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Abstract—This article studies the prognosis of failure, i.e., its
prediction prior to its occurrence, in stochastic discrete event sys-
tems. Prior work has focused on the definition and offline verifica-
tion of m-steps stochastic-prognosability, or Sm-prognosability,
which allows the prediction of a fault at least m-steps in advance.
This article complements the existing work by proposing an al-
gorithm for the computation of online failure prognoser. The pro-
posed algorithm reduces the condition for issuing an affirmative
prognostic decision to verification condition of a safety property
of a Markov chain. We discuss how such a verification condition
can be computed using a finitely terminating algorithm.

Index Terms—Discrete event systems (DESs), failure prognosis,
fixed-point computation, state distribution, stochastic systems.

I. INTRODUCTION

T
HE problem of predicting a fault prior to its occurrence is a

well-researched area (see for example [1]). The failure prognosis

problem has been widely studied in the context of discrete event systems

(DESs) [2]–[11]). The notion of uniformly bounded prognosability

of fault was formulated in [2] for logical DESs, requiring each fault

trace possesses a nonfault prefix (termed an indicator) such that for all

indistinguishable traces, a future fault is inevitable within a bounded

delay that is uniform across all fault traces.

Kumar and Takai [4] removed the requirement of the existence

of a uniform bound, provided a computable online prognoser, and

further established that the notion of prognosability is equivalent to

the existence of a prognoser with no false alarm (FA) and no missed

detection (MD). The issue of prognosability under a general decentral-

ized inferencing mechanism was proposed in [5], where a prognostic

decision involved inferencing among a group of local prognosers over

their local decisions and their ambiguity levels, and the notion of

inference-prognosability and its verification was introduced to capture

the necessity and sufficiency of inferencing-based decentralized prog-

nosis. The problem of distributed prognosability under bounded-delay

communications among the local prognosers was studied in [8], where

the notion of joint-prognosability and its verification was proposed. To

account for model uncertainty, robust prognosability with respect to a

set of system models was studied in [6]. The notion of failure prognosis

was later extended to labeled Petri net in [12]–[16]. Finally, Orchard and

Vachtsevanos [17] discuss the potential application of particle filtering

in continuous systems.
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Failure prognosis has also been studied for stochastic DESs [10],

[18]. In [10], the notion of m-steps stochastic-prognosability, or simply

Sm-prognosability, was introduced, which requires for any tolerance

level ρ and error bound τ , there exists a reaction bound k ≥ m, such

that the set of fault traces for which a fault cannot be predicted k steps

in advance with tolerance level ρ occurs with probability smaller than

τ . In [10], we further showed thatSm-prognosability is a necessary and

sufficient condition for the existence of a prognoser with reaction bound

at least m (i.e., prediction at least m-steps prior to the occurrence of a

fault) that can achieve any specified FA1 and MD rate requirements.

The prognoser formalized in [10] requires the calculation of the least

probability of no-fault over all finite future steps, and this calculation

involves matrix multiplication for arbitrary number of times. Hence,

the prognoser of Chen and Kumar [10] cannot be implemented. In

this article, we address this limitation by proposing an algorithm for

the computation of online failure prognoser, which reduces the online

prognosis problem to a control problem of Markov chain under linear

safety constraint [19]–[21]. In particular, for a given threshold ρ,

the algorithm computes the set of state distributions from which the

probability of future fault is less than ρ, denoted as maximal initial

nonfault set (MINS). The algorithm starts by setting MINS as the set

of stationary state distributions that a fault cannot be detected, and

iteratively sets MINS to the set of state distributions π so that either π
is already in MINS in previous iteration or its one step successor falls

in MINS of previous step. The algorithm repeats until a fixed point is

reached, and such termination is proven to be guaranteed. Once MINS

is computed, given an observation, the online failure prognosis problem

reduces to checking whether the conditional state distribution resulting

from that observation is in MINS or not. The online prognoser issues

a failure prediction decision “F” if the conditional state distribution is

not a member of MINS, and “no-decision” otherwise.

The rest of this article is organized as follows. The notations and

some preliminaries are presented in Section II, followed by a brief

review of Sm-prognosability and stochastic prognoser in Section III.

Section IV gives the main result, an algorithm for the implementation

of the prognoser for online prognosis, whose termination is guaranteed.

Finally, Section V concludes this article.

II. NOTATIONS AND PRELIMINARIES

For an event setΣ, defineΣ := Σ ∪ {ε}, where εdenotes “no-event.”

The set of all finite-length event sequences over Σ, including ε, is

denoted as Σ∗. A trace is a member of Σ∗ and a language is a subset of

Σ∗. We use s ≤ t to denote that s ∈ Σ∗ is a prefix of t ∈ Σ∗, pr(s) to

denote the set of all prefixes of s, and |s| to denote the length of s or the

number of events in s. For n ∈ N where N denotes the set of all non-

negative integers, define Σ<n := {s ∈ Σ∗ : |s| < n}. Similarly define

Σ≤n, Σ>n, Σ≥n, and Σ=n according to Σ∼n := {s ∈ Σ∗ : |s|∼n}
where ∼ can be one of ∼∈ {<,≤, >,≥,=}. Note that Σ=n is also

denoted as Σn for simplicity. For L ⊆ Σ∗, its prefix-closure is defined

1FA may also be termed as Type I error, whereas MD is Type II error when
the null hypothesis is “there is no future fault.”
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as pr(L) :=
⋃

s∈L pr(s), and L is said to be prefix-closed (or simply

closed) if pr(L) = L. Given two languages L1 and L2, their concate-

nation is defined as L1L2 := {st : s ∈ L1, t ∈ L2}, the set of traces

in L1 after L2 is defined as L1\L2 := {t ∈ Σ∗ : ∃s ∈ L2, st ∈ L1},

and the set of traces in L1 quotient L2 is defined as L1/L2 := {s ∈
pr(L1) : ∃t ∈ L2, st ∈ L1}.

A stochastic DES can be modeled by a stochastic automaton

G = (X,Σ, α, x0), where X is the set of states, Σ is the set

of events, x0 ∈ X is the initial state, and α : X × Σ×X →
[0, 1] is the transition probability function [22] satisfying ∀x ∈
X,

∑
σ∈Σ

∑
x′∈X α(x, σ, x′) = 1, i.e., there is no “termination” at

any of the states (note there is no loss of generality in assuming

no termination, since otherwise, one can augment the model with a

newly introduced “termination-state,” and transitions from each state

to the termination state on a newly introduced “termination-event”

that is unobservable and whose occurrence probability equals the

probability of termination of the said state). G is nonstochastic if

α : X × Σ×X → {0, 1}, and a nonstochastic DES is deterministic

if ∀x ∈ X,σ ∈ Σ,
∑

x′∈X α(x, σ, x′) ∈ {0, 1}, i.e., each state has at

most one transition on each event. The transition probability function

α can be generalized to α : X × Σ∗ ×X in a natural way by multi-

plying the probabilities of the individual transitions. Define the lan-

guage generated by G as L(G) := {s ∈ Σ∗ : ∃x ∈ X,α(x0, s, x) >
0}. A component C = (XC , αC) of G is a “subgraph” of G, i.e.,

XC ⊆ X and ∀x, x′ ∈ XC and σ ∈ Σ, αC(x, σ, x
′) := α(x, σ, x′),

whenever the latter is defined. C is said to be a strongly connected

component (SCC) or irreducible if ∀x, x′ ∈ XC , ∃s ∈ Σ∗ such that

αC(x, s, x
′) > 0. An SCC C is said to be closed if for each x ∈ XC ,∑

σ∈Σ

∑
x′∈XC

αC(x, σ, x
′) = 1.

To represent the limited sensing capabilities of a prognoser, we

introduce an event observation mask, M : Σ → ∆, where ∆ is the

set of observed symbols and M(ε) = ε. An event σ is unobservable if

M(σ) = ε. The set of unobservable events is denoted as Σuo, and so

the set of observable events is given byΣ− Σuo. The observation mask

can be generalized to M : 2Σ
∗
→ 2∆

∗
in a natural way: ∀s ∈ Σ∗, σ ∈

Σ, L ⊆ Σ∗,M(ε) = ε,M(sσ) = M(s)M(σ), andM(L) = {M(s) :
s ∈ L}.

For a stochastic automaton G = (X,Σ, α, x0) with generated lan-

guage L(G) = L, let K ⊆ L be a nonempty closed sublanguage repre-

senting a nonfault specification for G, i.e.,L−K consists of behaviors

that execute some fault. Then, the task of prognosis is to predict with

sufficient confidence the execution of any trace in L−K prior to

its execution. Let K ⊆ L be generated by a deterministic automaton

R = (Q,Σ, β, q) such that L(R) = K (from now on we interchange-

ably use K and R to refer to the “nonfault specification”). Then, the

refinement of the plant with respect to the specification, denoted asGR,

can be used to capture the fault traces in the form of the reachability of a

fault state carrying the label F in GR, which is given by GR := (X ×
Q,Σ, γ, (x0, q0)), where Q = Q ∪ {F}, and ∀(x, q), (x,′ q′) ∈ X ×
Q,σ ∈ Σ, γ((x, q), σ, (x,′ q′)) = α(x, σ, x′) if the following holds:

(q, q′ ∈ Q ∧ β(q, σ, q′) > 0) ∨ (q = q′ = F )

∨

(
q′ = F ∧

∑

q∈Q

β(q, σ, q) = 0

)

and otherwise γ((x, q), σ, (x,′ q′)) = 0. Then, it can be seen that the

refined plant GR has the following properties: (1) L(GR) = L(G) =
L; (2) any fault trace s ∈ L−K transitions the refinement GR to a

fault state (a state containing F as its second coordinate); and (3) the

occurrence probability of each trace in GR is the same as that in G, i.e.,∑
x∈X α(x0, s, x) =

∑
(x,q)∈X×Q

γ((x0, q0), s, (x, q)).

Fig. 1. (a) Stochastic automaton G. (b) Nonfault specification R.
(c) Refinement GR.

Example 1: Fig. 1(a) is an example of a stochastic automatonG. The

set of states isX = {0, 1, 2, 3, 4}with initial statex0 = 0, and event set

Σ = {a, b, c, d, f}. A state is depicted as a node, whereas a transition

is depicted as an edge between its origin and termination states, with its

event name and probability value labeled on the edge. The observation

mask M is such that M({d, f}) = {ε} and M(σ) = σ for σ ∈ Σ−
{d, f}. The nonfault specification is given in Fig. 1(b). Therefore, L−
K = {ab∗cac∗f}Σ∗ ∩ L and the refinement GR is shown in Fig. 1(c).

As can be seen, all traces in L−K transitions GR to the only fault

state (4, F ). In GR, there are two closed SCCs, one is formed by the

nonfault state (1,1) and its self-loop transitions, whereas the other is

formed by the fault state (4, F ) and its selfloop transitions. �

For xi, xj ∈ X and σ ∈ Σ− Σuo, define the set of traces orig-

inating at xi, terminating at xj , and executing a sequence of

unobservable events followed by a single observable event σ
asLG(xi, σ, xj) := {s ∈ Σ∗ : s = uσ,M(u) = ε, α(xi, s, xj) > 0}.

Defineα(LG(xi, σ, xj)) :=
∑

s∈LG(xi,σ,xj)
α(xi, s, xj) as the occur-

rence probability of traces in LG(xi, σ, xj) and denote it as µi,σ,j

for short. Also define λij =
∑

σ∈Σuo
α(xi, σ, xj) as the probability of

transitioning fromxi toxj while executing a single unobservable event.

Then, it can be seen that µi,σ,j =
∑

k λikµk,σ,j + α(xi, σ, xj), where

the first term on the right-hand side (RHS) involves transitioning in at

least two steps via some intermediate state, whereas the second RHS

term involves transitioning directly in exactly one step. Thus, for each

σ ∈ Σ− Σuo, given the values {λij |i, j ∈ X} and {α(xi, σ, xj)|i, j ∈
X}, all the probabilities {µi,σ,j |i, j ∈ X,σ ∈ Σ− Σuo} can be found

by solving the following matrix equation (see for example Wang and

Ray [23] for a similar matrix equation):

µ(σ) = λµ(σ) +α(σ) (1)

where µ(σ), λ, and α(σ) are all |X| × |X| square matrices whose

ijth elements are given by µi,σ,j , λij , and α(xi, σ, xj), respectively.

In the presence of partial observability, we defineLG(xi,M(σ), xj) :=
∪σ′∈Σ:M(σ′)=M(σ)LG(xi, σ,

′ xj), i.e., it is the set of all traces orig-

inating at xi, terminating at xj , and executing a sequence of unob-

servable events followed by a single observable event that has the
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same mask value M(σ). Then, their occurrence probability is given

by α(LG(xi,M(σ), xj)) :=
∑

σ′∈Σ:M(σ′)=M(σ) µi,σ,′j .

III. PROGNOSABILITY IN STOCHASTIC DES

In this section, we give a brief review of the Sm-prognosability and

m-prognoser for stochastic DESs. These notions are needed to establish

the major results of this article. For more details, refer to Chen and

Kumar [10].

The following definition introduces the notions of boundary fault

traces whose all strict prefixes are nonfault, and persistent nonfault

traces whose all extensions are nonfault.

Definition 1 (see[10]): Given a pair (L,K) of closed languages with

K ⊆ L, we define the set of the following:

1) boundary fault traces as ∂ := {s ∈ L−K : pr(s)− {s} ⊆ K};

2) persistent nonfault traces of K with respect to L as

ℵ := {s ∈ K : ∀n ∈ N, {s}Σn ∩ (L−K) = ∅} = {s ∈ K :
∀n ∈ N,Pr({s}Σn ∩K) = 1}.

Define the n-step prognostic probability of no-fault following an

observation o ∈ M(L) as

Pn
N (o) :=

Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)}Σn ∩ L)
(2)

and the least prognostic probability of no-fault following o ∈ M(L) as

P ∗
N (o) := min

n∈N

Pn
N (o). (3)

The following definition of Sm-prognosability is reproduced from

Chen and Kumar [10].

Definition 2 (see[10]): A pair (L,K) of closed languages with

K ⊆ L is said to be m-steps stochastically-prognosable, or simply

Sm-Prognosable, if

(∀τ, ρ > 0)(∃k ≥ m)Pr(s ∈ ∂ : [|s| ≤ k]

∨ [∀u ∈ s/Σ>k, P ∗
N (M(u)) > ρ]) < τ (4)

where P ∗
N is as defined by (2) and (3).

Next theorem from Chen and Kumar [10] shows that S0-

prognosability is stronger than AA-diagnosability that were studied

in [24], i.e., whenever it is possible to predict a fault, it is also possible

to diagnose it.

Theorem 1: Given a pair (L,K) of closed regular languages with

K ⊆ L, if (L,K) is S0-prognosable, then it is AA-diagnosable. How-

ever, the converse need not hold.

In order to predict a fault in advance, the prognoser introduced in [10]

computes for each o ∈ M(L), the prognostic probability of no-fault

P ∗
N (o) as defined by (2)–(3), and compares it with an appropriately

chosen threshold ρ. Whenever P ∗
N (o) is below this threshold, implying

that there is only a small likelihood of no-fault in future, the prognoser

issues a fault warning F , predicting/prognosing a future fault, and

otherwise it remains silent (issues ε). In other words, a prognoser is

formally a map D : M(L) → {F, ε} defined as

∀o ∈ M(L), [D(o) = F ] ⇔ [∃o ≤ o : P ∗
N (o) ≤ ρ] (5)

where P ∗
N is as defined by (2) and (3).

For a prognoser that aims to predict a fault at least m steps before its

occurrence, a miss detection (MD) occurs when a fault happens while

the prognoser fails to issue a warning m steps in advance. On the other

hand, an FA occurs when a warning is issued for a trace whose all

extensions are nonfault, i.e., a trace in ℵ. Therefore, the MD rate Pmd

and the FA rate P fa for a m-prognoser can be defined as

Pmd = Pr(s ∈ ∂ : [|s| ≤ m] ∨ [D(M(s/Σm+1)) = ε] (6)

P fa = Pr(s ∈ ℵ : D(M(s)) = F ). (7)

Example 2: For the system GR shown in Fig. 1. Suppose GR

executes dabbb and produces observation o = abbb, then P ∗
N (o) =

0.5872. Hence, for anym-prognoser with threshold ρ ≥ 0.5872, traces

in {dabbb}Σ∗ ∩ L will be false alarmed. When GR executes a trace in

ab∗cac∗f ⊆ ∂ and produces an observation o ∈ ab∗cac∗, then P ∗
N (o)

approaches 0 for any o ∈ ab∗c. Therefore, for a one-prognoser with

any threshold ρ, all fault traces can be prognosed, and hence no

MD. However, for a two-prognoser with ρ = 0.3, when GR executes

the fault trace abcaf , a prognostic decision can be made only upon

observingabc (since for all its prefixes, the threshold remains lower than

the prognostic probability of no fault: P ∗
N (ε) = 0.5, P ∗

N (a) = 0.375,

P ∗
N (ab) = 0.444, P ∗

N (abc) = 0), which violates the least reaction

bound m = 2, and hence abcaf gets missed detected.

Next theorem shows that for regular languages L and K, Sm-

prognosability is necessary and sufficient for the existence of a m-

prognoser to satisfy any level of FA and MD rates.

Theorem 2 (see[10]): Consider a pair (L,K) of closed regular

languages with K ⊆ L. Then, for any FA rate φ > 0 and MD rate

τ > 0, there exists a m-prognoser (and its associated prognostic deci-

sion threshold) defined by (4) such that the MD and FA rates defined

by (5)–(6) satisfy Pmd ≤ τ and P fa ≤ φ if and only if (L,K) is

Sm-prognosable.

Note that the results presented in Section III are reproduced from

Chen and Kumar [10] and serve as preliminary results needed to

establish the main results in Section IV. For more details, such as

practical examples and intuitive insights, refer to Chen and Kumar [10].

IV. COMPUTATION OF STATISTICS FOR ONLINE PROGNOSIS

Now, we are ready to present our main results.

A. Online Prognosis

The prognoser formalized in (4) requires the calculation of the least

prognostic probability of no-fault as defined by (3), which can be further

reduced to

P ∗
N (o) := min

n∈N

Pn
N (o)

= min
n∈N

Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)}Σn ∩ L)

=
minn∈N Pr({M−1(o)}Σn ∩K)

Pr({M−1(o)} ∩ L)
. (8)

Recall that Pn
N (o) is the probability, following the observation o, that

the system does not execute a fault in the next n steps; and P ∗
N (o) is the

least probability, following the observation o, that the system does not

execute a fault over all finite-step futures. Note that in the denominator

of (2), we used the fact that probability of all extensions of length n,

beyond the traces in M−1(o), is the same as the probability of traces

in M−1(o), for there is no termination at any of the states. As a result,

the denominator is constant with respect to n, and the minimum only

applies to the numerator in (3).

The challenge of computing (3) or (7) lies in the fact that one needs

to apply the min operator over all finite future steps, which cannot

be implemented straightforwardly using (3) or (7). Therefore, this

calculation requires a computable approach that remains open. In this

section, we present the verification of P ∗
N (o) ≤ ρ for any observation

o ∈ M(L) by reducing it to a verification problem of Markov chain

under a safety constraint [19]–[21]. In particular, for a given threshold

ρ, we compute the set of state distributions from which the probability of
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future fault remains less than ρ, denoted as MINS. Note that this is done

offline. Then, the online failure prognosis problem, as formalized in (4),

reduces to checking, given an observation, whether the conditional state

distribution following that observation belongs to MINS or not. The on-

line prognoser issues a prognosis decision of “F” if the conditional state

distribution is not a member of MINS, and “no-decision” otherwise. We

will also show that for a given threshold ρ ∈ [0, 1], the computation of

corresponding MINS is guaranteed to terminate.

Given a refined plant model GR with state space Y ⊆ X ×Q,

its embedded Markov chain can be obtained by reducing the event

information associated with the transition, i.e., the Markov chain has

state space Y and transition matrix ΩGR , which is a |Y | × |Y | square

matrix with ijth entry given byΩij =
∑

σ∈Σ γ(yi, σ, yj) (note that the

Markov chain contains at most one transition between a pair of states in

each direction and does not carry an event label). Let Π denote the set

of probability distributions on the state space of GR, i.e., each element

π ∈ Π is a vector with |Y | nonnegative elements and ‖π‖ = 1, where

‖ · ‖ is simply the sum of all vector elements. A state distributionπ∗ ∈ Π
is said to be a stationary state distribution of ΩGR if π∗ΩGR = π∗ and

Πs ⊆ Π is said to be a stationary set of state distributions of ΩGR if

π ∈ Πs ⇒ πΩGR ∈ Πs, or equivalently, ΠsΩGR ⊆ Πs.

Given current observation o, define the current state distribution

mapping π : M(L) → Π, which is the state distribution conditioned

upon the observation o, and can be recursively computed as [25]:

π(ε) = π0, where π0 is the initial state distribution, and for any

o ∈ M(L), δ ∈ ∆

π(oδ) =
π(o)µ(δ)

||π(o)µ(δ)||
(9)

where µ(σ) is defined in Section II and can be computed by (1). Define

a nonfault indicator binary column vector Inf ∈ {0, 1}|Y |×1, where an

entry 1 indicates a nonfault state. It is easy to see that Pn
N (o), the n-step

prognosis probability of no-fault following o in (2), can be computed

by

Pn
N (o) = π(o)Ωn

GRInf

and then P ∗
N (o), the least prognosis probability of no-fault following o

in as defined in (7), can be computed by

P ∗
N (o) = min

n∈N

Pn
N (o) = min

n∈N

π(o)Ωn
GRInf .

This requires the computation of Pn
N (o) for all possible n ∈ N, and

hence is intractable. Next, we present a new characterization of the

prognoser that converts the online prognosis problem to control problem

of Markov chain under linear safety constraint, as presented in [19]–

[21]. Define

Πρ := {π ∈ Π : πInf > ρ}

Iρ := {Π̂ ⊆ Πρ : ∀π ∈ Π̂, πΩGR ∈ Π̂}

= {Π̂ ⊆ Πρ : ∀n ∈ N, π0 ∈ Π̂ ⇒ π0Ω
n
GR ∈ Π̂}

i.e., Πρ is the set of state distributions such that the nonfault probability

is greater than ρ, and Iρ is a subset ofΠρ such that all state distributions

{π0Ω
n
GR , n ∈ N} are members of Iρ whenever π0 itself is an element

of Iρ. It is obvious that Iρ is closed under unions and, hence, possesses

a unique maximal element called MINS, denoted by Π∗
ρ, i.e., ∀Π̂ ∈

Iρ, Π̂ ⊆ Π∗
ρ. Then, we have

(P ∗
N (o) ≤ ρ) ⇔ (∃n ∈ N, π(o)Ωn

GRInf ≤ ρ)

⇔ (∃n ∈ N, π(o)Ωn
GR �∈ Πρ)

⇔ (π(o) �∈ Π∗
ρ).

The next theorem follows directly from the aforementioned analysis,

and is given without proof.

Theorem 3: The prognoser of (4) can be equivalently reformulated

as

∀o ∈ M(L), [D(o) = F ] ⇔ [∃o ≤ o : π(o) �∈ Π∗
ρ]. (10)

B. Computation of MINS

Now the issue remains as to compute the MINS Π∗
ρ for a given

ρ. Similar to the works in [19]–[21], we have the following results.

Theorem 4 provides a criterion for verifying that Π∗
ρ is nonempty.

Theorem 4: Given a Markov chain with transition matrix ΩGR , let

Π∗
ρ ⊆ Πρ be the MINS corresponding to decision threshold ρ. Then,

Π∗
ρ is nonempty if and only if ΩGR has a stationary state distribution

that lies in Πρ.

Proof: Suppose π∗ ∈ Πρ is a stationary state distribution of ΩGR .

Then, {π∗} ∈ Πρ, which implies {π∗} ∈ Π∗
ρ and, hence, Π∗

ρ is

nonempty and sufficiency follows. To show the necessity, suppose

Π∗
ρ �= ∅. There should exist a sequence of state distributions π1, π2, . . .

such that πk ∈ Π∗
ρ and πk+1 = πkΩGR for all k ≥ 1. Let d ≥ 1 be the

period ofΩGR . Then, there existsm ≥ 1, such thatπm = πm+d. Then,

it follows that π = 1
d

∑d−1
i=0 πm+i is a stationary state distribution of

ΩGR . Moreover, since πm+i ∈ Π∗
ρ for all i = 0, . . . , d− 1, πInf =

1
d

∑d−1
i=0 πm+iInf > 1

d

∑d−1
i=0 ρ = ρ, i.e., π ∈ Πρ, which establishes

the necessity.

When all the stationary state distributions of ΩGR are not in Πρ,

according to Theorem 4, Π∗
ρ = ∅ and the prognoser issues F for all

observations. When there is one stationary distribution of ΩGR lies

in Πρ, the following algorithm computes Π∗
ρ. The algorithm starts by

initializing Π∗
ρ as the set of stationary state distributions that lies in Πρ,

and iteratively enlarges Π∗
ρ to the set of state distributions π so that

either π is already in Π∗
ρ in previous iteration, or its one step successor

πΩGR falls in Π∗
ρ. The algorithm repeats until a fixed point is reached.

Algorithm 1: LetNs ⊆ Πρ be the set of stationary state distributions

of Ωd
GR that lies in Πρ and N0 ⊆ Πρ be the set of state distribution π

such that ∃πs ∈ Ns, πΩkd
GR → πs as k → ∞, where d is the period of

ΩGR . For k = 1, 2, . . . , iteratively compute

N (0) := Ns

N (k) := {π ∈ N0 : πΩGR ∈ N (k−1)}.

Terminate the algorithm when N k+1 = N k.

Note that the iterative update in Algorithm 1 can be rephrased as

N (k)={π∈N0 :πΩ
k
GR ∈Ns and πΩl

GR ∈ N0⊆Πρ, 1≤ l<k}.
(11)

The next theorem ensures the finite iteration of Algorithm 1 and is

inspired from [20, Theorem 4.3].

Theorem 5: There exists a finite integer k̂ ∈ N such that N (k̂+1) =
N (k̂) = Π∗

ρ.

Proof: We first prove the finite termination by contradiction. If the

iteration does not terminate in a finite number of steps, then there exists

a sequence of {π(k)} ⊂ N0 such thatπ(k) ∈ N (k+1) −N (k) orπ(k) ∈
N (k) −N (k−1), for all k ≥ 1. According to (10), π(k) satisfies

either [π(k)Ωk
GR �∈ Ns, π

(k)Ωk+1

GR ∈ Ns]

or [π(k)Ωk
GR ∈ Ns, π

(k)Ωk+1
GR �∈ Ns]

which implies

{
π(k)Ωk

GR , π
(k)Ωk+1

GR

}
�⊂ Ns ∀k ∈ N. (12)
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Let π̃ be any limit point of the sequence {π(k)}. Since Ωd
GR

is aperiodic, Ωld
GR tends to a limit as l → ∞. Thus, π̃Ωld

GR →

π∗
0 and π̃Ωld+1

GR → π∗
1, as l → ∞, for some π∗

0, π
∗
1 ∈ Π. How-

ever, since π̃ ∈ N0, we have π∗
0, π

∗
1 ∈ Ns. Since π(lmd) → π̃ along

some subsequence {lm} ⊆ N, we can conclude that there ex-

ist l0,m0 ∈ N such that {π(lmd)Ωld
GR , π

(lmd)Ωld+1
GR } ⊂ Ns, for all

l ≥ l0,m ≥ m0. Choosing m′ ≥ m0 such that lm′ ≥ l0, we have

{π(lm′d)Ω
lm′d

GR , π(lm′d)Ω
lm′d+1

GR } ⊂ Ns, which contradicts (11) if we

set k := lm′d. Hence, the iteration terminates at some finite k̂ ∈ N.

Next, we show that N (k̂) is the MINS. It is clear that N (k̂) ⊆ Π∗
ρ. To

show that N (k̂) ⊇ Π∗
ρ, let π̂ ∈ Π∗

ρ be arbitrary. Since π̂Ωld+i

GR → π∗
i , as

l → ∞, for some finite collection {π∗
i ∈ Πs, i = 0, . . . , d− 1} ⊆ Ns,

we can conclude there exists k0 ∈ N such that π̂Ωk
GR ∈ Ns, for all

k ≥ k0. Therefore, by (10), π̂ ∈ N (k), for all sufficiently large k. �

Remark 1: Once the maximum initial nonfault setΠ∗
ρ has been com-

puted, then for each observation o, the online prognoser (4) computes

the current state distribution π(o) according to (8), determines whether

π(o) belongs to Π∗
ρ or not, and issues a prognostic decision according

to (9).

Remark 2: Theorem 5 guarantees that Algorithm 1 terminates within

finite number of iterations. Furthermore, it can be seen that the compu-

tation of online prognoser, as highlighted in Remark 1, is of polynomial

complexity in the number of states, i.e., |X|. In the setting when the

system consists of multiple local components, |X| is the product of the

individual component’s states, which is standard for any DES analysis.

In such case, a decentralized/distributed framework can be developed

as is customary; see for example in [8], [11], and [26].

Example 3: For the refined modelGR in Fig. 1, we relabel the refined

states space as 0 := (0, 0), 1 := (1, 1), 2 := (2, 2), 3 := (3, 3), 4 :=
(4, 4), 5 := (4, F ). Then, we have

Πs = {π ∈ Π : π1 + π5 = 1}

Πρ = {π ∈ Π : π5 ≤ 1− ρ}

Ns = {π ∈ Π : π1 > ρ, π1 + π5 = 1}

N0 = {π ∈ Π : 0.5π0 + π1 > ρ}.

Algorithm 1 for this example terminates in the fifth iteration as

N (0) := Ns = {π ∈ Π : π1 > ρ, π1 + π5 = 1}

N (1) := {π ∈ Π : π1 > ρ, π1 + π4 + π5 = 1}

N (2) := {π ∈ Π : π1 > ρ, π1 + π3 + π4 + π5 = 1}

N (3) := {π ∈ Π : π1 > ρ, π1 + π2 + π3 + π4 + π5 = 1}

N (4) := {π ∈ Π : 0.5π0 + π1 > ρ}

N (5) := {π ∈ Π : 0.5π0 + π1 > ρ} = N (4).

Therefore,Π∗
ρ = N (5) = {π ∈ Π : 0.5π0 + π1 > ρ}. Note that in this

case, it happens that Π∗
ρ equals N0.

Example 4: Next, we illustrate the online prognosis for the system

in Example 3. When the system executes s = dabbb and produces

observation o = abbb, the resulting state distributions are

π(a) =
[
0 0.375 0.625 0 0 0

]

π(ab) =
[
0 0.4444 0.5556 0 0 0

]

π(abb) =
[
0 0.5161 0.4839 0 0 0

]

π(abbb) =
[
0 0.5872 0.4128 0 0 0

]
.

Suppose ρ = 0.3 in this example. According to Example 3, we have

Π∗
ρ = {π ∈ Π : 0.5π0 + π1 > 0.3}.

It is then trivial to see that π(o) ∈ Π∗
ρ for all o ≤ o, and hence no FA

occurs for trace s. �

V. CONCLUSION

In this article, we studied the prognosis of fault, i.e., its prediction

prior to its occurrence, for stochastic DESs. In the prior work [10],

the notion of Sm-prognosability for stochastic DESs was formulated,

generalizing the corresponding notion from the logical setting. This

article complements Chen and Kumar [10] by providing an online

recursive prognosis algorithm that relies on converting the computation

of least prognostic probability to computation of an MINS, as showed

in this article. We showed that the condition for issuing an affirmative

decision of an online failure prognoser can be reduced to a verification

problem of a controlled Markov chain under a safety constraint. The

proposed algorithm then computes the set of initial state distributions

from which the probability of future fault is less than a user-specified

threshold ρ, denoted as MINS. The online failure prognoser then

checks whether the conditional distribution following an observation

belongs to MINS or not, and issues prognostic decision accordingly.

The termination of the proposed algorithm for computing MINS for any

given ρ is guaranteed. Future work includes development of algorithms

for computing the decision threshold ρ and the largest possible reaction

boundm to satisfy given performance requirementsφ, τ > 0 for FA and

MD rates. Extension to the decentralized setting [27]–[29] or distributed

setting [8] would be another potential direction for future work.
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