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ABSTRACT

Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in
cell signaling processes and their misfunction often causes human disease. Proper understanding
of IDP function not only requires the realistic characterization of their three-dimensional
conformational ensembles at atomic-level resolution but also of the time scales of
interconversion between their conformational substates. Large sets of experimental data are often
used in combination with molecular modeling to restrain or bias models to improve agreement
with experiment. It is shown here for the N-terminal transactivation domain of p53 (pS3TAD)
and Pup, which are two IDPs that fold upon binding to their targets, how the latest advancements
in molecular dynamics (MD) simulations methodology produces native conformational
ensembles by combining replica exchange with series of microsecond MD simulations. They
closely reproduce experimental data at the global conformational ensemble level, in terms of the
distribution properties of the radius of gyration tensor, and at the local level, in terms of NMR
properties including >N spin relaxation, without the need for reweighting. Further inspection
revealed that 10-20% of the individual MD trajectories display the formation of secondary
structures not observed in the experimental NMR data. The IDP ensembles were analyzed by
graph theory to identify dominant inter-residue contact clusters and characteristic amino-acid
contact propensities. These findings indicate that modern MD force fields with residue-specific
backbone potentials can produce highly realistic IDP ensembles sampling a hierarchy of nano-

and picosecond time scales providing new insights into their biological function.
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AUTHOR SUMMARY

Accurate prediction of the conformational ensemble dynamics sans bias is shown for intrinsically

disordered proteins including the transactivation domain of p53.
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INTRODUCTION

Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are an integral part of the
proteomes of many different organisms with more than 30% of all eukaryotic proteins possessing
40 or more consecutive disordered residues.(1, 2) While IDPs and IDRs in isolation do not adopt
well-defined three-dimensional (3D) structures, they often play important biological roles in
molecular recognition processes by interacting in specific ways with binding partners that are
typically well-ordered.(3-5) For instance, the human oncoprotein protein p53 possesses the N-
terminal transactivation domain (p53TAD) that binds to the N-terminal domain of human
MDM?2 protein adopting a stable a-helix.(6) Prokaryotic ubiquitin-like protein (Pup) is another
IDP that is directly linked to protein degradation folding into an a-helix when binding to Mpa
protein.(7) In addition to binding to their target protein(s), IDPs can also be involved in liquid-
liquid phase separation (LLPS).(8-11) LLPS is the segregation of molecules in solution into a
condensed phase and a dilute phase with high and low biomolecular concentrations. These
membraneless droplet-like compartments formed by IDPs and other biomolecules are important
for cellular function. Knowledge of the structural and dynamic propensities of IDPs both in
isolation and in complex biological environments is essential for understanding these processes

and their role in human diseases.

In order to relate IDP sequences to biological function, detailed knowledge of IDP
conformational ensembles is needed. The description of conformational ensembles can range
from local secondary structure populations to explicit ensembles in 3D space with atomic
resolution.(12) Some of the earliest approaches generate random coil conformational ensembles
that are subsequently refined against a host of experimental data reflecting both local and global
structural features.(13-15) These approaches continue to be successfully applied through
integrative modeling provided that a large amount of high quality experimental data is available
for each system under investigation.(16, 17) Even when data from various complementary
experimental techniques are being used, the amount of experimental information obtainable is
still sparse when compared to the information needed to uniquely characterize large, highly
heterogeneous structural ensembles that are the hallmark of IDPs. As a consequence, the amount
of information that can be gained and that is not directly reflected in the experimental data used

to refine the ensemble is restricted to robust descriptors ranging from coarse-grained to global
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that can be compared with predictions by polymer theory under various assumptions.(16) In
addition, site-specific interaction information, such as transient inter-residue contacts, can be
obtained at medium to low resolution from paramagnetic relaxation enhancement (PRE)
experiments by attaching electron spin labels to selected sites.(15, 17) Because empirical
ensembles generated based on such data lack a time axis, they do not include dynamics time
scales of IDPs associated with interconversion rates between substates and, hence, they do not

inform about an essential part of the energy landscape.

From a theoretical and computational perspective, all-atom molecular dynamics (MD)
simulations are an attractive alternative to empirical approaches for the generation of IDP
conformational ensembles, including dynamic time scale information, for the comprehensive
interpretation of experimental results.(18) However, for many years limitations in computer
power precluded the generation of statistically well-converged results and MD force fields
primarily developed for ordered proteins turned out to be unsatisfactory for applications to IDPs.
With the continuing increase in computer power, the quality of sampling has reached a level that
allows rigorous validation by quantitative comparison with a rich body of experimental data. In
cases where discrepancies are observed between simulation and experiment, as is commonly the
case, approaches have been developed that use restraining or reweighting that bias the original
simulation to obtain results that agree better with experimental data.(19-26) When not only the
conformational ensemble but also the underlying dynamics time scales are of interest, suitable
rescaling of the MD time step or correlation times of the dominant motional modes can be
applied to improve agreement with experiment.(27-30) Because these methods can often
improve the unaltered simulations only within certain boundaries, they are best suited when the
original predictions are fairly close to experimental data.(31) Although these methods rarely fail
to produce better agreement, at least on average for those experimental parameters directly used
as restraints or for reweighting, they naturally depend on large amounts of experimental data of
good quality as input for each protein system studied. This amounts to a laborious experimental
effort that needs to be repeated for each new protein system as the experimental data are protein-

specific rendering them non-transferrable between systems.

An alternative and more principled approach is to improve the MD force fields

themselves enabling them to increasingly accurately predict experimental data in a way that is
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fully transferrable between protein systems, both ordered and disordered. This premise has led to
a recent proliferation of protein force field developments(32-37) and new explicit water
models(38-40) specifically geared toward the improved representation of disordered proteins. In
a significant development, residue-specific force fields have been introduced.(41) These force
fields use in addition coil library information from the Protein Data Bank (PDB) by
incorporating the individual backbone ¢,y propensities of each residue type.(41-47) Such
residue-specific force fields, in combination with suitable water models, can provide an
improved representation of disordered states while retaining the properties of ordered proteins.
With respect to water models, TIP4P-D and closely related derivatives have been notably
successful in preventing overly compact conformations by favoring more extended IDP

structures showing improved agreement with experiment.(38)

Besides global properties, such as the radii of gyration and asphericities, IDP ensembles
and trajectories should also accurately reproduce local dihedral angle distributions and secondary
structure propensities. Moreover, they should also replicate dynamic and kinetic IDP properties,
such as librational motions and time scales of interconversion between conformational substates.
Such information is important for understanding recognition events between IDPs and their
binding targets, including IDP interactions with other disordered biomolecules, for example,
during the formation of LLPS condensates. Experimental IDP dynamics information can be
gained from fluorescence depolarization spectroscopy,(48) Forster resonance energy transfer
(FRET),(16) and nuclear magnetic resonance (NMR) relaxation.(15) NMR !N longitudinal R;
and transverse R» spin relaxation rates are exquisitely sensitive to the dynamics of disordered
proteins and the underlying time scales.(49-51) R relaxation rates, for example, have been
linked to residual intramolecular interactions in chemically unfolded proteins.(51-53) >N R; and
R> rates can be experimentally determined for each protein residue and therefore they are
valuable for validating MD simulations with respect to amplitudes and time scales of IDP

dynamics.(29, 54-56)

We recently developed the AMBER ff99SBnmr2 force field by modifying the backbone
dihedral angle potentials of each amino-acid residue type to reproduce the ¢,y dihedral angle
distributions found in a random coil library.(57) The ff99SBnmr2 force field has been validated

against experimental nuclear magnetic resonance (NMR) scalar 3J-couplings of a-synuclein and



141
142
143
144
145
146
147
148
149

150

151
152
153
154
155
156
157
158
159
160
161

162

163

164

165

166

167

B-amyloid IDPs demonstrating that this force field accurately reproduces their sequence-
dependent local backbone structural propensities.(58) The primary goal of this work is to learn
whether state-of-the-art replica exchange and extended MD simulations of IDPs can also
realistically reproduce NMR Ri, R> relaxation rates with their strong and unique dependence on
motional time scales without the need of any additional corrections such as constraints or
reweighting. Moreover, in-depth analysis of the MD trajectories generated yields a wealth of
information about the radius of gyration tensor distribution and dominant dynamics modes
allowing graph-theory based identification of specific inter-residue interaction propensities and

residue clusters for the better understanding of IDP behavior.

RESULTS

Ensemble properties of radius of gyration tensor. The radius of gyration Ry(t) is shown as a
function of time for representative 1-us MD trajectories of pS3TAD and Pup in Fig. 1A,B (see
also Fig. S1). The trajectories exhibit predominantly stationary stochastic behavior reflecting
random expansion and contraction of the overall IDP size with the mean value (blue horizontal
lines) in good agreement with the experimentally determined <Rz> (black line) or the predicted
<Rg> from polymer theory (Eq. 6). The MD-distributions of Ry of all 10 MD trajectories are
shown as histograms in Fig. 1C,D. The Flory exponent v of the polymer scaling law was
determined from the REMD ensembles at 298 K. Using po = 1.927 A, we obtain a value of v =
0.601 for Pup, which closely matches the theoretical value vineory = 0.588 of a fully disordered,
self-avoiding random coil.(59, 60) For pS3TAD, the REMD <R,> value of 28.1 A is in almost
perfect agreement with experiment(61) (28.0 A) corresponding to v = 0.624, which clearly

exceeds Vineory-
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Fig. 1. Radius of gyration, Ry, properties of two IDPs pS3TAD and Pup from microsecond MD
simulations. Time-dependence of Rg(t) from representative 1-us MD trajectories (cyan) of (A)
pS3TAD and (B) Pup where the horizontal blue lines correspond to the mean R, values
calculated from the trajectories and the black lines correspond to the experimentally determined
R for pS3TAD and the predicted R according to polymer theory (Eq. 6) for Pup. R profiles for
all 10 1-ps trajectories of each protein are shown in Figure S1. Histograms of the Rg(t)
distributions over all 10 MD simulations are shown in Panels C, D (blue and black lines have the
same meaning as in Panels A, B). The standard deviation of R, over all 10 MD trajectories is 5.4
A for p53TAD and 5.0 A for Pup. Offset-free time-correlation functions Cge(t) of Re(t) averaged
over all 10 1-us MD trajectories are shown for (E) pS3TAD and (F) Pup. The dashed lines
belong to non-linear least squares fits of Crg(t) by biexponential functions whereby the best fits
are obtained for pS3TAD with 1. = 12 ns (63% of total amplitude), t = 62 ns (37%) and for Pup
with 1. = 8 ns (29%), ™ = 48 ns (71%).
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The characteristic time scales of Ry(t) fluctuations can be obtained from the time-
correlation functions Cgg(t) (Eq. 5), which are well-converged over the course of the 1-ps
trajectories (Fig. 1E,F). Cre(t) of both proteins decay in good approximation biexponentially
with reconfigurational correlation times 1, = 10 ns and 1 = 55 ns. The normalized variance of the

Rg(t) fluctuations, given by

Ol =1‘<Rg>2/<R§> 1)

is almost the same for pS3TAD (0.03) and Pup (0.04). The ensemble distribution of the gyration
tensor § (Eq. 2) contains information about the deviation of individual MD snapshots from
spherical shape, which can be directly compared with a random Gaussian chain serving as a
perfect random coil (Fig. 2).(62) Both proteins show unimodal asphericity distributions (Eq. 3)
with maxima around 4 = 0.18, which qualitatively differ from the Gaussian chain model (Fig. 2C)
peaking at 4 = 0. Compared to pS3TAD, Pup has a higher tendency to adopt a more spherical
conformation. Another useful measure of the overall shape of individual snapshots is the
prolateness P (Eq. 4). The distribution of P is bimodal for both proteins with the global
maximum corresponding to prolate-shaped (cigar-like) structures (P = 1) and a second (local)
maximum corresponding to disk-like structures (P = -1). The distribution of the prolateness of
Pup is more balanced between positive and negative values with <P> = (.2 than for p53TAD,
which has a higher tendency to adopt prolate-shaped conformers (<P> = 0.35), whereas the
Gaussian chain distribution (<P> = 0.3) lies between the two IDP distributions. The distinct
asphericity distribution and increased prolateness of pS3TAD is at the origin of its increased <Rg>

over the Gaussian random coil model.
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Fig. 2. Gyration tensor properties of IDP ensembles of pS3TAD and Pup across 10 1-us MD
trajectories. The distributions of gyration tensor aspherities A4 are shown for (A) pS3TAD and (B)
Pup in comparison with (C) a Gaussian chain. The distributions of gyration tensor prolateness P
are shown for (D) pS3TAD and (E) Pup in comparison with a (F) Gaussian chain.

Validation against R, R, relaxation data. Experimental and computed "N R;, R, relaxation
rates are shown in Fig. 3. R; relaxation rates determined from simulations (Eq. 7-12) are in close
agreement with experiment(63) evidenced by small RMSEs (0.10 s™! for p53TAD and 0.12 s™! for
Pup) and Pearson correlation coefficients R of 0.78 for pS3TAD and 0.86 for Pup (Fig. 3A,B).
R> relaxation rates determined from the simulations are also in good agreement with experiment
with correlation coefficients R of 0.88 for pS3TAD and 0.70 for Pup and RMSEs of 0.84 s! for
p53TAD and 0.81 s! for Pup and (Fig. 3C,D). It can be seen that the simulations tend to
underestimate R; and overestimate R» rates, although only slightly, in a manner that is notably
uniform for the R; values of both proteins and for the R> values of pS3TAD. The 10 N-terminal
residues of pS3TAD are very flexible with small R>’s, which closely follow the experiment. For
Pup, differences in R, between MD and experiment display the same trend and are most
pronounced for residues 30—48. The error bars of the computed relaxation rates, which represent
the root-mean-square deviations over all 10 MD trajectories, are fairly uniform along the

polypeptide chains and systematically larger for R than for Ri, again with the exception of the

10
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10 N-terminal residues of pS3TAD. For both proteins, not all 10 I-us MD trajectories
individually reproduce the experimental data equally well. Either 1 (pS3TAD) or 2 (Pup)
trajectories have more compact average IDP structures, which quantitatively affect the agreement

with experiment (Fig. S2).

Correlation times of backbone N-H bond vectors in both proteins fitted from the average
correlation functions range from picoseconds to about 20 ns (Fig. 3E,F). Consistent with the
finding for other IDPs,(55, 64) the dominant contribution to the time correlation functions stems
from dynamics on the intermediate time scale around 1 ns reporting about backbone @,y jumps.
Fast dynamics on the time scale of 100 ps or faster report on local '’N-"H bond librations, similar
to those observed in secondary structures of folded proteins,(65) and slower dynamics on the
time scale between 3 and 20 ns reports on collective IDP chain motions. The presence of slower
modes correlate with increased R> values most pronounced for residues 30—48 in Pup. This is
consistent with relaxation theory (Eq. 12), which predicts that in solution transverse spin
relaxation rates R are in good approximation proportional to the effective overall correlation

time experienced by the "N-"H spin pairs.

11



249

250
251
252
253
254
255
256
257
258
259

0.5

EE1OO

)

Correlation time (ns

0.1

<0.1

p53TAD B | pup
i # ! HEY |
"Wmm(f; mﬂ}‘fﬂ {“\{ 1. HtygEtt T i
¥ f{f mmm m | i ¢
i "o 9 { i
i o {H
05F
¥ Simulation RMSE =0.11s™ { Simulation RMSE =0.12s™
—4-Experiment R=0.76 —$-Experiment R=0.86
1o 2 0 40 50 60 70 10 20 30 40 50 60
: : . . : r — D 8 : . :
6 L
W b |
P
g 41l i |
g g
5 RMSE = 1.04s™ } }{{ RMSE =1.00s™
R=0.89 R=0.72
1Io 2I0 3I0 4Io 5I0 6I0 7Io 0 1'0 2I0 3Io 4Io 5Io 6.0
F 100 T
= ..“..l. ” " ..... '-.. . -] .- = By ’g\ 10¢ - .. " ) ..-.. .l-

' . = e [ -.. L --l . é’ gEElg .-. o8 -"*.' '.. '-.'.v._-
ey I TN I e e e
= e a l. -'.. ) L _. Tt) ’ ] ‘-I. " - L] l. ) = -

A T TN SN r 8 e e Sl
[MelusnfineNunnzinazaz:naluiinsm(niininseaann]inecinasnefalenaf:nliim] <0. 1| Oeeceed [ e O O O OO e CECE I T

30 40 50 60
Residue number

10 20 70

20 30 40 50 60
Residue number

Fig. 3. Back-calculated R;, R NMR !’N-spin relaxation rates in comparison with experiment
along with underlying motional time scale distributions. Ri, R> rates calculated from average
correlation functions are plotted in blue with error bars representing standard deviations across
individual MD ftrajectories. Correlation time distribution of individual '>N-'H bonds of IDPs
extracted from correlation functions for (E) pS3TAD and (F) Pup where the size of the blue
squares are proportional to the associated motional amplitudes 4;. The squares at the bottom
indicate the aggregate of dynamics contributions with correlation times faster than 100 ps.
Dominant dynamics time scales range from about 100 ps to about 10 ns depending on the residue,
with the exception of Thr12 in Pup which exhibits dominant dynamics time scales faster than

100 ps.
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Increased transverse NMR spin relaxation is indicative of the presence of collective
segmental motions in IDPs, which are modulated by the formation of transient secondary
structures and inter-residue side-chain interactions. To examine these relationships,
instantaneous secondary structures and average contact maps were determined from the MD
trajectories (Fig. 4). A contact is defined in an MD snapshot when the nearest distance between
atoms from two different residues is smaller than 4 A (uninformative first-neighbor (i,i+1) and
second-neighbor (7,i+2) contacts between residues were excluded (white band along diagonal in
Fig. 4A,B)). The most frequent contacts are relatively short range, but contacts over larger
distances occur for pS3TAD and even more frequently for Pup. Some contacts are linked to the
transient formation of short secondary structures, c-helices and (-strands (Fig. 4C,D), whereas
other regions display frequent contacts largely independent of secondary structure propensity
often involving arginine residues, such as Arg65 of pS3TAD and Arg28/29 and Arg56 of Pup.
Fig. 4C,D also shows that selected trajectories possess regions with well above-average
secondary structure propensities, such as trajectories #4 of pS3TAD and trajectories #5 and #7 of
Pup, which are the same trajectories that contribute to the lengthening of R, along parts of the
polypeptide sequences mentioned above. Due to their atypical (outlier) nature, not representative
of the other trajectories, they were not included in the following residue-cluster analysis. For
pS3TAD, regions that tend to form a-helices do not form [3-strands and vice versa (except for
trajectory #4). For Pup, on the other hand, a number of regions exist in its N-terminal half that

can transiently switch between these two types of local secondary structures.

13
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Fig. 4. Average IDP contact maps and time-dependent secondary structure formation of each
residue. (A, B) Pairwise contact occupancies were determined from MD simulations (without
outlier trajectories, Fig. S2, Tables S4, S5) for (A) p5S3TAD and (B) Pup. Darker/lighter shades
of blue denote contacts that are more frequently/rarely formed according to legend (vertical bar).
Self-contacts, first-neighbor contacts (between residues i,i+1), and second-neighbor contacts
(between residues i,i+2) are not shown since they are present in most snapshots. (C, D)
secondary structure of each residue in MD simulations are predicted using the DSSP algorithm
with a-helices shown in red and (-strands in blue. (E, F) In the residue clusters at the bottom,
pairwise contacts with occupancies > 0.2 are depicted as an edge connecting two nodes (residues)
with edge widths proportional to the pairwise contact occupancies. Labels A1-AS5 denote
dominant clusters in pS3TAD and B1-B8 in Pup. Examples of transiently formed subclusters are
indicated by dashed lines (A1.1, A1.2, and A1.3 in pS3TAD and B1.1 and B1.2 in Pup).
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Inter-residue contact propensities. Different residues along the polypeptide chain display
different tendencies to form contacts with other residues. Fig. SA,B shows the average number
of contacts per snapshot for each residue, which was calculated as the total number of contacts
formed by a residue divided by the total number of MD snapshots. To better visualize the
different behaviors, the residues were divided into four distinct groups: the majority of residues
that form 0.5—1.5 contacts per snapshot (colored in black), residues that form an unusually small
number of contacts (< 0.5) (colored in blue), residues that form a moderately large number of
contacts (1.5-2) (colored in yellow), and residues that form a relatively large number of contacts
(> 2) are colored in red. For Pup, there are three distinct regions that form the largest numbers of
contacts (red) comprising residues (1) Lys7, Arg8, (2) Arg28, Arg29, and (3) Arg56. They
perfectly align with the three centers of Fig. 3 with elevated R, values, namely (1) Args8, (2)
Arg29, and (3) Arg56. For p5S3TAD, the residue that forms the largest number of contacts is
Argb65, which is surrounded by residues with a number of contacts below average between 0.5
and 1.0. This rationalizes why R> of Arg65 shows a local maximum that is still lower than R> in
other regions of pS3TAD, such as residues 19-26 forming a residue cluster with an intermediate
number of contacts. Notably, the 11 N-terminal residues of p5S3TAD display a lower-than-
average amount of contacts, which is consistent with low R> values observed across all 10
individual MD trajectories. When the same type of contact analysis is performed with side-chain
atoms only, a similar behavior is observed with only a small, systematic reduction in contacts
(Fig. S3) reflecting that the majority of medium- to long-range inter-residue contacts are made

by side-chain atoms.

We also grouped the number of contacts per snapshot formed by each residue according
to residue type and normalized them by the number of residues of the same type. The resulting
value for each amino acid residue type present in pS3TAD and Pup reflects their inherent contact
propensity (Fig. 5C,D). These profiles display the following trends: positively charged residues
arginine and lysine are on average most prone to form contacts, followed by hydrophobic
residues isoleucine and leucine as well as aromatic residues tryptophan and phenylalanine.
Negatively charged residues aspartate and glutamate, however, are least disposed to form
contacts. This may be also a consequence that both IDPs are overall negatively charged (-14e for
pS3TAD and -12e for Pup). When acidic residues outnumber basic residues, the former tend to

repulse each other, thereby increasing R,, while the latter have more options to interact with an

15
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Fig. 5. Number of close contacts formed by each residue during MD simulations of pS3TAD and
Pup (without outliers) along with average residue-type specific contact propensities. For each
residue, the number of contacts was normalized by the number of snapshots for (A) pS3TAD and
(B) Pup. Residues with their number of contacts per snapshot below 0.5 are depicted in blue,
0.5-1.5 in black, 1.5-2 in yellow, and above 2 in red. Primary sequences of pS3TAD and Pup are
given at the bottom and colored as in Panels A, B. Average contact propensities according to
amino-acid residue type, which is the number of contacts per snapshot averaged over all residues
of the same type, are shown for (C) p5S3TAD, (D) Pup. Error bars correspond to the standard
deviations among different residues of the same type.
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Contact analysis by graph theory. To investigate the nature of some of the most frequent
pairwise contacts in these IDPs, the MD snapshots were analyzed by graph theory where each
snapshot is represented as an undirected graph with each residue corresponding to an edge and
an inter-residue contact corresponds to an edge connecting the two residues (nodes). The
resulting graphs were then analyzed in terms of clusters, which are disconnected graph
components that do not have any edges to nodes outside of the cluster. On average 6.0 clusters
per snapshot are found for pS3TAD and 5.4 clusters for Pup. The probabilities of a cluster to
have a given size are represented for both IDPs by the histograms of cluster sizes (Fig. 6A),
which reveal that clusters consisting of 2 nodes are most abundantly present (around 40%) in
both pS3TAD and Pup. Moreover, the cluster size probability decreases rapidly with increasing
size. For instance, the fraction of clusters with 10 or more nodes (residues) is only 2—3%. Despite
their sequence independence and different lengths, the two IDPs have strikingly similar cluster
size distributions. The number of edges grows on average linearly with the number nodes
(straight solid line), which is much slower than the quadratic behavior of complete graphs
(dashed line, Fig. 6B). In fact, most of the clusters formed during MD simulations are sparse
graphs with a relatively small average edge-to-node ratio of 1.54, which is indicative of tree-like
graphs consisting mostly of linear branches with few cross-links. Fig. 6 also depicts residue
clusters (on the right) where pairwise contacts with occupancies > 0.2 are depicted as an edge
connecting two nodes (residues) with edge widths proportional to the pairwise contact

occupancies.

The graph-theoretical representation of the transient interaction network uncovers the
relationship between R; profiles and transient contact formation and the types of interactions that
are prevalent in IDP structures. For pS3TAD, the three centers in the sequence with an elevated
experimental R, profile are (1) Lys24, (2) Glu51, and (3) Met66, and they are involved in or are
sequentially adjacent to clusters Al, A3, and A2, respectively. Electrostatic interactions are
important for residue cluster formation in pS3TAD, in particular in cluster A2 featuring the
pairwise contacts Lys65—Asp57 and Arg65—Glu62. The largest elevation of R», however, is the
result of the largest interaction network Al. Hydrophobic and aromatic residues Phel9, Leu22,
Trp23, Leu25 and Leu26 belong to a pS3TAD segment that displays increased helical
propensity(66, 67) (secondary structure propensities determined from chemical shifts are shown

in Fig. S5) and which undergoes distinct loop closure dynamics.(68) In particular, residues
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Phel9, Trp23, and Leu26 form the hydrophobic triad that is crucial for the binding of pS3TAD to
MDM2.(67) Similar to cluster A1, the smaller cluster A3 centered around Ile50 is also driven by

hydrophobic interactions.

The regions of Pup with elevated R» values (Fig. 3D) around Arg8, Ile18, Thr22, Arg29,
Arg56 are all involved in clusters B1, B4, or B3 (Fig. 4E,F). Separate clusters can involve
sequentially adjacent residues, such as clusters B2 and B3 or clusters B3 and B5 and thereby
mediate cooperative behavior. The most dominant inter-residue interaction in Pup is of
electrostatic nature resulting in the transient formation of salt bridges involving residue pairs in
cluster B1.2 (Arg8—Asp14, Arg8—Aspl5) and cluster B3 (Arg56—Asp53, Arg56-Glu52). Many of
these residues appear to play the role of hubs promoting enhanced interactions also with other

residues as visualized by the graphs in Fig. 4E,F.
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Fig. 6. Graph theoretical analysis of inter-residual interactions and transient interaction networks
of pS3TAD and Pup. (A) Clusters consisting of 2 nodes (residues) dominate in the MD structures
of pS3TAD and Pup (without outlier trajectories), followed by clusters of size 3, etc. (B) The
majority of the unique clusters are sparse graphs, with their number of edges much smaller than
the number of edges in complete graphs growing with N(N-1)/2 where N is the number of nodes.
The average edge-to-node ratio is 1.54 (slope indicated by solid black line), indicating
predominantly tree-like graphs that sometimes have a few additional edges (cross-linked
branches).
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DISCUSSION

Disordered proteins play a prominent role in many regulatory processes using their unique
malleability to interact with their targets. Details of conformational substates of IDPs and how
they are shaped by the complex interplay of inter-residue interaction networks are currently
poorly understood both experimentally and computationally. In this work, we showed how the
latest advances in MD force fields and computational protocols allow the nearly quantitative
prediction of the complex behavior of the two IDPs pS3TAD and Pup, including their dynamics
time scales from site-resolved NMR spin relaxation. Both proteins have been characterized by a
host of experimental techniques, including X-ray crystallography,(69, 70) NMR,(7, 63, 67, 71-
73) small-angle X-ray scattering (SAXS),(61, 74) FRET,(75, 76) and fluorescence correlation
spectroscopy.(68)

The global dimensions of IDPs can be experimentally characterized by SAXS providing
information about their radius of gyration Ry for direct comparison with MD ensembles. For Pup,
<Rg> from the 10 1-us MD simulations follows the power law of Eq. 6 with a Flory exponent v
= 0.601, which closely mirrors the behaviour of a self-avoiding random coil (v = 0.598). By
contrast, pS3TAD is more expanded with v = 0.624, which is consistent with previous
experimental results reported for this protein.(61) Such behaviour could be the result of stronger
repulsive intra-residual forces caused by a slightly higher negative net charge (-14e of pS3TAD
vs. -12e of Pup) and a high percentage of prolines (18% in p53TAD vs. none in Pup) known to
increase extendedness.(77) The relatively high v values of both proteins suggest that their
interactions with water solvent are highly favorable preventing the hydrophobic collapse of their

polypeptide chains.

The 10 1-pus MD trajectories allow extensive sampling of the radius of gyration over time
and extract characteristic time scales from its autocorrelation function (Fig. 1). For both proteins,
the time-correlation function follows in good approximation a biexponential decay with
correlation times around 10 and 55 ns. Global distance fluctuations can be studied
experimentally by nanosecond fluorescence correlation spectroscopy (nsFCS), which found for 8
M urea denatured ubiquitin global reconfiguration times t. in the range of 50-90 ns.(16) A
nsFCS study of a-synuclein, which is about twice as long in sequence as the IDPs studied here,

identified two reconfigurational correlation times of 1.1 = 23 ns and 1> = 136 ns.(30) These
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correlation times are within a factor 2—3 of those found in the current study, although it should be
kept in mind that they report about a donor/acceptor pair, i.e. S42C/T92C in the case of a-

synuclein, rather than about R,.

Heteronuclear SN relaxation offers a complementary view of IDP dynamics.
Longitudinal R; and transverse R» relaxation rates are caused by local spin interactions, namely
the magnetic dipole-dipole coupling and chemical shielding anisotropy, and they reflect
reorientational dynamics amplitudes and timescales due to local conformational fluctuations as
well as longer-range reorientational motional modes of the order of an IDP’s persistence length
and beyond. Model-free analysis is not applicable to IDP relaxation data due to the absence of a
well-conserved global rotational diffusion tensor as reference frame.(27) Instead, a residue-by-
residue interpretation can applied where the correlation function of each site is described as a
multiexponential function of the type of Eq. 8 with 6 exponential dynamics modes.(28, 50, 55,
64, 78) The hierarchy of dynamics modes depicted in Fig. 3 shows a broad distribution of time
scales including rapid librational motions (< 100 ps) and dominant low nanosecond motions,
which sample the different local energy basins of backbone ¢,y dihedral angles. The slowest
modes with time scales in the range of 3—20 ns represent predominantly collective segmental
reorientational motions. A similar hierarchy of time scales has been observed by fluorescence
depolarization kinetics measurements of c-synuclein.(48) These collective motions involve
medium to longer-range interactions between residues that can be elucidated by graph theoretical
analysis of the MD trajectories described here. For Pup, many of these slower motional modes
have correlation times around 3—4 ns whereas for pS3TAD they are on average twice as large.
For both proteins the three distinct bands of time scales are pervasive across their polypeptide

sequence (Fig. 3E,F).

MD methodology has made great strides in recent years to toward an increasingly
realistic representation of disordered proteins.(26) Besides experimental scattering data,
quantitative NMR has played a key role for the independent validation of MD ensembles.
Because NMR spin relaxation parameters fully quantitatively reflect IDP dynamics at atomic-
level resolution both in terms of motional amplitudes and time scales, their accurate reproduction
by MD has been an important but also very challenging task. A recent comparison of commonly

used MD force fields that do not use residue-specific backbone potentials showed for several
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IDPs significant force-field dependences with the best results obtained when the analysis was
restricted to average correlation functions of chunks of 10-ns subtrajectories.(56) The need to
exclude slower time-scale motions, which are prominent in both experimental data and
simulations (see for example Fig. 3), may reflect the lack of convergence due to limited
sampling. Beneficial for all simulations was the improvement of the TIP4P-D water model over
TIP3P preventing overly collapsed IDP ensembles, which is consistent with other computational
studies.(38, 57) Because of the observed discrepancies between experiments and MD simulations,
some studies applied post factum adjustments to the MD simulations in order to improve
agreement, which include uniform or selective scaling of the MD time scale or correlation
times(27-30) or the reweighting of sub-trajectories.(64) Here, we chose a different approach:
rather than relying on post factum modifications, we use the residue-specific ffO9SBnmr2 force
field, which was specifically designed for the improved representation of IDPs without the need
of any corrections.(57, 58) A correction-free MD approach has recently been reported for the
intrinsically disordered SH4UD protein with the Amber ff03ws force field, which does not use
residue-type independent backbone dihedral angle potentials, and no time-scale dependent data,
such as NMR spin relaxation, were used for validation.(79) NMR chemical shifts were back-
calculated using SHIFTX2,(80) which, besides 3D structural information, makes extensive use of
protein sequence data. Here, we back-calculated NMR chemical shifts using PPM(81) (Fig. S4),
which only uses the physical parametrization of chemical shifts with respect to 3D protein

structure of each snapshot, achieving very good agreement with experiment.(73)

The close correspondence observed between experimental and computed SN relaxation
R1 and R relaxation rates for both IDPs studied here (Fig. 3), without the need for post factum
corrections, attests to the accuracy and robustness of the computational protocol used. It applies
REMD for the generation of conformational ensembles belonging to different temperatures from
which 10 representative structures at 300 K were randomly selected as starting structures for 1-
us MD trajectories whereby all simulations made use of the ff99SBnmr2 force field and the
TIP4P-D water model. MD-derived longitudinal >N R; follow the shapes of the experimental R;
profiles with a small tendency to underestimate the experimental '>N R, rates by 4-6% whereas
SN R» relaxation rates overestimate the experimental values on average by 26% for Pup and
34% for p53TAD. This level of agreement is significantly better than for previously reported

comparisons of this type.
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Few individual trajectories (10-20%) show systematically larger differences with respect
to experiment than the rest. For the proteins studied here, they are trajectories #4 of pS3TAD and
#5 and #7 of Pup (Fig. S2, Table S4). These trajectories are characterized by the persistent
formation of secondary structure (#4 of pS3TAD and #5 of Pup) (Fig. 4C,D) or by a collapsed
overall geometry with a reduced <Rz> compared to the other trajectories (trajectory #7 of Pup)
(Table SS). At the individual trajectory level, these outlier trajectories are in poorer agreement
with experimental data and their removal from the set of 10 trajectories during the back-
calculation of relaxation rates further improves the agreement with experiment (Fig. S3). From
such diagnostic analysis it follows that these outlier trajectories are either overrepresented in the
original simulations or the result of simulation artifacts, for example, caused by inaccuracies of
the underlying force field. Removal of individual trajectories based on comparison with
experiment should be applied with great care and be reserved primarily for diagnostic purposes,
such as the analysis of shortcomings of the simulations. While post factum trajectory selection or
reweighting can provide better agreement with experiment, it is generally unclear whether the
altered ensembles are in fact consistent with an alternative, physics-based force field, thereby

complicating the physical interpretation of such ensembles.

Although it is difficult to identify individual force field terms responsible for the IDP
behaviour observed in the outlier trajectories, these results can nonetheless provide useful input
to guide future force field improvements. With more computer power, it will be possible to gain
better statistics by generating a larger number of trajectories for the improved sampling of
conformational space allowing the more rigorous assessment of the underlying force field, the
water model, and other aspects of the computational methods used. Conversely, such insights
may allow the further improvement of force fields and methods for applications also to other
proteins. In fact, the ff99SBnmr1 force field, which is the parent force field of ff99SBnmr2, was
developed and optimized using this strategy by the systematic reweighting of MD snapshots

based on many trial force fields using experimental NMR data of intact proteins.(82)

The good agreement of the MD simulation with experimental observables both motivates
and justifies the analysis of other protein properties observed in the MD trajectories that are
difficult to measure. This includes the analysis of transient inter-residue interactions. The
molecular driving forces of these interactions are fundamentally similar to those of ordered

proteins although average hydration properties may differ.(79) In contrast to ordered proteins,
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inter-residue interactions between non-sequential amino acids are short-lived. Therefore, the
time-averaged interaction maps (Fig. 4A,B) offer only partial insights as they conceal the
compositions and distributions of instantaneous interaction clusters. In fact, the relatively large
network reflected by the average contact map contrasts the much smaller size of graphs that exist
at any given time, which attests to the very heterogeneous and transient nature of instantaneous
contact clusters. The highest occupancy of pairwise contacts found is around 0.5, which mostly

belong to (i,i+3) contacts. For a list of the most frequent pairwise contacts, see Tables S2, S3.

Snapshot by snapshot analysis revealed the dominance of small cluster sizes over larger
ones (Fig. 6). For both p53TAD and Pup, clusters with 2 or 3 residues make up more than 50%
of all clusters and clusters with more than 10 residues have notably low occurrence, although
their formation could be functionally relevant during molecular recognition events. Because
clusters consisting of residue pairs dominate intra-residual interactions in both IDPs, further
analysis of the interaction network was performed based on pairwise contacts. Contact maps
were generated for pS3TAD and Pup averaged over all MD trajectories and pairwise contacts
that have occupancies larger than 0.2 visualized as separate graphs (Fig. 4E,F). Instantaneous
clusters can belong to such larger graphs as exemplified by clusters Al.1, Al.2, Al1.3 for
pS3TAD and clusters Bl.1 and B1.2 for Pup (Fig. 4E,F). The dominant clusters are
characterized by a mix of hydrogen bonds, salt bridges (e.g., involving Arg65 in cluster A2,
Arg8 in star-like cluster B1.2, and Arg56 in cluster B3), hydrophobic and aromatic interactions
(e.g., Phel9, Leu22/25/26, and Trp23 in cluster A1). These are consistent with the driving forces
attributed to liquid-liquid phase separation, namely intermolecular contacts among aromatic

residues,(83-85) electrostatic interactions,(86-88) and hydrophobic interactions.(89)

The majority of clusters are linear graphs with few circular sub-graphs leading to the
linear relationship between the number of nodes and number of edges (Fig. 6B). Acidic residues
tend to have low cluster participation whereas arginine residues have the highest participation in
both proteins (Fig. SA,B). This difference in cluster participation between cationic and anionic
residues is also evident in Fig. SC,D. Among the neutral amino acids, those with larger side-
chains are more prone to interactions with non-neighboring residues due to their intrinsically
larger distance range. In fact, Pro, Val, Ser, Ala, Gly have the lowest interaction propensities
among neutral residues and among pairs of chemically similar residues, such as Gln vs. Asn and

Leu vs. Val, the larger residue (Gln, Leu) dominates the smaller one (Asn, Val).
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A primary biological function of pS3TAD is to negatively regulate pS3 by interacting
with the ubiquitin ligases MDM2 and MDMX for the degradation of p53. This interaction is one
of the earliest and best studied interactions between an IDP and a folded protein both by
experiment(67-69) and computation.(90) In order to better understand the molecular recognition
mechanism underlying the formation of this complex, a realistic and accurate description of the
free state of pS3TAD is of central importance. For MD studies, the choice of the protocol,
especially of the force field and water model, is consequential. A recent unbiased REMD study
of free pS3TAD reported the detailed comparison using five different MD force fields all without
residue-specific backbone potentials. Based on 1-us long replicas major differences were
revealed in terms of the structural propensities among them and also with respect to experimental
data.(91) An even longer simulation of residues 10-39 of pS3TAD for a total length of 1.4 ms
analyzed by Markov state models identified substantial populations of [-sheets across the
sequence,(92) a behavior that is at variance with the above mentioned REMD ensembles(91) as
well as with experimental solution NMR data.(67) These together with many other studies show
that force fields need to be chosen following extensive testing to ensure that long trajectories,
generated with considerable computational effort, offer the most realistic biophysical insights

about these highly complex, heterogeneous systems.

In addition to forming transient intramolecular contacts, IDPs can also dynamically
interact with other IDPs driving the formation of liquid-liquid phase separation. With a rapidly
increasing body of experimental data on LLPS condensates,(9, 10, 93) all-atom MD simulations
have an important role to play for a mechanistic understanding of emerging phase separation
properties. Since the molecular driving forces of LLPS are the same as for intramolecular IDP
interactions,(94) such as those described here, the optimal accuracy of force fields along with
adequate sampling schemes of the heterogeneous condensate environment will be key for the
quantitative interpretation of experimental data, allowing the prediction of condensate formation
and eventually may open the way for new interventional approaches to actively reprogram

condensates and their properties.

Although a possible role of Pup in LLPS is not known, LLPS involving full-length p53
has been documented and pS3TAD has been implicated in both phase separation and oncogenic

amyloid aggregation.(76, 95) Multivalent electrostatic interactions between the N-terminal
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domain, p53TAD, and the C-terminal domain were identified as critical for LLPS, which were
shown to be positively modulated through molecular crowding and negatively modulated by the
addition of DNA and ATP molecules and post-translational modification. It was suggested that
compartmentalization of p53 into the droplets suppresses its transcriptional regulatory function,
while its release from droplets under cellular stress can activate p53.(76) These findings point to
the need for the comprehensive characterization of these intermolecular interactions at residue-
and atomic-level resolution. The agreement with experiment reported here clearly suggests that
MD methodology has reached a level of accuracy allowing it to make critical contributions

toward this goal.

The results of our study further advance the long-held premise of MD simulations to
realistically describe IDP ensembles on their native dynamics time scales toward the better
understanding of their biophysical properties and biological function. Both IDPs chosen in this
study, pS3TAD and Pup, undergo folding upon binding to their protein targets and it will be
interesting to see how the protocol will perform for IDPs that do not fold when interacting with
other proteins. For both pS3TAD and Pup, the use of REMD allows the adequate sampling of
conformational space for the generation of a representative set of initial structures that are then
subjected to long, continuous MD simulations. The close agreement found for the extendedness
of the simulated IDPs with experiment and polymer theory suggests an appropriate balance
between the ff99SBnmr2 force field and the TIP4P-D water model at the global scale. It
favorably complements the authentic IDP behavior achieved by this protocol on the local scale in
terms of its compliance at the individual residue level with coil libraries, scalar couplings, and
chemical shifts. In addition to the realistic modeling of ensemble properties, our protocol also
reproduces motional amplitudes and time scales encoded in quantitative NMR spin relaxation
data with near experimental accuracy suggesting that the dominant minima of the free energy
surface together with their many low-lying transition states are realistically captured by this
comprehensive computational framework. These results prompted a more detailed analysis of
short-lived inter-residue interactions, which was achieved by graph theory revealing
characteristic inter-residue contact patterns and the extraction of residue-type specific interaction
propensities. The realistic IDP conformational dynamics model achieved by the protocol

described here advances our increasingly mechanistic and predictive understanding of IDPs
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along with their interactions and binding properties with ordered and disordered molecular

targets ranging from regulatory pathways to emerging LLPS phenomena.

METHODS

Molecular dynamics simulations. Fully extended structures of pS3TAD and Pup were prepared
using the LEaP program in AmberTools16.(96) After equilibration, they were used to run
replica-exchange MD (REMD) simulations for the sampling of conformational space (36
replicas for each IDP covering a temperature range from 298-353 K for pS3TAD and 298-365 K
for Pup, see Supplementary Material) with each replica being 1 us of length. Exchange was
attempted every 10 ps and the exchange probability was about 0.3. For each IDP, 10 structures
were randomly selected from the room-temperature (298 K) REMD ensemble and used as initial
structures to run free MD simulations for 1 ps in the NPT ensemble at 300 K and 1 atm. The
protein force field and water model used in all simulations were AMBER ff99SBnmr2 and

TIP4P-D.

All MD simulations were performed using the GROMACS 2020.2 package.(97) The
integration time step was set to 2 fs with all bond lengths containing hydrogen atoms constrained
by the LINCS algorithm. Na* or Cl" ions were added to neutralize the total charge of the system.
A 10 A cutoff was used for all van der Waals and electrostatic interactions. Particle-mesh Ewald
summation with a grid spacing of 1.2 A was used to calculate long-range electrostatic
interactions. A cubic simulation box extending 8 A from the protein surface in all three
dimensions was used. Energy minimization was performed using the steepest descent algorithm
for 50,000 steps. The system was simulated for 100 ps at constant temperature and constant
volume with all protein heavy atoms positionally fixed. The pressure was then coupled to 1 atm
and the system was simulated for another 100 ps. The final production run of 1 us length was

performed in the NPT ensemble at 300 K and 1 atm. For simulation details, see Table S1.

Radius of gyration tensor calculations and derived quantities. In order to map the global

shape of pS3TAD and Pup conformers, radius of gyration tensors were computed as 3x3
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matrices § from each snapshot of the room-temperature REMD ensemble and the free MD

simulations as follows:(98)

R P Y0 )
Suw =57 PN GAETD (AR (2)
i,j=1
where r;i)ﬁ) is cartesian coordinate o (P) (= x, y, z) of atom i in the coordinate system that has its

origin in the center of mass of the molecule. Diagonalization of § yields three non-negative
eigenvalues 0= A, <A, < A, from which the radius of gyration R is obtained, R, = (4, + 4, + )",
the asphericity A,(98, 99)
4o (A=A +(A,-A) +(A, - A)
2(A+ A+ A)

€)

and the prolateness P,(100)

P QA=A -A)CA -A,-A)2A -A,-A)

2 2 2 3/2 (4)
20+ A+ A =AA -AA -AA)

The asphericity measures the degree to which the three axis lengths of the ellipsoid of inertia
(eigenvalues) are equal, whereas the prolateness P indicates whether the largest or smallest axis
length is closer to the middle axis length. P takes values between -1 and 1, quantifying the
transition from oblate to prolate shapes. Normalized time-correlation functions of Rg(t), made

offset-free, were computed according to
Cr(t) = <(Re(T) - <Rg>)(Re(t+7) - <Rg>))>1 /<(Ry(1) - <Rg>)>1 )

as an average over all 1-us MD trajectories.

According to polymer theory, for an unfolded polymer the ensemble-averaged R, scales

with the number of residues N as(62, 77)
<Re> = po N (©)

where po is a constant reflecting the average size of a residue and the Flory exponent

v determines the overall compactness of the polymer serving as a reference.
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Back-calculation of R;, R: relaxation rates. For IDPs, the normalized time-autocorrelation
function C(¢) of the lattice part of the spin-relaxation active magnetic dipole-dipole interaction
cannot be factorized into an overall tumbling part and an internal dynamics part. Rather, we
compute the full C(¢) directly from an MD trajectory using the second-order Legendre

polynomial:
C(®) =;Ble(e(+ D —1) (7)

where e(?) is the unit vector defining the 'N-'H bond orientation whereby snapshots were not
aligned with respect to a reference snapshot. The angular brackets indicate averaging from time t
= 0 to Tmp — t, where Twmp is the total trajectory length. The calculation of C(¢) was efficiently
performed by the fast Fourier transform (FFT) using the Wiener—Khinchin theorem. For
acceptable statistical convergence, the analysis of C(¢) was limited to its initial portion from t =0

- Tmp /3. Next, a multiexpoential decay function was fitted to C(7):(101)
Ct) = Xo_, Ajet/m )
where A; and 7 are the best fitting parameters subject to the conditions:
¢ Ai=1 4,201,220 9)

The spectral density function J(®) can be then analytically obtained via Fourier transformation of
C(2):

24T

J(w) =2 fooo C(t)cos (t)dt = ?zlm (10)

NMR spin relaxation parameters R; and R> were then computed using the standard

expressions:(102-105)
Ry = doo[3](wn) + J(wy — wy) + 6] (wy + wy)] + coowi] () (11)

R, = %doo[‘l](o) + 3J(wy) + J(wg — wy) + 6] (wy) + 6] (wy + wy)] +%Coow§1[4](0) n
3/ (wn)] (12)
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where dy, = % (Z—;)Z(%)Zyﬁyﬁ(rgﬁ)z and cog = 11—5A02. Lo is the permeability of vacuum, / is
Plank’s constant, yn and yn are the gyromagnetic ratios of '"H and "N, and nu = 1.02 A is the

backbone N-H bond length. The >N chemical shift anisotropy was set to Ac = -160 ppm.

Analysis of inter-residue contacts and residue clusters by graph theory. Contact analysis was
performed on all snapshots of the MD simulations of both pS3TAD and Pup. A contact is
considered formed when the nearest distance between atoms from two different residues is
smaller than 4 A. First-neighbor contacts (between residues i,i+1), and second-neighbor contacts
(between residues 7,i+2) were excluded since they are present for most residues. For each residue
in pS3TAD and Pup, the total number of contacts formed by a particular residue is determined
and normalized by the number of MD snapshots. Each snapshot was converted to a graph where
residues are represented as nodes and contacts between two residues are represented as edges
between them. The initial graph was then decomposed into a maximal number of disconnected
graph components called clusters, 1.e. there is no edge between any node in the cluster and any

node outside the cluster. The size of a cluster corresponds to the number of its nodes.
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SUPPORTING INFORMATION

Fig. S1. Radius of gyration of the IDPs pS3TAD and Pup in 10 1-us MD trajectories each at 300
K with starting structures randomly chosen from replica exchange simulations.
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Fig. S2. Mean R, R> errors from 10 1-us MD simulations of pS3TAD and Pup in comparison
with experiment.

Fig. S3. Back-calculated R1, R> '’N backbone spin relaxation rates from microsecond MD
simulations of pS3TAD and Pup excluding outlier trajectories in comparison with experiment.

Fig. S4. Comparisons of experimental and predicted chemical shifts of pS3TAD.
Fig. S5. Experimental and MD-derived secondary structure propensities of pS3TAD.

Fig. S6. Average number of contacts formed by a particular residue in pS3TAD and Pup per
snapshot using only side-chain atoms.

Fig. S7. Contact propensities according to amino-acid residue type for both proteins combined.
Table S1. MD and REMD simulation details for pS3TAD and Pup.

Table S2. Most frequent pairwise residue contacts in pS3TAD from MD simulations.

Table S3. Most frequent pairwise residue contacts in Pup from MD simulations.

Table S4. Chemical shift comparisons for pS3TAD.

Table S5. Radius of gyration pf pS3TAD and Pup.
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