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Abstract—Model-free reinforcement learning techniques
directly search over the parameter space of controllers.
Although this often amounts to solving a nonconvex
optimization problem, for benchmark control problems sim-
ple local search methods exhibit competitive performance.
To understand this phenomenon, we study the discrete-
time Linear Quadratic Regulator (LQR) problem with
unknown state-space parameters. In spite of the lack of
convexity, we establish that the random search method with
two-point gradient estimates and a fixed number of roll-outs
achieves ε-accuracy in O(log (1/ε)) iterations. This signif-
icantly improves existing results on the model-free LQR
problem which require O(1/ε) total roll-outs.

Index Terms—Data-driven control, linear quadratic regu-
lator, model-free control, nonconvex optimization, random
search method, reinforcement learning, sample complexity.

I. INTRODUCTION

WE STUDY the sample complexity and convergence
of the random search method for the infinite-horizon

discrete-time LQR problem. Random search is a derivative-
free optimization algorithm that directly searches over the
parameter space of controllers using approximations of the
gradient obtained through simulation data. Despite its sim-
plicity, this approach has been used to solve benchmark
control problems with state-of-the-art sample efficiency [1],
[2]. However, even for the standard LQR problem, many
open theoretical questions surround convergence properties
and sample complexity of this method mainly because of the
lack of convexity.

For discrete-time LQR problem, global convergence guar-
antees were recently provided for gradient descent and the
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random search method with one-point gradient estimates [3].
The key observation was that the LQR cost satisfies the
Polyak-Łojasiewicz (PL) condition which can ensure conver-
gence of gradient descent at a linear rate even for nonconvex
problems. This reference also established a bound on the
sample complexity of random search for reaching the error
tolerance ε that requires a number of function evaluations
that is proportional to (1/ε4) log(1/ε). Extensions to the
continuous-time LQR [4], [5], the H∞ regularized LQR [6],
and Markovian jump linear systems [7] have also been made.

Assuming access to the infinite horizon cost, the number of
function evaluations for the random search method with one-
point estimates was improved to 1/ε2 in [8]. Moreover, this
reference showed that the use of two-point estimates reduces
the number of function evaluations to 1/ε. Apart from the PL
property, these results do not exploit structure of the LQR
problem. Our recent work [9] focused on the continuous-
time LQR problem, and established that the random search
method with two-point gradient estimates converges to the
optimal solution at a linear rate with high probability. In this
letter, we extend the results of [9] to the discrete-time case.
Relative to the existing literature, our results offer a significant
improvement both in terms of the required number of function
evaluations and simulation time. Specifically, the total number
of function evaluations to achieve an ε-accuracy is propor-
tional to log (1/ε) compared to at least (1/ε4) log (1/ε) in [3]
and 1/ε in [8]. Similarly, the required simulation time is pro-
portional to log (1/ε); this is in contrast to [3] which requires
poly (1/ε) simulation time.

II. STATE-FEEDBACK CHARACTERIZATION

Consider the LTI system

xt+1 = Axt + But, x0 = ζ (1a)

where xt ∈ Rn is the state, ut ∈ Rm is the control input, A
and B are constant matrices, and x0 = ζ is a zero-mean ran-
dom initial condition with distribution D. The LQR problem
associated with system (1a) is given by

minimize
x,u

E
[ ∞∑

t=0

(xt)TQxt + (ut)TRut

]

(1b)

where Q and R are positive definite matrices and the expec-
tation is taken over ζ ∼ D. For a controllable pair (A, B), the
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solution to (1) takes a state-feedback form,

ut = −K#xt = −(R + BTP#B)−1BTP#Axt

where P# is the unique positive definite solution to the
Algebraic Riccati Equation (ARE),

ATP#A + Q − ATP#B(R + BTP#B)−1BTP#A = P#.

When the model parameters A and B are known, the ARE can
be solved efficiently via a variety of techniques [10], [11].
However, these techniques are not directly applicable when
the matrices A and B are not known. One approach to deal-
ing with the model-free scenario is to use the linearity of the
optimal controller and reformulate the LQR problem as an
optimization over state-feedback gains,

minimize
K

f (K) := E
[
fζ (K)

]
(2)

where fζ (K) :=
〈
Q + KTR K, Xζ (K)

〉
= ζ TP(K)ζ and the

matrices P(K) and Xζ (K) are given by

P(K) :=
∞∑

t=0

((A − BK)T)t(Q + KTR K)(A − BK)t

Xζ (K) :=
∞∑

t=0

(A − BK)tζ ζ T((A − BK)T)t. (3)

Here, fζ (K) determines the LQR cost in (1b) associated with
the feedback law u = −Kx and the initial condition x0 = ζ .
A necessary and sufficient condition for the boundedness of
fζ (K) for all ζ ∈ Rn is closed-loop stability,

K ∈ S := {K ∈ Rm×n|ρ(A − BK) < 1} (4)

where ρ(·) is the spectral radius.
For any K ∈ S , the matrices P(K) and Xζ (K) are

well-defined and are, respectively, determined by the unique
solutions to the Lyapunov equations

A∗
K(P) = −Q − KTRK, AK(Xζ ) = −ζ ζ T . (5)

Here, AK , A∗
K : Sn → Sn

AK(X) = (A − BK)X(A − BK)T − X (6a)

A∗
K(P) = (A − BK)TP(A − BK) − P (6b)

determine the adjoint pair of invertible closed-loop Lyapunov
operators acting on the set of symmetric matrices Sn ⊂ Rn×n.

The invertibility of AK and A∗
K for K ∈ S allows us to

express the LQR objective function in (2) as

f (K) =
{ 〈

Q + KTRK, X(K)
〉
= 〈%, P(K)〉, K ∈ S

∞, otherwise

where

X(K) := E
[
Xζ (K)

]
= −A−1

K (%) (7)

and % := E [ζ ζ T ] is the covariance matrix of the initial con-
dition. We assume % , 0 to ensure that the random vector
ζ ∼ D has energy in all directions. This condition guarantees
f (K) = ∞ for all K /∈ S . Finally, it is well known that for any
K ∈ S , the cone of positive definite matrices is closed under
the action of −A−1

K and −(A∗
K)−1. Thus, from the positive

definiteness of the matrices Q + KTRK and %, it follows that
P(K), X(K) , 0 for all K ∈ S. In (2), K is the optimization

variable, and (A, B, Q , 0, R , 0, % , 0) are the problem
parameters.

For any feedback gain K ∈ S , it can be shown that [12]

∇fζ (K) = E(K)Xζ (K), ∇f (K) = E(K)X(K) (8a)

where

E(K) := 2
(
(R + BTP(K)B)K − BTP(K)A

)
(8b)

is a fixed matrix that does not depend on the random ini-
tial condition ζ . Thus, the randomness of the gradient ∇fζ (K)

arises from the random matrix Xζ (K).
Remark 1: The LQR problem for continuous-time systems

can be treated in a similar way. In this case, although the
Lyapunov operator AK has a different definition, the form of
the objective function in terms of the matrices X(K) and P(K)

and also the form of the gradient in terms of X(K) and E(K)

remain unchanged. While this similarity allows for our results
to hold for both continuous and discrete-time systems, in this
letter we only focus on the latter and refer to [9] for a treatment
of continuous-time systems.

III. RANDOM SEARCH

The formulation of the LQR problem given by (2) has
been studied for both continuous-time [4], [13] and discrete-
time systems [3], [14]. In this letter, we analyze the sample
complexity and convergence properties of the random search
method for solving problem (2) with unknown model parame-
ters. At each iteration k ∈ N, the random search method calls
Algorithm 1 that forms an empirical approximation .∇f (Kk)

to the gradient of the objective function via finite-time simu-
lation of system (1a) for randomly perturbed feedback gains
Kk ± Ui, i = 1, . . . , N.

Algorithm 1 does not require knowledge of matrices A and
B but only access to a two-point simulation engine. The two-
point setting means that for any pair of points K and K′, the
simulation engine can return the random values fζ,τ (K) and
fζ,τ (K′) for some random initial condition x0 = ζ , where

fζ,τ (K) :=
τ∑

t=0

(xt)TQxt + (ut)TRut (9)

is a finite-time random function approximation associated with
system (1a), starting from a random initial condition x0 = ζ ,
with the state feedback u = −Kx running up to time τ . This
is in contrast to the one-point setting in which, at each query,
the simulation engine can receive only one specified point K
and return the random value fζ,τ (K).

Starting from an initial feedback gain K0 ∈ S , the ran-
dom search method uses the gradient estimates obtained via
Algorithm 1 to update the iterates according to

Kk+1 := Kk − α.∇f (Kk), K0 ∈ S (RS)

for some stepsize α > 0. The stabilizing assumption on the
initial iterate K0 ∈ S is required in our analysis as we select
the input parameters of Algorithm 1 and the stepsize so that
all iterates satisfy Kk ∈ S .

For convex problems, the gradient estimates obtained in the
two-point setting are known to yield faster convergence rates
than the one-point setting [15]. However, the two-point setting
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Algorithm 1 Gradient Estimation
Input: Feedback gain K ∈ Rm×n, state and control weight

matrices Q and R, distribution D, smoothing constant r,
simulation time τ , number of random samples N.
for i = 1 to N do

– Define two perturbed feedback gains Ki,1 := K + rUi
and Ki,2 := K − rUi, where vec(Ui) is a random vector
uniformly distributed on the sphere

√
mn Smn−1.

– Sample an initial condition ζ i from distribution D.
– For j ∈ {1, 2}, simulate system (1a) up to time τ with
the feedback gain Ki,j and initial condition ζi to form
fζ i,τ (Ki,j) as in Eq. (9).

end for
Output: The two-point gradient estimate

.∇f (K) := 1
2rN

N∑

i = 1

(
fζ i,τ (Ki,1) − fζ i,τ (Ki,2)

)
Ui.

requires simulations of the system for two different feedback
gain matrices under the same initial condition.

IV. MAIN RESULT

We analyze the sample complexity and convergence of the
random search method (RS) for the model-free setting. Our
main convergence result exploits two key properties of the
LQR objective function f , namely smoothness and the Polyak-
Łojasiewicz (PL) condition over its sublevel sets S(a) := {K ∈
S | f (K) ≤ a}, where a is a positive scalar. In particular, it
can be shown that, restricted to any sublevel set S(a), the
function f is Lf (a)-smooth and satisfies the PL condition with
parameter µf (a), i.e.,

f (K′) − f (K) ≤
〈
∇f (K), K′ − K

〉
+ Lf (a)

2
‖K − K′‖2

F

f (K) − f (K#) ≤ 1
2µf (a)

‖∇f (K)‖2
F

for all K and K′ such that the line segment between them
belongs to S(a), where Lf (a) and µf (a) are positive ratio-
nal functions of a. This result has been established for both
continuous-time [4] and discrete-time [3], [14] LQR prob-
lems. We also make the following assumption on the statistical
properties of the initial condition.

Assumption 1 (Initial Distribution): Let the distribution D
of the initial condition have i.i.d. zero-mean unit-variance
entries with bounded sub-Gaussian norm. For a random vec-
tor ζ ∈ Rn distributed according to D, this implies E[ζ ] = 0,
E[ζ ζ T ] = I, and ‖ζi‖ψ2 ≤ κ , for some constant κ and
i = 1, . . . , n, where ‖·‖ψ2 denotes the sub-Gaussian norm [16].

We now state our main theoretical result.
Theorem 1: Consider the random search method (RS) that

uses the gradient estimates of Algorithm 1 for finding the
optimal solution K# of problem (2). Let the initial condition
x0 ∼ D obey Assumption 1 and let the simulation time τ and
the number of samples N in Algorithm 1 satisfy

τ ≥ θ ′(a) log(1/ε), N ≥ c
(

1 + β4κ4θ(a) log6 n
)

n,

for some β > 0 and a desired accuracy ε > 0. Then, we can
choose a smoothing parameter r < θ ′′(a)

√
ε in Algorithm 1

such that, for any initial condition K0 ∈ S(a), method (RS)
with the constant stepsize α = 1/(ω(a)Lf (a)) achieves f (Kk)−
f (K#) ≤ ε in at most

k ≤ −log
(
ε−1 (f (K0) − f (K#))

)
/log

(
1 − µf (a)α/8

)

iterations. This holds with probability not smaller than

1 − c′k(n−β + N−β + Ne− n
8 + e−c′N).

Here, ω(a) := c′′(
√

m + βκ2θ(a)
√

mn log n)2, the positive
scalars c, c′, and c′′ are absolute constants, µf (a) and Lf (a) are
the PL and smoothness parameters of f over the sublevel set
S(a), and θ , θ ′, and θ ′′ are positive polynomials that depend
only on the parameters of the LQR problem.

For a desired accuracy level ε > 0, Theorem 1 shows that
the random search iterates (RS) with constant stepsize (that
does not depend on ε) reach an accuracy level ε at a lin-
ear rate (i.e., in at most O(log (1/ε)) iterations) with high
probability. Furthermore, the total number of function evalua-
tions and the simulation time required to achieve an accuracy
level ε are proportional to log (1/ε). As stated earlier, this
significantly improves the existing results for discrete-time
LQR [3], [8] that require O(1/ε) function evaluations and
poly(1/ε) simulation time.

V. PROOF SKETCH

In this section, we present our proof strategy for the main
result of this letter. The proof of technical results are omitted
due to page limitations. The smoothness of the objective func-
tion along with the PL condition are sufficient for the gradient
descent method with a suitable stepsize α,

Kk+1 := Kk − α∇f (Kk), K0 ∈ S (GD)

to achieve linear convergence even for nonconvex prob-
lems [17]. These properties were recently used to show
convergence of gradient descent for both discrete-time [3]
and continuous-time [4] LQR problems. In the model-free set-
ting, the gradient descent method is not directly implementable
because computing the gradient ∇f (K) requires knowledge of
system parameters A and B. The random search method (RS)
resolves this issue by using the gradient estimate .∇f (K)

obtained via Algorithm 1. One approach to the convergence
analysis of random search is to first use a large number of
samples N in order to make the estimation error small, and
then relate the iterates of (RS) to that of gradient descent.
It has been shown that achieving ‖.∇f (K) − ∇f (K)‖F ≤ ε

takes N = O(1/ε4) samples [3]; see also [5, Th. 3] for the
continuous-time LQR. This upper bound unfortunately leads
to a sample complexity bound that grows polynomially with
1/ε. To improve this result, we take an alternative route and
give up on the objective of controlling the gradient estimation
error. In particular, by exploiting the problem structure, we
show that with a fixed number of samples N = Õ(n), where
n denotes the number of states, the estimate .∇f (K) concen-
trates with high probability when projected to the direction of
∇f (K).
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Fig. 1. The intersection of the half-space and the ball parameterized
by µ1 and µ2, respectively, in Proposition 1. If an update direction G
lies within this region, then taking one step along −G with a constant
stepsize α yields a geometric decrease in the objective value.

In what follows, we first establish that for any ε > 0, using a
simulation time τ = O(log (1/ε)) and an appropriate smooth-
ing parameter r in Algorithm 1, the estimate .∇f (K) can be
made ε-close to an unbiased estimate ∇̂f (K) of the gradient
with high probability, ‖.∇f (K)−∇̂f (K)‖F ≤ ε, where the def-
inition of ∇̂f (K) is given in Eq. (11). We call this distance
the estimation bias. We then show that, for a large number
of samples N, our unbiased estimate ∇̂f (K) becomes highly
correlated with the gradient. In particular, we establish that the
following two events

M1 :=
{〈

∇̂f (K),∇f (K)
〉
≥ µ1‖∇f (K)‖2

F

}
(10a)

M2 :=
{
‖∇̂f (K)‖2

F ≤ µ2‖∇f (K)‖2
F

}
(10b)

occur with high probability for some positive scalars µ1 and
µ2. To justify the definition of these events, let us first demon-
strate that the gradient estimate ∇̂f (K) can be used to decrease
the objective error by a geometric factor if both M1 and M2
occur.

Proposition 1: If G ∈ Rm×n and K ∈ S(a) are such that
〈G,∇f (K)〉 ≥ µ1‖∇f (K)‖2

F and ‖G‖2
F ≤ µ2‖∇f (K)‖2

F for
some scalars µ1, µ2 > 0, then K − αG ∈ S(a) for all
α ∈ [0, µ1/(µ2Lf (a))], and f (K − αG) − f (K#) ≤ (1 −
µf (a)µ1α)(f (K) − f (K#)), where Lf (a) and µf (a) are the
smoothness and PL parameters of f over S(a).

Proposition 1 demonstrates that, conditioned on the events
M1 and M2, the unbiased estimate ∇̂f (K) yields a sim-
ple descent-based algorithm that has linear convergence.
Fig. 1 illustrates the region parameterized by µ1 and µ2
in Proposition 1. This region has a different geometry than
ε-neighborhoods of the gradient. A gradient estimate G can
have an accuracy of O(∇f (K)) and still belong to this region.
We leverage this fact in our convergence analysis which only
requires the gradient estimate ∇̂f (K) to be in such a region
for certain parameters µ1 and µ2 and not necessarily within
an ε-neighborhood of the gradient.

A. Controlling the Bias
Herein, we define the unbiased estimate ∇̂f (K) of the gradi-

ent and establish an upper bound on its distance to the output
.∇f (K) of Algorithm 1

.∇f (K) := 1
2rN

N∑

i=1

(
fζ i,τ (K + rUi) − fζ i,τ (K − rUi)

)
Ui

∇̃f (K) := 1
2rN

N∑

i=1

(
fζ i(K + rUi) − fζ i(K − rUi)

)
Ui

∇̂f (K) := 1
N

N∑

i=1

〈
∇fζ i(K), Ui

〉
Ui. (11)

Here, Ui ∈ Rm×n are i.i.d. random matrices whose vector-
ized form vec(Ui) are uniformly distributed on the sphere√

mn Smn−1 and ζ i ∈ Rn are i.i.d. random initial conditions
sampled from distribution D. Note that ∇̃f (K) is the infinite
horizon version of .∇f (K) and ∇̂f (K) is an unbiased estimate
of ∇f (K). The fact that E [∇̂f (K)] = ∇f (K) follows from

Eζ i,Ui

[
vec(∇̂f (K))

]
= EU1

[〈∇f (K), U1〉vec(U1)
]

= EU1 [vec(U1)vec(U1)
T ]vec(∇f (K)) = vec(∇f (K)).

Local boundedness of the function f (K): An important
requirement for the gradient estimation scheme in Algorithm 1
is the stability of the perturbed closed-loop systems, i.e.,
K ± rUi ∈ S; violating this condition leads to an exponential
growth of the state and control signals. Moreover, this condi-
tion is necessary and sufficient for ∇̃f (K) to be well defined.
It can be shown that for any sublevel set S(a), there exists a
positive radius r such that K + rU ∈ S for all K ∈ S(a) and
U ∈ Rm×n with ‖U‖F ≤ √

mn. In this letter, we further require
that r is small enough so that K±rUi ∈ S(2a) for all K ∈ S(a).
Such upper bound on r can be provided using the upper bound
on the cost difference established in [3, Lemma 24]. A sim-
ilar result has been established for the continuous-time LQR
problem using the small-gain theorem and the KYP lemma [9].

Lemma 1: For any K ∈ S(a) and U ∈ Rm×n with
‖U‖F ≤ √

mn, K + r(a)U ∈ S(2a), where r(a) := c̃/a for
some constant c̃ > 0 that depends on the problem data.

Note that for any K ∈ S(a) and r ≤ r(a) in Lemma 1,
∇̃f (K) is well defined since the feedback gains K ±rUi are all
stabilizing. We next establish an upper bound on the difference
between the output .∇f (K) of Algorithm 1 and the unbiased
estimate ∇̂f (K) of the gradient ∇f (K). We accomplish this
by bounding the difference between these two quantities and
∇̃f (K) using the triangle inequality

‖∇̂f (K) − .∇f (K)‖F ≤ ‖∇̃f (K) − .∇f (K)‖F

+ ‖∇̂f (K) − ∇̃f (K)‖F. (12)

Proposition 2 provides an upper bound on each term on the
right-hand side of the above inequality.

Proposition 2: For any K ∈ S(a) and r ≤ r(a), where r(a)

is given by Lemma 1,

‖∇̃f (K) − .∇f (K)‖F ≤
√

mnη
r

κ1(2a)(1 − κ2(2a))τ

‖∇̂f (K) − ∇̃f (K)‖F ≤ (rmn)2η

2
.(2a)

where η := maxi ‖ζ i‖2, and .(a) > 0, κ1(a) > 0, and 1 >

κ2(a) > 0 are rational functions that depend on the problem
data.

The first term on the right-hand side of (12) corresponds to
a bias arising from the finite-time simulation. Proposition 2
shows that although small values of r may result in a large
‖∇̃f (K) − .∇f (K)‖F, because of the exponential dependence
of the upper bound on the simulation time τ , this error can be
controlled by increasing τ . In addition, since ∇̂f (K) is inde-
pendent of the parameter r, this result provides a quadratic
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Fig. 2. (a) Bias in gradient estimation; (b) total error in gradient estimation as functions of the simulation time τ . The blue and red curves correspond
to two values of the smoothing parameter r = 10−4 and r = 10−6, respectively. (c) Convergence curve of the random search method (RS).

bound on the estimation error in terms of r. It is also worth
mentioning that the third derivative of the function fζ (K) is
utilized in obtaining the second inequality.

B. Correlation of ∇̂ f (K ) and ∇f (K )
We establish that under Assumption 1 on the initial distri-

bution, with large enough number of samples N = Õ(n), the
events M1 and M2 with µ1 := 1/4 and

µ2 := Cm

(

βκ2 ‖(A∗
K)−1‖2 + ‖(A∗

K)−1‖S

λmin(X(K))

√
n log n + 1

)2

(13)

occur with high probability, where κ is an upper bound on the
ψ2-norm of the entries of ζ i, β > 0 is a parameter that deter-
mines the failure probability, C is a positive absolute constant,
and for an operator M,

‖M‖2 := sup
M

‖M(M)‖F

‖M‖F
, ‖M‖S := sup

M

‖M(M)‖2

‖M‖2
.

We note that these parameters do not depend on the desired
accuracy-level ε. Moreover, since the sub-level sets of the
function f (K) are compact [14], ‖(A∗

K)−1‖ is a continuous
function of K, and X(K) 4 %, we can uniformly upper bound
µ2 over any sublevel set S(a). Such bound has also been
discussed and analytically quantified for the continuous-time
LQR problem [9].

Our approach to accomplishing the above task exploits the
problem structure, which allows for confining the dependence
of ∇̂f (K) on the random initial conditions ζ i into the zero-
mean random matrices Xζ i − X, where Xζ i := Xζ i(K) and
X := X(K) are given by (3) and (7), respectively. In particular,
for any given feedback gain K ∈ S , we can use the form of
gradient (8) to write

∇̂f (K) = 1
N

N∑

i=1

〈
EXζ i , Ui

〉
Ui = ∇̂1 + ∇̂2

where ∇̂1 := (1/N)
∑N

i=1
〈
E(Xζ i − X), Ui

〉
Ui, ∇̂2 :=

(1/N)
∑N

i=1〈∇f (K), Ui〉Ui, and the matrix E := E(K) is
given by (8b). It is now easy to verify that E [∇̂1] = 0 and
E [∇̂2] = ∇f (K). Furthermore, only the term ∇̂1 depends on
the initial conditions ζ i.

1) Quantifying the Probability of M1: We exploit results from
modern high-dimensional statistics on the non-asymptotic
analysis of the concentration of random quantities around their
mean [16]. Our approach to analyzing the event M1 consists

of two steps. First, we establish that the zero-mean random
variable

〈
∇̂1,∇f (K)

〉
highly concentrates around zero with a

large enough number of samples N = Õ(n). Our proof tech-
nique relies on the Hanson-Wright inequality [18, Th. 1.1].
Next, we study the concentration of the random variable〈
∇̂2,∇f (K)

〉
around its mean ‖∇f (K)‖2

F . The key enabler here
is the Bernstein inequality [16, Corollary 2.8.3]. This leads to
the next proposition.

Proposition 3: Under Assumption 1, for any stabilizing
feedback gain K ∈ S and positive scalar β, if

N ≥ C1
β4κ4

λ2
min(X)

(
‖(A∗

K)−1‖2 + ‖(A∗
K)−1‖S

)2
n log6 n

then the event M1 in (10) with µ1 := 1/4 satisfies

P(M1) ≥ 1 − C2N−β − 4Ne− n
8 − 2e−C3N .

2) Quantifying the Probability of M2: Similarly, we analyze
the event M2 in two steps. We establish upper bounds on the
ratio ‖∇̂i‖F/‖∇f (K)‖F , for i = {1, 2}, that hold with high
probability, and use the triangle inequality

‖∇̂1‖F

‖∇f (K)‖F
+ ‖∇̂2‖F

‖∇f (K)‖F
≥ ‖∇̂f (K)‖F

‖∇f (K)‖F
.

Our results are summarized in the next proposition.
Proposition 4: Under Assumption 1, for any K ∈ S , scalar

β > 0, and N ≥ C4n, the event M2 in (10) with µ2 given
by (13) satisfies P(M2) ≥ 1 − C6(n−β + Ne− n

8 + e−C7N).

VI. COMPUTATIONAL EXPERIMENTS

We consider a system with s = 10 inverted pendula
on force-controlled carts that are connected by springs and
dampers; see Fig. 3. We set all masses, pendula lengths,
spring and damping constants to unity and let the state
vector x := [θTωTpTvT ]T contain the angle and angu-
lar velocity of pendula as well as position and velocity of
masses. Linearizing around the equilibrium point yields the
continuous-time system ẋ = Acx + Bcu, where

Ac =





0 I 0 0
20I 0 T T
0 0 0 I

−10I 0 −T −T



, Bc =





0
−I
0
I



.

Here, 0 and I are s × s zero and identity matrices, and T is
a Toeplitz matrix with 2 on the main diagonal, −1 on the
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Fig. 3. An interconnected system of inverted pendula on carts.

Fig. 4. Histograms of two algorithmic quantities associated with the
events M1 and M2 given by (10). The red lines demonstrate that M1
with µ1 = 0.1 and M2 with µ2 = 35 occur in more than 99% of trials.

first upper and lower sub-diagonals, and zero elsewhere. We
discretize this system with sampling time ts = 0.1, which
yields Eq. (1a) with A = eActs and B =

∫ ts
0 eActBcdt. Since the

open-loop system is unstable, we use a stabilizing feedback
gain K0 = [−50I −10I −5I −5I] as a starting point for the
random search method and choose Q = blkdiag(10I, I, I, I)
and R = I in the LQR cost. We also let the initial conditions
ζ i in Algorithm 1 be standard normal and use N = n = 2s
samples.

Figure 2(a) illustrates the dependence of the relative error
‖∇̂f (K) − .∇f (K)‖F/‖∇̂f (K)‖F on the simulation time τ for
K = K0 = [ − 50I − 10I − 5I − 5I] and two values of
smoothing parameter r = 10−4 (blue) and r = 10−6 (red).
We see an exponential decrease in error for small values of τ
and note that the error does not pass a saturation level deter-
mined by the smoothing parameter r > 0. We also observe
that as r decreases, this saturation level becomes smaller.
These observations are in harmony with the results established
in Proposition 2. This should be compared and contrasted
with Fig. 2(b), which demonstrates that the relative error with
respect to the true gradient does not vanish with increase in
the simulation time τ .

In spite of this significant error, the key observation that
allows us to establish the linear convergence of the random
search method in Theorem 1 is that the gradient estimate
has a high correlation with the true gradient. Figure 4 shows
histograms of two algorithmic quantities associated with the
events M1 and M2 given by (10). The red lines demonstrate
that M1 with µ1 = 0.1 and M2 with µ2 = 35 occur in more
than 99% of trials; see Propositions 3 and 4.

Figure 2(c) illustrates the convergence curve of the ran-
dom search method (RS) with stepsize α = 10−5, r = 10−5,
and τ = 1000 in Algorithm 1. This figure confirms linear
convergence of (RS) established in Theorem 1.

VII. CONCLUDING REMARKS

In this letter, we studied the convergence and sam-
ple complexity of the random search method with two-
point gradient estimates for the discrete-time LQR problem.

Despite nonconvexity, we established that the random search
method with a fixed number of roll-outs N = Õ(n) per
iteration achieves ε-accuracy in O(log (1/ε)) iterations. This
significantly improves existing results on the model-free
LQR which require O(1/ε) total roll-outs. Our ongoing
research directions include: (i) providing theoretical guar-
antees for the convergence of gradient-based methods for
sparsity-promoting and structured control synthesis [19]; and
(ii) extension to nonlinear systems via successive linearization
techniques.
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