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Abstract—Supervisory control and data acquisition/industrial
control systems (SCADA/ICSs) networks are becoming more
vulnerable to attacks that exploit the interdependence of security
weaknesses at the atomic level to compromise system-level secu-
rity. Attack graphs are an effective approach to depict these
complex attack scenarios, assisting security administrators in
determining how to best safeguard their systems. However, due
to time and financial constraints, it is frequently not possible to
address all atomic-level flaws at the same time. In this article, we
propose a method for automatically detecting a minimal set of
critical attacks that, when defended against, render the system
secure. Finding a minimal label cut is typically an NP-complete
problem. However, we propose a linear complexity approxima-
tion that uses the attack graph’s strongly connected components
(SCCs) to create a simplified version of the graph in the form of
a tree over the SCCs. Then, we perform an iterative backward
search over this tree to find a set of backward-reachable SCCs,
as well as their outward edges and labels, in order to find a cut of
the tree with the fewest labels, which is a critical attack set. We
put our proposed method to the test on real-world case studies,
such as IT and SCADA networks for a cyber–physical system
for water treatment, and outperformed previous state-of-the-art
algorithms in terms of approximation accuracy and/or computa-
tional speed. Our solution provides security administrators with
a practical and efficient method for prioritizing efforts to address
vulnerabilities in SCADA/ICS networks.

Index Terms—Attack graph, critical attacks set, cyber–physical
systems, industrial control systems (ICSs), Internet of
Things (IoT), min label cut (MLC), SCADA systems, security.

I. INTRODUCTION

S
UPERVISORY control and data acquisition/industrial

control systems (SCADA/ICSs) are utilized by numer-

ous infrastructure monitoring and control systems, such as

energy grids, nuclear facilities, transportation systems, and

water/gas distribution networks. With the advent of cloud com-

puting and the Internet of Things (IoT), these systems have
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become increasingly interconnected and Internet accessible,

making them susceptible to cyber attacks [1], [2]. During the

first half of 2018, 41.2% of ICS computers were targeted

at least once, according to Kaspersky Lab researchers [3].

In 2016, the National Cybersecurity and Communications

Integration Center (NCCIC) documented 290 cyber attacks

against industrial control systems in the United States [4].

Attack graphs are a valuable tool for identifying complex

attack scenarios and system-level vulnerabilities [5]. These

graphs are directed, labeled graphs that illustrate the possi-

ble sequence of attacks an attacker may employ to exploit a

system. Each vertex on the graph represents a specific system’s

status, such as the privileges of an adversary on various devices

and assets. In addition, each edge represents a distinct attack

that an adversary could execute to obtain additional privileges.

By analyzing an attack graph, system administrators can gain

an in-depth understanding of how an attacker could potentially

compromise their system by exploiting the interdependence

between component-level atomic vulnerabilities. Furthermore,

attack graphs assist system administrators in optimizing the

allocation of defensive resources by providing an informative

representation of potential attack scenarios.

An attack path within an attack graph that an adversary can

use to compromise a system-level security property is the path

from the starting node to the final node. The objective of a

system administrator is to define a minimum number of attacks

that can be blocked so that there is no viable path between the

initial and final nodes. In graph theory, we refer to this as a

“cut.” Since the attack graph is a directed labeled graph, deter-

mining the minimal number of attacks whose prevention would

result in disconnection of the initial node from the final nodes

is an example of a min label cut (MLC) [6], [7] that requires

determining the minimal number of atomic attack labels whose

edges, when removed from the graph, eliminate all paths from

the initial node to the final node. A direct application of an

MLC to define a set of critical assaults is computationally

infeasible due to the fact that MLC is typically an NP-complete

problem [6], [7], necessitating an approximation strategy.

In this article, we propose an approach to enhance the accu-

racy and computational efficiency of the MLC approximation.

Specifically, we introduce an automated method to identify

critical attack sets that has linear complexity. The first step

involves computing and generating an abstract version of the

attack graph, which is a tree over its strongly connected com-

ponents (SCCs). SCCs are subgraphs of a directed graph that

are strongly connected, meaning that there is a directed path

from any vertex in the component to every other vertex in
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the component. Next, we use a backward search over the

abstracted attack graph, starting from the terminal node and

progressing one hop per step, to identify the set of nodes that

can reach the terminal node in an increasing number of steps.

We also identify the labels of their outgoing edges, each of

which creates a cut. Finally, we choose the cut with the mini-

mal labels as the SCC-induced min label cut (SCCiMLC). By

adopting this approach, we can substantially improve the accu-

racy and computational efficiency of the MLC approximation.

Furthermore, our method is computationally tractable, making

it a viable solution for practical applications.

To validate the proposed SCCiMLC algorithm, we present

two case studies: 1) a computer network system and 2) a

water treatment SCADA CPS system from the iTrust Lab [8].

To further determine the SCCiMLC algorithm’s efficiency,

we compare it against both an exact and an approximation

algorithm for computing an MLC. For the former, we first gen-

eralize the exact MLC algorithm proposed by [9], which works

only for a disjoint undirected graph with a label frequency

of at most 2, to general labeled graphs. We also compare

our SCCiMLC algorithm to the state-of-the-art approximation

algorithm of [10], one shown to possess the best approxima-

tion factor reported in the literature. It proposes computing an

approximation to an MLC by optimizing over a 0/1-polytope

corresponding to an “approximate” hitting set (more details

are included in Section II-C).

The main contributions of this article can be summarized

as follows.

1) A novel linear, automated, SCCs based, a critical attack

set identification algorithm called SCCiMLC.

2) An exact MLC algorithm inspired by [9], by way of its

generalization.

3) Implementation of the proposed algorithm, the general-

ized exact algorithm, and a state-of-art approximation

algorithm.

4) A comparison of the proposed SCCiMLC algorithm’s

performance to the other two implemented algorithms,

by way of their validation against an IT network

example and a water treatment CPS provided by the

iTrust Lab [8]. The comparison and validation results

are quite encouraging: the proposed SCCiMLC has

the same accuracy as that of the exact algorithm and

the same speed as that of the approximation algorithm,

yet is more than 65 times faster than the exact algorithm.

A. Related Work

There are a few papers in the literature that have

demonstrated that the MLC is an NP-complete problem

and given alternate approximation algorithms to solve it.

Sheyner et al. [6] demonstrated the NP-completeness of identi-

fying the minimum critical attacks set by reducing the problem

of minimum coverage to MLC. NP-completeness was estab-

lished by [7] by reducing the Hitting-Set problem to MLC,

and they also introduced a greedy algorithm to the Hitting-

Set problem that selects the elements with the highest hit

first. Zhang et al. [11] showed that a relaxed version of MLC

(one that seeks a certain approximation to MLC) is itself

Fig. 1. Critical attacks set computation architecture.

NP-Complete. They proposed an approximation algorithm for

finding a solution to MLC within a factor of O(
√

n), where

n is the number of edges in the input graph. Dutta et al. [10]

improved upon this work by proposing an approximating

solution to MLC within a factor of O(n2/3). Their approach

computes a 0/1 polytope corresponding to an “approximate”

hitting set. Zhang and Fu [9] proposed an exact algorithm for

computing an MLC for the special case where the graph is

a disjoint undirected graph with a label frequency of at most

2, in polynomial complexity. This article also proposed an

approximation algorithm for a more general undirected graph

(however, the attack graphs are directed graphs).

The solutions put forth by other researchers also reduced

the amount of time and money needed to implement secu-

rity measures. Noel et al. [12] and Wang et al. [13] studied

“minimum-cost network hardening” by exploring dependency

among network components (as opposed to the more basic

dependencies of atomic attacks as in the case of an attack

graph). Cho et al. [14] used generalized stochastic Petri nets

to quantitatively evaluate control network intrusion probability.

Sawilla and Ou [15] and Sawilla and Burrell [16] proposed the

use of Google’s page rank-based approach for network secu-

rity, in which the idea was to successively remove the highest

page-ranked nodes to maximally decrease overall connectivity.

Alhomidi and Reed [17] proposed a genetic algorithm for find-

ing a minimum cut set in AND/OR dependency attack graphs.

Hassin et al. [18] studied the related problem of finding a min-

imum label spanning tree and a minimum label path (but that

does not necessarily induce a cut).

We leveraged our past work [19], [20], to generate and

construct the attack graphs required to validate the proposed

SCCiMLC. Our automated attack graph generation and visu-

alization (A2G2V) is an algorithm for model-based auto-

mated generation of attack graphs that extends the initial

work of [7]. A2G2V, in turn, relies on our method for

the automated network device and vulnerability identification

(ANDVI) tool [21] that passively observes network traffic

to discover network connectivity and to fingerprint network

devices, and next refers to vulnerability databases to enumer-

ate device vulnerabilities as well as associated atomic attack

actions. See the workflow in Fig. 1. A2G2V uses the output

of ANDVI (device vulnerabilities/attacks and their connec-

tivity) to enumerate all nesting of atomic attack actions to

produce an attack graph that can compromise a system-level
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Fig. 2. Attack graph example.

security property, whereas the current paper proposes a new

linear complexity SCCiMLC.

II. CRITICAL ATTACKS SET COMPUTATION

Atomic attacks are the most basic form of attack that an

attacker can carry out. (See examples in Section III.) An attack

graph is an initialized and terminated graph capturing all pos-

sible sequences of atomic attacks that start from the source

vertex and end at the terminal vertex. This is formalized in

the following definition.

Definition 1: An attack graph is a tuple, G = (V, E, s,

t, L, �), where V is the set of vertices (each representing an

attack status), E ⊆ V × V is the set of edges connecting one

vertex to another (each representing an attack status change),

s ∈ V is the source vertex, t ∈ V is the terminal vertex,

L is a set of labels (each representing an atomic attack), and

� : E → L is the function that labels each edge with an atomic

attack.

Fig. 2 shows an example of an attack graph in which each

edge sequence, beginning with the source vertex s and ending

at terminal t, is an attack sequence that may jeopardize the

system being attacked. Model-based approaches to comput-

ing an attack graph, given the atomic attack actions, system

description, and security properties of interest, are reported

in [7], [19], and [20].

Atomic attack actions can be eliminated by removing their

root cause vulnerabilities (for example, by supplying their

available software patches), which equates to the removal of

their corresponding labeled edges from the attack graph. It is

possible to mitigate a subset of the atomic attacks to protect

the entire system, removing the corresponding labeled edges

from the attack graph and disconnecting the terminal vertex

from the source vertex. Such a subset of atomic attacks may

therefore be viewed as causing a labeled cut in the graph.

Definition 2: Given a labeled attack graph G = (V, E, s,

t, L, �), a labeled cut is simply a set of labels L′ ⊆ L such

that the removal of edges carrying those labels disconnects

the source and terminal vertices. A set of attack labels whose

disablement can disconnect a given attack graph is called a

critical attacks set.

Finding a minimal critical attack set is an instance of an

MLC problem [10]. MLC is known to be an NP-complete

problem [10], [11].

A. Strongly Connected Components-Induced Min Label Cut

A solution to the MLC problem is approximated by the

proposed SCCiMlC algorithm, which identifies a critical attack

set in linear time in the following manner. It first generates an

abstracted tree (i.e., an acyclic graph) version of the attack

graph identified by the graph over the vertex set of its SCCs,

found by using the depth-first algorithm of [22].

Definition 3: For a graph (V, E), a subgraph (C ⊆ V,

EC ⊆ E) is an SCC if for all u, v ∈ C, there exists a path

v1 = u . . . vn = v, with (vi, vi+1) ∈ E(1 ≤ i ≤ n − 1), connect-

ing u to v, such that v1, . . . , vn ∈ C. The edge set EC of the

SCC C is simply defined to be EC := E ∩ (C × C).

Fig. 2 depicts encirclements representing four different

SCCs for its underlying attack graph. To obtain an SCCiMLC,

our algorithm explores an abstracted acyclic graph defined

over the vertex set of the SCCs of a given attack graph.

Definition 4: For the attack graph (V, E, s, t, L, �),

we obtain an abstracted graph over its set of SCCs,

(V, E, Cs, Ct, L, �), where V is the set of SCCs of (V, E);

E := {(C, C′) ∈ V × V|∃u ∈ C, v ∈ C′, (u, v) ∈ E} is

the set of edges connecting any two SSCs; Cs, Ct ∈ V

are the SCCs containing s, t, respectively (i.e.,

s ∈ Cs, t ∈ Ct); and for any edge (C, C′) ∈ E ,

�((C, C′)) = {l ∈ L|∃(u, v) ∈ E : u ∈ C, v ∈ C′, l = �(u, v)},
i.e., it is the union of all labels of the edges connecting

C to C′.
Note that the abstracted graph over the SCCs is acyclic,

i.e., it is a tree graph. Finally, starting from the terminal

node, SSCiMLC uses a backward search to iteratively define

a set of nodes that can reach the terminal node in k or fewer

steps (k ≥ 0), as well as the associated cuts in the form of

the outgoing edges of the k-step backward reachable nodes.

The cut with the smallest number of labels then yields an

SCCiMLC.

For example, in Fig. 2, starting from the terminal SCC, the

source SCC can be reached in two hops. The label cut of the

SCC edges at the first hop (shown by a green line) is of size 2

(consisting of labels {L4, L5}), while the label cut of the SCC

edges at the second hop (also shown by another green line) is

of size 3 (consisting of labels {L2, L3, L6}). Thus, SCCiMLC

for the attack graph of Fig. 2 is {L4, L5}.
An iterative backward search of one hop per iteration is per-

formed over the abstracted tree graph over the SCCs starting

from its terminal SCC Ct with an initial value of V0 = Ct, to

identify the set of vertices Vk ⊆ V that can reach the terminal

one in k or fewer iterations. We also set the initial values of

outgoing edges Ek ⊆ E of Vk and their labels Lk ⊆ L, to be

E0 = L0 = ∅. These proposed SCCiMLC steps are formalized

in Algorithm 1 that iterates over k until Vk = V .

Remark 1: The algorithm picks i∗ to be the index with

the smallest number of labels (i∗ = arg min1≤i≤k+1 |Li|); Li∗

is then the desired SCCiMLC that approximates the MLC.

Identifying a minimum set of vulnerabilities as the optimum

choice implicitly assumes that patching each such vulnerabil-

ity has an identical cost, as is also the case with the cited prior

related works. If the cost to patch different vulnerabilities are
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Algorithm 1 SCCiMLC Algorithm

1: Input: G = (V, E, s, t, L, �)

2: Output: A critical attacks set, CA ⊆ L

3: main

4: Compute SCCs of G as in Definition 3

5: Generate the tree over the SCCs, (V, E, Cs, Ct, L, �) as in

Definition 4

6: Initialize k = 0,Vk = {Ct}, Ek = ∅, Lk: = �(Ek);

7: While Vk �= V:

8: Vk+1:= {C ∈ V|∃C′ ∈ ∪i≤kVi s.t. (C, C′) ∈ E};
9: Ek+1:= {(C, C′) ∈ E |C ∈ Vk+1, C′ ∈ ∪i≤kVi};

10: Lk+1:= �(Ek+1), k = k + 1;

11: i∗:= arg min1≤i≤k+1 |Lk|;
12: CA:= Li∗ .

13: end

different, then this variability of cost can be easily factored into

our algorithm; in each iteration of the backward search over the

graph of SCCs, we would compute the cost of the cut of that

iteration by adding the cost of patching each vulnerability of

that cut, and then we would pick the cut having the minimum

cost. This can be achieved by simply replacing the definition of

i∗ in the “Terminate” step as: i∗ := arg min1≤i≤k+1

∑
l∈Li

c(l),

where c(l) is the cost of patching the vulnerability represented

by l ∈ L.

Remark 2: In Algorithm 1, the generation of the SCCs, the

construction of the tree over the SCCs, and the backward

reachability over that tree to find an SCCiMLC, can all be

performed in complexity that is linear with respect to the size

of the given attack graph, i.e., in the number of its nodes plus

edges. Hence, the proposed Algorithm 1 for finding SCCiMLC

is also of linear complexity in terms of the number of nodes

plus edges of the underlying attack graph.

We implemented the above algorithm for finding an

SCCiMLC in the C language. To compare the results with

respect to the state-of-the-art, we also implemented an exact

MLC algorithm inspired by [9] and the approximation algo-

rithm [10]; these two algorithms and their implementations are

described below.

B. Implementing Exact MLC

In an attempt to provide a polynomial complexity algo-

rithm for computing an exact MLC for a special case, Zhang

and Fu [9] proved that when restricted to disjoint-path undi-

rected graphs, MLC can be solved in polynomial time if the

label-frequency (the number of times that a label appears in

a path) is 2. For comparison with the proposed SCCiMLC,

we extended the algorithm in [9] to a general directed-attack

graph. Note that the time complexity of the extended algorithm

is no longer polynomial but rather exponential in the size of

the attack graph (as expected for an NP-complete problem).

Reference [9, Algorithm 3.4] is initialized by arbitrarily

picking a path and all its edge labels, say L0 ⊆ L (those edge

labels from a candidate set of labels to be removed as part

of a label cut). Let Lk be the set of labels at the kth iteration

(from past k selected paths). If cutting edges with labels Lk

Algorithm 2 MLC Exact Algorithm

1: Input: G = (V, E, s, t, L, �)

2: Output: A critical attack set, CA ⊆ L

3: main

4: Initalize k = 0, Lk = φ;

5: while Lk does not induce a cut

6: Pick any path p ∈ G such that �(p) ∩ Lk = ∅
7: Lk+1: = Lk ∪ �(p), k = k + 1

8: Identify all subsets A: = {A ⊆ Lk}
9: Pick a minimal subset A ∈ A that induces a cut

10: CA:= A

11: end

does not induce a cut, then there must exist a s–t path, none

of whose labels are included in Lk. In the iterative step, such a

path is found, and all its labels are added to Lk to obtain Lk+1.

The iteration terminates when a set of labels Lk that induces

a label cut is found. The size of this label cut can be further

reduced by searching over all subsets of Lk to find a minimal

subset CA ⊆ Lk that also induces a cut. The exact algorithmic

steps are formalized in Algorithm 2.

We implemented the above exact MLC algorithm in C and

used the implementation to compare the performance against

our own proposed algorithm in Section III.

C. Implementing State-of-the-Art Approximation

Algorithm [10]

A few prior studies have proposed polynomial complexity

algorithms for approximating a solution to the MLC problem.

As noted above in Section I-A, some of those cannot be

applied to general attack graphs, making them not suitable

for comparison with our algorithm (for example, the algo-

rithm in [7] requires an atomic attack to appear only once on

an s–t path, which is generally not the case, as can be seen

from our examples in Section III). Among the ones that are

directly applicable to a general attack graph, we chose [10]

that provides the best-known approximation factor (so it can

be considered to be state-of-the-art) for implementation and

comparison.

It is known from [7] that finding an MLC is an instance of

a hitting-set problem: Given a set of labels, one for each s–t

path, namely, L := {Lp ⊆ L | p a s–t path in G}, a hitting-

set is a minimal subset CA ⊆ L that intersects with each Lp,

i.e., ∀p ∈ G:Lp ∩ CA �= ∅. Dutta et al. [10] proposed find-

ing an approximation to the MLC solution by optimizing over

a 0/1-polytope which corresponds to a hitting set for the set

L. Note a 0/1-polytope in d-dimensional space is the convex

hull of a set of d-dimensional endpoints Q ⊆ {0, 1}d, whose

vertices only have 0/1-coordinates (i.e., it is a convex sub-

set of the hypercube {0, 1}d with a constraint on its vertices

being 0/1).

For formulating the hitting-set problem as a 0/1-polytope

optimization problem, let PG denote the set of all s–t paths

in G. Define a set of endpoints in the |L|-dimensional unit

cube

Q:=
{

x ∈ {0, 1}|L| | ∀p ∈ PG, ∃lk ∈ �(p) : x(k) = 1
}
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where lk denotes the kth label in the set L. In other words,

each x ∈ Q “selects” at least one label from each s–t path.

Next, solve for

min
x∈Q

∑

k∈{1,...,|L|}
x(k).

The solution to the above optimization problem provides an

exact solution to MLC. To obtain an approximate solution, a

relaxed version of the hitting-set problem is formulated in [10],

where the end-points are allowed to be unit-interval valued

numbers

Q̂ :=
{

x ∈ [0, 1]|L| | ∀p ∈ PG:|p| ≤ |V|
2
3 ,

∃lk ∈ �(p) : x(k) ≥
1

|V|
2
3

}

and the following optimization is performed:

min
x∈Q̂

∑

k∈{1,...,|L|}
x(k).

Let x∗ ∈ Q̂ be the minimizer. Then, a label cut can be found

as follows:

L′ :=
{

lk ∈ L | x∗(k) ≥
1

|V|
2
3

}

E′ :=
{
e ∈ E | �(e) �∈ L′}

L′′ := aMLC for G′ =
(
V, E′, s, t, L − L′, �

)

CA := L′ ∪ L.′′

For implementing the above hitting-set solution-based compu-

tation of an approximation to MLC, we used MATLAB code

from [23], modifying the “separation oracle” function to match

the separation hyperplane algorithm in [10].

III. CASE STUDIES: COMPUTER NETWORKS AND

WATER TREATMENT SCADA CPS

Realistic applications of a computer network example and

a real-world water treatment testbed of the iTrust Lab [8] was

chosen as case studies to demonstrate the applicability of the

proposed SCCiMLC algorithm and to compare its performance

to both the exact algorithm (our generalization of [9]) and the

state-of-art approximation algorithm of [10].

A. Computer Network Case Studies

As a concrete example illustrating the problem of critical

attacks set identification, we adapt the networked-system

example from [6], [7], [19], and [20] shown in Fig. 3.

There are three hosts in the network: Host-0, where the

attacker is located, and the two target hosts Host-1 and Host-2.

Host-1 runs sshd and ftp, while Host-2 runs ftp and database.

As a result, this system has four possible atomic attacks

per host. There is also a firewall that separates the targets

from the remainder of the network. The firewall places no

restrictions on access control over network traffic flow. The

network traffic between network hosts and external sources is

supervised by an intrusion detection system (IDS). The IDS

Fig. 3. 3-host networked-system example.

Fig. 4. 3-host networked-system generated attack graph.

can monitor the flow of traffic between (Host-0; Host-1) and

(Host-0; Host-2), but not between (Host-1; Host-2) because

of its network positioning. The full system description and

its implementation within our A2G2V tool can be found

in [19] and [20]. Fig. 4 shows the automatically generated

attack graph of this system using our tool A2G2V [19], [20],

and that is also graphically displayed automatically by the

tool. The A2G2V input includes network topology, defined in

architecture analysis and development language (AADL) [24],

the atomic attack actions for each network device (and

their pre-/post-conditions) specified in the AADL AGREE

annex [25].
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Fig. 5. SCADA architecture of water treatment system.

B. Water Treatment SCADA CPS Case Study

Fig. 5 shows a CPS water treatment testbed in the iTrust

laboratory [8]. The system consists of thirteen hosts, Host-0

through Host-12: Host-0 is the remote station; Host-1 is the

SCADA server; Host-2 is the SCADA workstation; Host-3

is the engineer’s laptop; Host-4 is the control room; Host-5

is the operator’s human machine interface (HMI); Host-6 to

Host-11 are the programmable logic controllers (PLCs) that

control the physical process through sensors and actuators;

Host-12 is a remote terminal unit (RTU). We suppose that

the attacker has been able to secure access to the remote

station (Host-0). A firewall separates Host-0, Host-1, Host-2,

Host-3, and the remainder of the system. The firewall restricts

access to Host-1, Host-2, and Host-3 from the remote sta-

tion. while allowing access to the remainder of the system

from Host-1, Host-2, and Host-3. The communications with

and among the PLCs go through Host-4 and Host-5. The

PLCs communicate with Host-4 and Host-5 but not with each

other. The remote station (Host-0) communicates with the RTU

(Host-12). The RTU (Host-12) communicates with PLC-6.

The SCADA system’s components and services are all

Siemens products. In general, different SCADA devices may

be programmed differently (e.g., to interact with different sen-

sors or actuators). However, for the application, we considered

the devices to have a large degree of homogeneity for the fact

that their underlying software and OS have the same core. In

the water treatment cyber–physical system of our case study,

all the PLCs are Siemens PLC s7-1500, and although each

has its own behavior, network traffic, and connectivity to the

field devices (as they control different processes), they all use

the same OS and have been programmed using the same soft-

ware (Siemens TIA portal). This is also true for the SCADA

monitoring devices, namely, the control room SCADA server.

Online databases [26], [27] list the following vulnerabilities

in these devices.

1) The SCADA server is an SINEMA server, with these

listed vulnerabilities.

a) iws: An unauthenticated code can be remotely

executed through the built-in Port 4999/TCP and

Port 80/TCP Web server if the attacker has access

to the server.

b) lmw: If the affected products are not installed in

their default file path (C:\\ProgramFiles\\∗ or

the localized equivalent), local users of Microsoft

Windows can increase their privileges.

2) The SCADA workstation is an SIMATIC WinCC flexi-

ble runtime, with these listed vulnerabilities.

a) rmm: The flexible remote control module in

SIMATIC Wincc transmits weakly secured cre-

dentials over the network. Attackers who collect

the module network packets can reconstruct the

credentials.

b) inws: Flexible Siemens Wincc allows attackers that

have remote user access to insert arbitrary Web

script or HTML through unspecified vectors.

3) The engineering Laptop runs a Wincc TIA portal, with

these listed vulnerabilities.

a) bac: When a user logs in, the program sets pre-

dictable authentication token/cookie values. This

helps an attacker to avoid authentication checks.

b) inws: The Wincc TIA portal allows remote attack-

ers to insert arbitrary Web scripts or HTML using

unknown vectors.

4) The HMI runs a Wincc runtime advanced, with these

listed vulnerabilities.

a) rmm: The flexible remote control module in

SIMATIC Wincc transmits weakly secured cre-

dentials over the network. Attackers who collect

the module network packets can reconstruct the

credentials.

b) inws: The Wincc TIA portal allows remote attack-

ers to insert arbitrary Web scripts or HTML using

unknown vectors.

5) The control center runs a Wincc runtime professional,

with these listed vulnerabilities.

a) rmm: The flexible remote control module in

SIMATIC Wincc transmits weakly secured cre-

dentials over the network. Attackers who collect

the module network packets can reconstruct the

credentials.

b) inws: The Wincc TIA portal allows remote attack-

ers to insert arbitrary Web scripts or HTML using

unknown vectors.

6) The PLCs are Siemens SIMATIC S7-1500 CPU PLC

devices, with these listed vulnerabilities.

a) rng: Inadequate entropy is present on Siemens

Simatic S7-1500 CPU PLC systems in the random

number generator leading to weak cryptographic

security mechanisms that allow remote attackers

to hijack sessions using unknown vectors.

7) The RTU (SICAM RTUs SM-2556 COM Modules),

with these listed vulnerabilities:

a) osdi: The built-in Internet server for affected

devices (port 80/TCP) can allow remote attackers

to access network-based sensitive device data.

b) uxac: The integrated Web server (80/TCP port)

could be used to execute arbitrary code on
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the affected devices by unauthenticated remote

attackers.

The above-listed SCADA system atomic vulnerabilities can

be exploited, resulting in the following atomic attacks.

1) Remote Code Execution (rce): This attack exploits the

vulnerability in the SINEMA embedded Web servers

in Port 4999/TCP and Port 80/TCP, if an attacker has

access to the server. This attack gives the attacked user

access host.

2) Unquoted Service Paths (usp): This attack takes advan-

tage of the vulnerability in the SINEMA server window

operating system, enabling local users to increase their

rights to get root access.

3) User Credentials Construction (ucc): The attack uses

flexible SIMATIC Wincc, advanced SIMATIC Wincc,

and SIMATIC Wincc professionals with weakly secured

credentials. The attack allows users access to the host

they have targeted.

4) Cross-Site Scripting (xss): In the Wincc TIA portal,

SIMATIC Wincc flexible, SIMATIC Wincc advanced,

and SIMATIC Wincc professional, this attack exploits

the vulnerability of the Web script and HTML code

injection. This attack provides root access to the host

attacked by the attacker.

5) Authentication Token/Cookie (atc): This attack takes

advantage of a Wincc TIA portal’s predictable authen-

tication token/cookie values. This attack provides root

access to the host attacked by the attacker.

6) Cryptographic Protection Mechanisms (cpm): This

attack takes advantage of the weakness in the random

number generator of the SIMATIC S7-1500 CPU if the

attacker has access to the PLCs. This attack provides

root access to the host attacked by the attacker.

7) Unauthorized Remote Sniffing (urs): This attack exploits

the vulnerability of embedded Web servers of SICAM

RTUs SM-2556 at Port 80/TCP if the server is accessed

by an adversary. This attack provides user access to the

attacked host.

8) Unauthorized Remote Execution (urx): This attack

exploits the vulnerability of embedded Web servers of

SICAM RTUs SM-2556 at Port 80/TCP if the server

is accessed by an adversary. This attack provides root

access to the attacked host to the attacker.

The water treatment system can be formally specified as

follows.

1) Set of hosts H = {0, 1, 2, . . . , 12}; variable i ∈
{0, 1, 2, . . . , 12} (static parameters).

2) System connectivity, C ⊆ H × H; Boolean; cij = 1 iff

host i connected to host j (static parameters).

3) System services S; Boolean; si = 1 iff service s ∈
{SCADA server is SINEMA, SIMATIC Wincc runtime

flexible, Wincc runtime advanced, Wincc runtime pro-

fessional, Wincc TIA portal, SIMATIC S7-1500 CPU,

SICAM RTUs SM-2556} is running on host i (dynamic

variables).

4) System vulnerabilities V; Boolean; vi = 1 iff vulnera-

bility v ∈ { iws, lmw, rmm, inws, bac, rng, osdi, uxac}
exists on host i (static parameters).

5) Attack instances AI ⊆ A × H × H; labeled aij ≡ attack

a from source i to target j, a ∈ {rce, usp, ucc, xss, atc,

cpm, urs, urx} (static parameters).

6) Trust relation T ⊆ H×H; Boolean; tij = 1 iff i is trusted

by j (dynamic variables).

7) Attacker level of privilege L on host i; variable li ∈
{none, user, root} (dynamic variables).

8) Attack Preconditions: The following conditions must be

met for each attack before the attacker can execute it.

a) Pre(rceij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
iws = 1.

b) Pre(uspij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj < root) ∧
lmw = 1.

c) Pre(uccij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
rmm = 1.

d) Pre(xssij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj < root) ∧
inws = 1.

e) Pre(atcij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
bac = 1.

f) Pre(cpmij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
rng = 1.

g) Pre(ursij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
osdi = 1.

h) Pre(urxij) ≡ cij = 1 ∧ (li ≥ user) ∧ (lj = none) ∧
uxac = 1.

9) Attack Post-Conditions: The following represents the

attacker’s status after each attack.

a) post(rceij) ≡ (lj = user) ∧ (iws = 0).

b) post(uspij) ≡ (lj = root) ∧ (lmw = 0).

c) post(uccij) ≡ (lj = user) ∧ (rmm = 0).

d) post(xssij) ≡ (lj = root) ∧ (inws = 0).

e) post(atcij) ≡ (lj = user) ∧ (bac = 0).

f) post(cpmij) ≡ (lj = root) ∧ (rng = 0).

g) post(ursij) ≡ (lj = user) ∧ (osdi = 0).

h) post(urxij) ≡ (lj = root) ∧ (uxac = 0).

10) Initial States: l0 = root ∧ (l1 = l2 = · · · = l11 =
none)∧ (∀ij ∈ H × H : tij = 0) ∧ (iws = lmw = rmm =
inws = bac = rng = osdi = uxac = 1). (Initially, the

attacker has root privilege on Host-0 and no privilege on

other hosts, none of the hosts trust each other, and iws,

lmw, rmm, inws, bac, rng, osdi, and uxac are running

on the SCADA system components.)

11) The security property φ of interest is violated if the

attacker has the root privilege level on Host-4, Host-5, or

Host-6. This can then be described by a computational

tree logic (CTL) formula

¬φ ≡ AG((l4 = root) ∨ (l5 = root) ∨ (l6 = root)).

Note that the water treatment SCADA system has 12 devices

with 23 connections among them. The devices face seven types

of vulnerabilities and eight different types of atomic attacks

per host (listed above). An atomic attack may be carried out on

a device under certain preconditions to increase the attacker’s

rights on the linked device. The attack graph then maps the

attacker’s progressive privilege on all 12 devices as the atomic

attacks take place by leveraging the vulnerabilities of the con-

nected devices. These atomic attacks can be nested to form 150

different attack sequences (see Fig. 6) that an attacker may
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Fig. 6. Generated attack graph for water treatment SCADA CPS.

execute to violate system-level security properties (namely,

gain root access on Host-4, Host-5, or Host-6), all of which

are automatically computed using our A2G2V tool [19], [20],

and also graphically displayed automatically by the tool.

IV. RESULTS AND DISCUSSION

Our implementation of the proposed SCCiMLC computed

the critical attacks set as CA = {rlog_12} for the 3-host

system, and CA = {cpm_6, xcc_5, xcc_4} for the water treat-

ment SCADA CPS, meaning that applying security measures

to prevent an attacker from exploiting these attacks can guar-

antee the desired system-level security property of interest.

A quick analysis has verified that removing a smaller set of

attacks, i.e., a proper subset of CA would not disconnect the

attack graph, so the SCCiMLC algorithm found a minimal

critical attack set for the above-analyzed applications, which

we find quite encouraging.

It can be seen that identifying the critical attacks set greatly

reduces the effort required to secure the system: In the 3-host

system, securing 1 atomic attack (rlog_12) out of 4 × 2 = 8

atomic attack actions is required to secure the system; in the

water treatment SCADA system, securing three atomic attacks

(cpm_6, xcc_5, xcc_4) out of 8×12 = 96 atomic attack actions

is required to secure the system.

To compare the performance of the proposed SCCiMLC,

we computed the critical attacks set using an exact algorithm

(our generalization of [9]) and a state-of-the-art approximation

algorithm of [10] (both described in Section II). The exact

algorithm identified the critical attacks set as CA = {rlog_12}
for the 3-host system and CA = {cpm_6, ucc_5, ucc_4}
for the water treatment SCADA CPS. The approxima-

tion algorithm identified the critical attacks set as CA =
{sbo_01, ftrp_02, ftrp_01} for the 3-host system, and CA =
{atc_3, rce_1, xcc_2, urx_12} for the water treatment SCADA

CPS. It can be seen that our proposed algorithm matches the

exact one in terms of the size of the MLCs (although the solu-

tions in the case of water treatment SCADA differ), while it

supersedes the approximation algorithm that computed label

cuts of larger size in all cases, compared to our SCCiMLC

algorithm.

The complexity of our algorithm is linear in the number

of attack-graph vertices and edges; the exact algorithm is NP-

complete, and the complexity of the state-of-art approximation

algorithm is that of a certain linear program (LP)—It is poly-

nomial in the number of attack-graph labels (that equals the

number of decision-variables of the LP) and also in the num-

ber of paths in the attack-graph which can, in general, be

exponential in the number of vertices (that equals the num-

ber of constraints of the LP). On a standard computer, with

Core i5/2.2 GHz/4-GB RAM running Win 10, our SCCiMLC

algorithm took 9 s to compute the minimal critical attacks set

for the 3-host system attack graph, and 15 s to compute the

minimal critical attacks set from the water treatment SCADA

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. 

Authorized licensed use limited to: Iowa State University Library. Downloaded on May 22,2023 at 19:26:29 UTC from IEEE Xplore.  Restrictions apply. 



AL GHAZO AND KUMAR: CRITICAL ATTACKS SET IDENTIFICATION IN ATTACK GRAPHS 9

TABLE I
SCCIMLC VERSUS EXACT ALGORITHM AND STATE-OF-THE-ART

APPROXIMATION ALGORITHM

system attack graph. In contrast, the exact algorithm (our

generalization of [9]) took 10 min to compute the minimal

critical attacks set for both the 3-host system and 18 min

to compute the minimal critical attacks set from the water

treatment SCADA system attack graph. The approximation

algorithm of [10] took 9 sec to compute the minimal criti-

cal attacks set for the 3-host system attack graph and 16 sec

to compute the minimal critical attacks set from the water

treatment SCADA system attack graph. These results are

summarized in Table I.

Summarily, in the case studies examined, the proposed

SCCiMLC achieved the exact algorithm’s accuracy at more

than 65 times the speedup and offered the same speed

as the approximation algorithm but with superior accuracy.

In the computer network case, the SCCiMLC algorithm solu-

tion matched that computed using the exact algorithm, whereas

for the water treatment system, the identified labels differed,

yet the size of the label cut reported was still 3 as in the case

of the exact algorithm. But the speed of SCCiMLC is more

than 65 times faster. Conversely, the size of the label cut com-

puted by the approximation algorithm in [10] was larger than

that computed by the SCCiMLC algorithm, although the speed

was comparable.

V. CONCLUSION AND FUTURE WORK

An attack graph is a model that represents the ways in which

an attacker can compromise a system. A critical attack set is

a set of attacks that, if prevented, would make the system

secure. However, finding the optimal critical attack set is gen-

erally a difficult problem known as the MLC problem, which

is NP-complete. To address this challenge, we propose a novel

approach called SCCs-induced min label cut (SCCiMLC). Our

approach has linear complexity, making it scalable for prac-

tical systems. By using an abstracted attack graph over its

SCCs, we are able to approximate the solution to the MLC

problem with a linear complexity algorithm.

To demonstrate the effectiveness of our approach, we

extended our tool-chain ANDVI [21] and A2G2V [21] (see

Fig. 1) to analyze an automatically generated attack graph.

This graph was constructed from passive observations of

network packets to identify devices and their connectivity,

mapping out device vulnerabilities utilizing existing vulner-

ability databases, and generating a system-level attack graph.

We then used our SCCiMLC algorithm to obtain the critical

attack set. To test our approach, we applied it to a realistic

computer network and a real-world water treatment SCADA

system testbed from the iTrust Lab. The results demonstrated

the validity of our proposed approach, with only a fraction

of the possible attacks forming a critical set (e.g., in the case

of the water treatment SCADA, only 3 out of 96 attacks were

critical). This implies that identifying a critical attack set can

be hugely beneficial in securing complex networked systems,

especially when faced with limited resources, such as budget

and downtime for maintenance.

To evaluate the performance of our SCCiMLC algorithm,

we compared it to both an exact algorithm and a state-

of-the-art approximation algorithm from the literature. We

implemented all three algorithms and compared their cut sizes

and computation times. The SCCiMLC algorithm was able

to compute a cut size that matched that of the exact algo-

rithm. However, its computation time was comparable to the

approximation algorithm, making it much faster than the exact

algorithm. In contrast, the approximation algorithm always

produced a larger cut size than the SCCiMLC (and the exact

algorithm). In the examples we considered, we observed a

speedup of greater than 65 times over the exact algorithm

without any loss of accuracy. This demonstrates that our

SCCiMLC algorithm is both efficient and accurate, providing

a practical solution for identifying critical attack sets in com-

plex networked systems. Overall, our extended toolchain and

SCCiMLC algorithm provide a practical and effective way to

secure complex networked systems. By automating the identi-

fication of critical attack sets, our approach can help prioritize

limited resources for maximum security benefit.

Identifying the critical attacks set in SCADA/ICS/

Computer-networks systems is an essential first step toward

improving overall cybersecurity by helping system administra-

tors optimally allocate their resources for enhancing security

defenses. A final step would be to integrate the proposed

approach with a run-time security defense-patch implemen-

tation tool to achieve an optimized resource-based defense

implementation for achieving security against potential cyber-

attacks.
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