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Abstract—Model-free reinforcement learning attempts to
find an optimal control action for an unknown dynamical
system by directly searching over the parameter space of
controllers. The convergence behavior and statistical prop-
erties of these approaches are often poorly understood
because of the nonconvex nature of the underlying opti-
mization problems and the lack of exact gradient computa-
tion. In this article, we take a step toward demystifying the
performance and efficiency of such methods by focusing
on the standard infinite-horizon linear–quadratic regulator
problem for continuous-time systems with unknown state-
space parameters. We establish exponential stability for
the ordinary differential equation (ODE) that governs the
gradient-flow dynamics over the set of stabilizing feedback
gains and show that a similar result holds for the gra-
dient descent method that arises from the forward Euler
discretization of the corresponding ODE. We also provide
theoretical bounds on the convergence rate and sample
complexity of the random search method with two-point
gradient estimates. We prove that the required simulation
time for achieving ε-accuracy in the model-free setup and
the total number of function evaluations both scale as
log (1/ε).

Index Terms—Data-driven control, gradient descent,
gradient-flow dynamics, linear–quadratic regulator
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I. INTRODUCTION

IN MANY emerging applications, control-oriented models
are not readily available, and classical approaches from op-

timal control may not be directly applicable. This challenge has
led to the emergence of reinforcement learning (RL) approaches
that often perform well in practice. Examples include learning
complex locomotion tasks via neural network dynamics [1] and
playing Atari games based on images using deep RL [2].

RL approaches can be broadly divided into model-based [3],
[4] and model-free [5], [6]. While model-based RL uses data to
obtain approximations of the underlying dynamics, its model-
free counterpart prescribes control actions based on estimated
values of a cost function without attempting to form a model. In
spite of the empirical success of RL in a variety of domains, our
mathematical understanding of it is still in its infancy, and there
are many open questions surrounding convergence and sample
complexity. In this article, we take a step toward answering such
questions with a focus on the infinite-horizon linear–quadratic
regulator (LQR) for continuous-time systems.

The LQR problem is the cornerstone of control theory. The
globally optimal solution can be obtained by solving the Riccati
equation, and efficient numerical schemes with provable conver-
gence guarantees have been developed [7]. However, computing
the optimal solution becomes challenging for large-scale prob-
lems, when prior knowledge is not available, or in the presence of
structural constraints on the controller. This motivates the use of
direct search methods for controller synthesis. Unfortunately, the
nonconvex nature of this formulation complicates the analysis
of first- and second-order optimization algorithms. To make
matters worse, structural constraints on the feedback gain matrix
may result in a disjoint search landscape limiting the utility of
conventional descent-based methods [8]. Furthermore, in the
model-free setting, the exact model (and hence the gradient of
the objective function) is unknown so that only zeroth-order
methods can be used.

In this article, we study convergence properties of gradient-
based methods for the continuous-time LQR problem. In spite of
the lack of convexity, we establish: 1) exponential stability of the
ordinary differential equation (ODE) that governs the gradient-
flow dynamics over the set of stabilizing feedback gains; and
2) linear convergence of the gradient descent algorithm with a
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suitable stepsize. We employ a standard convex reparameteri-
zation for the LQR problem [9] to establish the convergence
properties of gradient-based methods for the nonconvex formu-
lation. In the model-free setting, we also examine convergence
and sample complexity of the random search method [10] that
attempts to emulate the behavior of gradient descent via gra-
dient approximations resulting from objective function values.
For the two-point gradient estimation setting, we prove linear
convergence of the random search method and show that the
total number of function evaluations and the simulation time
required in our results to achieve ε-accuracy are proportional to
log (1/ε).

For the discrete-time LQR, global convergence guarantees
were recently provided in [11] for gradient decent and the
random search method with one-point gradient estimates. The
authors established a bound on the sample complexity for reach-
ing the error tolerance ε that requires a number of function
evaluations that is at least proportional to (1/ε4) log (1/ε). If one
has access to the infinite-horizon cost values, the number of func-
tion evaluations for the random search method with one-point
gradient estimates can be improved to 1/ε2 [12]. In contrast, we
focus on the continuous-time LQR and examine the two-point
gradient estimation setting. The use of two-point gradient esti-
mates reduces the required number of function evaluations to
1/ε [12]. We significantly improve this result by showing that
the required number of function evaluations is proportional to
log (1/ε). Similarly, the simulation time required in our results is
proportional to log (1/ε); this is in contrast to [11] that requires
poly (1/ε) simulation time and to [12] that assumes an infinite
simulation time. Furthermore, our convergence results hold both
in terms of the error in the objective value and the optimization
variable (i.e., the feedback gain matrix), whereas [11] and [12]
only prove convergence in the objective value. We note that the
literature on model-free RL is rapidly expanding, and recent
extensions to Markovian jump linear systems [13], H∞ ro-
bustness analysis through implicit regularization [14], learning
distributed linear–quadratic problems [15], and output-feedback
LQR [16] have been made.

Our presentation is structured as follows. In Section II, we re-
visit the LQR problem and present gradient-flow dynamics, gra-
dient descent, and the random search algorithm. In Section III,
we highlight the main results of this article. In Section IV, we
utilize convex reparameterization of the LQR problem and estab-
lish exponential stability of the resulting gradient-flow dynamics
and gradient descent method. In Section V, we extend our analy-
sis to the nonconvex landscape of feedback gains. In Section VI,
we quantify the accuracy of two-point gradient estimates, and
in Section VII, we discuss convergence and sample complexity
of the random search method. In Section VIII, we provide an
example to illustrate our theoretical developments. Section IX
concludes this article. Most technical details are relegated to the
Appendixes.

Notation: We use vec(M) ∈ Rmn to denote the vectorized
form of the matrix M ∈ Rm×n obtained by concatenating the
columns on top of each other. We use ‖M‖2F = 〈M,M〉 to
denote the Frobenius norm, where 〈X,Y 〉 := trace (XTY ) is
the standard matricial inner product. We denote the largest
singular value of linear operators and matrices by ‖ · ‖2 and
the spectral induced norm of linear operators by ‖ · ‖S

‖M‖2 := sup
M

‖M(M)‖F
‖M‖F

, ‖M‖S := sup
M

‖M(M)‖2
‖M‖2

.

We denote by Sn ⊂ Rn×n the set of symmetric matrices. For
M ∈ Sn, M ( 0 means M is positive definite and λmin(M)
is the smallest eigenvalue. We use Sd−1 ⊂ Rd to denote the
unit sphere of dimension d− 1. We denote the expected value
by E[·] and probability by P (·). To compare the asymptotic
behavior of f(ε) and g(ε) as ε goes to 0, we use f = O(g) (or,
equivalently, g = Ω(f)) to denote lim supε→0 f(ε)/g(ε) < ∞,
f = Õ(g) to denote f = O(g logkg) for some integer k, and
f = o(ε) to signify limε→0 f(ε)/ε = 0.

II. PROBLEM FORMULATION

The infinite-horizon LQR problem for continuous-time LTI
systems is given by

minimize
x,u

E

[∫ ∞

0
(xT (t)Qx(t) + uT (t)Ru(t))dt

]
(1a)

subject to ẋ = Ax+Bu, x(0) ∼ D (1b)
where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, A
and B are constant matrices of appropriate dimensions, Q and
R are positive-definite matrices, and the expectation is taken
over a random initial condition x(0) with distribution D. For a
controllable pair (A,B), the solution to (1) is given by

u(t) = −K"x(t) = −R−1BTP "x(t) (2a)
whereP " is the unique positive-definite solution to the algebraic
Riccati equation (ARE)

ATP " + P "A + Q − P "BR−1BTP " = 0. (2b)
When the model is known, the LQR problem and the cor-

responding ARE can be solved efficiently via a variety of
techniques [17]–[20]. However, these methods are not directly
applicable in the model-free setting, i.e., when the matrices A
and B are unknown. Exploiting the linearity of the optimal
controller, we can alternatively formulate the LQR problem as
a direct search for the optimal linear feedback gain, namely

minimize
K

f(K) (3a)

where

f(K) :=

{
trace

(
(Q+KTRK)X(K)

)
, K ∈ SK

∞, otherwise.
(3b)

Here, the function f(K) determines the LQR cost in (1a) asso-
ciated with the linear state-feedback law u = −Kx,

SK := {K ∈ Rm×n |A − BK is Hurwitz} (3c)
is the set of stabilizing feedback gains and, for any K ∈ SK ,

X(K):=

∫ ∞

0
E
[
x(t)xT (t)

]

=

∫ ∞

0
e(A−BK)t Ω e(A−BK)T t dt

(4a)

is the unique solution to the Lyapunov equation

(A − BK)X + X(A − BK)T + Ω = 0 (4b)

and Ω := E [x(0)xT (0)]. To ensure f(K) = ∞ for K /∈ SK ,
we assume Ω ( 0. This assumption also guarantees K ∈ SK if
and only if the solution X to (4b) is positive definite.

In problem (3), the matrix K is the optimization variable, and
A, B, Q ( 0, R ( 0, and Ω ( 0 are the problem parameters.
This alternative formulation of the LQR problem has been stud-
ied for both continuous-time [7] and discrete-time systems [11],
[21], and it serves as a building block for several important
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control problems, including optimal static-output-feedback de-
sign [22], optimal design of sparse feedback gain matrices [23]–
[26], and optimal sensor/actuator selection [27]–[29].

For all stabilizing feedback gainsK ∈ SK , the gradient of the
objective function is determined by [22], [23]

∇f(K) = 2(RK − BTP (K))X(K). (5)
Here, X(K) is given by (4a) and

P (K) =

∫ ∞

0
e(A−BK)T t (Q+KTRK) e(A−BK)t dt (6a)

is the unique positive-definite solution of

(A − BK)TP + P (A − BK) = −Q − KTRK. (6b)
To simplify our presentation, for any K ∈ Rm×n, we define the
closed-loop Lyapunov operator AK : Sn → Sn as

AK(X) := (A − BK)X + X(A − BK)T . (7a)
For K ∈ SK , both AK and its adjoint

A∗
K(P ) = (A − BK)TP + P (A − BK) (7b)

are invertible and X(K) and P (K) are determined by

X(K) = −A−1
K (Ω), P (K) = −(A∗

K)−1(Q + KTRK).

In this article, we first examine the global stability properties
of the gradient-flow dynamics

K̇ = −∇f(K), K(0) ∈ SK (GF)
associated with problem (3) and its discretized variant

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK (GD)
where α > 0 is the stepsize. Next, we use this analysis as a
building block to study the convergence of a search method
based on random sampling [10], [30] for solving problem (3). As
described in Algorithm 1, at each iteration, we form an empirical
approximation ∇f(K) to the gradient of the objective function
via simulation of system (1b) for randomly perturbed feedback
gains K ± Ui, i = 1, . . . , N , and update K via

Kk+1 := Kk − α∇f(Kk), K0 ∈ SK . (RS)
We note that the gradient estimation scheme in Algorithm 1 does
not require knowledge of system matrices A and B in (1b) but
only access to a simulation engine.

III. MAIN RESULTS

Optimization problem (3) is not convex [8]; see Appendix A
for an example. The function f(K), however, has two important
properties: uniqueness of the critical points and the compactness
of sublevel sets [31], [32]. Based on these, the LQR objective
error f(K)− f(K") can be used as a maximal Lyapunov func-
tion (see [33] for a definition) to prove asymptotic stability of
gradient-flow dynamics (GF) over the set of stabilizing feed-
back gains SK . However, this approach does not provide any
guarantee on the rate of convergence, and additional analysis is
necessary to establish exponential stability; see Section V for
details.

A. Known Model

We first summarize our results for the case when the model is
known. In spite of the nonconvex optimization landscape, we es-
tablish the exponential stability of gradient-flow dynamics (GF)
for any stabilizing initial feedback gain K(0). This result also
provides an explicit bound on the rate of convergence to the LQR
solution K".

Algorithm 1: Two-Point Gradient Estimation.
Input:Feedback gain K ∈ Rm×n, state and control weight
matrices Q and R, distribution D, smoothing constant r,
simulation time τ , number of random samples N .
for i = 1, . . . , N do

– Define perturbed feedback gains Ki,1 := K + rUi

and Ki,2 := K − rUi, where vec(Ui) is a random
vector uniformly distributed on the sphere√
mnSmn−1.

– Sample an initial condition xi from distribution D.
– For j ∈ {1, 2}, simulate system (1b) up to time τ with
the feedback gain Ki,j and initial condition xi to form

f̂i,j =

∫ τ

0
(xT (t)Qx(t) + uT (t)Ru(t)) dt.

end for
Output:The gradient estimate

∇f(K) =
1

2rN

N∑

i=1

(
f̂i,1 − f̂i,2

)
Ui.

Theorem 1: For any initial stabilizing feedback gain K(0) ∈
SK , the solution K(t) to gradient-flow dynamics (GF) satisfies
the following:

a) f(K(t)) − f(K") ≤ e−ρ t(f(K(0)) − f(K"));
b) ‖K(t) − K"‖2F ≤ b e−ρ t ‖K(0) − K"‖2F ;

where the convergence rate ρ and constant b depend on K(0)
and the parameters of the LQR problem (3).

The proof of Theorem 1 along with explicit expressions for
the convergence rate ρ and constant b is provided in Section V-
A. Moreover, for a sufficiently small stepsize α, we show that
gradient descent method (GD) also converges overSK at a linear
rate.

Theorem 2: For any initial stabilizing feedback gain K0 ∈
SK , the iterates of gradient descent (GD) satisfy the following:

a) f(Kk) − f(K") ≤ γk(f(K0) − f(K"));
b) ‖Kk − K"‖2F ≤ b γk ‖K0 − K"‖2F ;

where the rate of convergence γ, stepsize α, and constant b
depend on K0 and the parameters of the LQR problem (3).

B. Unknown Model

We now turn our attention to the model-free setting. We use
Theorem 2 to carry out the convergence analysis of the random
search method (RS) under the following assumption on the
distribution of initial condition.

Assumption 1: Let the distribution D of the initial conditions
have independent identically distributed (i.i.d.) zero-mean unit-
variance entries with bounded sub-Gaussian norm, i.e., for a
random vector v ∈ Rn distributed according to D, E[vi] = 0
and ‖vi‖ψ2 ≤ κ, for some constant κ and i = 1, . . . , n; see
Appendix J for the definition of ‖ · ‖ψ2 .

Our main convergence result holds under Assumption 1.
Specifically, for a desired accuracy level ε > 0, in Theorem 3,
we establish that iterates of (RS) with constant stepsize (that
does not depend on ε) reach accuracy level ε at a linear rate
(i.e., in at most O(log (1/ε)) iterations) with high probability.
Furthermore, the total number of function evaluations and the
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simulation time required to achieve an accuracy level ε are pro-
portional to log (1/ε). This significantly improves the existing
results for discrete-time LQR [11], [12] that require O(1/ε)
function evaluations and poly(1/ε) simulation time.

Theorem 3 (Informal): Let the initial condition x0 ∼ D of
system (1b) obey Assumption 1. Also, let the simulation time τ
and the number of samples N in Algorithm 1 satisfy

τ ≥ θ1 log (1/ε) and N ≥ c
(
1 + β4κ4 θ1 log

6n
)
n

for someβ > 0 and desired accuracy ε > 0. Then, we can choose
the smoothing parameter r < θ3

√
ε in Algorithm 1 and the

constant stepsize α such that the random search method (RS)
that starts from any initial stabilizing feedback gain K0 ∈ SK

achieves f(Kk)− f(K") ≤ ε in at most

k ≤ θ4 log
(
(f(K0) − f(K"))/ε

)

iterations with probability not smaller than 1− c′k(n−β +
N−β +Ne−

n
8 + e−c′N ). Here, the positive scalars c and c′ are

absolute constants and θ1, . . . , θ4 > 0 depend on K0 and the
parameters of the LQR problem (3).

The formal version of Theorem 3 along with a discussion of
parameters θi and stepsize α is presented in Section VII.

IV. CONVEX REPARAMETERIZATION

The main challenge in establishing the exponential stability
of (GF) arises from nonconvexity of problem (3). Herein, we
use a standard change of variables to reparameterize (3) into a
convex problem, for which we can provide exponential stability
guarantees for gradient-flow dynamics. We then connect the
gradient flow on this convex reparameterization to its nonconvex
counterpart and establish the exponential stability of (GF).

A. Change of Variables

The stability of the closed-loop system with the feedback gain
K ∈ SK in problem (3) is equivalent to the positive definiteness
of the matrix X(K) given by (4a). This condition allows for a
standard change of variablesK = Y X−1, for some Y ∈ Rm×n,
to reformulate the LQR design as a convex optimization prob-
lem [9]. In particular, for any K ∈ SK and the corresponding
matrix X , we have

f(K) = h(X,Y ) := trace (QX + Y TRYX−1)

whereh(X,Y ) is a jointly convex function of (X,Y ) forX ( 0.
In the new variables, Lyapunov equation (4b) takes the affine
form

A(X) − B(Y ) + Ω = 0 (8a)

where A and B are the linear maps

A(X) := AX + XAT , B(Y ) := B Y + Y TBT . (8b)

For an invertible map A, we can express the matrix X as an
affine function of Y

X(Y ) = A−1(B(Y ) − Ω) (8c)

and bring the LQR problem into the convex form

minimize
Y

h(Y ) (9)

where h(Y ) := {h(X(Y ), Y ), Y ∈ SY ;∞, otherwise} and
SY := {Y ∈ Rm×n |X(Y ) ( 0} is the set of matrices Y that
correspond to stabilizing feedback gains K = Y X−1. The set
SY is open and convex because it is defined via a positive-definite

condition imposed on the affine mapX(Y ) in (8c). This positive-
definite condition in SY is equivalent to the closed-loop matrix
A−B Y (X(Y ))−1 being Hurwitz.

Remark 1: Although our presentation assumes invertibility of
A, this assumption comes without loss of generality. As shown
in Appendix B, all results carry over to noninvertible A with an
alternative change of variables A = Â+BK0, K = K̂ +K0,
and K̂ = Ŷ X−1, for some K0 ∈ SK .

B. Smoothness and Strong Convexity of h(Y )

Our convergence analysis of gradient methods for problem (9)
relies on the L-smoothness and µ-strong convexity of the func-
tion h(Y ) over its sublevel sets SY (a) := {Y ∈ SY |h(Y ) ≤
a}.These two properties were recently established in [29], where
it was shown that over any sublevel set SY (a), the second-

order term
〈
Ỹ ,∇2h(Y ; Ỹ )

〉
in the Taylor series expansion of

h(Y + Ỹ ) around Y ∈ SY (a) can be upper and lower bounded
by quadratic formsL‖Ỹ ‖2F andµ‖Ỹ ‖2F for some positive scalars
L and µ. While an explicit form for the smoothness parameter L
along with an existence proof for the strong convexity modulus
µwas presented in [29], in Proposition 1, we establish an explicit
expression for µ in terms of a and parameters of the LQR
problem. This allows us to provide bounds on the convergence
rate for gradient methods.

Proposition 1: Over any nonempty sublevel set SY (a), the
function h(Y ) is L-smooth and µ-strongly convex with

L =
2a‖R‖2

ν

(
1 +

a‖A−1B‖2√
νλmin(R)

)2

(10a)

µ =
2λmin(R)λmin(Q)

a (1 + a2η)2
(10b)

where the constants

η :=
‖B‖2

λmin(Q) λmin(Ω)
√
ν λmin(R)

(10c)

ν :=
λ2
min(Ω)

4

(
‖A‖2√
λmin(Q)

+
‖B‖2√
λmin(R)

)−2

(10d)

only depend on the problem parameters.
Proof: See Appendix C. !

C. Gradient Methods Over SY

The LQR problem can be solved by minimizing the convex
function h(Y ), whose gradient is given by [29, Appendix C]

∇h(Y ) = 2RY (X(Y ))−1 − 2BTW (Y ) (11a)
where W (Y ) is the solution to

AT W + WA = (X(Y ))−1Y TRY (X(Y ))−1 − Q. (11b)
Using the strong convexity and smoothness properties of h(Y )
established in Proposition 1, we next show that the unique
minimizer Y " of the function h(Y ) is the exponentially stable
equilibrium point of the gradient-flow dynamics over SY

Ẏ = −∇h(Y ), Y (0) ∈ SY . (GFY)
Proposition 2: For anyY (0) ∈ SY , the gradient-flow dynam-

ics (GFY) are exponentially stable, i.e.,
‖Y (t) − Y "‖2F ≤ (L/µ) e−2µt‖Y (0) − Y "‖2F
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where µ and L are the strong convexity and smoothness param-
eters of the function h(Y ) over the sublevel set SY (h(Y (0))).

Proof: The derivative of the Lyapunov function candidate
V (Y ) := h(Y )− h(Y ") along the flow in (GFY) satisfies

V̇ =
〈
∇h(Y ), Ẏ

〉
= −‖∇h(Y )‖2F ≤ −2µV. (12)

Inequality (12) is a consequence of the strong convexity ofh(Y ),
and it yields [34, Lemma 3.4]

V (Y (t)) ≤ e−2µt V (Y (0)). (13)

Thus, for any Y (0) ∈ SY , h(Y (t)) converges exponentially
to h(Y "). Moreover, since h(Y ) is µ-strongly convex and L-
smooth, V (Y ) can be upper and lower bounded by quadratic
functions, and the exponential stability of (GFY) over SY fol-
lows from Lyapunov theory [34, Th. 4.10]. !

In Section V, we use the above result to prove exponen-
tial/linear convergence of gradient flow/descent for the non-
convex optimization problem (3). Before we proceed, we note
that similar convergence guarantees can be established for the
gradient descent method with a sufficiently small stepsize α

Y k+1 := Y k − α∇h(Y k), Y 0 ∈ SY . (GY)

Since the function h(Y ) is L-smooth over the sublevel set
SY (h(Y 0)), for any α ∈ [0, 1/L], the iterates Y k remain within
SY (h(Y 0)). This property in conjunction with the µ-strong
convexity of h(Y ) implies that Y k converges to the optimal
solution Y " at a linear rate of γ = 1− αµ.

V. CONTROL DESIGN WITH A KNOWN MODEL

The asymptotic stability of (GF) is a consequence of
the following properties of the LQR objective function
[31], [32].

1) The function f(K) is twice continuously differentiable
over its open domain SK and f(K) → ∞ as K → ∞
and/or K → ∂SK .

2) The optimal solution K" is the unique equilibrium point
over SK , i.e., ∇f(K) = 0 if and only if K = K".

In particular, the derivative of the maximal Lyapunov func-
tion candidate V (K) := f(K)− f(K") along the trajectories
of (GF) satisfies

V̇ =
〈
∇f(K), K̇

〉
= −‖∇f(K)‖2F ≤ 0

where the inequality is strict for all K 2= K". Thus, the Lya-
punov theory [33] implies that, starting from any stabilizing
initial condition K(0), the trajectories of (GF) remain within
the sublevel set SK(f(K(0))) and asymptotically converge
to K".

Similar arguments were employed for the convergence anal-
ysis of the Anderson–Moore algorithm for output-feedback
synthesis [31]. While [31] shows global asymptotic stability,
it does not provide any information on the rate of conver-
gence. In this section, we first demonstrate exponential stabil-
ity of (GF) and prove Theorem 1. Then, we establish linear
convergence of the gradient descent method (GD) and prove
Theorem 2.

A. Gradient-Flow Dynamics: Proof of Theorem 1

We start our proof of Theorem 1 by relating the convex
and nonconvex formulations of the LQR objective function.
Specifically, in Lemma 1, we establish a relation between the

gradients ∇f(K) and ∇h(Y ) over the sublevel sets of the
objective function SK(a) := {K ∈ SK | f(K) ≤ a}.

Lemma 1: For any stabilizing feedback gain K ∈ SK(a) and
Y := KX(K), we have

‖∇f(K)‖F ≥ c ‖∇h(Y )‖F (14a)
where X(K) is given by (4a), the constant c is determined by

c =
ν
√
ν λmin(R)

2 a2 ‖A−1‖2 ‖B‖2 + a
√
ν λmin(R)

(14b)

and the scalar ν given by (10d) depends on the problem
parameters.

Proof: See Appendix D. !
Using Lemma 1 and the exponential stability of gradient-

flow dynamics (GFY) over SY , established in Proposition 2,
we next show that (GF) is also exponentially stable. In
particular, for any stabilizing K ∈ SK(a), the derivative of
V (K) := f(K)− f(K") along the gradient flow in (GF)
satisfies
V̇ = −‖∇f(K)‖2F ≤ −c2 ‖∇h(Y )‖2F ≤ −2µ c2 V (15)

where Y = KX(K) and the constants c and µ are provided in
Lemma 1 and Proposition 1, respectively. The first inequality
in (15) follows from (14a) and the second follows from f(K) =
h(Y ) combined with ‖∇h(Y )‖2F ≥ 2µV (which, in turn, is a
consequence of the strong convexity of h(Y ) established in
Proposition 1).

Now, since the sublevel set SK(a) is invariant with respect
to (GF), following [34, Lemma 3.4], inequality (15) guarantees
that system (GF) converges exponentially in the objective value
with rate ρ = 2µc2. This concludes the proof of part (a) in
Theorem 1. In order to prove part (b), we use the following
lemma, which connects the errors in the objective value and the
optimization variable.

Lemma 2: For any stabilizing feedback gain K, the objective
function f(K) in problem (3) satisfies

f(K) − f(K") = trace
(
(K −K")TR (K −K")X(K)

)

where K" is the optimal solution and X(K) is given by (4a).
Proof: See Appendix D. !
From Lemma 2 and part (a) of Theorem 1, we have

‖K(t) − K"‖2F ≤ f(K(t)) − f(K")

λmin(R) λmin(X(K(t)))

≤ e−ρ t
f(K(0)) − f(K")

λmin(R) λmin(X(K(t)))

≤ b′ e−ρ t ‖K(0) − K"‖2F
where b′ := ‖R‖2‖X(K(0))‖2/(λmin(R)λmin(X(K(t)))).
Here, the first and third inequalities follow from basic properties
of the matrix trace combined with Lemma 2 applied with
K = K(t) and K = K(0), respectively. The second inequality
follows from part (a) of Theorem 1.

Finally, to upper bound parameter b′, we use Lemma 16
presented in Appendix K that provides the lower and upper
bounds ν/a ≤ λmin(X(K)) and ‖X(K)‖2 ≤ a/λmin(Q) on
the matrix X(K) for any K ∈ SK(a), where the constant ν is
given by (10d). Using these bounds and the invariance of SK(a)
with respect to (GF), we obtain

b′ ≤ b :=
a2 ‖R‖2

ν λmin(R) λmin(Q)
(16)

which completes the proof of part (b).
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Fig. 1. Trajectories K(t) of (GF) (solid black) and Kind(t) resulting
from (18) (dashed blue) along with the level sets of the function f(K).

Remark 2 (Gradient domination): Expression (15) implies
that the objective function f(K) over any given sublevel set
SK(a) satisfies the Polyak–Łojasiewicz (PL) condition [35]

‖∇f(K)‖2F ≥ 2µf (f(K) − f(K")) (17)

with parameter µf := µ c2, where µ and c are functions of a that
are given by (10b) and (14b), respectively. This condition is also
known as gradient dominance, and it has been recently used to
show convergence of gradient-based methods for a discrete-time
LQR problem [11].

B. Geometric Interpretation

The solution Y (t) to gradient-flow dynamics (GFY) over the
set SY induces the trajectory

Kind(t) := Y (t)(X(Y (t)))−1 (18)
over the set of stabilizing feedback gains SK , where the affine
function X(Y ) is given by (8c). The induced trajectory Kind(t)
can be viewed as the solution to the differential equation

K̇ = g(K) (19a)

where g: SK → Rm×n is given by
g(K) :=

(
KA−1(B(∇h(Y (K))))−∇h(Y (K))

)
(X(K))−1.

(19b)
Here, the matrix X = X(K) is given by (4a) and Y (K) =
KX(K). System (19) is obtained by differentiating both sides
of (18) with respect to time t and applying the chain rule. Fig. 1
illustrates an induced trajectory Kind(t) and a trajectory K(t)
resulting from gradient-flow dynamics (GF) that starts from the
same initial condition.

Moreover, using the definition of h(Y ), we have
h(Y (t)) = f(Kind(t)). (20)

Thus, the exponential decay of h(Y (t)) established in Proposi-
tion 2 implies that f decays exponentially along the vector field
g, i.e., for Kind(0) 2= K", we have
f(Kind(t)) − f(K")

f(Kind(0)) − f(K")
=

h(Y (t)) − h(Y ")

h(Y (0)) − h(Y ")
≤ e−2µt.

This inequality follows from inequality (13), whereµdenotes the
strong convexity modulus of the function h(Y ) over the sublevel
set SY (h(Y (0))) (see Proposition 1). Herein, we provide a
geometric interpretation of the exponential decay of f under
the trajectories of (GF) that is based on the relation between the
vector fields g and −∇f .

Differentiating both sides of (20) with respect to t yields
‖∇h(Y )‖2 = 〈−∇f(K), g(K)〉 . (21)

Thus, for each K ∈ SK , the inner product between the vector
fields −∇f(K) and g(K) is nonnegative. However, this is not
sufficient to ensure exponential decay of f along (GF). To

address this challenge, our proof utilizes inequality (14a) in
Lemma 1. Based on (21), (14a) can be equivalently restated
as

‖ − ∇f(K)‖F
‖Π−∇f(K)(g(K))‖F

=
‖∇f(K)‖2F

〈−∇f(K), g(K)〉 ≥ c2

where Πb(a) denotes the projection of a onto b. Thus, Lemma 1
ensures that the ratio between the norm of the vector field
−∇f(K) associated with gradient-flow dynamics (GF) and the
norm of the projection of g(K) onto −∇f(K) is uniformly
lower bounded by a positive constant. This lower bound is the
key geometric feature that allows us to deduce exponential decay
of f along the vector field −∇f from the exponential decay of
the vector field g.

C. Gradient Descent: Proof of Theorem 2

Given the exponential stability of gradient-flow dynam-
ics (GF) established in Theorem 1, the convergence analysis of
gradient descent (GD) amounts to finding a suitable stepsize α.
Lemma 3 provides a Lipschitz continuity parameter for∇f(K),
which facilitates finding such a stepsize.

Lemma 3: Over any nonempty sublevel set SK(a), the gra-
dient ∇f(K) is Lipschitz continuous with parameter

Lf :=
2a‖R‖2
λmin(Q)

+
8a3‖B‖2

λ2
min(Q)λmin(Ω)

×
(

‖B‖2
λmin(Ω)

+
‖R‖2√
νλmin(R)

)

where ν given by (10d) depends on the problem parameters.
Proof: See Appendix D. !
Let Kα := K − α∇f(K), α ≥ 0 parameterize the half-line

starting fromK ∈ SK(a)withK 2= K" along−∇f(K), and let
us define the scalar βm := maxβ such thatKα ∈ SK(a), for all
α ∈ [0,β]. The existence of βm follows from the compactness
of SK(a) [31]. We next show that βm ≥ 2/Lf .

For the sake of contradiction, suppose βm < 2/Lf . From
the continuity of f(Kα) with respect to α, it follows that
f(Kβm) = a. Moreover, since −∇f(K) is a descent direction
of the function f(K), we have βm > 0. Thus, for α ∈ (0,βm],

f(Kα) − f(K) ≤ −α(2 − Lfα)

2
‖∇f(K)‖2F < 0.

Here, the first inequality follows from the Lf -smoothness of
f(K) over SK(a) (Descent Lemma [36, eq. (9.17)]) and the
second inequality follows from∇f(K) 2= 0 in conjunction with
βm ∈ (0, 2/Lf ). This implies f(Kβm) < f(K) ≤ a, which
contradicts f(Kβm) = a. Thus, βm ≥ 2/Lf .

We can now use induction onk to show that, for any stabilizing
initial condition K0 ∈ SK(a), the iterates of (GD) with α ∈
[0, 2/Lf ] remain in SK(a) and satisfy

f(Kk+1) − f(Kk) ≤ −α(2 − Lfα)

2
‖∇f(Kk)‖2F . (22)

Inequality (22) in conjunction with the PL condition (17) eval-
uated at Kk guarantees linear convergence for gradient de-
scent (GD) with the rate γ ≤ 1− αµf for all α ∈ (0, 1/Lf ],
where µf is the PL parameter of the function f(K). This
completes the proof of part (a) of Theorem 2.

Using part (a) and Lemma 2, we can make a similar argument
to what we used for the proof of Theorem 1 to establish part (b)
with constant b in (16). We omit the details for brevity.
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Remark 3: Using our results, it is straightforward to show
linear convergence of Kk+1 = Kk − αHk

1∇f(Kk)Hk
2 with

K0 ∈ SK and small enough stepsize, whereHk
1 andHk

2 are uni-
formly upper- and lower-bounded positive-definite matrices. In
particular, the Kleinman iteration [17] is recovered for α = 0.5,
Hk

1 = R−1, and Hk
2 = (X(Kk))−1. Similarly, convergence of

gradient descent may be improved by choosing Hk
1 = I and

Hk
2 = (X(Kk))−1. In this case, the corresponding update di-

rection provides the continuous-time variant of the so-called
natural gradient for discrete-time systems [37].

VI. BIAS AND CORRELATION IN GRADIENT ESTIMATION

In the model-free setting, we do not have access to the
gradient ∇f(K) and the random search method (RS) relies
on the gradient estimate ∇f(K) resulting from Algorithm 1.
According to [11], achieving ‖∇f(K)−∇f(K)‖F ≤ ε may
take N = Ω(1/ε4) samples using one-point gradient estimates.
Our computational experiments (not included in this article)
also suggest that to achieve ‖∇f(K)−∇f(K)‖F ≤ ε,N must
scale as poly (1/ε) even when a two-point gradient estimate is
used. To avoid this poor sample complexity, in our proof, we take
an alternative route and give up on the objective of controlling the
gradient estimation error. By exploiting the problem structure,
we show that with a linear number of samplesN = Õ(n), where
n is the number of states, the estimate ∇f(K) concentrates with
high probability when projected to the direction of ∇f(K).

Our proof strategy allows us to significantly improve upon the
existing literature both in terms of the required function evalua-
tions and simulation time. Specifically, using the random search
method (RS), the total number of function evaluations required
in our results to achieve an accuracy level ε is proportional to
log (1/ε) compared to at least (1/ε4) log (1/ε) in [11] and 1/ε
in [12]. Similarly, the simulation time that we require to achieve
an accuracy level ε is proportional to log (1/ε); this is in contrast
to poly (1/ε) simulation times in [11] and infinite simulation
time in [12].

Algorithm 1 produces a biased estimate ∇f(K) of the gra-
dient ∇f(K). Herein, we first introduce an unbiased estimate
∇̂f(K) of ∇f(K) and establish that the distance ‖∇̂f(K)−
∇f(K)‖F can be readily controlled by choosing a large sim-
ulation time τ and an appropriate smoothing parameter r in
Algorithm 1; we call this distance the estimation bias. Next,
we show that with N = Õ(n) samples, the unbiased estimate
∇̂f(K) becomes highly correlated with ∇f(K). We exploit
this fact in our convergence analysis.

A. Bias in Gradient Estimation due to Finite
Simulation Time

We first introduce an unbiased estimate of the gradient that is
used to quantify the bias. For any τ ≥ 0 and x0 ∈ Rn, let

fx0,τ (K) :=

∫ τ

0

(
xT (t)Qx(t) + uT (t)Ru(t)

)
dt

denote the τ -truncated version of the LQR objective function
associated with system (1b) with the initial condition x(0) = x0

and feedback law u = −Kx for all K ∈ Rm×n. Note that for
any K ∈ SK and x(0) = x0 ∈ Rn, the infinite-horizon cost

fx0(K) := fx0,∞(K) (23a)

exists and it satisfies f(K) = Ex0 [fx0(K)]. Furthermore, the
gradient of fx0(K) is given by [cf. (5)]

∇fx0(K) = 2 (RK − BTP (K))Xx0(K) (23b)

where Xx0(K) = −A−1
K (x0xT

0 ) is determined by the closed-
loop Lyapunov operator in (7) and P (K) = −(A∗

K)−1(Q+
KTRK). Note that the gradients ∇f(K) and ∇fx0(K) are
linear in X(K) = −A−1

K (Ω) and Xx0(K), respectively. Thus,
for any zero-mean random initial condition x(0) = x0 with
covariance E[x0xT

0 ] = Ω, the linearity of the closed-loop Lya-
punov operator AK implies

Ex0 [Xx0(K)] = X(K), Ex0 [∇fx0(K)] = ∇f(K).

Let us define the following three estimates of the gradient:

∇f(K):=
1

2rN

N∑

i=1

(fxi,τ (K + rUi)− fxi,τ (K − rUi))Ui

∇̃f(K):=
1

2rN

N∑

i=1

(fxi(K + rUi)− fxi(K − rUi))Ui

∇̂f(K):=
1

N

N∑

i=1

〈∇fxi(K), Ui〉Ui

(24)
where Ui ∈ Rm×n are i.i.d. random matrices with vec(Ui)
uniformly distributed on the sphere

√
mnSmn−1 and xi ∈ Rn

are i.i.d. initial conditions sampled from distribution D. Here,
∇̃f(K) is the infinite-horizon version of the output ∇f(K)
of Algorithm 1 and ∇̂f(K) provides an unbiased estimate of
∇f(K). To see this, note that by the independence of Ui and xi,
we have

Exi,Ui

[
vec(∇̂f(K))

]
= EU1 [〈∇f(K), U1〉 vec(U1)] =

EU1 [vec(U1)vec(U1)
T ]vec(∇f(K)) = vec(∇f(K))

and thus E[∇̂f(K)] = ∇f(K). Here, we have utilized the fact
that for the uniformly distributed random variable vec(U1) over
the sphere

√
mnSmn−1, EU1 [vec(U1)vec(U1)T ] = I.

1) Local Boundedness of the Function f(K): An impor-
tant requirement for the gradient estimation scheme in Algo-
rithm 1 is the stability of the perturbed closed-loop systems, i.e.,
K ± rUi ∈ SK ; violating this condition leads to an exponential
growth of the state and control signals. Moreover, this condition
is necessary and sufficient for ∇̃f(K) to be well defined. In
Proposition 3, we establish a radius, within which any perturba-
tion of K ∈ SK remains stabilizing.

Proposition 3: For any stabilizing feedback gain K ∈ SK ,
we have {K̂ ∈ Rm×n | ‖K̂ −K‖2 < ζ} ⊂ SK , where ζ :=
λmin(Ω)/(2 ‖B‖2 ‖X(K)‖2) and X(K) is given by (4a).

Proof: See Appendix E. !
If we choose the parameter r in Algorithm 1 to be smaller than

ζ, then the sample feedback gains K ± rUi are all stabilizing.
In this article, we further require that the parameter r is small
enough so that K ± rUi ∈ SK(2a) for all K ∈ SK(a). Such an
upper bound on r is provided in the next lemma.

Lemma 4: For any U ∈ Rm×n with ‖U‖F ≤
√
mn and K ∈

SK(a), K + r(a)U ∈ SK(2a), where r(a) := c̃/a for some
positive constant c̃ that depends on the problem data.

Proof: See Appendix E. !
Note that for any K ∈ SK(a), and r ≤ r(a) in Lemma 4,

∇̃f(K) is well defined because K + rUi ∈ SK(2a) for all i.
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2) Bounding the Bias: Herein, we establish an upper bound
on the difference between the output∇f(K) of Algorithm 1 and
the unbiased estimate ∇̂f(K) of the gradient ∇f(K). This is
accomplished by bounding the difference between these two
quantities and ∇̃f(K) through the use of the triangle inequality

‖∇̂f(K) − ∇f(K)‖F ≤

‖∇̃f(K) − ∇f(K)‖F + ‖∇̂f(K) − ∇̃f(K)‖F . (25)

The first term on the right-hand side of (25) arises from a bias
caused by the finite simulation time in Algorithm 1. The next
proposition quantifies an upper bound on this term.

Proposition 4: For any K ∈ SK(a), the output of Algo-
rithm 1 with parameter r ≤ r(a) (given by Lemma 4) satisfies

‖∇̃f(K)−∇f(K)‖F ≤
√
mnmaxi ‖xi‖2

r
κ1(2a) e

−κ2(2a)τ

where κ1(a) > 0 is a degree-5 polynomial and κ2(a) > 0 is
inversely proportional to a, and they are given by (46).

Proof: See Appendix F. !
Although small values of r may result in a large error

‖∇̃f(K)−∇f(K)‖F , the exponential dependence of the upper
bound in Proposition 4 on the simulation time τ implies that
this error can be readily controlled by increasing τ . In the next
proposition, we handle the second term in (25).

Proposition 5: For any K ∈ SK(a) and r ≤ r(a) (given by
Lemma 4), we have

‖∇̂f(K) − ∇̃f(K)‖F ≤ (rmn)2

2
-(2a) max

i
‖xi‖2

where the function -(a) > 0 is a degree-4 polynomial, and it is
given by (49).

Proof: See Appendix G. !
The third derivatives of the functions fxi(K) are utilized in

the proof of Proposition 5. It is also worth noting that unlike
∇f(k) and ∇̃f(K), the unbiased gradient estimate ∇̂f(K) is
independent of the parameter r. Thus, Proposition 5 provides a
quadratic upper bound on the estimation error in terms of r.

B. Correlation Between Gradient and Gradient Estimate

As mentioned earlier, one approach to analyzing convergence
for the random search method in (RS) is to control the gradient
estimation error ∇f(K)−∇f(K) by choosing a large number
of samples N . For the one-point gradient estimation setting, this
approach was taken in [11] for the discrete-time LQR (and in [38]
for the continuous-time LQR) and has led to an upper bound on
the required number of samples for reaching ε-accuracy that
grows at least proportionally to 1/ε4. Alternatively, our proof
exploits the problem structure and shows that with a linear
number of samples N = Õ(n), where n is the number of states,
the gradient estimate ∇̂f(K) concentrates with high probability
when projected to the direction of ∇f(K). In particular, in
Propositions 7 and 8, we show that the following events occur
with high probability for some positive scalars µ1, µ2,

M1 :=
{〈

∇̂f(K),∇f(K)
〉

≥ µ1‖∇f(K)‖2F
}

(26a)

M2 :=
{
‖∇̂f(K)‖2F ≤ µ2‖∇f(K)‖2F

}
. (26b)

To justify the definitions of these events, we first show that if
they both take place, then the unbiased estimate ∇̂f(K) can be
used to decrease the objective error by a geometric factor.

Proposition 6 (Approximate GD): If the matrix G ∈ Rm×n

and the feedback gain K ∈ SK(a) are such that

〈G,∇f(K)〉 ≥ µ1‖∇f(K)‖2F (27a)

‖G‖2F ≤ µ2‖∇f(K)‖2F (27b)

for some positive scalars µ1 and µ2, then K − αG ∈ SK(a) for
all α ∈ [0, µ1/(µ2Lf )], and

f(K − αG) − f(K") ≤ γ (f(K) − f(K"))

with γ = 1− µfµ1α. Here, Lf and µf are the smoothness and
the PL parameters of the function f over SK(a).

Proof: See Appendix H. !
Remark 4: The fastest convergence rate guaranteed by Propo-

sition 6, γ = 1− µfµ2
1/(Lfµ2), is achieved with the stepsize

α = µ1/(µ2Lf ). This rate bound is tight in the sense that if
G = c∇f(K), for some c > 0, we recover the standard conver-
gence rate γ = 1− µf/Lf of gradient descent.

We next quantify the probability of the events M1 and M2. In
our proofs, we exploit modern nonasymptotic statistical analysis
of the concentration of random variables around their average.
While in Appendix J, we set notation and provide basic defini-
tions of key concepts, we refer the reader to a recent book [39]
for a comprehensive discussion. Herein, we use c, c′, c′′, etc., to
denote positive absolute constants.

1) Handling M1: We first exploit the problem structure to
confine the dependence of ∇̂f(K) on the random initial condi-
tions xi into a zero-mean random vector. In particular, for any
K ∈ SK and x0 ∈ Rn,

∇f(K) = EX, ∇fx0(K) = EXx0

where E := 2(RK −BTP (K)) ∈ Rm×n is a fixed matrix,
X = −A−1

K (Ω), and Xx0 = −A−1
K (x0xT

0 ). This allows us to
represent the unbiased estimate ∇̂f(K) of the gradient as

∇̂f(K) =
1

N

N∑

i=1

〈EXxi , Ui〉Ui = ∇̂1 + ∇̂2 (28a)

∇̂1 =
1

N

N∑

i=1

〈E(Xxi −X), Ui〉Ui (28b)

∇̂2 =
1

N

N∑

i=1

〈∇f(K), Ui〉Ui. (28c)

Note that ∇̂2 does not depend on the initial conditions xi.
Moreover, from E[Xxi ] = X and the independence of Xxi and
Ui, we have E[∇̂1] = 0 and E[∇̂2] = ∇f(K).

In Lemma 5, we show that
〈
∇̂1,∇f(K)

〉
can be made

arbitrary small with a large number of samples N . This allows
us to analyze the probability of the event M1 in (26).

Lemma 5: Let U1, . . . , UN ∈ Rm×n be i.i.d. random ma-
trices with each vec(Ui) uniformly distributed on the sphere√
mnSmn−1, and let X1, . . . , XN ∈ Rn×n be i.i.d. random

matrices distributed according to M(xxT ). Here, M is a linear
operator and x ∈ Rn is a random vector, whose entries are i.i.d.,
zero-mean, unit-variance, sub-Gaussian random variables with
sub-Gaussian norm less than κ. For any fixed matrix E ∈ Rm×n
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and positive scalars δ and β, if

N ≥ C (β2κ2/δ)2 (‖M∗‖2 + ‖M∗‖S)2 n log6n (29)

then, with probability not smaller than 1− C ′N−β − 4Ne−
n
8 ,

∣∣∣∣∣
1

N

N∑

i=1

〈E (Xi −X) , Ui〉 〈EX,Ui〉

∣∣∣∣∣ ≤ δ‖EX‖F ‖E‖F

where X := E[X1] = M(I).
Proof: See Appendix I. !
In Lemma 6, we show that

〈
∇̂2,∇f(K)

〉
concentrates with

high probability around its average ‖∇f(K)‖2F .
Lemma 6: Let U1, . . . , UN ∈ Rm×n be i.i.d. random ma-

trices with each vec(Ui) uniformly distributed on the sphere√
mnSmn−1. Then, for any W ∈ Rm×n and t ∈ (0, 1],

P

{
1

N

N∑

i=1

〈W,Ui〉2 < (1 − t)‖W‖2F

}
≤ 2 e−cNt2 .

Proof: See Appendix I. !
In Proposition 7, we use Lemmas 5 and 6 to address M1.
Proposition 7: Under Assumption 1, for any stabilizing feed-

back gain K ∈ SK and positive scalar β, if

N ≥ C1
β4κ4

λ2
min(X)

(
‖(A∗

K)−1‖2 + ‖(A∗
K)−1‖S

)2
n log6n

then the event M1 in (26) with µ1 := 1/4 satisfies P (M1) ≥
1− C2N−β − 4Ne−

n
8 − 2e−C3N .

Proof: We use Lemma 5 with δ := λmin(X)/4 to show that,
with probability not smaller than 1− C ′N−β − 4Ne−n/8,

∣∣∣
〈
∇̂1,∇f(K)

〉∣∣∣≤δ ‖EX‖F ‖E‖F

≤ 1

4
‖EX‖2F =

1

4
‖∇f(K)‖2F .

(30a)

Furthermore, Lemma 6 with t := 1/2 implies that
〈
∇̂2,∇f(K)

〉
≥ 1

2
‖∇f(K)‖2F (30b)

holds with probability not smaller than 1− 2e−cN . Since
∇̂f(K) = ∇̂1 + ∇̂2, we can use a union bound to combine (30a)
and (30b). This together with a triangle inequality completes the
proof. !

2) Handling M2: In Lemma 7, we quantify a high probabil-
ity upper bound on ‖∇̂1‖F /‖∇f(K)‖. This lemma is analogous
to Lemma 5, and it allows us to analyze the probability of the
event M2 in (26).

Lemma 7: Let Xi and Ui with i = 1, . . . , N be random
matrices defined in Lemma 5, X := E[X1], and let N ≥ c0n.
Then, for any E ∈ Rm×n and positive scalar β,

1

N
‖

N∑

i=1

〈E (Xi −X) , Ui〉Ui‖F ≤

c1β κ
2(‖M∗‖2 + ‖M∗‖S)‖E‖F

√
mn log n

with probability not smaller than 1− c2(n−β +Ne−
n
8 ).

Proof: See Appendix J. !
In Lemma 8, we quantify a high-probability upper bound on

‖∇̂2‖F /‖∇f(K)‖.
Lemma 8: LetU1, . . . , UN ∈ Rm×n be i.i.d. random matrices

with vec(Ui) uniformly distributed on the sphere
√
mnSmn−1

and let N ≥ Cn. Then, for any W ∈ Rm×n,

P

{
1

N
‖

N∑

j=1

〈W,Uj〉Uj‖F > C ′√m‖W‖F
}

≤

2Ne−
mn
8 + 2e−ĉN .

Proof: See Appendix J. !
In Proposition 8, we use Lemmas 7 and 8 to address M2.
Proposition 8: Let Assumption 1 hold. Then, for any K ∈

SK , scalar β > 0, and N ≥ C4n, the event M2 in (26) with

µ2 := C5

(
βκ2

‖(A∗
K)−1‖2 + ‖(A∗

K)−1‖S
λmin(X)

√
mn log n+

√
m

)2

satisfies P (M2) ≥ 1− C6(n−β +Ne−
n
8 + e−C7N ).

Proof: We use Lemma 7 to show that, with probability at least
1− c2(n−β + Ne−

n
8 ), ∇̂1 satisfies

‖∇̂1‖F ≤

c1βκ
2(‖(A∗

K)−1‖2 + ‖(A∗
K)−1‖S)‖E‖F

√
mn log n ≤

c1βκ
2 ‖(A∗

K)−1‖2 + ‖(A∗
K)−1‖S

λmin(X)
‖∇f(K)‖F

√
mn log n.

Furthermore, we can use Lemma 8 to show that, with proba-
bility not smaller than 1− 2Ne−

mn
8 − 2e−ĉN , ∇̂2 satisfies

‖∇̂2‖F ≤ C ′√m‖∇f(K)‖F . (VI-B2)

Now, since ∇̂f(K) = ∇̂1 + ∇̂2, we can use a union bound to
combine the last two inequalities. This together with a triangle
inequality completes the proof. !

VII. MODEL-FREE CONTROL DESIGN

In this section, we prove a more formal version of Theorem 3.
Theorem 4: Consider the random search method (RS) that

uses the gradient estimates of Algorithm 1 for finding the op-
timal solution K" of LQR problem (3). Let the initial condi-
tion x0 obey Assumption 1 and let the simulation time τ , the
smoothing constant r, and the number of samples N satisfy
τ ≥ θ′(a) log(1/(rε)), r < min{r(a), θ′′(a)

√
ε}, and

N ≥ c1(1 + β4κ4 θ(a) log6n)n (31)
for some β > 0 and a desired accuracy ε > 0. Then, for any
initial condition K0 ∈ SK(a), (RS) with the constant stepsize
α ≤ 1/(32µ2(a)Lf ) achieves f(Kk)− f(K") ≤ ε with prob-
ability not smaller than 1− kp− 2kNe−n in at most
k ≤ log

(
(f(K0)−f(K"))/ε

)
/ log (1/(1 − µf (a)α/8))

iterations. Here, p := c2(n−β +N−β +Ne−
n
8 + e−c3 N );

µ2 := c4(
√
m+ βκ2θ(a)

√
mn log n)2; c1, . . . , c4 are positive

absolute constants; µf and Lf are the PL and smoothness
parameters of the function f over the sublevel set SK(a); θ, θ′,
θ′′ are positive functions that depend only on the parameters of
the LQR problem; and r(a) is given by Lemma 4.

Proof: The proof combines Propositions 4–8. We first show
that for any r ≤ r(a) and τ > 0,

‖∇f(K) − ∇̂f(K)‖F ≤ σ (32)

with probability not smaller than 1− 2Ne−n, where

σ := c5(κ
2 + 1)

(
n
√
m

r
κ1(2a)e

−κ2(2a)τ +
r2 m2n

5
2

2
-(2a)

)
.
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Here, r(a), κi(a), and -(a) are positive functions that are given
by Lemma 4, (46), and (49), respectively.

Under Assumption 1, the vector v ∼ D satisfies [39, eq. (3.3)],
P{‖v‖ ≤ c5(κ2 + 1)

√
n} ≥ 1− 2e−n. Thus, for the random

initial conditions x1, . . . , xN ∼ D, we can apply the union
bound (Boole’s inequality) to obtain

P
{
max

i
‖xi‖ ≤ c5(κ

2 + 1)
√
n
}

≥ 1 − 2Ne−n. (33)

Now, we combine Propositions 4 and 5 to write

‖∇f(K)− ∇̂f(K)‖F ≤
(√

mn

r
κ1(2a)e

−κ2(2a)τ +
(rmn)2

2
-(2a)

)
max

i
‖xi‖2 ≤ σ.

The first inequality is obtained by combining Propositions 4
and 5 through the use of the triangle inequality, and the second
inequality follows from (33). This completes the proof of (32).

Let θ(a) be a uniform upper bound on (‖(A∗
K)−1‖2 +

‖(A∗
K)−1‖S)/λmin(X) ≤ θ(a), for all K ∈ SK(a); see Ap-

pendix L for a discussion on θ(a). Since the number of sam-
ples satisfies (31), for any given K ∈ SK(a), we can combine
Propositions 7 and 8 with a union bound to show that

〈
∇̂f(K),∇f(K)

〉
≥ µ1‖∇f(K)‖2F (34a)

‖∇̂f(K)‖2F ≤ µ2‖∇f(K)‖2F (34b)

holds with probability not smaller than 1− p, where µ1 = 1/4,
and µ2 and p are determined in the statement of the theorem.

Without loss of generality, let us assume that the initial error
satisfies f(K0)− f(K") > ε. We next show that

〈
∇f(K0),∇f(K0)

〉
≥ µ1

2
‖∇f(K0)‖2F (35a)

‖∇f(K0)‖2F ≤ 4µ2‖∇f(K0)‖2F (35b)

holds with probability not smaller than 1− p− 2Ne−n.
Since the function f is gradient dominant over the sub-

level set SK(a) with parameter µf , combining f(K0)−
f(K") > ε and (17) yields ‖∇f(K0)‖F ≥

√
2µf ε. Also, let

the positive scalars θ′(a) and θ′′(a) be such that for any
pair of τ and r satisfying τ ≥ θ′(a) log(1/(rε)) and r <
min{r(a), θ′′(a)

√
ε}, the upper bound σ in (32) becomes

smaller than σ ≤
√
2µf ε min {µ1/2,

√
µ2}. The choice of θ′

and θ′′ with the above property is straightforward using the
definition of σ. Combining ‖∇f(K0)‖F ≥

√
2µf ε and σ ≤√

2µf ε min {µ1/2,
√
µ2} yields

σ ≤ ‖∇f(K0)‖F min {µ1/2,
√
µ2}. (36)

Using the union bound, we have
〈
∇f(K0),∇f(K0)

〉

=
〈
∇̂f(K0),∇f(K0)

〉
+
〈
∇f(K0)− ∇̂f(K0),∇f(K0)

〉

(a)
≥ µ1‖∇f(K0)‖2F − ‖∇f(K0)− ∇̂f(K0)‖F ‖∇f(K0)‖F
(b)
≥ µ1‖∇f(K0)‖2F − σ‖∇f(K0)‖F

(c)
≥ µ1

2
‖∇f(K0)‖2F

with probability not smaller than 1− p− 2Ne−n. Here, (a) fol-
lows from combining (34a) and the Cauchy–Schwarz inequality,

Fig. 2. Convergence curves for gradient descent (blue) over the set
SK and gradient descent (red) over the set SY with (a) s = 10 and (b)
20 masses.

(b) follows from (32), and (c) follows from (36). Moreover

‖∇f(K0)‖F
(a)
≤ ‖∇̂f(K0)‖F + ‖∇f(K0)− ∇̂f(K0)‖F

(b)
≤ √

µ2‖∇f(K0)‖F + σ
(c)
≤ 2

√
µ2‖∇f(K0)‖F

where (a) follows from the triangle inequality, (b) from (32),
and (c) from (36). This completes the proof of (35).

Inequality (35) allows us to apply Proposition 6 and ob-
tain with probability not smaller than 1− p− 2Ne−n that
for the stepsize α ≤ µ1/(8µ2Lf ), we have K1 ∈ SK(a) and
also f(K1)− f(K") ≤ γ(f(K0)− f(K")), with γ = 1−
µfµ1α/2, whereLf is the smoothness parameter of the function
f over SK(a). Finally, using the union bound, we can repeat this
procedure via induction to obtain that for some

k ≤ 1

log (1/γ)
log

f(K0)− f(K")

ε

the error satisfies f(Kk)− f(K") ≤ γk(f(K0)− f(K")) ≤ ε
with probability not smaller than 1− kp− 2kNe−n. !

Remark 5: For the failure probability in Theorem 4 to be
negligible, the problem dimensionnneeds to be large. Moreover,
to account for the conflicting term Ne−n/8 in the failure prob-
ability, we can require a crude exponential bound N ≤ en/16

on the sample size. We also note that although Theorem 4 only
guarantees convergence in the objective value, similar to the
proof of Theorem 1, we can use Lemma 2 that relates the error in
optimization variable, K, and the error in the objective function,
f(K), to obtain convergence guarantees in the optimization
variable as well.

Remark 6: Theorem 4 requires the lower bound on the sim-
ulation time τ in (31) to ensure that, for any desired accuracy
ε, the smoothing constant r satisfies r ≥ (1/ε) e−τ/θ

′(a). As we
demonstrate in the proof, this requirement accounts for the bias
that arises from a finite value of τ . Since this form of bias can
be readily controlled by increasing τ , the above lower bound
on r does not contradict the upper bound r = O(

√
ε) required

by Theorem 4. Finally, we note that letting r → 0 can cause
large bias in the presence of other sources of inaccuracy in the
function approximation process.

VIII. COMPUTATIONAL EXPERIMENTS

We consider a mass–spring–damper system with s masses,
where we set all mass, spring, and damping constants to unity. In
state-space representation (1b), the statex = [ pT vT ]T contains
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Fig. 3. (a) Bias in gradient estimation and (b) total error in gradient estimation as functions of the simulation time τ . The blue and red
curves correspond to two values of the smoothing parameter r = 10−4 and r = 10−5, respectively. (c) Convergence curve of the random search
method (RS).

the position and velocity vectors, and the dynamic and input
matrices are given by

A =

[
0 I

−T −T

]
, B =

[
0
I

]

where 0 and I are s× s zero and identity matrices, and T is a
Toeplitz matrix with 2 on the main diagonal and −1 on the first
super and subdiagonals.

A. Known Model

To compare the performance of gradient descent meth-
ods (GD) and (GY) on K and Y , we solve the LQR problem
with Q = I + 100 e1eT1 , R = I + 1000 e4eT4 , and Ω = I for
s ∈ {10, 20} masses (i.e., n = 2s state variables), where ei is
the ith unit vector in the standard basis of Rn.

Fig. 2 illustrates the convergence curves for both algorithms
with a stepsize selected using a backtracking procedure that
guarantees stability of the closed-loop system. Both algorithms
were initialized withY 0 = K0 = 0. Even though Fig. 2 suggests
that gradient decent/flow onSK converges faster than that onSY ,
this observation does not hold in general.

B. Unknown Model

To illustrate our results on the accuracy of the gradient esti-
mation in Algorithm 1 and the efficiency of our random search
method, we consider the LQR problem with Q and R equal to
identity for s = 10 masses (i.e., n = 20 state variables). We also
let the initial conditions xi in Algorithm 1 be standard normal
and use N = n = 2s samples.

Fig. 3(a) illustrates the dependence of the relative error
‖∇̂f(K)−∇f(K)‖F /‖∇̂f(K)‖F on the simulation time τ
for K = 0 and two values of the smoothing parameter r = 10−4

(blue) and r = 10−5 (red). We observe an exponential decrease
in error for small values of τ . In addition, the error does not
pass a saturation level, which is determined by r. We also see
that, as r decreases, this saturation level becomes smaller. These
observations are in harmony with our theoretical developments;
in particular, combining Propositions 4 and 5 through the use of
the triangle inequality yields

‖∇̂f(K) − ∇f(K)‖F ≤
(√

mn

r
κ1(2a) e

−κ2(2a)τ +
r2 m2n2

2
-(2a)

)
max

i
‖xi‖2.

This upper bound clearly captures the exponential dependence
of the bias on the simulation time τ as well as the saturation
level that depends quadratically on the smoothing parameter r.

In Fig. 3(b), we demonstrate the dependence of the total rela-
tive error ‖∇f(K)−∇f(K)‖F /‖∇f(K)‖F on the simulation
time τ for two values of the smoothing parameter r = 10−4

(blue) and r = 10−5 (red), resulting from the use of N = n
samples. We observe that the distance between the approximate
gradient and the true gradient is rather large. This is exactly
why prior analysis of sample complexity and simulation time is
subpar to our results. In contrast to the existing results, which
rely on the use of the estimation error shown in Fig. 3(b), our
analysis shows that the simulated gradient ∇f(K) is close to
the gradient estimate ∇̂f(K). While ∇̂f(K) is not close to
the true gradient ∇f(K), it is highly correlated with it. This is
sufficient for establishing convergence guarantees, and it allows
us to significantly improve upon existing results [11], [12] in
terms of sample complexity and simulation time reducing both
to O(log (1/ε)).

Finally, Fig. 3(c) demonstrates linear convergence of the
random search method (RS) with stepsizesα = 10−4, r = 10−5,
and τ = 200 in Algorithm 1, as established in Theorem 4. In
this experiment, we implemented Algorithm 1 using the ode45
and trapz subroutines in MATLAB to numerically integrate the
state/input penalties with the corresponding weight matrices Q
and R. However, our theoretical results only account for an
approximation error that arises from a finite simulation hori-
zon. Clearly, employing empirical ODE solvers and numerical
integration may introduce additional errors in our gradient ap-
proximation that require further scrutiny.

IX. CONCLUSION

We prove exponential/linear convergence of gradient
flow/descent algorithms for solving the continuous-time LQR
problem based on a nonconvex formulation that directly searches
for the controller. A salient feature of our analysis is that we
relate the gradient-flow dynamics associated with this noncon-
vex formulation to that of a convex reparameterization. This
allows us to deduce convergence of the nonconvex approach
from its convex counterpart. We also establish a bound on the
sample complexity of the random search method for solving the
continuous-time LQR problem that does not require the knowl-
edge of system parameters. We have recently proved similar
result for the discrete-time LQR problem [40].

Our ongoing research directions include: 1) providing theoret-
ical guarantees for the convergence of gradient-based methods
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for sparsity-promoting and structured control synthesis; and
2) extension to nonlinear systems via successive linearization
techniques.

APPENDIX

A. Lack of Convexity of Function f

See [41].

B. Invertibility of the Linear Map A
See [41].

C. Proof of Proposition 1

The second-order term in the Taylor series expansion of
h(Y + Ỹ ) around Y is given by [29, Lemma 2]

〈
Ỹ ,∇2h(Y ; Ỹ )

〉
= 2 ‖R

1
2 (Ỹ − KX̃)X− 1

2 ‖2F (37)

where X̃ is the unique solution to A(X̃) = B(Ỹ ). We show that
this term is upper and lower bounded by L‖Ỹ ‖2F and µ‖Ỹ ‖2F ,
where L and µ are given by (10a) and (10b), respectively. The
proof for the upper bound is borrowed from [29, Lemma 1]; we
include it for completeness. We repeatedly use the bounds on
the variables presented in Lemma 16 (see Appendix K).

Smoothness: For any Y ∈ SY (a) and Ỹ with ‖Ỹ ‖F = 1,
〈
Ỹ ,∇2h(Y ; Ỹ )

〉
= 2‖R

1
2 (Ỹ − KX̃)X− 1

2 ‖2F
≤ 2‖R‖2‖X−1‖2‖Ỹ − KA−1B(Ỹ )‖2F

≤ 2 ‖R‖2
λmin(X)

(
‖Ỹ ‖F + ‖K‖2‖A−1B‖2‖Ỹ ‖F

)2

≤ 2a‖R‖2
ν

(
1 +

a‖A−1B‖2√
νλmin(R)

)2

=: L.

Here, the first and second inequalities are obtained from the
definition of the 2-norm in conjunction with the triangle inequal-
ity, and the third inequality follows from (58b) and (58c). This
completes the proof of smoothness.

Strong convexity: Using the positive definiteness of ma-
trices R and X , the second-order term (37) can be lower
bounded by

〈
Ỹ ,∇2h(Y ; Ỹ )

〉
≥ 2λmin(R)‖H‖2F /‖X‖2 (38)

where H := Ỹ −KX̃ . Next, we show that

‖H‖F /‖X̃‖F ≥ λmin(Ω)λmin(Ω)/(a‖B‖2). (39)

We substitute H +KX̃ for Ỹ in A(X̃) = B(Ỹ ) to obtain

Γ = BH + HTBT (40)

whereΓ := AK(X̃).The closed-loop stability implies that X̃ =
A−1

K (Γ), and from (40), we have

‖H‖F ≥ ‖Γ‖F /‖B‖2. (41)

This allows us to use Lemma 18, presented in Appendix L,
to write a‖Γ‖F ≥ λmin(Ω)λmin(Q)‖X̃‖F . This inequality in
conjunction with (41) yields (39).

Next, we derive upper bound on ‖Ỹ ‖F , as follows:

‖Ỹ ‖F = ‖H + KX̃‖F ≤ ‖H‖F + ‖K‖F ‖X̃‖F

≤ ‖H‖F
(
1 + a2η

)
(42)

where η is given by (10c) and the second inequality follows
from (58d) and (39). Finally, inequalities (38) and (42) yield
〈
Ỹ ,∇2f(Y ; Ỹ )

〉

‖Ỹ ‖2F
≥ 2λmin(R)‖H‖2F

‖X‖2‖Ỹ ‖2F

≥ 2λmin(R)

‖X‖2(1 + a2η)2
≥ 2λmin(R)λmin(Q)

a(1 + a2η)2
=: µ (43)

where the last inequality follows from (58a).

D. Proofs for Section V

Proof of Lemma 1: The gradients are given by
∇f(K) = EX and ∇h(Y ) = E + 2BT (P −W ), where
E := 2(RK −BTP ), P is determined by (6a), and W is
the solution to (11b). Subtracting (11b) from (6b) yields
AT (P −W ) + (P −W )A = − 1

2 (K
TE + ETK), which,

in turn, leads to ‖P −W‖F ≤ ‖A−1‖2‖K‖F ‖E‖F ≤
a‖A−1‖2‖E‖F /

√
νλmin(R), where the second in-

equality follows from (58d) in Appendix K. Thus, by
applying the triangle inequality to ∇h(Y ), we obtain
‖∇h(Y )‖F /‖E‖F ≤ 1 + 2a‖A−1‖2‖B‖2/

√
νλmin(R).

Moreover, using the lower bound (58c) on λmin(X), we have
‖∇f(K)‖F = ‖EX‖F ≥ (ν/a)‖E‖F . Combining the last
two inequalities completes the proof.

Proof of Lemma 2: For any pair of stabilizing feed-
back gains K and K̂ := K + K̃, we have [31, eq. (2.10)],
f(K̂)− f(K) = trace(K̃T (R(K + K̂)− 2BT P̂ )X), where
X = X(K) and P̂ = P (K̂) are given by (4a) and (6a), respec-
tively. Letting K̂ = K" in this equation and using the optimality
condition BT P̂ = RK̂ completes the proof.

Proof of Lemma 3: See [41].

E. Proofs for Section VI-A1

We first present a technical lemma.
Lemma 9: Let the matrices F , X ( 0, and Ω ( 0 satisfy

FX + XFT + Ω = 0. (44)

Then, the matrixF +∆ is Hurwitz for all∆ that satisfy ‖∆‖2 <
λmin(Ω)/(2‖X‖2).

Proof: See [41, Appendix E].
Proof of Proposition 3: For any feedback gain K̂ such

that ‖K̂ −K‖2 < ζ, the closed-loop matrix A−BK̂ satis-
fies ‖A−BK̂ − (A−BK)‖2 ≤ ‖K − K̂‖2‖B‖2 < ζ‖B‖2.
This bound on the distance between the closed-loop matrices
A−BK and A−BK̂ allows us to apply Lemma 9 with
F := A−BK and X := X(K) to complete the proof.

We next present a technical lemma.
Lemma 10: For anyK ∈ SK and K̂ ∈ Rm×n such that ‖K̂ −

K‖2 < δ, with

δ :=
1

4 ‖B‖F
min

{
λmin(Ω)

trace (X(K))
,

λmin(Q)

trace (P (K))

}

the feedback gain matrix K̂ ∈ SK , and

‖X(K̂) −X(K)‖F ≤ ε1‖K̂ −K‖2 (45a)
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‖P (K̂) − P (K)‖F ≤ ε2‖K̂ −K‖2 (45b)

‖∇f(K̂) −∇f(K)‖F ≤ ε3‖K̂ −K‖2 (45c)

|f(K̂) − f(K)| ≤ ε4‖K̂ −K‖2 (45d)

where X(K) and P (K) are given by (4a) and (6a),
respectively. Furthermore, the parameters εi, which
only depend on K and problem data, are given by
ε1 := ‖X(K)‖2/δ,ε2 := 2 trace(P )(2 ‖P‖2‖B‖F +
(δ + 2‖K‖2)‖R‖F )/λmin(Q),ε4 := ε2‖Ω‖F , and
ε3 := 2(ε1‖K‖2 + 2‖X(K)‖2)‖R‖F + 2ε1(‖P (K)‖2 +
2ε2‖X(K)‖2)‖B‖F .

Proof: See [41, Appendix E].
Proof of Lemma 4: For any K ∈ SK(a), we can

use the bounds provided in Appendix K to show that
c1/a ≤ δ and ε4 ≤ c2a2, where δ and ε4 are given in
Lemma 10, and each ci is a positive constant that de-
pends on the problem data. Now, Lemma 10 implies that
f(K + r(a)U)− f(K) ≤ ε4r(a)‖U‖2 ≤ a, where r(a) :=
min{c1, 1/c2}/(a

√
mn).This inequality together withf(K) ≤

a completes the proof.

F. Proof of Proposition 4

Lemma 11 establishes an exponentially decaying upper bound
on the difference between fx0(K) and fx0,τ (K) over any sub-
level set SK(a) of the LQR objective function f(K).

Lemma 11: For any K ∈ SK(a) and v ∈ Rn,

|fv(K)− fv,τ (K)| ≤ ‖v‖2κ1(a)e−κ2(a)τ

where

κ1(a) :=

(
‖Q‖F +

a2‖R‖2
νλmin(R)

)
a3

νλmin(Ω)λ2
min(Q)

(46a)

κ2(a) := λmin(Ω)λmin(Q)/a (46b)

and the constant ν is given by (10d).
Proof: See [41, Appendix F].
Proof of Proposition 4: Since K ∈ SK(a) and

r ≤ r(a), Lemma 4 implies that K ± rUi ∈ SK(2a).
Thus, fxi(K ± rUi) is well defined for i = 1, . . . , N , and
∇̃f(K)−∇f(K) = 1

2rN (
∑

i(fxi(K + rUi)− fxi,τ (K +
rUi))Ui −

∑
i(fxi(K − rUi)− fxi,τ (K − rUi))Ui).

Furthermore, since K ± rUi ∈ SK(2a), we can use triangle
inequality and apply Lemma 11, 2N times, to bound each term
individually and obtain

‖∇̃f(K)−∇f(K)‖F ≤ (
√
mn/r)max

i
‖xi‖2κ1(2a)e−κ2(2a)τ

where we used ‖Ui‖F =
√
mn. This completes the proof.

G. Proof of Proposition 5

We first establish bounds on the smoothness parameter of
∇f(K). For J ∈ Rm×n, v ∈ Rn, and fv(K) given by (23a),
let jv(K) :=

〈
J,∇2fv(K; J)

〉
denote the second-order term in

the Taylor series expansion of fv(K + J) around K. Follow-
ing similar arguments as in [42, eq. (2.3)] leads to jv(K) =

2 trace (JT (RJ − 2BTD)Xv), where Xv and D are the solu-
tions to
AK(Xv) = −vvT (47a)

A∗
K(D) = JT (BTP −RK) + (BTP −RK)TJ (47b)

and P is given by (6a). The following lemma provides an
analytical expression for the gradient ∇jv(K).

Lemma 12: For any v ∈ Rn and K ∈ SK , ∇jv(K) =
4(BTW1Xv + (RJ −BTD)W2 + (RK −BTP )W3), where
Wi are the solutions to the linear equations

A∗
K(W1) = JTRJ − JTBTD −DBJ (48a)

AK(W2) = BJXv +XvJ
TBT (48b)

AK(W3) = BJ W2 +W2 JTBT . (48c)
Proof: See [41].
We next establish a bound on ‖∇jv(K)‖F .
Lemma 13: Let K,K ′ ∈ Rm×n be such that the line segment

K + t(K ′ −K) with t ∈ [0, 1] belongs to SK(a) and let J ∈
Rm×n and v ∈ Rn be fixed. Then, the function jv(K) satisfies
|jv(K1)− jv(K2)| ≤ -(a)‖J‖2F ‖v‖2‖K1 −K2‖F ,where l(a)
is a positive function given by

-(a) := ca2 + c′a4 (49)
and c and c′ are positive scalars that depend only on problem
data.

Proof: We show that the gradient ∇jv(K) given by
Lemma 12 is upper bounded by ‖∇jv(K)‖F ≤ -(a)‖J‖2F ‖v‖2.
Applying Lemma 18 on (47), the bounds in Lemma 16, and the
triangle inequality, we have ‖Xv‖F ≤ c1a‖v‖2 and ‖D‖F ≤
c2a2‖J‖F , where c1 and c2 are positive constants that depend
on problem data. We can use the same technique to bound the
norms of Wi in (48), ‖W1‖F ≤ (c3a+ c4a3)‖J‖2F ,‖W2‖F ≤
c5a2‖v‖2‖J‖F ,‖W3‖F ≤ c6a3‖v‖2‖J‖2F , where c3, . . . , c6
are positive constants that depend on problem data. Combining
these bounds with the Cauchy–Schwarz and triangle inequalities
applied to ∇fv(K) completes the proof. !

Proof of Proposition 5: Since r ≤ r(a), Lemma 4
implies that K ± sU ∈ SK(2a) for all s ≤ r. Also, the
mean-value theorem implies that, for any U ∈ Rm×n

and v ∈ Rn, fv(K ± rU) = fv(K)± r 〈∇fv(K), U〉+
(r2/2)

〈
U,∇2fv(K ± s± U ;U)

〉
, where s± ∈ [0, r] are

constants that depend on K and U . Now, if ‖U‖F =
√
mn, the

above identity allows us to write
(fv(K + rU)− fv(K − rU))/(2r)− 〈∇fv(K), U〉 =
r
4 (
〈
U,∇2fv(K + s+U ;U)

〉
−
〈
U,∇2fv(K − s−U ;U)

〉
) ≤

r
4 (s+ + s−)‖U‖3F -(2a) ‖v‖2 ≤ (r2mn

√
mn/2) -(2a) ‖v‖2

where the first inequality follows from Lemma 13. Combining
this inequality with the triangle inquality applied to the definition
of ∇̂f(K)− ∇̃f(K) completes the proof.

H. Proof of Proposition 6

From inequality (27a), it follows that G is a descent direction
of the function f(K). Thus, we can use the descent lemma [36,
eq. (9.17)] to show that K+ := K − αG satisfies
f(K+) − f(K) ≤ (Lfα

2/2) ‖G‖2F − α 〈∇f(K), G〉 (50)
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for any α for which the line segment between K+ and K lies in
SK(a). Using (27), for any α ∈ [0, 2µ1/(µ2Lf )], we have

(Lfα
2/2) ‖G‖2F − α 〈∇f(K), G〉 ≤

(α (Lfµ2α− 2µ1)/2) ‖∇f(K)‖2F ≤ 0 (51)

and the right-hand side of inequality (50) is nonpositive
for α ∈ [0, 2µ1/(µ2Lf )]. Thus, we can use the continuity
of the function f(K) along with inequalities (50) and (51)
to conclude that K+ ∈ SK(a) for all α ∈ [0, 2µ1/(µ2Lf )],
and f(K+)− f(K) ≤ (α (Lfµ2α− 2µ1)/2) ‖∇f(K)‖2F .
Combining this inequality with the PL condition (17), it
follows that, for any α ∈ [0, c1/(c2Lf )], f(K+)− f(K) ≤
−(µ1α/2) ‖∇f(K)‖2F ≤ −µfµ1α (f(K)− f(K")).
Subtracting f(K") and rearranging terms complete the
proof.

I. Proofs of Section VI-B1

We first present two technical results. Lemma 14 extends [43,
Th. 3.2] on the norm of Gaussian matrices presented in Ap-
pendix J to random matrices with uniform distribution on the
sphere

√
mnSmn−1.

Lemma 14: Let E ∈ Rm×n be a fixed matrix, and let U ∈
Rm×n be a random matrix with vec(U) uniformly distributed
on the sphere

√
mnSmn−1. Then, for any s ≥ 1 and t ≥ 1, we

have P (B) ≤ 2e−s2q−t2n + e−mn/8, where B := {‖ETU‖2 >
c′(s‖E‖F + t

√
n‖E‖2)}, and q := ‖E‖2F /‖E‖22 is the stable

rank of E.
Proof: For a matrix G with i.i.d. standard normal

entries, we have ‖ETU‖2 ∼
√
mn‖ETG‖2/‖G‖F . Let

the constant κ be the ψ2-norm of the standard normal
random variable, and let us define two auxiliary events,
C1 := {

√
mn > 2‖G‖F } and C0 := {

√
mn ‖ETG‖2 >

2cκ2‖G‖F (s‖E‖F + t
√
n‖E‖2)}. For c′ := 2cκ2, we

have P (B) = P (C0) ≤ P (C1 ∪ A) ≤ P (C1) + P (A), where
A := {‖ETG‖2 > cκ2(s‖E‖F + t

√
n‖E‖2)}. Here, the first

inequality follows from C0 ⊂ C1 ∪ A and the second follows
from the union bound. Now, since ‖ · ‖F is Lipschitz continuous
with parameter 1, from the concentration of Lipschitz functions
of standard normal Gaussian vectors [39, Th. 5.2.2], it follows
that P (C1) ≤ e−mn/8. This in conjunction with [43, Th. 3.2]
completes the proof. !

Lemma 15: In the setting of Lemma 14, we have
P{‖ETU‖F > 2

√
n ‖E‖F } ≤ e−n/2.

Proof: We begin by observing that ‖ETU‖F =
‖vec(ETU)‖F = ‖(I ⊗ ET )vec(U)‖F , where ⊗ denotes
the Kronecker product. Thus, it is easy to verify that
‖ETU‖F is a Lipschitz continuous function of U with
parameter ‖I ⊗ ET ‖2 = ‖E‖2. Now, from the concentration
of Lipschitz functions of uniform random variables on the
sphere

√
mnSmn−1 [39, Th. 5.1.4], for all t > 0, we

have P {‖ETU‖F >
√

E[‖ETU‖2F ] + t} ≤ e−t2/(2‖E‖22).
Now, since E [‖ETU‖2F ] = E [‖(I ⊗ ET ) vec(U)‖2F ] =
E [trace ((I ⊗ ET )vec(U)vec(U)T (I ⊗ E))] = trace ((I ⊗
ET )(I ⊗ E)) = n‖E‖2F , we can rewrite the last inequality for
t =

√
n‖E‖F to obtain

P {‖ETU‖F > 2
√
n ‖E‖F } ≤ e−n‖E‖2F /(2‖E‖22) ≤ e−n/2

where the last inequality follows from ‖E‖F ≥ ‖E‖2. !
Proof of Lemma 5: We define the auxiliary

events Di := {‖M∗(ETUi)‖2 ≤ c
√
n ‖M ∗‖S‖E‖F } ∩

{‖M∗(ETUi)‖F ≤ 2
√
n‖M ∗‖2‖E‖F } for i =

1, . . . , N . Since ‖M∗(ETUi)‖2 ≤ ‖M∗‖S‖ETUi‖2 and
‖M∗(ETUi)‖F ≤ ‖M∗‖2‖ETUi‖F , we have P (Di) ≥
P
(
{‖ETUi‖2 ≤ c

√
n‖E‖F } ∩ {‖ETUi‖F ≤ 2

√
n‖E‖F }

)
.

Applying Lemmas 14 and 15 to the right-hand side of
the above events together with the union bound yield
P (Dc

i ) ≤ 2e−n + e−mn/8 + e−n/2 ≤ 4e−n/8, where Dc
i is

the complement of Di. This, in turn, implies that

P (Dc) = P (
N⋃

i=1

Dc
i ) ≤

N∑

i=1

P (Dc
i ) ≤ 4 Ne−

n
8 (52)

where D := ∩i Di. We can now use the conditioning identity to
bound the failure probability

P{|a| > b} = P
{
|a| > b

∣∣D
}

P (D) + P
{
|a| > b

∣∣Dc
}

P (Dc)

≤ P
{
|a| > b

∣∣D
}

P (D) + P (Dc)

= P {|a 1D| > b} + P (Dc)

≤ P {|a 1D| > b} + 4Ne−n/8 (53)

where a := (1/N)
∑

i 〈E(Xi −X), Ui〉 〈EX,Ui〉 ,b :=
δ‖EX‖F ‖E‖F , and 1D is the indicator function of D. It
is now easy to verify that P{|a 1D| > b} ≤ P{|Y | > b}, where
Y := (1/N)

∑
i Yi,Yi := 〈E(Xi −X), Ui〉 〈EX,Ui〉 1Di . The

rest of the proof uses the ψ1/2-norm of Y to establish an upper
bound on P{|Y | > b}.

Since Yi are linear in the zero-mean random variables Xi −
X , we have E[Yi|Ui] = 0. Thus, the law of total expectation
yields E[Yi] = E[E[Yi|Ui]] = 0 and Talagrand’s inequality pre-
sented in Appendix J implies that

‖Y ‖ψ1/2
≤ (c′/

√
N)(logN)max

i
‖Yi‖ψ1/2

. (54)

Now, using the standard properties of the ψα-norm, we have

‖Yi‖ψ1/2
≤ c′′‖ 〈E (Xi −X) , Ui〉 1Di‖ψ1‖ 〈EX,Ui〉 ‖ψ1

≤ c′′′‖ 〈E (Xi −X) , Ui〉 1Di‖ψ1‖EX‖F (55)

where the second inequality follows from [39, Th. 3.4.6]

‖ 〈EX,Ui〉 ‖ψ1 ≤ ‖ 〈EX,Ui〉 ‖ψ2 ≤ c0‖EX‖F . (56)

We can now use 〈E(Xi −X), Ui〉 = 〈Xi −X,ETUi〉 =
〈M(xixT

i ), E
TUi〉 − 〈M(I), ETUi〉 = xT

i M∗(ETUi)xi −
trace (M∗(ETUi)) to bound the right-hand side of (55). This
identity allows us to use the Hanson–Write inequality to upper
bound the conditional probability

P
{
|〈E (Xi −X) , Ui〉| > t

∣∣ Ui

}
≤

2e
−ĉmin{ t2

κ4‖M∗(ETUi)‖2F
,

t
κ2‖M∗(ETUi)‖2 }

.

Thus, we have

P {|〈E (Xi −X) , Ui〉 1Di | > t}

= EUi

[
1Di Exi

[
1{|〈E(Xi−X),Ui〉|>t}

]]

= EUi

[
1DiP

{
|〈E (Xi −X) , Ui〉| > t

∣∣ Ui

}]
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≤ EUi

[
1Di2e

−ĉmin{ t2

κ4‖M∗(ETUi)‖2F
t

κ2‖M∗(ETUi)‖2 }
]

≤ 2e
−ĉmin{ t2

4nκ4‖M∗‖22‖E‖2F
t

c
√
nκ2‖M∗‖S‖E‖F }

where the definition of Di was used to obtain the last inequality.
The above tail bound implies [44, Lemma 11] that

‖ 〈E (Xi −X) , Ui〉 1Di‖ψ1 ≤

c̃κ2
√
n(‖M∗‖2 + ‖M∗‖S)‖E‖F . (57)

Using (29), it is easy to obtain the lower bound on the number
of samples,N ≥ C ′ (β2κ2/δ)2(‖M∗‖2 + ‖M∗‖S)2 n log6N.
We can now combine (54), (55), and (57) to obtain

‖Y ‖ψ1/2
≤ C ′κ2

√
n logN√

N
(‖M∗‖2 + ‖M∗‖S)‖E‖F ‖EX‖F

≤ δ

β2 log2N
‖E‖F ‖EX‖F

where the last inequality follows from the above lower bound
on N . Combining this inequality and

P {|ξ| > t‖ξ‖ψα} ≤ cαe
−tα , t := δ‖E‖F ‖EX‖F /‖Y ‖ψ1/2

(presented Appendix J) yields P{|Y | > δ‖E‖F ‖EX‖F } ≤
1/Nβ , which completes the proof.

Proof of Lemma 6: See [41].

J. Proofs for Section VI-B2 and Probabilistic Toolbox

See [41].

K. Bounds on Optimization Variables

Building on [31], in Lemma 16, we provide useful bounds on
K, X = X(K), P = P (K), and Y = KX(K).

Lemma 16: Over the sublevel setSK(a) of the LQR objective
function f(K), we have

trace (X) ≤ a/λmin(Q) (58a)

‖Y ‖F ≤ a/
√

λmin(R)λmin(Q) (58b)

ν/a ≤ λmin(X) (58c)

‖K‖F ≤ a/
√
νλmin(R) (58d)

trace (P ) ≤ a/λmin(Ω) (58e)

where the constant ν is given by (10d).
Proof: See [41].

L. Bound on the Norm of the Inverse Lyapunov Operator

Lemma 17 provides an upper bound on the norm of the inverse
Lyapunov operator for stable LTI systems.

Lemma 17: For any Hurwitz matrix F ∈ Rn×n, the linear
map F : Sn → Sn, F(W ) :=

∫∞
0 eFtWeF

T tdt is well defined,
and for any Ω ( 0,

‖F‖2 ≤ trace (F(I)) ≤ trace (F(Ω))/λmin(Ω). (59)

Proof: See [41]. !
We next use Lemma 17 to establish a bound on the norm of

the inverse of the closed-loop Lyapunov operator AK over the
sublevel sets of the LQR objective function f(K).

Lemma 18: For any K ∈ SK(a), the closed-loop Lyapunov
operator AK given by (7) satisfies ‖A−1

K ‖2 = ‖(A∗
K)−1‖2 ≤

a/λmin(Ω)λmin(Q).
Proof: Applying Lemma 17 with F = A−BK yields

‖A−1
K ‖2 = ‖(A∗

K)−1‖2 ≤ trace(X)/λmin(Ω). Combining this
inequality with (58a) completes the proof. !

Parameter θ(a) in Theorem 4: See [41].
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