of 
*NH strain response, Fig. 6 plots phase diagrams of the infer-
ence results as a function of strain for two different catalyst compo-
sitions and surface planes in the Cu-S family. The uniaxial norm​​

√ 
_

 ​​1​ 2​ + ​​2​ 2​ ​​ and the shear component 6 are chosen as the pseudo-
order parameters because they capture most of the variation within 
strain space while retaining convenient 2D visualization. Empirical-
ly, despite combining 1 and 2 together, we find that these quanti-
ties generally give well-defined regions in strain space corresponding 
to one class of predictions. The color scale gives the classifier model 
prediction for each point in the inference dataset.

Figure 5A shows 500 inference points for Cu8S4(201):*NH; as 
indicated by the histograms in Fig. 5, most strains are labeled as 
class + and predicted to induce a positive change in the adsorption 
energy greater than 25 meV. The *NH adsorbate has a threefold 
coordination site of surface atoms (orange circles) that lie nearly 
parallel to the surface plane consisting of 2 Cu atoms and 1 S atom 
(Fig. 5A, bottom). At low shear strains, compressive uniaxial strain 
is predicted to reduce the adsorption energy and tensile uniaxial 
strain is predicted to increase the adsorption energy. This reflects 
that expanding the coordination environment lengthens the bonds 
between the surface atoms and the adsorbate, and compressing the 
coordination environment reduces the bond length, favoring in-
creased covalent interaction. At small uniaxial strains, positive shear 

Fig. 4. Inference results grouped across different catalysts and adsorbates 
identify Cu-S alloy surfaces as ideal strain engineering candidates. (A) Reac-
tion enthalpies averaged over zero-strain Cat + Ads structures for *H + *N ➔ 
*NH. Black lines represent reactant energies. Red lines represent product energies; 
the formation energy of NH is included in the product enthalpy. (B) Normalized 
histogram of inferred strain response classes for each Cat + Ads structure contain-
ing *H, grouped by catalyst alloy element. (C) Same as (B) but for *N as the adsor-
bate; (D) same as (B) for *NH as the adsorbate.

Fig. 5. Inferred strain phase diagram reflects changes in surface structure re-
sponse to strain. (A) Surface strain phase diagram resulting from model inference 
for Cu8S4(201):*NH. Color scale indicates the predicted class of adsorption energy 
response corresponding to the classes in Fig. 2. (B) Same as (A) for Cu4S2(110):*NH; 
there are two distinct regions of inferred strain responses, but most of the surface 
strain patterns are predicted to increase the adsorption energy of *NH. (C) The Cat 
+ Ads zero-strain atomistic structure corresponding to (A); the threefold coordina-
tion site (purple circles) includes 2 Cu atoms and 1 S atom in the plane of the sur-
face. (D) The Cat + Ads zero-strain atomistic structure corresponding to (B); the 
coordination site (purple circles) is similar, but the surface structure is much more 
dense than that in (A).
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strain is predicted to have little impact on adsorption energy, but neg-
ative shear strain is generally predicted to increase the adsorption 
energy. The qualitative difference in the shear predictions reflects the 
asymmetry of the surface structure, as different directions of strain 
are interpreted by the model to result in different adsorption en-
ergy changes given the same input graph of the zero-strain struc-
ture. Figure  5B shows the inferred strain phase diagram for 
Cu4S2(110):*NH; this surface originates from a different bulk crys-
tal structure with a similar calculated formation energy than that in 
Fig. 5A but contains the same elemental composition. The coordi-
nation environment for *NH appears qualitatively similar to that in 
Fig. 5A, a threefold site with 2 Cu atoms and 1 S atom that centers 
the adsorbing nitrogen. However, the predicted strain response is quite 
different; nearly all uniaxial strains increase the adsorption energy, 
and only a combination of compressive shear and uniaxial strain 
leads to no effect on the adsorption energy. We attribute this to sub-
tle differences in the ground state coordination environment that 

reflect the different surface structures; in Fig. 5B, both the ground 
states coordinating Cu-N bond (2.07 Å) and the N-S bond (1.68 Å) 
are nearly identical to their bulk ground-state counterparts in Cu2N 
(2.06 Å) and molecular S3N (1.6 Å). Therefore, any strains that dis-
rupt the ability of the surface to preferentially relax into this same 
coordinating geometry will destabilize the adsorbate relative to the 
ground state. Because the zero-strain structures are included in the 
training data, this relative bond length information from the surface 
can be taken up by the model during training. These results empha-
size that the structural information unique to a GNN approach is 
required to get the correct strain response for adsorption energy in 
otherwise chemically similar systems.

Identifying strains that break scaling relations using 
regressor predictions
Following identification of Cu-S surfaces as candidates for strain 
engineering in the context of ammonia synthesis, we apply the trained 
regressor model to the Cu4S2 (110) surface across all the adsorbate 
intermediates in the ammonia synthesis reaction. The strain-aware 
reaction diagram for this system is plotted in Fig. 6; the adsorption 
energies for multi-adsorbate systems are still calculated in the dilute 
limit and simply summed to give the energy of the intermediate 
state. The adsorption sites are randomly chosen for each intermedi-
ate to simulate dilute adsorption. The black reaction diagram lines 
give the ground state adsorption energies of each intermediate sys-
tem in the reaction at zero surface strain, while the red and blue 
lines give the respective minimum and maximum predicted strain 
adjustment to Eads across all predicted strain patterns. Phase diagrams 
for the regression inference results are inset for two intermediate 
states: *N + 3*H and *NH + 2 *H. We note that while the regressor 
inference diagram shown here and the classifier inference diagram 
shown in Fig. 5 do not perfectly agree, the general prediction trends 
and model inference diagrams match well. The green horizontal lines 
(selected  in the diagram) correspond to the same strain pattern 
across reaction intermediates, identified by the small green box in 
the phase diagram insets. This compressive uniaxial and shear strain 
pattern breaks the linear scaling relation between *N and *NH on the 
Cu4S2 (110) surface; the *N adsorption energy is increased under 
this strain pattern by 0.2 eV, while the *NH adsorption energy is 
decreased by 0.12 eV, reducing the overall uphill reaction enthalpy. 
These predictions do not contain any information about the transi-
tion state energy, and therefore, we cannot precisely determine 
whether the forward elementary reaction energy barrier increases 
or decreases under this compressive strain pattern. However, under 
the assumption that the transition state will be similar to either the 
products or the reactants, breaking a scaling relation between the 
reactants and products gives a one-sixth chance that the forward 
reaction barrier will decrease (Fig. 1C), increasing the desired reac-
tion rate. This probability is much higher than the probability of 
identifying a similar strain pattern through intuition or brute 
force search through strain space of a given system. This illustrates 
the powerful capability of the machine learning methodology as 
screening tools that rapidly identify regions of interest in strain 
space where scaling relations break and reaction barriers may be 
lowered. Follow-on studies using nudged elastic band first-principles 
(58) or machine learning (59) methods to calculate transition state 
energies on candidate strained surfaces will therefore have a much 
higher success rate when using our machine learning models as sys-
tem screening tools.

Fig. 6. Regressor-predicted strained reaction diagram for single-molecule 
NH3 synthesis on Cu4S2 (110). Horizontal lines give the energy of the adsorbate- 
surface system at each step of the ammonia synthesis reaction. Black lines corre-
spond to the ground state, zero-strain surface. Blue (red) lines give the minimum 
(maximum) strained adsorption energies for each system across all strain patterns 
in the inference dataset, predicted using the trained regressor model. The pink lines 
give an example of a strain pattern that breaks scaling relations for *N + 3 *H ➔ *NH + 2 *H; 
the strain pattern is taken from the phase diagram of the regressor inference results 
(insets). The compressive surface strain (both uniaxial and shear) raises the adsorption 
energy of *N + *H but lowers that of *NH + *H, reducing the reaction enthalpy.
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In addition to screening for strain patterns within a given cata-
lyst system that break scaling relations, it is important to identify 
which Cat + Ads complexes are most influenced by strain. Figure 
S4A gives 15 Cat + Ads complexes containing important ammonia 
synthesis adsorbates (*N2, *N, and *NH), which demonstrate the 
largest predicted range of Eads responses. We highlight the predicted 
regression strain-phase diagram for Eads and the ground state coordi-
nation site for several of these structures in fig. S4B. Zr4Cu2 (10-2): 
*N2 and Al4Cu2 (112): *N2 are interesting because of the high pre-
dicted strain control over N2 adsorption, particularly driving the 
adsorption to be more favorable. While hydrogenation of nitrogen 
is an important rate-determining step in ammonia synthesis, nitro-
gen adsorption and dissociation is rate-limiting for many catalysts 
and difficult to engineer because of the inertness of N2. The coordi-
nation site analysis for the Zr structure indicates that both N atoms 
are near the surface, such that tensile strain will separate them and 
assist with dissociation. Detailed individual study on these high- 
potential surface, adsorbate, and strain combinations is warranted 
to develop the relationship between transition state energies and strain 
when scaling relations are broken.

Strain-adsorption energy phase diagrams and catalyst 
degradation mechanisms
In computational catalysis design, the surface itself can be easily 
overlooked as a dynamic reaction participant, particularly when 
calculations are conducted in the dilute adsorbate limit. However, 
both single- and multi-atom adsorbates can interact with and sub-
stantially modify the surface structure, indicating possible catalyst 
degradation (modification of the desired active sites) or poisoning 
(blocking of active sites) mechanisms (60). The strain-adsorption 
energy phase diagrams generated by our model inference can be 
used to identify catalyst surfaces where strain induces very large 
adsorbate-specific adsorption energy changes, indicating potential 
surface reconstructions. Figure  7 plots inferred Eads strain re-
sponse phase diagrams for the same surface HfCu3(100) with two 
adsorbates with the same coordinating atom, *N and *NO2, located 
at the same adsorption site. The predicted strain response is nearly 
the exact inverse for the two complexes; for nearly all strain config-
urations, the adsorption energy is predicted to increase for *N and 
decrease for *NO2. To investigate this difference, we select a strain 
profile that falls within a region of the strain diagram exhibiting 
a different strain response for the two adsorbates (black circle); be-
cause these strains are not in the training or testing dataset, we run 
two DFT calculations to get the relaxed atomistic structures under 
strain and verify the model predictions. The zero-strain Cat, zero- 
strain Cat + Ads, and strained Cat + Ads complexes are shown from 
top to bottom in Fig. 7C for *N and Fig. 7D for *NO2. The DFT 
results confirm the model inference predictions: Under the same 
applied strain, the adsorption energy of HfCu3(100):*N increases 
by 30 meV, while for HfCu3(100):*NO2, the adsorption energy de-
creases by 180 meV. At the bulk lattice constant for HfCu3, the ad-
sorption of N shifts the Hf surface atom position by a very small 
amount to coordinate tightly with N, increasing the Hf-Cu surface 
bond length by 0.02 Å. The same adsorption process for NO2 leads 
to a substantial surface reconstruction, increasing the Hf-Cu sur-
face bond length by 0.61 Å and nearly decomposing *NO2 into *NO 
and *O. This change in both the coordination environment of the 
adsorbate and the surface structure leads to opposing responses to 
the same applied strain. When the surface is strained away from the 

bulk lattice constant, the adsorption becomes less favorable for *N, as 
the Hf-Cu bond is further stretched by 0.02 Å from the equilibrium 
value of the zero-strain surface. *NO2 adsorption causes relaxation 
to the same coordination environment as on the zero-strain surface 
without distorting the Hf-Cu surface bonds as much, leading to the 
180-meV decrease in the adsorption energy. This example shows 
that under the same surface strain, different adsorbates can induce 
local reconstruction that raises or reduces their interaction with the 
surface relative to the bulk surface. Regions of the strain phase dia-
gram for a given catalytic surface that show strongly opposing ef-
fects for related adsorbates can be highly promising for engineering 
reaction barriers but can also be further screened to check for sur-
face reconstructions that may lead to catalyst degradation or corro-
sion over time. For reaction systems where catalyst degradation or 
surface poisoning is a major issue, finding surfaces that show little 
change in adsorption energy (Z class) with strain may indicate 
surface stability with respect to mechanical deformations and indi-
cate a more robust catalyst. Last, the model predictions of systems 
outside the training/testing datasets are verified by independent 
first-principles calculation, validating the concept of the strain 

Fig. 7. Comparison of inferred strain phase diagrams for HfCu3(100) with *N 
and *NO2 adsorbed validated by DFT. (A) Strain phase diagram for HfCu3(100):*N 
shows most of the strains predicted to increase the adsorption energy. (B) Strain 
phase diagram for HfCu3(100):*NO2 shows most of the strains predicted to de-
crease the adsorption energy. Black circles in (A) and (B) correspond to the strain 
studied in (C). (C) Atomistic structure of (from top to bottom) the zero-strain Cat, 
the zero-strain Cat + Ads, and the strained Cat + Ads structures corresponding to 
the deformation shown (A). The strain increases the Hf-Cu surface bond length 
from the zero-strain case, increasing the adsorption energy. (D) Same as (C) for 
HfCu3(100):*NO2; the strain decreases the Hf-Cu bond length back toward the zero-
strain surface value with no adsorbate, enabling surface relaxation and making 
adsorption more energetically favorable.
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adsorption energy phase diagram to provide guidance for practical 
strain engineering of heterogeneous catalytic reactions.

DISCUSSION
Strain is a fundamental property of material surfaces and interfaces 
that plays an outsize role on the nanoscale, where interfacial prop-
erties dominate over bulk properties. A key challenge of rational 
catalyst design is bridging the wide gap between pristine in silico 
structures and experimentally realized structures in nanoparticles 
or surfaces. Nanomaterial catalysts are especially desirable because 
of the extremely high ratio of potentially active surface area to 
material volume, yet this is also where strain introduces the largest 
deviations in expected structure and function from the bulk. Unfor-
tunately, accounting for so many structural degrees of freedom 
results in a search space that is computationally intractable with 
physics-based modeling alone. Machine learning models can work 
in tandem with conventional simulation to interpolate structure prop-
erty relationships from a relatively small training set across these 
vast search spaces within computationally practical time scales. 
GNNs are early in their application to physical systems and do not 
yet regularly outperform simpler models. However, they offer a high 
potential performance ceiling because they can directly ingest struc-
tural information at a high level of detail, which otherwise must 
be interpreted, reduced, and converted to features manually. These 
models have the potential to generalize more effectively across com-
position and structure with larger training datasets. In addition, 
they may be able to generalize to defect structures much more easily 
than conventional machine learning models because the represent
ation changes with any structural change. Defect sites are especially 
interesting for catalyst design because defects are charge active and 
sensitive to strain (61).

In this work, we sought to develop model for the relationship 
between applied or intrinsic strain at a surface and the subsequent 
change in the adsorbate-surface interaction, which is fundamental 
to the microkinetic mechanism. To do so, we applied recent ad-
vances in symmetry-aware GNNs, synthesizing prior independent 
efforts to use machine learning for elastic strain engineering and 
adsorption energy prediction. We improved the model perform
ance on small training datasets by introducing a regularization 
scheme that incorporates prior physical knowledge across subsec-
tions of the graph. From our successful classification and regression 
task training, we identify Cu-S alloys as promising platforms for strain 
engineering of nitrogen-containing adsorbates and generate phase 
diagrams of predicted strain response for several catalyst-adsorbate 
complexes. We validate several inference predictions on strain pat-
terns outside the training domain with independent DFT calculations 
and identify subtle structural surface changes illustrating different 
ways that strain affects adsorption energy. This demonstrates how 
the model predictions can identify surface-adsorbate combinations 
that are susceptible to reconstruction under mechanical fluctuations, 
leading to catalyst degradation or surface poisoning. In poisoning- 
susceptible situations, strain-insensitive surfaces (gray regions of 
the phase diagrams) would be desirable because of the structural 
variance present in practical systems. These case studies show 
that the model is sensitive enough to distinguish the strain response 
of the same adsorbate on compositionally identical but structur-
ally different surfaces and different adsorbates on the same exact 
surface.

Applying these predictions in catalyst synthesis requires further 
analysis of reasonably achievable strain patterns in a synthesized 
material or core-shell nanoparticle. Some strain patterns occur spon-
taneously if they reduce the penalizing surface energy term, while others 
can be induced through epitaxial stress (5). A natural follow-on to 
this work would be training a similar GNN to predict the change in 
the surface energy of a slab under a particular strain without the 
adsorbate. With the two models together, strains that optimize the 
adsorption energies for a particular reaction can be filtered by their 
predicted effect on the surface energy; strains that reduce the 
surface energy would be more likely to spontaneously form in a 
nanoparticle or ultrathin epitaxially grown surface. After a machine 
learning–driven screening analysis on the reactant and product 
complexes of an elementary reaction, nudged elastic band calcula-
tions can verify the impact on the transition state energy imposed 
by the target strain pattern. Last, improvements in the precision of 
epitaxial material growth and core-shell nanoparticle synthesis by 
bottom-up and top-down approaches have enabled finer control 
over material structure for a given composition (62). Combining 
these experimental advances with a model that generalizes over 
different surface facets, strain states, and compositions will enable 
comparisons of different intermediates and reaction pathways on a 
particular surface using one model. We anticipate that flexible, 
structure-aware model architectures such as GNNs will improve 
catalyst design by bridging the gap between accurate but expensive 
first-principles simulations and experimentally relevant high dimen-
sional spaces such as strain.

MATERIALS AND METHODS
DFT calculations
First-principles DFT simulations were carried out using the Vienna 
ab initio simulation package (63, 64). Projector-augmented wave 
pseudo-potentials (65) are used with a cutoff energy of 400 eV for 
plane-wave expansions (66). The exchange correlation is treated us-
ing the Perdew-Burke-Ernzerhof–generalized gradient approxima-
tions. The atomistic structures of catalyst and catalyst + adsorbate 
slabs were relaxed using -centered k-point meshes of 40/a × 40/b × 
1 rounded to the nearest integer, where a and b are the lattice con-
stants of the slab supercell. For structural relaxations, the atomic 
positions of all unit and supercells are optimized until the force 
components on each atom are less than 0.03 eV/Å, and the electron-
ic energy is converged within 10−4 eV. A vacuum spacing of 20 Å 
was added to slab calculations to prevent interactions between peri-
odic images. Following the OCP dataset generation, atoms further 
than 2 Å from the surface are fixed in their relaxed bulk positions 
during slab relaxation to simulate the bulk lattice structure, while 
surface and adsorbate atoms are free to relax (35). Long-range van 
der Waals dispersion interactions were treated using the DFT-D3 
method developed by Grimme et al. (67, 68); these corrections are 
not part of the original Open Catalyst calculation parameters but we 
found that including them changed the distribution of adsorption 
energies. Individual molecules are relaxed in a 12 Å cubic unit cell 
using the same calculation parameters.

Dataset preparation
Zero-strain structures are converted to graphs for model input 
using the same graph generation procedure as the OCP. Atoms are 
nodes; edges are labeled with the distance between two atoms, and 
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the neighbor distances are calculated taking periodic boundary con-
ditions into account. The number of neighbors for each atom is capped 
at 60 and the cutoff radius for a neighbor interaction is 7 Å (35). Sub-
surface, surface, and adsorbate atom tags are included in the dataset 
to be used for node-level regularization. For data normalization, the 
input strain tensors and all energies are normalized to zero-mean, 
unit SD before model training; the normalization parameters are 
calculated independently for 1, 2, 6, and Eads, and these normal-
ization parameters are included with the publicly available datasets.

Model training
SchNet, Crystal Graph Convolutional Neural Networks (CGCNN), 
and DimeNet++ architectures were all tested for the classification 
and regression tasks; DimeNet++ consistently outperformed the 
other model architectures. All models are implemented using the 
PyTorch framework. Hyperparameter optimization was performed for 
all model parameters and training procedures on the classification 
task using an Asynchronous Successive Halving Algorithm im-
plemented in the Ray software package. The final model hyperpa-
rameters are included in table S4. To prevent overfitting, the model size 
was reduced until the training loss and the validation loss were sim-
ilar at the end of training. Train, validation, and test splits were ran-
domly generated using 80, 10, and 10% of the total dataset, respectively. 
Weighted sampling was used during training of the classifier to ad-
just for class imbalance between the −, Z, and + classes. 

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at https://science.org/doi/10.1126/ 
sciadv.abq5944
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