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Abstract—In spite of the lack of convexity, convergence
and sample complexity properties were recently estab-
lished for the random search method applied to the linear
quadratic regulator (LQR) problem. Since policy gradient
approaches require an initial stabilizing controller, we pro-
pose a model-free algorithm that searches over the set of
state-feedback gains and returns a stabilizing controller
in a finite number of iterations. Our algorithm involves a
sequence of relaxed LQR problems for which the asso-
ciated domains converge to the set of stabilizing con-
trollers for the original continuous-time linear time-invariant
system. Starting from a stabilizing controller for the relaxed
problem, the proposed approach alternates between updat-
ing the controller via policy gradient iterations and decreas-
ing relaxation parameter in the LQR cost while preserving
stability at all iterations. By properly tuning the relax-
ation parameter updates we ensure that the cost values do
not exceed a uniform threshold and establish computable
bounds on the total number of iterations.

Index Terms—Data-driven control, linear quadratic regu-
lator, model-free control, nonconvex optimization, random
search method, reinforcement learning, sample complexity.

[. INTRODUCTION

ODEL-FREE approaches to Reinforcement Learning

(RL) have attracted significant attention in recent years
because of their simple implementation. Regardless of the
intricacies of the application domain, these approaches involve
two simple steps: estimating values of a cost function without
identifying a model and utilizing a gradient descent to obtain
the policy that optimizes the cost function. Moreover, these
approaches are shown to perform remarkably well in practice,
e.g., in learning complex locomotion tasks via neural network
dynamics [1] and in playing Atari games using deep-RL [2].
In model-free RL, a considerable effort has been devoted
to policy gradient methods because of their simplicity and
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convenience for large-scale problems. For continuous control
tasks such as the infinite-horizon Linear Quadratic Regulator
(LQR), convergence and sample complexity of policy gra-
dient methods have been established in [3]-[7]. Extensions
to robustness analysis through implicit regularization [8],
Markovian jump linear systems [9], distributed LQR [10],
[11], and the output-feedback problem [12] have also been
made.

A common requirement in many existing works is that the
policy gradient method needs to be initialized with a stabi-
lizing controller. However, in a model-free setting obtaining
such a controller can be equally challenging even for linear
time-invariant (LTI) systems. In the absence of a stabilizing
controller, simulating the system can result in unbounded sig-
nals which hinders the application of data-driven techniques.
Furthermore, the set of stabilizing feedback gains is not con-
vex [13] and convergence of local search methods to feasible
solutions is not well understood.

In this letter, we consider the problem of finding a stabiliz-
ing state-feedback controller for a continuous-time LTI system
with unknown state-space parameters. Solving this problem
for LTI systems is an important first step towards address-
ing similar challenge in more complicated settings including
Markovian jump linear systems [8], static output-feedback
design [14], and structured feedback synthesis [15], [16]. We
propose a model-free algorithm based on a policy gradient
method that can search over state-feedback gains without
requiring the initial controller to be stabilizing. By introducing
exponentially decaying weights to the state and control signals,
we determine gradients with respect to a relaxation of the LQR
objective function. The domain of the relaxed LQR problem
contains the set of stabilizing feedback gains and we use it
to guide our search for a stabilizing controller. Starting from
a controller in the domain of the relaxed LQR problem, our
algorithm alternates between updating the controller via policy
gradient iterations and decreasing the relaxation parameter.

Our approach is inspired by the recent efforts to iden-
tify a stabilizing feedback gain matrix for discrete-time LQR
problem using discounted LQR cost [17]-[19]. We examine
the continuous-time problem and demonstrate how exponen-
tially decaying weights in the LQR cost [20] can be used to
perform policy gradient updates without requiring initializa-
tion with a stabilizing feedback gain. By properly tuning the
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updates of the relaxation parameter we ensure that the cost
values do not exceed a threshold given by a constant factor of
the optimal objective value for the original non-relaxed LQR
problem. This allows us to establish finite-time convergence
guarantees and bound the required relative accuracy of the
policy gradient method by a constant factor, thereby keeping
the total number of required policy gradient updates finite.

The rest of this letter is structured as follows. We formu-
late the problem in Section II and introduce the model-free
algorithm for finding a stabilizing state-feedback gain matrix
in Section III. We establish finite-time convergence guaran-
tees in Section IV and provide an example to demonstrate the
merits and the effectiveness of our approach in Section V. We
offer concluding remarks in Section VI and provide proofs of
technical results in appendices.

Notation: We use Re (-) to denote the real part, ||-|| to denote
the Euclidean norm, and || - ||w to denote the weighted norm
for a positive definite matrix W, i.e., |x||w := ||W!/%x|. For
matrices, |- || is the spectral norm, |- || is the Frobenius norm,
o (+) is the smallest singular value, and tr () is the matrix trace.

[I. PROBLEM FORMULATION

We study continuous-time LTI systems
X = Ax + Bu (D

where x(r) € R" is the state, u(t) € R™ is the control input,
and A and B are constant matrices. For a stabilizable pair
(A, B), the closed-loop system associated with the control law
u(t) = —Kx(¢) is stable if and only if the matrix K belongs to
the set of stabilizing feedback gains,

S = [K € R™"|A — BK is Hurwitz}.

We are interested in finding a feedback gain K € S when the
model parameters A and B are unknown. Our approach utilizes
the family of relaxations S, 2 S, parameterized by a scalar
o > 0 with A, := A — «al, where

Sy = {K e R™"|A, — BK is Hurwitz}.

It is straightforward to verify that for any K € R"™*" there
exists an « such that K € Sy; hence, solving the relaxed
problem is trivial. In addition, the set S, characterizes the
domain of the discounted LQR problem [20],

L _ JuP K € S,
mlmlgmze Ju(K) = {oo otherwise (2a)
where P is the solution of the Lyapunov equation
(Ay —BK)'P+P(A, —BK)+ 0+ K'RK=0 (2b)

and Q, R, and 2 are positive-definite matrices. For system (1)
with u(t) = —Kx(¢) and a random initial condition x(0) = xg
with the covariance matrix €2, the objective function in (2) can
also be written as,

Ju(K) = ]E|: / Ooe_z"”(xT(t)Qx(t) + uT(t)Ru(t))dt].
0

Assumption 1: The distribution D of the initial condition
x(0) = x¢ has zero mean, covariance E[xoxg ] = Q >0, and
bounded support, i.e., ||xo]| < 6 for xo ~ D.

We next summarize basic properties of the set S, and its
relation to the objective function J,(K). These are utilized in
the rest of this letter and the proof can be found in [13], [20].

Lemma 1: The set S, satisfies the following properties:

(i) For a stabilizable pair (A, B) and o > 0, the set Sy is

open, unbounded, and increasing in «, i.e.,

Se €S8 &= o < B.
(i) For any scalars a and «, the sublevel set
Su(a) = {K € R™"|Jo(K) < a}
is compact and increasing in both a and «, i.e.,

Sula) € Su(b) <= a<b
Su(a) S Spla) <= a < p. )

(iii) For any scalar o and a feedback gain matrix K, K € S,
if and only if ¢ > max;Re (X;), where A; is the ith
eigenvalue of the matrix A — BK.

I11. ALGORITHM

We now describe our approach to finding a stabilizing
feedback gain K € Sy for system (1) with unknown model
parameters (A, B). We start by choosing an initial feedback
gain K € R"™*" and a sufficiently large relaxation parameter
a such that K € S,. Then, the algorithm alternates between
decreasing the relaxation parameter @ and updating K via pol-
icy gradient updates until we achieve o < 0 while preserving
the condition K € S, in all iterations. At any iteration with
K and « such that K € S,, as we decrease o the set S,
shrinks and it may no longer contain K. Lemma 2 ensures
that this situation does not arise provided that the decrease in
o is sufficiently small.

Lemma 2: For any positive scalars «, a, and ¢ > 1, there
exists a scalar & > 0 such that

Spla) S Sy_p(ca) @)

forall,éf&andﬁfa.

Proof: See Section IV-B. |

For any ¢ > 1 and a cost upper bound a with K €
Sy (a), Lemma 2 implies that the relaxation parameter can be
decreased to o™ = a — & by increasing the cost upper bound
by a factor of ¢, i.e., K € S,+(ca). To avoid arbitrary small
decrements @ (which may prevent convergence of « to 0) our
approach is to bring down the cost upper bound back to a.
This is achieved using a sequence of policy gradient updates
of the form [7]

KM = kF — VI, (kY Q)
initialized with K° = K and applied to discounted LQR
problem (2) associated with o™ to update the feedback gain

KT e Sy+(a).

In (5), k is the iteration index, 1 is a constant step size
and, VJ,+(K) is an empirical approximation of the gradient
VJu+(K) computed via simulations of system (1) for randomly
perturbed K.
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Algorithm 1 Finding Stabilizing Controller
Input: Relaxation parameter g, feedback gain K, simulation
time 7, number of samples N, the objective threshold b,
state and control weight matrices Q and R, distribution D
of the initial condition.
1: Initialization: Set o < o and K < Kj.
2: while @ > 0 do
Compute Jy (K) using (6).
a*(Q) ()
8J4(K)Q + KTRK||F

5. Compute K using policy gradient update (5) initialized
at K so that J,+ (KT) < b, where at =« — @.

(95}

4. Seta <«

6: SetK < KT and @ < a™.
7: end while
Output: Stabilizing controller K for system (1).

To update the relaxation parameter «, we need an esti-
mate of the objective function. In the model-free setting, this
estimate can be obtained via simulation of system (1),

i} 1
JuK) = S 3T LK) (©)
i=1

where the random vectors xf) represent N i.i.d. samples from
the distribution D and the cost function

Jan(K) = /0 Te’z“’(xT(t)Qx(t)+uT(r)Ru(t))dt %

corresponds to system (1) with the initial condition v and the
feedback law u(f) = —Kx(¢) simulated up to time 7. As we
demonstrate in Section IV, the cost estimate in (6) can achieve
any desired accuracy for sufficiently large sample size N and
simulation time .

We outline the proposed strategy in Algorithm 1.
Theoretical convergence guarantees along with guidelines
for selecting the initialization parameters are provided in
Section IV.

IV. THEORETICAL GUARANTEES

We next provide theoretical guarantees for Algorithm 1.

A. Main Result

We next establish conditions under which Algorithm 1
achieves finite-time convergence. Our main result is summa-
rized in Theorem 1, where the optimal objective value of
problem (2) is given by J; and, for « = 0, we let J* = Jj.

Theorem 1: Let the cost threshold in Algorithm 1 be given
by b = 2J* and let the initial relaxation parameter o, the
initial feedback gain Ky, the simulation time t, and the number
of samples N satisfy

4
b > Jy(Ko), N = Q) log(1/%)
2b < 462 >
T > log ®)
a(£2)a(Q) a(2)

for some positive scalar ¢, where 6 is an upper bound on the
norm of the initial conditions x6 in (6). Then, with proba-
bility at least 1 — {&g/&min, Algorithm 1 terminates after at
most o/dmin iterations, where &min is a lower bound on the
decrement @,

a2(Q) a(R2) o (R)ve,
16J*(|QllF a(R) vy + 16[IR[(J*)2)

and the constant vy, given by (14) only depends on the
problem parameters. Moreover, the required relative accuracy

Omin =

€ = (b= )/ Uar (K) = J3)

for the policy gradient updates in Step 5 satisfies € > 1/4.
Proof: See Section IV-C. |
Theorem 1 establishes that the decrement & used in updating

the relaxation parameter « is lower bounded by a constant and

that we can find a stabilizing feedback gain for system (1)

after a finite number of iterations. We note that the assumption

b = 2J* on the cost threshold in Theorem 1 is only made to

simplify our presentation and that it can be relaxed to b = ¢J*

for any ¢ > 1.

Remark 1: Theorem 1 requires the initial relaxation param-
eter g and the feedback gain K to satisfy b > Jy, (Kp). Below
are two simple techniques to find such ¢« and K.

1) By Lemma 1, for any scalar g and feedback gain K, we
have K € &y, if a9 > max;Re (X;), where A; is the ith
eigenvalue of A — BK. Under this condition, we can run
the policy gradient method initialized with K applied to
the ap-relaxed LQR problem to obtain a feedback gain
Ky that satisfies b > Jy, (Kp).

2) From limy—  Jo (Kp) = 0, it follows that for any Ky we
can select ag large enough to satisfy b > Jy,(Kp). We
note that because of potentially larger o9 compared to
the former approach, this technique may require more
iterations (i.e., more «-updates) in Algorithm 1.

Remark 2: The complexity of model-free policy gradient
updates in Step 5 depends on the gradient estimation scheme.
In the one-point gradient estimation setting, the policy gradient
method achieves relative accuracy € < c/k after k updates [21],
where c¢ is a constant. Thus, the inequality € > 1/4 estab-
lished by Theorem 1 ensures that Algorithm 1 requires at
most 4c¢ updates in Step 5. This requirement further reduces
to log(4)/log(1/p) updates in the two-point gradient estima-
tion setting because of linear convergence with rate p, i.e.,
e <o [7].

We next provide lemmas that we use to prove Theorem 1.

B. Technical Lemmas

We first address the a-update step of Algorithm 1.
Lemma 3: For any K € S, and ¢ > 1, if

d2(Q+K"RK)o () ¢ — 1

9a
= 2.K) 10+ KTRKF < O
then
Jo—s(K) < cJu(K). (9b)
Proof: See the Appendix A. |
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As we show in Section IV-C, for any scalar a the Frobenius
norm of the feedback gain matrix |K|r is bounded over the
sublevel set Sy (a). This fact combined with Lemma 3 can be
used to prove Lemma 2.

In Lemma 4, we show that the error in the t-truncated cost
estimate Jg , (K) is an exponentially decaying function of 7.
This allows us to establish a bound on the required simulation
time 7 in Theorem 1.

Lemma 4: For any T > 0, we have

IS LK) =I5 (K) < cre™ T (10)
where Jé,xo (K) is defined in (7) and
c1 = %ol Ju(K)/a(Q), 2 = 0(R)3(Q)/Ja(K).
Proof: See the Appendix B. |

Using Lemma 4, we can show that, for any scalar y, the
estimation error bound

Jao ) = Jg ((K) <y (11a)
can be achieved by choosing a simulation time
2
Jo (K Jo (K
¢ > 10g<||x0|| al )) o (K) . (11b)
ya() Ja(R)a(Q)

Lemma 5 shows that the estimated cost remains within a
factor of the actual cost with probability not smaller than 1 —¢
if the number of samples is proportional to log(1/¢).

Lemma 5: Let Assumption 1 hold and let the simulation
time T be such that

Joo K) — T3 (K) < Jo(K)/4. (12)

Then, with probability not smaller than 1 — ¢, we have
Jo(K) < 2J(K) < 3J4(K)

where ¢ = 2exp(—N a2(2)/(86*)).
Proof: See the Appendix C. |
Lemma 5 provides sufficient conditions to obtain an upper
bound for the actual cost by using the cost estimate in (6).
We are now ready to prove our main result.

C. Proof of Theorem 1

We demonstrate that J,(K) and J,+(K) never exceed 2b =
4J* throughout Algorithm 1. From the initial condition (8) and
the cost threshold in Step 5 it follows that J,(K) < b at all
iterations. Thus, it remains to verify the condition J,+(K) <
2b. Using the lower bound in (8) on the simulation time 7,
we can combine (12) with the condition on the sample size N
in (8) and apply Lemma 5 to obtain

Jo(K) < 2J5(K) < 3J4(K) (13)

with probability not smaller than 1 — ¢. In addition, for
the decrement & in Step 4 of the algorithm, the condition
in Lemma 3 holds for ¢ = 2. Thus, we can combine the
first inequality in (13) with Lemma 3 to obtain J,+(K) <
2Jy(K) < 4J*. To derive the uniform lower bound &, on @,
we can write

aX(Q)a()
8Jo(K)|Q + KTRK ||F

o=

mg

Fig. 1. An inverted pendulum of length / with a lumped mass m
controlled with an input torque u.

a’(Q)a(Q)
T 24b |0+ KTRK|F
Q) a ()
T 24b(1QlF + IRINKIF)
a’(Q) a(R) g (R)ve,
~ 246(/1QllF o (R) ve, + 4lIR|ID?)
where the first inequality follows from (13), and the second
inequality is obtained by applying the triangle inequality. To
show the last inequality, we utilize [7, Lemma 16], which
shows that |K||r < a/\/vy o (R) for any K € S,(a), where
() <||A|| +a

-2
) n 1Bl
o
4 Va(0) Vo (R)
This upper bound with a = J,(K) < 4J* combined with
the fact that v, is decreasing in « yields the last inequal-
ity. Accounting for failure in each iteration yields the success
probability of the algorithm of at least 1 — oo /Omin-
Finally, to prove the lower bound on the required relative
accuracy €, we can write

(14)

€ = (b—ID/UalK) = J3) = J7/@J") = 1/4.

Here, we have used the facts that 0 < J; < J* and Jo(K) <
4J* for all o > 0.

V. COMPUTATIONAL EXPERIMENTS

To demonstrate the utility of our approach, we use a
torque-controlled inverted pendulum with length / = g and

mass m = 1/I> where g is gravitational acceleration; see
Fig. 1. Linearization around the upright equilibrium point

yields system (1) with

i) o=

where the state vector x = [9 é]T contains angle and angu-
lar velocity of the pendulum and the feedback gain matrix K
is determined by K := [k; ky] € R1*2

We let the distribution D be the standard normal and choose
Q = diag(10,1) and R = 1 in the LQR cost. This yields
the optimal cost value J* = 13.398. Furthermore, we set the
number of samples N to 10, the simulation time t to 100,
and initialize Algorithm 1 using the first technique proposed
in Remark 1. In particular, we set K9 = 0 and, to choose
the initial relaxation parameter op without using the suffi-
cient condition g > max; Re (A;(A)) = 1 (which requires
the knowledge of model parameters), we start from o9 = 0
and gradually increase it until the cost estimate achieves the
threshold b > jao (Ko), where we set b = 30. This approach
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Fig. 2. (a) The dependence of the relaxation parameter « on the iteration count of Algorithm 1; (b) the feedback gains k{ and k> obtained at each
iteration (blue) starting with ky = ko = 0; the boundary of the set of stabilizing feedback gains {K|ky > 0, ko > 1} for the actual system (red) is also
shown; and (c) the dependence of the cost estimate J, (K) on « along with the cost thresholds b = 30 (purple), 1.9b, and 2b (brown). Starting from
ag = 1.2, the algorithm alternates between updating « (solid blue) and updating ky and k» via policy gradient (dotted blue) until « < 0 is obtained.

yields agp = 1.2. For the policy gradient update in Step 5, we
use the two-point gradient estimation scheme proposed in [7]
with step size 10™* and a smoothing constant 107>,

The analytical decrement & given in Step 4 of Algorithm 1
is chosen small enough to guarantee that J,+(K) does not
exceed the threshold 2b. However, this decrement can be very
conservative in practice. To address this issue, for the a-update
step we use bisection to find the updated ot such that 1.95 <
Jy+ (K) < 2b.

Figure 2(a) shows the dependence of the relaxation param-
eter o on the iteration count of Algorithm 1 and Fig. 2(b)
illustrates the corresponding feedback gains k; and &, obtained
at each iteration along with the boundary of the set of stabiliz-
ing feedback gains {K | k; > 0, ko > 1} for the actual system.
We observe that starting from the initial values Ky = 0 and
ap = 1.2, the algorithm achieves a stabilizing feedback gain
and o < 0 in only 16 steps.

Finally, Fig. 2(c) shows the dependence of the cost esti-
mate J,(K) on the relaxation parameter «. Guided by the two
thresholds b and 2b, the algorithm alternates between decreas-
ing the relaxation parameter and updating the feedback gain
K via policy gradient until & < 0 is achieved.

VI. CONCLUDING REMARKS

We have proposed a model-free algorithm based on a pol-
icy gradient method that does not require an initial stabilizing
feedback gain for a continuous-time LTI system. By utiliz-
ing exponentially decaying weights on the state and control
signals, our algorithm introduces a sequence of relaxations to
the standard LQR objective function. Using policy gradient
updates with respect to the relaxed LQR problems, the algo-
rithm reduces the relaxation parameter by a constant factor at
each iteration and converges in finite time. Our convergence
guarantees are obtained by ensuring that the cost values do not
exceed a threshold given by a constant factor of the optimal
objective value for the original non-relaxed LQR problem.
Future directions include extensions to model-free stabiliza-
tion of systems with small nonlinear components and systems
with partially-available model parameters.

APPENDIX A
PROOF OF LEMMA 3

We first show that for any K € S, and a scalar § such
that (9a) holds, K € S/, where o/ := a — 8. Let P be the

unique positive definite solution to Lyapunov equation (2b).
For any scalar § such that 25P < Qg := Q + KTRK, we can
use the Lyapunov function candidate V(x) = x”Px to verify
that the system x = (A, — BK)x is stable, i.e., K € S,. The
condition 26P < Qg holds if we let

§ = 0.50(Qk) a(£2)/Ju(K). (15)
This can be verified by noting that
Jo(K) = w(PQ) = w(P)a(2) = |P|la(S2).

The upper bound in (9a) ensures that (15) holds. Thus, we
obtain K € S,/ and next show that (9b) holds.

Let X := X' — X, where X and X’ are the unique positive
definite solutions to

(Ae — BK)X + X(A4, — BK)T = —Q
Ay — BK)X' + X'(Aw — BK)T = —-Q.

(16a)
(16b)

Subtracting (16a) from (16b) and rearranging terms yields
(Ae — BK)X + X(Ao — BK)T 4+ 28X = 0.

Equivalently, we can write X = F(25X"), where
[e¢)
F(W) = / eWa =By (e —BK)1 g
0

is the inverse Lyapunov operator acting on a symmetric matrix
W [7]. Hence, the cost difference satisfies

Jo(K) = Jo(K) = tw(XQx) = tr(F(25X")Qk)
< 28I F&X)IFIQkIF
< 281 F X NI FI Ok I F
< 28@||X/”F”QK”F < Bl (K)
a(£2)

where B = 26|Qkllrtr(X)/(a(Qk) o (£2)). Here, the first
inequality follows from the Cauchy-Schwartz inequality and
the linearity of the inverse Lyapunov operator, the sec-
ond inequality follows from definition of the operator norm
|FN := supy | FM)|r/IM]||F, the third inequality follows
from [7, Lemma 24], and the last inequality follows from the
upper bound || X'||F < Ju(K)/ o (Qk). Rearranging the terms
and setting (1 — B)~! < ¢ yields that J,/(K) < cJo(K) if

§ = (I=1/c) a(Qk) a(£2)/2uX) | QkllF)-

The proof is completed by replacing tr(X) with its upper bound
Ju(K)/ o (Qk)-
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APPENDIX B inequality [24, Sec. 2.2]. Replacing tr(P) with its upper bound
PROOF OF LEMMA 4 Jy(K)/ o (R2) and setting y = J,(K)/2 completes the proof.
The cost JE . (K) in (7) can also be written as

o, X0

Jaxy (K) = / th(t)(Q + KTRK)x(n)dt
0

where x(f) = exp((A, — BK)f)xp is the state of system x =
(A¢ — BK)x with the initial condition x(0) = x¢. Using this
expression, it is easy to verify that

J(‘fxo (K) — J;’XO (K) = jgfx(r)([()

= () Px(r) < |Ixoll* ||IP/?eC7|? (17)

where P is the unique positive definite solution to the
Lyapunov equation (2b) and G := A, — BK.

Using the notion of logarithmic norm [22, Sec. I1.8], we
have [23, Th. 2.3],

€713 := max [le"z|3/lIzI} < e"* (18)
z#0
—1/2 —1/2, — _
where 1 = — Qg /?PO* ! < —|IP| ' o(Q) and Q =

0 + KTRK. Now, by combining (18) and the above upper
bound on p, we obtain

< 1P 1% = [IPIl 1" 117

< |IP|| e~ @@V/IIPhT

< (Jo(K)/ 0 () e~ @) a(Q)/Ju(K))T (19)
where G := PY2GP~'/2. The last inequality comes from

1P| < Jyu(K)/ o (2) and combining the inequalities in (17)
and (19) completes the proof.

APPENDIX C
PROOF OF LEMMA 5
For any scalar y with J°,(K) —J° ,(K) < y/2, for i =
a,x, o,X,
1,..., N, we have
| N
~ _
52T (K) = Ja(K)| <
i=1
where J,(K) is given by (6). From J>(K) = )T Pxl)
. 0
and the bound |lxyl < 6, it follows that J;OX,. (K) <
0
02tr (P), where P is the solution to (2b). We can now
write

=

(20)

P(|[Jo(K) — Jo(K)| < )

N
1
=Pl 2o Ten® — By [V, (K] < ¥
1=
1 N y
2P| |5 2o 0O — B[l (K] = 5

>1— 2;):pl<—Ny2/<2tr(P)294>)

where the first inequality follows from combining (20) and the
triangle inequality, and the last line follows from Hoeffding’s
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