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SURFACE CHEMISTRY

Efficient catalyst screening using graph neural
networks to predict strain effects on adsorption energy

Christopher C. Price't, Akash Singh', Nathan C. Frey’t, Vivek B. Shenoy'*

Small-molecule adsorption energies correlate with energy barriers of catalyzed intermediate reaction steps, de-
termining the dominant microkinetic mechanism. Straining the catalyst can alter adsorption energies and break
scaling relationships that inhibit reaction engineering, but identifying desirable strain patterns using density
functional theory is intractable because of the high-dimensional search space. We train a graph neural network to
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predict the adsorption energy response of a catalyst/adsorbate system under a proposed surface strain pattern.
The training data are generated by randomly straining and relaxing Cu-based binary alloy catalyst complexes
taken from the Open Catalyst Project. The trained model successfully predicts the adsorption energy response for
85% of strains in unseen test data, outperforming ensemble linear baselines. Using ammonia synthesis as an ex-
ample, we identify Cu-S alloy catalysts as promising candidates for strain engineering. Our approach can locate
strain patterns that break adsorption energy scaling relations to improve catalyst performance.

INTRODUCTION

Structure-property relationships form the core of rational materials
design; understanding how changes in atomic structure affect emer-
gent material properties is a primary goal of computational materials
modeling (1, 2). The symmetric elastic strain tensor € quantifies the
change of a material’s periodic unit cell from an initial reference
state: the bulk ground state crystal structure that minimizes the free
energy of formation at zero stress. At a material surface, disruption
of bulk bonding changes the electron distribution at the surface and
induces surface stress, which can be alleviated by shifts in the atomic
positions corresponding to surface strain (3-5). These concepts ex-
tend to the rearrangement of surface atoms under any mechanical
force. Surface structural changes can dominate the structure-property
relationships at the nanoscale, where a substantial portion of the atoms
are located near the surface, and mechanical forces can originate
from epitaxial mismatch, bending, or other mechanically coupled
effects such as piezoelectricity (6, 7). Assuming a coordinate system
with a surface normal z component, surface strains are described
by three of the Voigt dimensions that are parallel to the plane of the
surface €; 56, but surface atoms can also relax in the out-of-plane
direction where periodicity is broken. Analysis of this continuous
three-dimensional (3D) surface strain space is typically limited to
single-element structures with low-index surfaces and high-symmetry
deformations (uniaxial or biaxial). This is because the search space
is vast and low-index surfaces typically form spontaneously under
bulk cleavage or epitaxial growth (8-12).

In small-molecule reactions such as ammonia synthesis, carbon
dioxide reduction, or nitrogen dioxide reduction, an effective het-
erogeneous catalyst reduces the energy of transition states in bond-
breaking or bond-building reactions, lowering the activation energy
barrier and increasing the likelihood that the reaction proceeds in
the desired direction (13). While these energy barriers are difficult
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to characterize directly, the adsorption energy of a molecular structure
on a surface has been successfully used as a proxy to describe catalyst
activity and assist in catalyst design (14). Linear scaling relationships
identified for adsorption energies of different molecules across
different surfaces reflect the similar bonding configurations of many
small molecules on valence d-band materials (15, 16). However, these
relationships imply that it is difficult to improve catalytic activity by
simply changing the catalyst material because the relative adsorp-
tion energies of neighboring molecular intermediates in the reaction
will not change (17, 18). Strain has been suggested as a promising
strategy to break these scaling relationships by changing the surface
bonding environment (19, 20), and there are multiple experimental
observations indicating that strain can effectively manipulate catalyst-
adsorbate interactions and modify catalyst activity across different
reactions (9, 11, 21-26). This is especially promising given recent ad-
vances in core-shell nanoparticle synthesis and nano-heterostructure
synthesis through deposition, allowing for strain control to be achieved
in high-surface area systems ideal for catalytic applications (27-30).
By breaking these scaling relations, including strain as a degree of
freedom in catalyst design greatly increases the complexity of an
already high-dimensional search space that includes the catalyst
structure and composition, the surface facet, the adsorption site, and
the adsorbate composition. Nanoparticles frequently contain high-
index surfaces that hold high activity potential but are relatively under-
studied compared to conventional epitaxial surfaces of metals (31).
Supervised machine learning models can learn nonlinear func-
tions in high-dimensional spaces from a relatively small subset of
representative training data. The success of machine learning ap-
proaches depends on the combination of the selected model and the
featurization of the data, which is the process of preparing and fil-
tering data before it passes into the model. Recently, neural net-
works using strain tensors as inputs were applied to predict the
strain response of the electronic structures of diamond and silicon
using a training set of density functional theory (DFT) calculations;
equivalent results using DFT alone would have required more than
100 million additional calculations, which is several orders of mag-
nitude beyond what is achievable with current computational capa-
bility (32, 33). These models enable deep elastic strain engineering
by learning the relationship between the target property (either the
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bandgap or full band structure) and the strain tensor from a small
amount of randomly dispersed training data, covering a region far
outside the conventional small-strain linear elastic approximation.
However, because the training data contain only one single-element
material, extending these predictions to a new material requires ad-
ditional training data and a new model. Generating large, accurate,
and statistically representative training datasets is a substantial bot-
tleneck in applying machine learning to crystalline materials (34);
recently, the Open Catalyst Project (OCP) released a dataset of more
than 1.2 million DFT-relaxed catalyst-adsorbate structures to address
this challenge and facilitate prediction of adsorption energies for
catalyst discovery and optimization (35). The dataset spans the
critical contributing factors to adsorption energy: bulk composition
and structure, surface facet, adsorbate site, and adsorbate composi-
tion. Modeling the adsorption energy requires fine-grained featuriza-
tions that contain information about the specific atomic positions
around the coordination site in an machine learning model. One
strategy is to construct these features explicitly, which improves
model interpretation but can require a lot of precomputation for
complex systems (36). A different strategy involves attempting to
use the atomic positions directly and allow the model to learn
from the atomic structures. Graph neural networks (GNNs) are a
candidate model class for this problem because they operate on
atomic structures-as-graphs, which preserve distance and neighbor
information for all the atoms in a structure. Several GNN architectures
have been developed and applied to predict molecular and crystalline
properties, including the adsorption energy of a handful of mole-
cules on bulk structure bimetallic alloy surfaces (37-42). While using
these models in the physical sciences remains an active research area,
the possibility of generalizing over compositional and structural de-
grees of freedom is promising for materials applications.

In this work, we synthesize the discussed approaches to investi-
gate the effect of general surface strain engineering on adsorption
energies of 27 important small-molecule adsorbates over a range
of Cu-binary alloy surfaces taken from the OCP dataset. Cu alloys
have generated recent broad interest in catalysis due to recent
success in identifying high-activity Cu-based catalysts for carbon
dioxide reduction using a combination of machine learning and
experiments (43). High-throughput DFT calculations generate a
strained training set by randomly applying strains to Cu-alloy catalyst-
adsorbate complexes. We find that a DimeNet++ GNN archi-
tecture combined with an additional neural network to include strain
information succeeds on classification and regression tasks to de-
termine the adsorption energy response to strain. Extrapolating the
model to predict the strain response of brand-new surface and ad-
sorbate combinations is more difficult, but our results enable sur-
face strain to be efficiently considered as a continuous engineering
parameter in catalyst design.

RESULTS

Dataset generation and machine learning workflow

For a particular catalyst-adsorbate complex structure (Fig. 1A, Cat
+ Ads), we will specify the compositions of the catalyst and the ad-
sorbate and the surface face with the shorthand X(hkl) : Y*, where X
is the surface composition, hkl are the Miller indices of the surface
facet, and Y* is the adsorbate with * specifying the initial adsorbing
atom. X(hkl). will be used to denote a strained catalyst. The adsorp-
tion energy E,4s is defined as the difference between the energy
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Fig. 1. Modeling workflow for data generation, training, and inference. (A) At-
omistic overview of the structures used to calculate the change in adsorption energy
with surface strain. Blue rectangles indicate inputs to the machine learning model;
green arrows indicate high-throughput DFT ionic relaxations. (B) Workflow for data-
set curation, assembly, and model training. From the Open Catalyst dataset, a
subset of binary Cu alloy catalysts with adsorbates is selected (see Supplementary
Materials). Random strains are generated for each alloy catalyst, and AE,q;s is calcu-
lated to form the targets for the training set. Green boxes indicate datasets. Orange
boxes are model outputs. Gray boxes are trainable models, and pink arrows show
model training. (C) After successful model training, inference can be performed
over strain space and surface-adsorbate combinations. Under one applied strain,
the adsorption energy of initial states (IS), transition states (TS), and final states (FS),
which scales with transition states, can shift in opposite directions, fundamentally
changing reaction energy barriers.

of the catalyst-adsorbate complex and the individual, separated
catalyst (Cat) and adsorbate (Ads; Fig. 1A). In vacuum, E,4 de-
pends on the structure and composition of the surface, the structure
and composition of the molecule, and the coordination site (loca-
tion on the surface where the molecule interacts). The strained ad-
sorption energy E,. is similarly defined as the difference between
the adsorbate-strained surface complex X(hkl), : Y* and the individ-
ual strained surface X(hkl), and adsorbate. We seek to predict the
change in adsorption energy AE,qs(e) = Eids — E,q4 of an adsorbate
on a surface due to a rotation-free applied strain in the plane of the
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surface described by the strain tensor €, with uniaxial components
€11 (g1) and €, (g2) and shear component €, (g¢). The sign and
magnitude of AE,4; has been shown to depend on the surface com-
position, facet, adsorbate composition, and nature of the de-
formation even in relatively simple systems such as Pt(111),:
N (19, 44).

The dataset development and model training workflow are sum-
marized in Fig. 1B. To develop a model to approximate AE,4(€), we
assemble a training dataset of strained Cat + Ads complexes using
first-principles DFT calculations using the public OCP dataset as a
starting point (Fig. 1B) (35). Recently, numerous copper alloy sur-
faces were identified as high-activity catalysts in CO, reduction
on the basis of their combined adsorption energies for *H and *CO
(43, 45). Building on these results, we extract a compositional sub-
set of the OCP dataset consisting of binary copper alloy catalysts
(CuxM;_, where M is an alloying element) and 27 adsorbates as the
scope for our strain investigation. A list of catalyst alloy elements and
adsorbates in the training dataset is given in table S1. For each Cat +
Ads complex in the filtered dataset, six unique strain tensors were
randomly generated by selecting uniform random values for €, €5,
and 2g4 between —3% and 3%. The bulk lattice structure (no strain
applied) was also included for each Cat + Ads complex to provide
E.4s- Each random strain tensor was applied to both the Cat struc-
ture and the Cat + Ads complex, generating a pair of structures that
were relaxed to enable calculation of E,. Taking the difference be-
tween Ejds and E,g; gives the final training labels AE,4s. The original
OCP catalyst-adsorbate supercells are large enough to minimize multi-
adsorbate interactions across the periodic boundary conditions of the
unit cell (35). Details of the structure formation and DFT relaxations
unique to this work are given in Materials and Methods. Six strains
were chosen to keep the energy calculations computationally tracta-
ble while including a diverse set of surfaces and molecules; random
sampling was selected to generate a uniform distribution of strain
orientations relative to the randomly distributed orientations of the
adsorbate coordinate environments. The inputs to the machine learn-
ing model training are the relaxed zero-strain Cat + Ads structure
(represented as a graph; details in Materials and Methods) and the
strain tensor, and the output is the change in adsorption energy af-
ter strain and relaxation. Therefore, only the Cat + Ads structure
relaxed at the bulk lattice parameters is required to make predic-
tions about the adsorption energy response across 3D surface strain
space. Further discussion of the model architecture choices is pre-
sented in the “Dataset inspection and model selection to incorpo-
rate strain” section and the text in the Supplementary Materials. With
a successfully trained model, this strain space can be efficiently ex-
plored across different catalyst-adsorbate systems to engineer reaction
energy diagrams (Fig. 1C). For comparison, evaluating the adsorp-
tion energy with 0.5% resolution in the 3D strain space of -3 to 3%
over €1, €;, and €¢ would require 2200 grid points in strain space
for each catalyst-adsorbate complex and more than 6.5 million total
structures. Using our calculation cost for training data generation
of ~18 hours per pair of Cat and Cat + Ads structures, this effort
would consume 72,000 central processing unit (CPU)-years of DFT
calculations versus 120 combined CPU-hours and graphics process-
ing unit (GPU)-hours required to train our model.

Dataset inspection and model selection to incorporate strain
After the high-throughput DFT dataset generation, we inspect the
resulting distribution of AE,4s to evaluate whether machine learning
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is warranted; a detailed discussion and analysis of the dataset distri-
bution is given in section S1 and fig. S1. The training dataset shows
no obvious trend in AE,q; across several catalyst and adsorbate de-
grees of freedom that a simple physics-based model can capture,
supporting the hypothesis that machine learning could be useful.
On the basis of this result, we seek to construct both classification
and regression tasks for our model. A summarized target AE,q; dis-
tribution is plotted together in Fig. 2 (A and B), where Fig. 2B zooms
into the central histogram bar in Fig. 2A. The data distribution con-
tains two long tails on both the positive and negative side that span
several orders of magnitude, and there is a high concentration of
values near zero corresponding to essentially no strain effect. For
catalyst design by strain engineering, we are primarily interested in
determining whether a strain will significantly increase, decrease, or
have no effect on the adsorption energy of a particular adsorbate.
Therefore, we bin the dataset into three categories: AE 4, < — 25 meV
(class —A, blue), | AEygs| <25 meV (class Z, gray), and AE,q, > 25 meV
(class +A, pink) to define a classification task for our model; Twenty-
five milli-electron volts (kgT evaluated at T = 300 K) is chosen as
the threshold to classify a significant strain response, and class Z
is short for zero effect. We verify that each of these classes contains
a representative distribution of the different Cat + Ads structures.
Figure 2C shows the histogram of the fraction of member training
examples that originate from a particular Cat + Ads complex in
each class. For example, consider the Cu3Sb (210):*CHOH complex
shown in Fig. 1A. If we apply four random surface strains (Fig. 2D)
to this structure and two of them result in AE,4; < =25 meV (Fig. 2E),
then they will contribute to the 0.4 bar of the —A histogram in
Fig. 2C. Likewise, strains with AE,4s > 25 meV contribute to the +A
histogram, and | AE,qs| < 25 meV strains (including all ground state
structures and identity matrix strains by definition) contribute to Z. From
these histograms, we conclude that most Cat + Ads complexes
appear in multiple classes; therefore, accurate classification cannot
be achieved on structural or compositional information alone. Only
Z contains some complexes with 100% membership, and this is rea-
sonable because we expect that certain Cat + Ads complexes will be
relatively immune to surface strain. The total class splits in the train-
ing set are given in table S2. The class distribution analysis confirms
that classifying the strain response into broad buckets still requires
both the structure and the specific strain pattern to successfully pre-
dict. For the regression task, we simply normalize the target AE,q;
distribution to zero mean and unit SD and calculate the mean absolute
error (MAE) of the predicted values against the true values (additional
details in Materials and Methods).

To establish a performance baseline and justify adding model
complexity, we test an ensemble linear baseline model by fitting a
separate linear regression to each unique group of catalyst alloy-
element and adsorbate in the training data (80% of the dataset). We
then use each individual regression model to predict the class of any
matching alloy-element + adsorbate structures in the test data (10%
of the dataset held out from training; see Materials and Methods).
We ask the baseline model to do some generalization over the spe-
cific catalyst composition structure because this is a potential fea-
ture of the GNN that expands predictive capability. Figure 2E
gives the normalized confusion matrix for this baseline classifier,
which shows the fraction of true samples predicted to fall in each
class by the model; each row sums to 1, and the correct model pre-
dictions appear along the matrix diagonal. This model performs better
than random guessing but still misidentifies the class of ~45% of
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Fig. 2. Data distribution across strain pattern and composition supports classification task, plus ensemble linear classifier performance. (A) Total histogram and
(B) zoomed histogram of AE,qs in the training dataset and assigned classes. Class —A (AE,qs < —25 meV) is blue. Class Z (| AEags | < 25 meV) is gray. Class +A (AEags > 25 meV)
is pink. (C) Histograms of fractional class membership grouped by Cat + Ads structure show even distribution of Cat + Ads structures across the three assigned classes.
(D) Example of histogram generation; of five hypothetical strains for Cu3Sb:*CHOH, two fall in —A, one falls in Z, and two fall in +A [highlighted histogram bars in (C)].
(E) Confusion matrix for the ensemble linear regression baseline model on test data. The x axis gives the model predicted classes, and the y axis gives the true values; the

diagonal gives the frequency of correct predictions within each class.

the test data, with an F1 score of 0.58 for the classification task. The
average MAE across each ensemble linear model for the regression
task is 0.17 eV, above the typical threshold in catalysis of 0.1 eV. Ad-
ditional classification and regression metrics for the ensemble lin-
ear baseline are given in table S3. Because neither the classification
nor regression baseline performance is sufficient to be practically
useful, we proceed to training and testing GNN hypothesis.

Model selection, training, and performance

From the training set analysis, we recognize that we need a model
that can generalize over both structural and compositional degrees
of freedom. GNNs are a promising candidate for this application
because differentiating the strain response across different surfaces
and molecules requires incorporating detailed structural infor-
mation into the input. We adapted and modified the DimeNet++
model architecture, first introduced by Klicpera et al. and used
in the Open Catalyst challenge, to predict adsorption energies
from initial structure (35, 39, 40). The model architecture is shown in
Fig. 3A. The graph represents atoms as nodes and the interactions
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between atomic pairs as edges within a cutoff radius, chosen to be
7 A with a maximum of 60 nearest neighbors (based on original
hyperparameters in the Open Catalyst Dataset) (35). The network
embeds each node (atom) of the graph as a set of directional pair-
wise interactions, and the edges are embedded using a set of spherical
basis functions that incorporate bond angle information. The basis
set choice and embedding strategy provides rotational invariance to
the model; more details are available in (39, 40). After the graph
representation of the Cat + Ads complex is passed through the
standard DimeNet++ model, we pad the node level output with
zeros to the size of the largest structure in the dataset and append
the normalized strain tensor, injecting the second component of
the input data. The combination of the DimeNet++ output and the
strain tensor is lastly passed through a small fully connected neural
network before the output is summed to give the final prediction.
Adapting a GNN architecture originally designed for molecules to
our low-symmetry Cat + Ads structures and strain inputs moti-
vated specific architecture choices, data augmentation strategies, and
regularization schemes to obtain sufficient model performance.
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Fig. 3. Model architecture, task definition, and task results on test data. (A) Model architecture used for classification and regression tasks. The relaxed zero-strain
Cat + Ads structure is input to DimeNet++. The strain tensor is appended to the padded DimeNet++ output and passed through a fully connected neural network (Strain-
Block). Regularization is performed on node-level output by classifying nodes as adsorbate, surface, or bulk. AE,qs classification and regression are graph-level tasks.
(B) Normalized confusion matrix for the GNN + strain model on test data. Each row matches a different true category, while each column matches a predicted category;
the diagonal boxes give the percentage of correct predictions for each class. (C) Results from the GNN regression task, zoomed in bottom. Graph background colors give
the true class, while point colors give the predicted class based on the regression. (D) Error analysis in the test data as a function of adsorbate composition and training
representation. The x axis gives the error rate within each adsorbate, while the y axis gives the training data representation; *CN stands out as the outlying adsorbate.

(E) Same as (D) but grouped by alloy element; no significant outliers are observed.

Details and rationale behind these decisions are discussed in sections
S2 and S3.

The performance metrics for the GNN + Strain classifier and the
GNN + Strain regressor on test data (10% randomly withheld;
details in Materials and Methods) from the training procedure are
summarized in Fig. 3 (B and C). As in Fig. 2E, the normalized con-
fusion matrix in Fig. 3B gives the fraction of true samples in the test
data that were predicted to fall in each class by the classifier; each
row sums to 1, and the correct model predictions appear along the
matrix diagonal. On the same set of training and testing data as the
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linear baseline, the GNN + Strain classifier outperforms the ensem-
ble linear baseline by at least 20% in every category. In addition, the
error rate misidentifying —A and +A classes [thereby confusing a
large positive (negative) AE,qs with a large negative (positive) AE,qs]
is, on average, one-third of the same linear baseline error, and this
is the costliest error to make when evaluating the impact of strain
on a reaction diagram. The regression results are shown over the
full test dataset in Fig. 3C (top) [zoomed in Fig. 3C (bottom)]; the
MAE for the regression model is 0.08 eV, which is within the target
range for machine learning approximators in catalysis (35). The
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points are colored according to the class predicted by the regressor,
such that any points in a shaded region of a different color indicate
a misclassification by the regression model, while matching points
indicate a success. As expected, this model has more difficulty dis-
tinguishing positive and negative AE,4s near the MAE, which is
where many of the samples lie. Overall, the regularized model archi-
tecture (detailed in table S4) performs well on both the classification
and regression tasks. Supplied with a larger training dataset, perform-
ance may further improve if these tasks are combined, for example,
training a separate regressor model within each predicted class. Model
performance decreased when the test data were constructed of new
Cat + Ads compositions completely unseen in the training data; this
type of extrapolation is a goal for the field of physical GNNs but
requires larger datasets than the one generated in this work.

Incorrect predictions in the test data are further analyzed in Fig. 3D
to assess the variance in the correct model predictions across com-
positional degrees of freedom. The x axis in Fig. 3D gives the percent
predicted incorrectly within each adsorbate subgroup that appears
in the randomly selected test data. All adsorbates fall within 10% of
the average error rate except for *CN, and *CN is one of the least
represented adsorbates in the total strain dataset. The triple bond of
*CN is distinct from the bonding of the other adsorbates consid-
ered; we anticipate that this can make *CN an outlier in terms of
strain-adsorption response and that the performance on this adsor-
bate would improve with additional training data examples. There
are no other immediately discernible trends in the error rate with
respect to adsorbate composition, which means that the model is
generalizing across the strain response of different adsorbates well.
The adsorbate composition showed the largest error variance with-
in the test data. Figure 3E gives the same analysis as Fig. 3D but split
by catalyst alloy element, and there is no outlying high-error element
despite large differences in element representation across the overall
dataset representation highlighted in fig. S1C. Looking beyond com-
position, additional error analysis is given by calculating the Pearson
correlation coefficients across several different interpretable features
in fig. S2. These correlation coefficients measure the quality of a
linear fit between the prediction error on the test data and the fea-
tures of the test data Cat + Ads structures, giving an indication of
feature importance. The only feature that we identified with a cor-
relation coefficient magnitude greater than 0.15 is the cumulative
absolute displacement of the adsorbate atoms under strain. This is
physically reasonable, as strains that induce large changes in the ad-
sorbate configuration will have both outsized impacts on the adsorption
energy but, more importantly, are underrepresented in the training
dataset. Given additional training data and/or training data filtered
by adsorbate atom displacement, our model framework can be
adapted to obtain higher accuracy on these large deformation strain
patterns, which could be a better pool of structural candidates for
adsorbate strain engineering.

Inference identifies alloy compositions suitable for surface
strain engineering

Recall that the dataset used for training and testing the model con-
tained six random strains for each Cat + Ads structure plus an ad-
ditional zero-strain structure matching the bulk lattice constants.
Considering that the inclusive 3D strain space between -3 and 3%
at 0.5% resolution requires 13 grid points in each direction or 2197
total DFT calculations per Cat + Ads structure, this training set cov-
ers 0.3% of the total strain space for each Cat + Ads structure. For
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inference, we generate 500 random strains in this 3D strain space
(22% of the total space at the same grid resolution) for each Cat +
Ads structure in the dataset (~445,000 total strain + structure com-
binations) and use the trained classifier model to predict the catego-
ry for AE,4; for each strain. Inference across all points in the dataset
takes ~6 hours on 1 GPU; comparable DFT calculations would re-
quire more than 15,000 CPU-years of computational effort.

The ammonia synthesis reaction N, + 3H, — 2NHj is one of the
most important industrial chemical reactions in the world and one
of the most highly studied in catalysis (46). The overall reaction is
exergonic, but on many catalysts, the reaction pathway begins as
exergonic and ends as endergonic because of the presence of stable
adsorbed intermediates (47, 48). The rate determining step of the
most-studied dissociative pathway in Haber-Bosch conditions can
be one of several intermediate steps including dissociation of N,
and various H + NH, — NH,,, steps depending on the catalyst and
the catalytic environment. A general guiding principle toward im-
proving ammonia synthesis catalyst performance is reducing the
cumulative magnitude of the endergonic steps within the reaction
pathway (48-50). Cu-based catalysts have been a recent focus of
electrocatalytic nitrogen and nitrate reduction studies, which intro-
duces the additional complexity of competing reactions such as
hydrogen evolution (51-53). While many features of the reaction
conditions ultimately contribute to the ammonia synthesis rate, the
adsorption energy describes the foundational interaction between
the catalyst and relevant intermediates from which further microki-
netic analysis can be conducted (54). We choose the intermediate
reaction *H + *N — *NH as an illustrative example for identifying
catalyst candidates with high-strain engineering potential. Figure 4A
plots an average of the ground state energy of the reactants *H + *N
(black lines) and product *NH (red lines) grouped by catalyst alloy
composition. This gives an indication of the relative adsorption en-
ergies between surface compositions in the strain-free case. All the
intermediate energies are exergonic relative to the formation ener-
gies of both N, and NH3, so raising the adsorption energy of these
three intermediates reduces the gross endergonic energy of the dis-
sociative mechanism (55).

Figure 5 (B to D) plots summary inference results for all the
Strained Cat + Ads structures containing *H (Fig. 4B), *N (Fig. 4C),
and *NH (Fig. 4D) in the inference dataset. For each adsorbate, we
plot a histogram of the inference results over strain space, grouped
by the alloy composition of each catalyst surface (x axis) and the
predicted class (bar color). We group by alloy element because cat-
alyst composition is practically one of the first decisions made in
catalyst selection and it has a relatively high correlation coefficient
compared to other independent variables such as Cu composition
and surface plane (fig. S3). As an example, Fig. 4B indicates that the
adsorption energy of *H on Cu-Pd surfaces is relatively unrespon-
sive to strain because nearly all strains in the inference set fall in the
gray class Z. On Cu-Sb surfaces, strain tends to increase the *H ad-
sorption energy (less favorable interaction), with a strong bias toward
pink class +A over class Z and class —A. For *N in Fig. 4C and *NH
in Fig. 4D, the distributions differ substantially from the *H graph,
reflecting the fundamental change in the adsorbate coordination
from *H to *N; for example, Cu-Sb alloys bias toward —A for *N and
*NH, indicating that strain tends to decrease the adsorption energy
(more favorable interaction). Cu-S alloys exhibit a large number
of strains that raise the adsorption energy of both *N and *NH, and
Fig. 5A shows that the ground state adsorption energy is also more
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Fig. 4. Inference results grouped across different catalysts and adsorbates
identify Cu-S alloy surfaces as ideal strain engineering candidates. (A) Reac-
tion enthalpies averaged over zero-strain Cat + Ads structures for *H + *N =
*NH. Black lines represent reactant energies. Red lines represent product energies;
the formation energy of NH is included in the product enthalpy. (B) Normalized
histogram of inferred strain response classes for each Cat + Ads structure contain-
ing *H, grouped by catalyst alloy element. (C) Same as (B) but for *N as the adsor-
bate; (D) same as (B) for *NH as the adsorbate.

positive for Cu-S alloys relative to the other compositions. Raising
the adsorption energy of *NH with strain is particularly desirable
because the average zero-strain reaction enthalpy on Cu-S surfaces
is —1.29 V. This indicates that the Cu-S alloys are suitable targets
for our goal of raising the adsorption energy of the *H + *N — *NH
intermediates to reduce the magnitude of endergonic steps in the
ammonia synthesis reaction.

Phase diagrams of strain-adsorption energy capture subtle
structural effects

High-level analysis of the inference results in aggregate identified Cu-S
alloys as candidates to increase the adsorption energy of *NH. Copper
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Fig. 5. Inferred strain phase diagram reflects changes in surface structure re-
sponse to strain. (A) Surface strain phase diagram resulting from model inference
for CugS4(201):*NH. Color scale indicates the predicted class of adsorption energy
response corresponding to the classes in Fig. 2. (B) Same as (A) for CusS,(110):*NH;
there are two distinct regions of inferred strain responses, but most of the surface
strain patterns are predicted to increase the adsorption energy of *NH. (C) The Cat
+ Ads zero-strain atomistic structure corresponding to (A); the threefold coordina-
tion site (purple circles) includes 2 Cu atoms and 1 S atom in the plane of the sur-
face. (D) The Cat + Ads zero-strain atomistic structure corresponding to (B); the
coordination site (purple circles) is similar, but the surface structure is much more
dense than that in (A).

sulfide catalysts of varying compositions have been recently studied
for ammonia synthesis via the electrochemical nitrogen reduction
reaction, which has been suggested to occur at least partially through
a dissociative mechanism (56, 57). To further examine the nature of
*NH strain response, Fig. 6 plots phase diagrams of the infer-
ence results as a function of strain for two different catalyst compo-
sitions and surface planes in the Cu-S family. The uniaxial norm

\Ve; + &5 and the shear component g4 are chosen as the pseudo-
order parameters because they capture most of the variation within
strain space while retaining convenient 2D visualization. Empirical-
ly, despite combining €; and €, together, we find that these quanti-
ties generally give well-defined regions in strain space corresponding
to one class of predictions. The color scale gives the classifier model
prediction for each point in the inference dataset.

Figure 5A shows 500 inference points for CugS4(201):*NH; as
indicated by the histograms in Fig. 5, most strains are labeled as
class +A and predicted to induce a positive change in the adsorption
energy greater than 25 meV. The *NH adsorbate has a threefold
coordination site of surface atoms (orange circles) that lie nearly
parallel to the surface plane consisting of 2 Cu atoms and 1 S atom
(Fig. 5A, bottom). At low shear strains, compressive uniaxial strain
is predicted to reduce the adsorption energy and tensile uniaxial
strain is predicted to increase the adsorption energy. This reflects
that expanding the coordination environment lengthens the bonds
between the surface atoms and the adsorbate, and compressing the
coordination environment reduces the bond length, favoring in-
creased covalent interaction. At small uniaxial strains, positive shear
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Fig. 6. Regressor-predicted strained reaction diagram for single-molecule
NHj; synthesis on Cu,S; (110). Horizontal lines give the energy of the adsorbate-
surface system at each step of the ammonia synthesis reaction. Black lines corre-
spond to the ground state, zero-strain surface. Blue (red) lines give the minimum
(maximum) strained adsorption energies for each system across all strain patterns
in the inference dataset, predicted using the trained regressor model. The pink lines
give an example of a strain pattern that breaks scaling relations for *N + 3 *H=> *NH + 2 *H;
the strain pattern is taken from the phase diagram of the regressor inference results
(insets). The compressive surface strain (both uniaxial and shear) raises the adsorption
energy of *N + *H but lowers that of *NH + *H, reducing the reaction enthalpy.

strain is predicted to have little impact on adsorption energy, but neg-
ative shear strain is generally predicted to increase the adsorption
energy. The qualitative difference in the shear predictions reflects the
asymmetry of the surface structure, as different directions of strain
are interpreted by the model to result in different adsorption en-
ergy changes given the same input graph of the zero-strain struc-
ture. Figure 5B shows the inferred strain phase diagram for
CuyS,(110):*NH; this surface originates from a different bulk crys-
tal structure with a similar calculated formation energy than that in
Fig. 5A but contains the same elemental composition. The coordi-
nation environment for *NH appears qualitatively similar to that in
Fig. 5A, a threefold site with 2 Cu atoms and 1 S atom that centers
the adsorbing nitrogen. However, the predicted strain response is quite
different; nearly all uniaxial strains increase the adsorption energy,
and only a combination of compressive shear and uniaxial strain
leads to no effect on the adsorption energy. We attribute this to sub-
tle differences in the ground state coordination environment that
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reflect the different surface structures; in Fig. 5B, both the ground
states coordinating Cu-N bond (2.07 A) and the N-S bond (1.68 A)
are nearly identical to their bulk ground-state counterparts in Cu,N
(2.06 A) and molecular S;N (1.6 A). Therefore, any strains that dis-
rupt the ability of the surface to preferentially relax into this same
coordinating geometry will destabilize the adsorbate relative to the
ground state. Because the zero-strain structures are included in the
training data, this relative bond length information from the surface
can be taken up by the model during training. These results empha-
size that the structural information unique to a GNN approach is
required to get the correct strain response for adsorption energy in
otherwise chemically similar systems.

Identifying strains that break scaling relations using
regressor predictions

Following identification of Cu-S surfaces as candidates for strain
engineering in the context of ammonia synthesis, we apply the trained
regressor model to the CuyS, (110) surface across all the adsorbate
intermediates in the ammonia synthesis reaction. The strain-aware
reaction diagram for this system is plotted in Fig. 6; the adsorption
energies for multi-adsorbate systems are still calculated in the dilute
limit and simply summed to give the energy of the intermediate
state. The adsorption sites are randomly chosen for each intermedi-
ate to simulate dilute adsorption. The black reaction diagram lines
give the ground state adsorption energies of each intermediate sys-
tem in the reaction at zero surface strain, while the red and blue
lines give the respective minimum and maximum predicted strain
adjustment to E,q, across all predicted strain patterns. Phase diagrams
for the regression inference results are inset for two intermediate
states: *N + 3*H and *NH + 2 *H. We note that while the regressor
inference diagram shown here and the classifier inference diagram
shown in Fig. 5 do not perfectly agree, the general prediction trends
and model inference diagrams match well. The green horizontal lines
(selected € in the diagram) correspond to the same strain pattern
across reaction intermediates, identified by the small green box in
the phase diagram insets. This compressive uniaxial and shear strain
pattern breaks the linear scaling relation between *N and *NH on the
CuyS; (110) surface; the *N adsorption energy is increased under
this strain pattern by 0.2 eV, while the *NH adsorption energy is
decreased by 0.12 eV, reducing the overall uphill reaction enthalpy.
These predictions do not contain any information about the transi-
tion state energy, and therefore, we cannot precisely determine
whether the forward elementary reaction energy barrier increases
or decreases under this compressive strain pattern. However, under
the assumption that the transition state will be similar to either the
products or the reactants, breaking a scaling relation between the
reactants and products gives a one-sixth chance that the forward
reaction barrier will decrease (Fig. 1C), increasing the desired reac-
tion rate. This probability is much higher than the probability of
identifying a similar strain pattern through intuition or brute
force search through strain space of a given system. This illustrates
the powerful capability of the machine learning methodology as
screening tools that rapidly identify regions of interest in strain
space where scaling relations break and reaction barriers may be
lowered. Follow-on studies using nudged elastic band first-principles
(58) or machine learning (59) methods to calculate transition state
energies on candidate strained surfaces will therefore have a much
higher success rate when using our machine learning models as sys-
tem screening tools.
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In addition to screening for strain patterns within a given cata-
lyst system that break scaling relations, it is important to identify
which Cat + Ads complexes are most influenced by strain. Figure
S4A gives 15 Cat + Ads complexes containing important ammonia
synthesis adsorbates (*N2, *N, and *NH), which demonstrate the
largest predicted range of AE,4s responses. We highlight the predicted
regression strain-phase diagram for AE,q; and the ground state coordi-
nation site for several of these structures in fig. S4B. Zr,Cu, (10-2):
*N; and AlCu, (112): *N; are interesting because of the high pre-
dicted strain control over N, adsorption, particularly driving the
adsorption to be more favorable. While hydrogenation of nitrogen
is an important rate-determining step in ammonia synthesis, nitro-
gen adsorption and dissociation is rate-limiting for many catalysts
and difficult to engineer because of the inertness of N,. The coordi-
nation site analysis for the Zr structure indicates that both N atoms
are near the surface, such that tensile strain will separate them and
assist with dissociation. Detailed individual study on these high-
potential surface, adsorbate, and strain combinations is warranted
to develop the relationship between transition state energies and strain
when scaling relations are broken.

Strain-adsorption energy phase diagrams and catalyst
degradation mechanisms

In computational catalysis design, the surface itself can be easily
overlooked as a dynamic reaction participant, particularly when
calculations are conducted in the dilute adsorbate limit. However,
both single- and multi-atom adsorbates can interact with and sub-
stantially modify the surface structure, indicating possible catalyst
degradation (modification of the desired active sites) or poisoning
(blocking of active sites) mechanisms (60). The strain-adsorption
energy phase diagrams generated by our model inference can be
used to identify catalyst surfaces where strain induces very large
adsorbate-specific adsorption energy changes, indicating potential
surface reconstructions. Figure 7 plots inferred AE,q4, strain re-
sponse phase diagrams for the same surface HfCu3(100) with two
adsorbates with the same coordinating atom, *N and *NO,, located
at the same adsorption site. The predicted strain response is nearly
the exact inverse for the two complexes; for nearly all strain config-
urations, the adsorption energy is predicted to increase for *N and
decrease for *NO,. To investigate this difference, we select a strain
profile that falls within a region of the strain diagram exhibiting
a different strain response for the two adsorbates (black circle); be-
cause these strains are not in the training or testing dataset, we run
two DFT calculations to get the relaxed atomistic structures under
strain and verify the model predictions. The zero-strain Cat, zero-
strain Cat + Ads, and strained Cat + Ads complexes are shown from
top to bottom in Fig. 7C for *N and Fig. 7D for *NO,. The DFT
results confirm the model inference predictions: Under the same
applied strain, the adsorption energy of HfCu3(100):*N increases
by 30 meV, while for HfCu3(100):*NO,, the adsorption energy de-
creases by 180 meV. At the bulk lattice constant for HfCus, the ad-
sorption of N shifts the Hf surface atom position by a very small
amount to coordinate tightly with N, increasing the Hf-Cu surface
bond length by 0.02 A. The same adsorption process for NO, leads
to a substantial surface reconstruction, increasing the Hf-Cu sur-
face bond length by 0.61 A and nearly decomposing *NO, into *NO
and *O. This change in both the coordination environment of the
adsorbate and the surface structure leads to opposing responses to
the same applied strain. When the surface is strained away from the
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Fig. 7. Comparison of inferred strain phase diagrams for HfCu3(100) with *N
and *NO; adsorbed validated by DFT. (A) Strain phase diagram for HfCu3(100):*N
shows most of the strains predicted to increase the adsorption energy. (B) Strain
phase diagram for HfCu3(100):*NO; shows most of the strains predicted to de-
crease the adsorption energy. Black circles in (A) and (B) correspond to the strain
studied in (C). (C) Atomistic structure of (from top to bottom) the zero-strain Cat,
the zero-strain Cat + Ads, and the strained Cat + Ads structures corresponding to
the deformation shown (A). The strain increases the Hf-Cu surface bond length
from the zero-strain case, increasing the adsorption energy. (D) Same as (C) for
HfCus(100):*NOy; the strain decreases the Hf-Cu bond length back toward the zero-
strain surface value with no adsorbate, enabling surface relaxation and making
adsorption more energetically favorable.

bulk lattice constant, the adsorption becomes less favorable for *N, as
the Hf-Cu bond is further stretched by 0.02 A from the equilibrium
value of the zero-strain surface. *NO, adsorption causes relaxation
to the same coordination environment as on the zero-strain surface
without distorting the Hf-Cu surface bonds as much, leading to the
180-meV decrease in the adsorption energy. This example shows
that under the same surface strain, different adsorbates can induce
local reconstruction that raises or reduces their interaction with the
surface relative to the bulk surface. Regions of the strain phase dia-
gram for a given catalytic surface that show strongly opposing ef-
fects for related adsorbates can be highly promising for engineering
reaction barriers but can also be further screened to check for sur-
face reconstructions that may lead to catalyst degradation or corro-
sion over time. For reaction systems where catalyst degradation or
surface poisoning is a major issue, finding surfaces that show little
change in adsorption energy (Z class) with strain may indicate
surface stability with respect to mechanical deformations and indi-
cate a more robust catalyst. Last, the model predictions of systems
outside the training/testing datasets are verified by independent
first-principles calculation, validating the concept of the strain
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adsorption energy phase diagram to provide guidance for practical
strain engineering of heterogeneous catalytic reactions.

DISCUSSION

Strain is a fundamental property of material surfaces and interfaces
that plays an outsize role on the nanoscale, where interfacial prop-
erties dominate over bulk properties. A key challenge of rational
catalyst design is bridging the wide gap between pristine in silico
structures and experimentally realized structures in nanoparticles
or surfaces. Nanomaterial catalysts are especially desirable because
of the extremely high ratio of potentially active surface area to
material volume, yet this is also where strain introduces the largest
deviations in expected structure and function from the bulk. Unfor-
tunately, accounting for so many structural degrees of freedom
results in a search space that is computationally intractable with
physics-based modeling alone. Machine learning models can work
in tandem with conventional simulation to interpolate structure prop-
erty relationships from a relatively small training set across these
vast search spaces within computationally practical time scales.
GNNss are early in their application to physical systems and do not
yet regularly outperform simpler models. However, they offer a high
potential performance ceiling because they can directly ingest struc-
tural information at a high level of detail, which otherwise must
be interpreted, reduced, and converted to features manually. These
models have the potential to generalize more effectively across com-
position and structure with larger training datasets. In addition,
they may be able to generalize to defect structures much more easily
than conventional machine learning models because the represent-
ation changes with any structural change. Defect sites are especially
interesting for catalyst design because defects are charge active and
sensitive to strain (61).

In this work, we sought to develop model for the relationship
between applied or intrinsic strain at a surface and the subsequent
change in the adsorbate-surface interaction, which is fundamental
to the microkinetic mechanism. To do so, we applied recent ad-
vances in symmetry-aware GNNs, synthesizing prior independent
efforts to use machine learning for elastic strain engineering and
adsorption energy prediction. We improved the model perform-
ance on small training datasets by introducing a regularization
scheme that incorporates prior physical knowledge across subsec-
tions of the graph. From our successful classification and regression
task training, we identify Cu-S alloys as promising platforms for strain
engineering of nitrogen-containing adsorbates and generate phase
diagrams of predicted strain response for several catalyst-adsorbate
complexes. We validate several inference predictions on strain pat-
terns outside the training domain with independent DFT calculations
and identify subtle structural surface changes illustrating different
ways that strain affects adsorption energy. This demonstrates how
the model predictions can identify surface-adsorbate combinations
that are susceptible to reconstruction under mechanical fluctuations,
leading to catalyst degradation or surface poisoning. In poisoning-
susceptible situations, strain-insensitive surfaces (gray regions of
the phase diagrams) would be desirable because of the structural
variance present in practical systems. These case studies show
that the model is sensitive enough to distinguish the strain response
of the same adsorbate on compositionally identical but structur-
ally different surfaces and different adsorbates on the same exact
surface.
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Applying these predictions in catalyst synthesis requires further
analysis of reasonably achievable strain patterns in a synthesized
material or core-shell nanoparticle. Some strain patterns occur spon-
taneously if they reduce the penalizing surface energy term, while others
can be induced through epitaxial stress (5). A natural follow-on to
this work would be training a similar GNN to predict the change in
the surface energy of a slab under a particular strain without the
adsorbate. With the two models together, strains that optimize the
adsorption energies for a particular reaction can be filtered by their
predicted effect on the surface energy; strains that reduce the
surface energy would be more likely to spontaneously form in a
nanoparticle or ultrathin epitaxially grown surface. After a machine
learning-driven screening analysis on the reactant and product
complexes of an elementary reaction, nudged elastic band calcula-
tions can verify the impact on the transition state energy imposed
by the target strain pattern. Last, improvements in the precision of
epitaxial material growth and core-shell nanoparticle synthesis by
bottom-up and top-down approaches have enabled finer control
over material structure for a given composition (62). Combining
these experimental advances with a model that generalizes over
different surface facets, strain states, and compositions will enable
comparisons of different intermediates and reaction pathways on a
particular surface using one model. We anticipate that flexible,
structure-aware model architectures such as GNNs will improve
catalyst design by bridging the gap between accurate but expensive
first-principles simulations and experimentally relevant high dimen-
sional spaces such as strain.

MATERIALS AND METHODS

DFT calculations

First-principles DFT simulations were carried out using the Vienna
ab initio simulation package (63, 64). Projector-augmented wave
pseudo-potentials (65) are used with a cutoff energy of 400 eV for
plane-wave expansions (66). The exchange correlation is treated us-
ing the Perdew-Burke-Ernzerhof-generalized gradient approxima-
tions. The atomistic structures of catalyst and catalyst + adsorbate
slabs were relaxed using I'-centered k-point meshes of 40/a x 40/b x
1 rounded to the nearest integer, where a and b are the lattice con-
stants of the slab supercell. For structural relaxations, the atomic
positions of all unit and supercells are optimized until the force
components on each atom are less than 0.03 eV/A, and the electron-
ic energy is converged within 107 eV. A vacuum spacing of 20 A
was added to slab calculations to prevent interactions between peri-
odic images. Following the OCP dataset generation, atoms further
than 2 A from the surface are fixed in their relaxed bulk positions
during slab relaxation to simulate the bulk lattice structure, while
surface and adsorbate atoms are free to relax (35). Long-range van
der Waals dispersion interactions were treated using the DFT-D3
method developed by Grimme et al. (67, 68); these corrections are
not part of the original Open Catalyst calculation parameters but we
found that including them changed the distribution of adsorption
energies. Individual molecules are relaxed in a 12 A cubic unit cell
using the same calculation parameters.

Dataset preparation

Zero-strain structures are converted to graphs for model input
using the same graph generation procedure as the OCP. Atoms are
nodes; edges are labeled with the distance between two atoms, and
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the neighbor distances are calculated taking periodic boundary con-
ditions into account. The number of neighbors for each atom is capped
at 60 and the cutoff radius for a neighbor interaction is 7 A (35). Sub-
surface, surface, and adsorbate atom tags are included in the dataset
to be used for node-level regularization. For data normalization, the
input strain tensors and all energies are normalized to zero-mean,
unit SD before model training; the normalization parameters are
calculated independently for €, €5, €5, and AE,q,, and these normal-
ization parameters are included with the publicly available datasets.

Model training

SchNet, Crystal Graph Convolutional Neural Networks (CGCNN),
and DimeNet++ architectures were all tested for the classification
and regression tasks; DimeNet++ consistently outperformed the
other model architectures. All models are implemented using the
PyTorch framework. Hyperparameter optimization was performed for
all model parameters and training procedures on the classification
task using an Asynchronous Successive Halving Algorithm im-
plemented in the Ray software package. The final model hyperpa-
rameters are included in table S4. To prevent overfitting, the model size
was reduced until the training loss and the validation loss were sim-
ilar at the end of training. Train, validation, and test splits were ran-
domly generated using 80, 10, and 10% of the total dataset, respectively.
Weighted sampling was used during training of the classifier to ad-
just for class imbalance between the —-A, Z, and +A classes.

SUPPLEMENTARY MATERIALS

Supplementary material for this article is available at https://science.org/doi/10.1126/
sciadv.abq5944
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