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Stochastic Failure Prognosis of Discrete Event Systems

Jun Chen

Abstract—This article studies the prognosis of failure, i.e., its
prediction prior to its occurrence, in stochastic discrete event sys-
tems. Prior work has focused on the definition and offline verifica-
tion of m-steps stochastic-prognosability, or S,,,-prognosability,
which allows the prediction of a fault at least m-steps in advance.
This article complements the existing work by proposing an al-
gorithm for the computation of online failure prognoser. The pro-
posed algorithm reduces the condition for issuing an affirmative
prognostic decision to verification condition of a safety property
of a Markov chain. We discuss how such a verification condition
can be computed using a finitely terminating algorithm.

Index Terms—Discrete event systems (DESs), failure prognosis,
fixed-point computation, state distribution, stochastic systems.

|. INTRODUCTION

HE problem of predicting a fault prior to its occurrence is a
T well-researched area (see for example [1]). The failure prognosis
problem has been widely studied in the context of discrete event systems
(DESs) [2]-[11]). The notion of uniformly bounded prognosability
of fault was formulated in [2] for logical DESs, requiring each fault
trace possesses a nonfault prefix (termed an indicator) such that for all
indistinguishable traces, a future fault is inevitable within a bounded
delay that is uniform across all fault traces.

Kumar and Takai [4] removed the requirement of the existence
of a uniform bound, provided a computable online prognoser, and
further established that the notion of prognosability is equivalent to
the existence of a prognoser with no false alarm (FA) and no missed
detection (MD). The issue of prognosability under a general decentral-
ized inferencing mechanism was proposed in [5], where a prognostic
decision involved inferencing among a group of local prognosers over
their local decisions and their ambiguity levels, and the notion of
inference-prognosability and its verification was introduced to capture
the necessity and sufficiency of inferencing-based decentralized prog-
nosis. The problem of distributed prognosability under bounded-delay
communications among the local prognosers was studied in [8], where
the notion of joint-prognosability and its verification was proposed. To
account for model uncertainty, robust prognosability with respect to a
set of system models was studied in [6]. The notion of failure prognosis
was later extended to labeled Petrinetin [12]—[16]. Finally, Orchard and
Vachtsevanos [17] discuss the potential application of particle filtering
in continuous systems.
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Failure prognosis has also been studied for stochastic DESs [10],
[18]. In [10], the notion of m-steps stochastic-prognosability, or simply
S,-prognosability, was introduced, which requires for any tolerance
level p and error bound 7, there exists a reaction bound k > m, such
that the set of fault traces for which a fault cannot be predicted & steps
in advance with tolerance level p occurs with probability smaller than
7.In [10], we further showed that S,,,-prognosability is a necessary and
sufficient condition for the existence of a prognoser with reaction bound
at least m (i.e., prediction at least m-steps prior to the occurrence of a
fault) that can achieve any specified FA' and MD rate requirements.

The prognoser formalized in [10] requires the calculation of the least
probability of no-fault over all finite future steps, and this calculation
involves matrix multiplication for arbitrary number of times. Hence,
the prognoser of Chen and Kumar [10] cannot be implemented. In
this article, we address this limitation by proposing an algorithm for
the computation of online failure prognoser, which reduces the online
prognosis problem to a control problem of Markov chain under linear
safety constraint [19]-[21]. In particular, for a given threshold p,
the algorithm computes the set of state distributions from which the
probability of future fault is less than p, denoted as maximal initial
nonfault set (MINS). The algorithm starts by setting MINS as the set
of stationary state distributions that a fault cannot be detected, and
iteratively sets MINS to the set of state distributions 7 so that either 7
is already in MINS in previous iteration or its one step successor falls
in MINS of previous step. The algorithm repeats until a fixed point is
reached, and such termination is proven to be guaranteed. Once MINS
is computed, given an observation, the online failure prognosis problem
reduces to checking whether the conditional state distribution resulting
from that observation is in MINS or not. The online prognoser issues
a failure prediction decision “F” if the conditional state distribution is
not a member of MINS, and “no-decision” otherwise.

The rest of this article is organized as follows. The notations and
some preliminaries are presented in Section II, followed by a brief
review of S,,-prognosability and stochastic prognoser in Section III.
Section IV gives the main result, an algorithm for the implementation
of the prognoser for online prognosis, whose termination is guaranteed.
Finally, Section V concludes this article.

Il. NOTATIONS AND PRELIMINARIES

Foranevent set Y3, define ¥ := ¥ U {e}, where e denotes “no-event.”
The set of all finite-length event sequences over X, including e, is
denoted as 3*. A trace is a member of 3* and a language is a subset of
3*. We use s < t to denote that s € X* is a prefix of t € X*, pr(s) to
denote the set of all prefixes of s, and |s| to denote the length of s or the
number of events in s. For n € N where N denotes the set of all non-
negative integers, define X<" := {s € X* : |s| < n}. Similarly define
¥Er, B> n, 327 and 37" according to X7 = {s € X* 1 |s|~n}
where ~ can be one of ~¢ {<,<,>, > =}. Note that ¥=" is also
denoted as X" for simplicity. For L C ¥, its prefix-closure is defined

'FA may also be termed as Type I error, whereas MD is Type II error when
the null hypothesis is “there is no future fault.”
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as pr(L) := U, pr(s), and L is said to be prefix-closed (or simply
closed) if pr(L) = L. Given two languages Ly and Lo, their concate-
nation is defined as Lj Lo := {st : s € L1,t € Ly}, the set of traces
in Ly after Ly is defined as L1\Ls := {t € ¥* : Is € Lo, st € L1},
and the set of traces in L quotient Lo is defined as L, /Ly := {s €
pr(Ly): 3t € Lo, st € Ly }.

A stochastic DES can be modeled by a stochastic automaton
G=(X,%,a,z9), where X is the set of states, ¥ is the set
of events, g € X is the initial state, and a: X x X x X —
[0,1] is the transition probability function [22] satisfying Va €
X, per Domex 0@, 0,2') =1, ie., there is no “termination” at
any of the states (note there is no loss of generality in assuming
no termination, since otherwise, one can augment the model with a
newly introduced “termination-state,” and transitions from each state
to the termination state on a newly introduced “termination-event”
that is unobservable and whose occurrence probability equals the
probability of termination of the said state). G is nonstochastic if
a: X x X x X — {0,1}, and a nonstochastic DES is deterministic
ifVe e X,0 €%, .y a(z,0,2') € {0,1}, ie., each state has at
most one transition on each event. The transition probability function
« can be generalized to o : X x ¥* x X in a natural way by multi-
plying the probabilities of the individual transitions. Define the lan-
guage generated by G as L(G) := {s € ¥*: Jz € X, a(zo, s, x) >
0}. A component C = (X¢,ac) of G is a “subgraph” of G, ie.,
Xc C X and Vz,2' € X¢ and 0 € &, ac(z,0,2') = a(z,0,2'),
whenever the latter is defined. C' is said to be a strongly connected
component (SCC) or irreducible if Vx,2' € X¢, Is € X* such that
ac(z,s,2") > 0. An SCC C is said to be closed if for each z € X¢,
Yoen 2arexg GolT,007) = 1.

To represent the limited sensing capabilities of a prognoser, we
introduce an event observation mask, M : ¥ — A, where A is the
set of observed symbols and M (€) = e. An event o is unobservable if
M (o) = e. The set of unobservable events is denoted as X,,,, and so
the set of observable events is given by > — X,,,,. The observation mask
can be generalized to M : 2" — 22" in a natural way: Vs € X%, 0 €
3, LC Y M(e) = e, M(so) = M(s)M(c),and M (L) = {M(s) :
se L}

For a stochastic automaton G' = (X, 3, a, xo) with generated lan-
guage L(G) = L,let K C L be anonempty closed sublanguage repre-
senting a nonfault specification for G, i.e., L — K consists of behaviors
that execute some fault. Then, the task of prognosis is to predict with
sufficient confidence the execution of any trace in L — K prior to
its execution. Let K C L be generated by a deterministic automaton
R=(Q,%,f,q) such that L(R) = K (from now on we interchange-
ably use K and R to refer to the “nonfault specification”). Then, the
refinement of the plant with respect to the specification, denoted as GF,
can be used to capture the fault traces in the form of the reachability of a
fault state carrying the label F' in G, which is given by GF := (X x
Q. 3,7, (20, q0)). where @ = QU {F}, and ¥(x, ), (2, 7) € X x
Q,0 € 3, v(x,9),0,(x,/7)) = a(x,o,2') if the following holds:

(7.7 €QANBG0,7)>0)V(G@=7=F)

v (q’—FAZB(q,a,q)—0>

q€Q

and otherwise v((z,q), o, (z,/q)) = 0. Then, it can be seen that the
refined plant G has the following properties: (1) L(GT) = L(G) =
L; (2) any fault trace s € L — K transitions the refinement G¥ to a
fault state (a state containing F' as its second coordinate); and (3) the
occurrence probability of each trace in G¥ is the same as thatin G, i.e.,

ZzeX Ot(xo, S, l’) = E(z,q)eanry((x()v q0)7 S, (I76))

Fig. 1. (a) Stochastic automaton G. (b) Nonfault specification R.
(c) Refinement GF.

Example 1: Fig. 1(a) is an example of a stochastic automaton GG. The
setof statesis X = {0, 1,2, 3, 4} with initial state o = 0, and event set
¥ ={a,b,c,d, f}. A state is depicted as a node, whereas a transition
is depicted as an edge between its origin and termination states, with its
event name and probability value labeled on the edge. The observation
mask M is such that M ({d, f}) = {¢} and M(c) = o for o € 3 —
{d, f}. The nonfault specification is given in Fig. 1(b). Therefore, L —
K = {ab*cac’ f}¥* N L and the refinement G is shown in Fig. 1(c).
As can be seen, all traces in L — K transitions GZ to the only fault
state (4, F). In GE, there are two closed SCCs, one is formed by the
nonfault state (1,1) and its self-loop transitions, whereas the other is
formed by the fault state (4, F') and its selfloop transitions. |

For z;,z; € X and o € ¥ — X,,, define the set of traces orig-
inating at x;, terminating at z;, and executing a sequence of
unobservable events followed by a single observable event o
as Lg(x,0,25) == {s € ¥* : s = uo, M(u) = €, a(x;, s,2;) > 0}.
Define (L (4,0, 25)) = 3 scr (e ;) a(x;, s, x;) asthe occur-
rence probability of traces in Lg(z;,0,2;) and denote it as j; . ;
for short. Also define ;; = >~ 5, (i, 0,z;) as the probability of
transitioning from x; to x; while executing a single unobservable event.
Then, it can be seen that (i, o ; = > Aikfik,0,; + (24,0, 2;), where
the first term on the right-hand side (RHS) involves transitioning in at
least two steps via some intermediate state, whereas the second RHS
term involves transitioning directly in exactly one step. Thus, for each
o € X — X, giventhe values {A;;]¢,j € X} and {a(x;,0,2;)]i,7 €
X}, all the probabilities {1; »,;]i,j € X,0 € ¥ — 3} can be found
by solving the following matrix equation (see for example Wang and
Ray [23] for a similar matrix equation):

u(0) = Au(o) + (o) ()

where p(o), A, and a(o) are all | X| x | X| square matrices whose
ijth elements are given by 1; . ;, A;j, and a(z;, 0, z;), respectively.
In the presence of partial observability, we define L (z;, M (0), x;) =
Usresim(on=m (o) L (25,0, x;), i.e., it is the set of all traces orig-
inating at x;, terminating at x;, and executing a sequence of unob-
servable events followed by a single observable event that has the
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same mask value M (o). Then, their occurrence probability is given
by a(Lg(zi, M(0), z;)) = Za’eZ:M(o”):IM(o-) Hi,o) 5

IIl. PROGNOSABILITY IN STOCHASTIC DES

In this section, we give a brief review of the .S,,,-prognosability and
m-prognoser for stochastic DESs. These notions are needed to establish
the major results of this article. For more details, refer to Chen and
Kumar [10].

The following definition introduces the notions of boundary fault
traces whose all strict prefixes are nonfault, and persistent nonfault
traces whose all extensions are nonfault.

Definition 1 (see[10]): Givena pair (L, K) of closed languages with
K C L, we define the set of the following:

1) boundary fault traces as 0 := {s € L — K : pr(s) — {s} C K},
2) persistent nonfault traces of K with respect to L as
Ni={se K:VneN,{s}X"N(L-K)=0} ={se K:

Vn € N, Pr({s}X" N K) = 1}.

Define the n-step prognostic probability of no-fault following an

observation o € M (L) as

(@)

n/y . Pr({M '(0)}E" N K)
PR )= o n D)

and the least prognostic probability of no-fault following o € M (L) as
Py (0) :== min Pg (o). 3)
neN

The following definition of S,,-prognosability is reproduced from
Chen and Kumar [10].

Definition 2 (see[10]): A pair (L, K) of closed languages with
K C L is said to be m-steps stochastically-prognosable, or simply
Sin-Prognosable, if

(¥, p > 0)(3k > m)Pr(s € 9 : [|s| < k]
V [Vu € s/57F P (M(u) > p)) <7 (4)

where Py is as defined by (2) and (3).

Next theorem from Chen and Kumar [10] shows that Sj-
prognosability is stronger than A A-diagnosability that were studied
in [24], i.e., whenever it is possible to predict a fault, it is also possible
to diagnose it.

Theorem 1: Given a pair (L, K) of closed regular languages with
K C L,if (L, K) is Sp-prognosable, then it is A A-diagnosable. How-
ever, the converse need not hold.

In order to predict a fault in advance, the prognoser introduced in [10]
computes for each o € M (L), the prognostic probability of no-fault
Py (o) as defined by (2)-(3), and compares it with an appropriately
chosen threshold p. Whenever Py, (0) is below this threshold, implying
that there is only a small likelihood of no-fault in future, the prognoser
issues a fault warning F', predicting/prognosing a future fault, and
otherwise it remains silent (issues €). In other words, a prognoser is
formally amap D : M (L) — {F, €} defined as

Yo e M(L),[D(o) = F] < [Fo < o: Py(0) < p] Q)

where Py is as defined by (2) and (3).

For a prognoser that aims to predict a fault at least m steps before its
occurrence, a miss detection (MD) occurs when a fault happens while
the prognoser fails to issue a warning m steps in advance. On the other
hand, an FA occurs when a warning is issued for a trace whose all
extensions are nonfault, i.e., a trace in X. Therefore, the MD rate P™
and the FA rate P™ for a m-prognoser can be defined as

PM=Pr(scd:|[ls| <m]V[D(M(s/S™ ) =¢  (6)

P® =Pr(s € X: D(M(s)) = F). ©)

Example 2: For the system G shown in Fig. 1. Suppose G
executes dabbb and produces observation o = abbb, then Py (o) =
0.5872. Hence, for any m-prognoser with threshold p > 0.5872, traces
in {dabbb}>* N L will be false alarmed. When Gt executes a trace in
ab*cac* f C O and produces an observation o € ab*cac*, then Py (0)
approaches O for any o € ab*c. Therefore, for a one-prognoser with
any threshold p, all fault traces can be prognosed, and hence no
MD. However, for a two-prognoser with p = 0.3, when G executes
the fault trace abcaf, a prognostic decision can be made only upon
observing abc (since for all its prefixes, the threshold remains lower than
the prognostic probability of no fault: Py, (¢) = 0.5, Py (a) = 0.375,
P} (ab) = 0.444, Py (abc) = 0), which violates the least reaction
bound m = 2, and hence abca f gets missed detected.

Next theorem shows that for regular languages L and K, S,,-
prognosability is necessary and sufficient for the existence of a m-
prognoser to satisfy any level of FA and MD rates.

Theorem 2 (see[10]): Consider a pair (L, K) of closed regular
languages with K C L. Then, for any FA rate ¢ > 0 and MD rate
7 > 0, there exists a m-prognoser (and its associated prognostic deci-
sion threshold) defined by (4) such that the MD and FA rates defined
by (5)—(6) satisfy P™ <7 and P® < ¢ if and only if (L, K) is
S.n-prognosable.

Note that the results presented in Section III are reproduced from
Chen and Kumar [10] and serve as preliminary results needed to
establish the main results in Section IV. For more details, such as
practical examples and intuitive insights, refer to Chen and Kumar [10].

IV. COMPUTATION OF STATISTICS FOR ONLINE PROGNOSIS

Now, we are ready to present our main results.

A. Online Prognosis

The prognoser formalized in (4) requires the calculation of the least
prognostic probability of no-fault as defined by (3), which can be further
reduced to

Py (0) :== min P (o)
neN
P -1 n
L P({M ()} N K)
neN Pr({M-1(0)}X" N L)
min, ey Pr({M~1(0)}X" N K)

=T Mi)nD) ®

Recall that Pf (o) is the probability, following the observation o, that
the system does not execute a fault in the next n steps; and Py, (o) is the
least probability, following the observation o, that the system does not
execute a fault over all finite-step futures. Note that in the denominator
of (2), we used the fact that probability of all extensions of length n,
beyond the traces in M (o), is the same as the probability of traces
in M ~1(0), for there is no termination at any of the states. As a result,
the denominator is constant with respect to n, and the minimum only
applies to the numerator in (3).

The challenge of computing (3) or (7) lies in the fact that one needs
to apply the min operator over all finite future steps, which cannot
be implemented straightforwardly using (3) or (7). Therefore, this
calculation requires a computable approach that remains open. In this
section, we present the verification of Py (0) < p for any observation
o € M(L) by reducing it to a verification problem of Markov chain
under a safety constraint [19]-[21]. In particular, for a given threshold
p, we compute the set of state distributions from which the probability of
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future fault remains less than p, denoted as MINS. Note that this is done
offline. Then, the online failure prognosis problem, as formalized in (4),
reduces to checking, given an observation, whether the conditional state
distribution following that observation belongs to MINS or not. The on-
line prognoser issues a prognosis decision of “F” if the conditional state
distribution is not a member of MINS, and “no-decision” otherwise. We
will also show that for a given threshold p € [0, 1], the computation of
corresponding MINS is guaranteed to terminate.

Given a refined plant model G with state space Y C X x Q,
its embedded Markov chain can be obtained by reducing the event
information associated with the transition, i.e., the Markov chain has
state space Y and transition matrix Q4r, which is a |Y| x |Y'| square
matrix with éjth entry givenby Q;; = >~ _ s 7(¥i, 0, y;) (note that the
Markov chain contains at most one transition between a pair of states in
each direction and does not carry an event label). Let I1 denote the set
of probability distributions on the state space of G, i.e., each element
7 € Il is a vector with | Y| nonnegative elements and ||| = 1, where
|| - || is simply the sum of all vector elements. A state distribution 7* € II
is said to be a stationary state distribution of Qgr if T*Qgr = 7* and
II; C Il is said to be a stationary set of state distributions of Qqr if
m e lly = mQqr € I, or equivalently, II,Qnr C Il

Given current observation o, define the current state distribution
mapping 7 : M (L) — II, which is the state distribution conditioned
upon the observation o, and can be recursively computed as [25]:
m(€e) = o, Where mp is the initial state distribution, and for any
o€ M(L),6 € A

m(08) = _m(o)u(9) 9)
[l (o) ()]
where pi(o) is defined in Section II and can be computed by (1). Define
anonfault indicator binary column vector I,,; € {0, 1}¥*1 where an
entry 1 indicates a nonfault state. It is easy to see that Py (0), the n-step
prognosis probability of no-fault following o in (2), can be computed
by

Pf (o) = W(O)QZRI”f

and then Py (o), the least prognosis probability of no-fault following o
in as defined in (7), can be computed by

Py (o) = min Pf (o) = min T(0)Q R Iy

This requires the computation of Pg (o) for all possible n € N, and
hence is intractable. Next, we present a new characterization of the
prognoser that converts the online prognosis problem to control problem
of Markov chain under linear safety constraint, as presented in [19]—
[21]. Define

I, :={rell:nl,; > p}
Z,:={IICI,:VrcIl,mQqr € I}
={[ICII,:Yn € N,m € Il = moQ%x € I}

i.e., I, is the set of state distributions such that the nonfault probability
is greater than p, and 7, is a subset of I, such that all state distributions

{70, n € N} are members of Z, whenever 7 itself is an element

of Z,,. Itis obvious that Z, is closed under unions and, hence, possesses
a unique maximal element called MINS, denoted by II*, i.e., VIl €
Z,, 11 C H’;,. Then, we have

(Pi(0) < p) & (3n € N, 7(0) %Ly < p)
< (Fn e N, m(0)Q%r ¢ 11,)
& (m(o) 1I,).

The next theorem follows directly from the aforementioned analysis,
and is given without proof.

Theorem 3: The prognoser of (4) can be equivalently reformulated
as

o€ M(L),[D(o) = F] & [Fo< o:w(0) ¢1T5].  (10)

B. Computation of MINS

Now the issue remains as to compute the MINS II}, for a given
p. Similar to the works in [19]-[21], we have the following results.
Theorem 4 provides a criterion for verifying that IT}, is nonempty.

Theorem 4: Given a Markov chain with transition matrix Qqr, let
IT, C I, be the MINS corresponding to decision threshold p. Then,
1T is nonempty if and only if {2 has a stationary state distribution
that lies in II,,.

Proof: Suppose 7" € 11, is a stationary state distribution of Qg r.
Then, {7*} € IT,, which implies {7*} € II); and, hence, IT} is
nonempty and sufficiency follows. To show the necessity, suppose
H; # (. There should exist a sequence of state distributions 7, 7o, . . .
such that m, € I} and 7y = mQlgr forall k > 1. Letd > 1be the
period of Q. Then, there exists m > 1, such that 7,,, = 7, 4. Then,
it follows that m = é Ef;(l) Tm+i 1S @ stationary state distribution of
Qcr. Moreover, since m,,4; € H; foralli =0,...,d =1, 7l,; =
1 Z;té Tomtidnp > ézgté p = p, ie., m € II,, which establishes
the necessity.

When all the stationary state distributions of Q4 r are not in II,,
according to Theorem 4, IT, = () and the prognoser issues F' for all
observations. When there is one stationary distribution of Qg r lies
in I, the following algorithm computes IT7. The algorithm starts by
initializing IT}, as the set of stationary state distributions that lies in I,
and iteratively enlarges II7, to the set of state distributions 7 so that
either 7 is already in IT}, in previous iteration, or its one step successor
m{lgr falls in IT7,. The algorithm repeats until a fixed point is reached.

Algorithm 1: Let N, C1I o be the set of stationary state distributions
of QdGR that lies in II,, and Ny C IT, be the set of state distribution 7
such that 37, € Ny, 7QF%, — 7, as k — oo, where d is the period of

a
Qer.Fork =1,2,..., iteratively compute

NO = N,
N® = fr e Ny : 1Qgr e NEDY,

Terminate the algorithm when N**+1 = A%,
Note that the iterative update in Algorithm 1 can be rephrased as

N® ={reNy:mQkr €N, and QL € Np CIL,, 1<1< k}.
an

The next theorem ensures the finite iteration of Algorithm 1 and is
inspired from [20, Theorem 4.3]. X

Theorem 5: There exists a finite integer & € N such that N'*+1) =
NG =TI,

Proof: We first prove the finite termination by contradiction. If the
iteration does not terminate in a finite number of steps, then there exists
asequence of {7(®)} C N suchthat 7(*) ¢ N+ — N (B) or (k) ¢
NE) — N =1 forall k > 1. According to (10), (%) satisfies

either [W(k)QéR Z N, H“Q’gg € Ny
or [r M0k, € N, rPQE ¢ A
which implies

{7, 7MY ¢ N, VE €N, (12)
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Let 7 be any limit point of the sequence {7(*)}. Since QdGR
is aperiodic, ngR tends to a limit as [ — oo. Thus, %ngR —
my and %Qlcd;tfl — m;, as | — oo, for some mg, w7 € II. How-
ever, since 7 € Np, we have 75, 7; € N. Since 7(!m® — 7 along
some subsequence {l,,} C N, we can conclude that there ex-
ist lp,mo € N such that {7r<lmd>QlGdR,7r<lmd>Qg§1} C N, for all
1 >1p,m > mg. Choosing m' > mq such that [, > ly, we have
{rm Qe almd QU™ © N, which contradicts (11) if we
set k := l,,d. Hence, the iteration terminates at some finite keN.
Next, we show that \/(*) is the MINS. It is clear that N'®) C II7. To

show that N’*) D IT;, let 7t € II;, be arbitrary. Since led“ — 7, as
I — oo, for some ﬁmte collectlon {m; €1l,,i=0,. -1} C N,
we can conclude there exists £y € N such that frﬂlé r € /\/S, for all
k > kq. Therefore, by (10), 7 € /%), for all sufficiently large k. W

Remark 1: Once the maximum initial nonfault set IT, has been com-
puted, then for each observation o, the online prognoser (4) computes
the current state distribution 7(0) according to (8), determines whether
7(0) belongs to IT? or not, and issues a prognostic decision according
to (9).

Remark2: Theorem 5 guarantees that Algorithm 1 terminates within
finite number of iterations. Furthermore, it can be seen that the compu-
tation of online prognoser, as highlighted in Remark 1, is of polynomial
complexity in the number of states, i.e., | X|. In the setting when the
system consists of multiple local components, | X| is the product of the
individual component’s states, which is standard for any DES analysis.
In such case, a decentralized/distributed framework can be developed
as is customary; see for example in [8], [11], and [26].

Example 3: Forthe refined model G in Fig. 1, we relabel the refined
states space as 0:= (0,0),1:=(1,1),2:=(2,2),3:=(3,3),4 :=
(4,4),5 := (4, F). Then, we have

s={mell:m +m5 =1}
IM,={rell:ns <1-p}
Ny={rell:m >p,m +m5 =1}

No ={m €Il:0.5m + 7 > p}.

Algorithm 1 for this example terminates in the fifth iteration as

NO =N, ={rell:m >pm +7m5=1}

NO ={rell:m > p,m + 74+ 75 =1}

N® = {mell:m >p,m+ms+m+75 =1}
NG ={rell:n >pm +m+7m3+m4+m5 =1}
N® .= {1 eIl:0.5m 4+ m > p}

NO .= {r ell:05m +m >p} =ND,

Therefore, IT;, = N'®) = {7 € I : 0.5m + 1 > p}. Note that in this
case, it happens that IT} equals No.

Example 4: Next, we illustrate the online prognosis for the system
in Example 3. When the system executes s = dabbb and produces
observation o = abbb, the resulting state distributions are

(a 00.3750.625 0 0 0]

m(ab) = [0 0.4444 0.5556 0 0 0 |

) =1
) =1
m(abb) = [0 0.5161 0.4839 0 0 0]

m(abbb) = [0 0.5872 0.4128 00 0] .

Suppose p = 0.3 in this example. According to Example 3, we have
I, = {m € 11 : 0.5m9 +m > 0.3}.

It is then trivial to see that 7(0) € IT}, for all < o, and hence no FA
occurs for trace s. |

V. CONCLUSION

In this article, we studied the prognosis of fault, i.e., its prediction
prior to its occurrence, for stochastic DESs. In the prior work [10],
the notion of \S,,,-prognosability for stochastic DESs was formulated,
generalizing the corresponding notion from the logical setting. This
article complements Chen and Kumar [10] by providing an online
recursive prognosis algorithm that relies on converting the computation
of least prognostic probability to computation of an MINS, as showed
in this article. We showed that the condition for issuing an affirmative
decision of an online failure prognoser can be reduced to a verification
problem of a controlled Markov chain under a safety constraint. The
proposed algorithm then computes the set of initial state distributions
from which the probability of future fault is less than a user-specified
threshold p, denoted as MINS. The online failure prognoser then
checks whether the conditional distribution following an observation
belongs to MINS or not, and issues prognostic decision accordingly.
The termination of the proposed algorithm for computing MINS for any
given p is guaranteed. Future work includes development of algorithms
for computing the decision threshold p and the largest possible reaction
bound m to satisfy given performance requirements ¢, 7 > 0 for FA and
MD rates. Extension to the decentralized setting [27]—[29] or distributed
setting [8] would be another potential direction for future work.
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