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ABSTRACT 24 

Intrinsically disordered proteins (IDPs) are highly dynamic systems that play an important role in 25 

cell signaling processes and their misfunction often causes human disease. Proper understanding 26 

of IDP function not only requires the realistic characterization of their three-dimensional 27 

conformational ensembles at atomic-level resolution but also of the time scales of 28 

interconversion between their conformational substates. Large sets of experimental data are often 29 

used in combination with molecular modeling to restrain or bias models to improve agreement 30 

with experiment. It is shown here for the N-terminal transactivation domain of p53 (p53TAD) 31 

and Pup, which are two IDPs that fold upon binding to their targets, how the latest advancements 32 

in molecular dynamics (MD) simulations methodology produces native conformational 33 

ensembles by combining replica exchange with series of microsecond MD simulations. They 34 

closely reproduce experimental data at the global conformational ensemble level, in terms of the 35 

distribution properties of the radius of gyration tensor, and at the local level, in terms of NMR 36 

properties including 15N spin relaxation, without the need for reweighting. Further inspection 37 

revealed that 10–20% of the individual MD trajectories display the formation of secondary 38 

structures not observed in the experimental NMR data. The IDP ensembles were analyzed by 39 

graph theory to identify dominant inter-residue contact clusters and characteristic amino-acid 40 

contact propensities. These findings indicate that modern MD force fields with residue-specific 41 

backbone potentials can produce highly realistic IDP ensembles sampling a hierarchy of nano- 42 

and picosecond time scales providing new insights into their biological function. 43 

 44 

  45 
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AUTHOR SUMMARY 46 

Accurate prediction of the conformational ensemble dynamics sans bias is shown for intrinsically 47 

disordered proteins including the transactivation domain of p53.  48 

 49 

  50 
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INTRODUCTION 51 

Intrinsically disordered proteins (IDPs) and protein regions (IDRs) are an integral part of the 52 

proteomes of many different organisms with more than 30% of all eukaryotic proteins possessing 53 

40 or more consecutive disordered residues.(1, 2) While IDPs and IDRs in isolation do not adopt 54 

well-defined three-dimensional (3D) structures, they often play important biological roles in 55 

molecular recognition processes by interacting in specific ways with binding partners that are 56 

typically well-ordered.(3-5) For instance, the human oncoprotein protein p53 possesses the N-57 

terminal transactivation domain (p53TAD) that binds to the N-terminal domain of human 58 

MDM2 protein adopting a stable a-helix.(6) Prokaryotic ubiquitin-like protein (Pup) is another 59 

IDP that is directly linked to protein degradation folding into an a-helix when binding to Mpa 60 

protein.(7) In addition to binding to their target protein(s), IDPs can also be involved in liquid-61 

liquid phase separation (LLPS).(8-11) LLPS is the segregation of molecules in solution into a 62 

condensed phase and a dilute phase with high and low biomolecular concentrations. These 63 

membraneless droplet-like compartments formed by IDPs and other biomolecules are important 64 

for cellular function. Knowledge of the structural and dynamic propensities of IDPs both in 65 

isolation and in complex biological environments is essential for understanding these processes 66 

and their role in human diseases. 67 

 In order to relate IDP sequences to biological function, detailed knowledge of IDP 68 

conformational ensembles is needed. The description of conformational ensembles can range 69 

from local secondary structure populations to explicit ensembles in 3D space with atomic 70 

resolution.(12) Some of the earliest approaches generate random coil conformational ensembles 71 

that are subsequently refined against a host of experimental data reflecting both local and global 72 

structural features.(13-15) These approaches continue to be successfully applied through 73 

integrative modeling provided that a large amount of high quality experimental data is available 74 

for each system under investigation.(16, 17) Even when data from various complementary 75 

experimental techniques are being used, the amount of experimental information obtainable is 76 

still sparse when compared to the information needed to uniquely characterize large, highly 77 

heterogeneous structural ensembles that are the hallmark of IDPs. As a consequence, the amount 78 

of information that can be gained and that is not directly reflected in the experimental data used 79 

to refine the ensemble is restricted to robust descriptors ranging from coarse-grained to global 80 
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that can be compared with predictions by polymer theory under various assumptions.(16) In 81 

addition, site-specific interaction information, such as transient inter-residue contacts, can be 82 

obtained at medium to low resolution from paramagnetic relaxation enhancement (PRE) 83 

experiments by attaching electron spin labels to selected sites.(15, 17) Because empirical 84 

ensembles generated based on such data lack a time axis, they do not include dynamics time 85 

scales of IDPs associated with interconversion rates between substates and, hence, they do not 86 

inform about an essential part of the energy landscape.  87 

 From a theoretical and computational perspective, all-atom molecular dynamics (MD) 88 

simulations are an attractive alternative to empirical approaches for the generation of IDP 89 

conformational ensembles, including dynamic time scale information, for the comprehensive 90 

interpretation of experimental results.(18) However, for many years limitations in computer 91 

power precluded the generation of statistically well-converged results and MD force fields 92 

primarily developed for ordered proteins turned out to be unsatisfactory for applications to IDPs. 93 

With the continuing increase in computer power, the quality of sampling has reached a level that 94 

allows rigorous validation by quantitative comparison with a rich body of experimental data. In 95 

cases where discrepancies are observed between simulation and experiment, as is commonly the 96 

case, approaches have been developed that use restraining or reweighting that bias the original 97 

simulation to obtain results that agree better with experimental data.(19-26) When not only the 98 

conformational ensemble but also the underlying dynamics time scales are of interest, suitable 99 

rescaling of the MD time step or correlation times of the dominant motional modes can be 100 

applied to improve agreement with experiment.(27-30) Because these methods can often 101 

improve the unaltered simulations only within certain boundaries, they are best suited when the 102 

original predictions are fairly close to experimental data.(31) Although these methods rarely fail 103 

to produce better agreement, at least on average for those experimental parameters directly used 104 

as restraints or for reweighting, they naturally depend on large amounts of experimental data of 105 

good quality as input for each protein system studied. This amounts to a laborious experimental 106 

effort that needs to be repeated for each new protein system as the experimental data are protein-107 

specific rendering them non-transferrable between systems.  108 

An alternative and more principled approach is to improve the MD force fields 109 

themselves enabling them to increasingly accurately predict experimental data in a way that is 110 
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fully transferrable between protein systems, both ordered and disordered. This premise has led to 111 

a recent proliferation of protein force field developments(32-37) and new explicit water 112 

models(38-40) specifically geared toward the improved representation of disordered proteins. In 113 

a significant development, residue-specific force fields have been introduced.(41) These force 114 

fields use in addition coil library information from the Protein Data Bank (PDB) by 115 

incorporating the individual backbone j,y propensities of each residue type.(41-47) Such 116 

residue-specific force fields, in combination with suitable water models, can provide an 117 

improved representation of disordered states while retaining the properties of ordered proteins. 118 

With respect to water models, TIP4P-D and closely related derivatives have been notably 119 

successful in preventing overly compact conformations by favoring more extended IDP 120 

structures showing improved agreement with experiment.(38)  121 

Besides global properties, such as the radii of gyration and asphericities, IDP ensembles 122 

and trajectories should also accurately reproduce local dihedral angle distributions and secondary 123 

structure propensities. Moreover, they should also replicate dynamic and kinetic IDP properties, 124 

such as librational motions and time scales of interconversion between conformational substates. 125 

Such information is important for understanding recognition events between IDPs and their 126 

binding targets, including IDP interactions with other disordered biomolecules, for example, 127 

during the formation of LLPS condensates. Experimental IDP dynamics information can be 128 

gained from fluorescence depolarization spectroscopy,(48) Förster resonance energy transfer 129 

(FRET),(16) and nuclear magnetic resonance (NMR) relaxation.(15) NMR 15N longitudinal R1 130 

and transverse R2 spin relaxation rates are exquisitely sensitive to the dynamics of disordered 131 

proteins and the underlying time scales.(49-51) R2 relaxation rates, for example, have been 132 

linked to residual intramolecular interactions in chemically unfolded proteins.(51-53) 15N R1 and 133 

R2 rates can be experimentally determined for each protein residue and therefore they are 134 

valuable for validating MD simulations with respect to amplitudes and time scales of IDP 135 

dynamics.(29, 54-56) 136 

We recently developed the AMBER ff99SBnmr2 force field by modifying the backbone 137 

dihedral angle potentials of each amino-acid residue type to reproduce the j,y dihedral angle 138 

distributions found in a random coil library.(57) The ff99SBnmr2 force field has been validated 139 

against experimental nuclear magnetic resonance (NMR) scalar 3J-couplings of a-synuclein and 140 
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b-amyloid IDPs demonstrating that this force field accurately reproduces their sequence-141 

dependent local backbone structural propensities.(58) The primary goal of this work is to learn 142 

whether state-of-the-art replica exchange and extended MD simulations of IDPs can also 143 

realistically reproduce NMR R1, R2 relaxation rates with their strong and unique dependence on 144 

motional time scales without the need of any additional corrections such as constraints or 145 

reweighting. Moreover, in-depth analysis of the MD trajectories generated yields a wealth of 146 

information about the radius of gyration tensor distribution and dominant dynamics modes 147 

allowing graph-theory based identification of specific inter-residue interaction propensities and 148 

residue clusters for the better understanding of IDP behavior.   149 

RESULTS 150 

Ensemble properties of radius of gyration tensor. The radius of gyration Rg(t) is shown as a 151 

function of time for representative 1-µs MD trajectories of p53TAD and Pup in Fig. 1A,B (see 152 

also Fig. S1). The trajectories exhibit predominantly stationary stochastic behavior reflecting 153 

random expansion and contraction of the overall IDP size with the mean value (blue horizontal 154 

lines) in good agreement with the experimentally determined <Rg> (black line) or the predicted 155 

<Rg> from polymer theory (Eq. 6). The MD-distributions of Rg of all 10 MD trajectories are 156 

shown as histograms in Fig. 1C,D. The Flory exponent n of the polymer scaling law was 157 

determined from the REMD ensembles at 298 K. Using r0 = 1.927 Å, we obtain a value of n = 158 

0.601 for Pup, which closely matches the theoretical value ntheory = 0.588 of a fully disordered, 159 

self-avoiding random coil.(59, 60) For p53TAD, the REMD <Rg> value of 28.1 Å is in almost 160 

perfect agreement with experiment(61) (28.0 Å) corresponding to n = 0.624, which clearly 161 

exceeds ntheory. 162 

 163 

 164 

 165 

 166 

 167 
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 168 

Fig. 1. Radius of gyration, Rg, properties of two IDPs p53TAD and Pup from microsecond MD 169 
simulations. Time-dependence of Rg(t) from representative 1-µs MD trajectories (cyan) of (A) 170 
p53TAD and (B) Pup where the horizontal blue lines correspond to the mean Rg values 171 
calculated from the trajectories and the black lines correspond to the experimentally determined 172 
Rg for p53TAD and the predicted Rg according to polymer theory (Eq. 6) for Pup. Rg profiles for 173 
all 10 1-µs trajectories of each protein are shown in Figure S1. Histograms of the Rg(t) 174 
distributions over all 10 MD simulations are shown in Panels C, D (blue and black lines have the 175 
same meaning as in Panels A, B). The standard deviation of Rg over all 10 MD trajectories is 5.4 176 
Å for p53TAD and 5.0 Å for Pup. Offset-free time-correlation functions CRg(t) of Rg(t) averaged 177 
over all 10 1-µs MD trajectories are shown for (E) p53TAD and (F) Pup. The dashed lines 178 
belong to non-linear least squares fits of CRg(t) by biexponential functions whereby the best fits 179 
are obtained for p53TAD with ta = 12 ns (63% of total amplitude), tb = 62 ns (37%) and for Pup 180 
with ta = 8 ns (29%), tb = 48 ns (71%).  181 
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The characteristic time scales of Rg(t) fluctuations can be obtained from the time-182 

correlation functions CRg(t) (Eq. 5), which are well-converged over the course of the 1-µs 183 

trajectories (Fig. 1E,F). CRg(t) of both proteins decay in good approximation biexponentially 184 

with reconfigurational correlation times ta ≅ 10 ns and tb ≅ 55 ns. The normalized variance of the 185 

Rg(t) fluctuations, given by  186 

       (1) 187 

is almost the same for p53TAD (0.03) and Pup (0.04). The ensemble distribution of the gyration 188 

tensor S (Eq. 2) contains information about the deviation of individual MD snapshots from 189 

spherical shape, which can be directly compared with a random Gaussian chain serving as a 190 

perfect random coil (Fig. 2).(62) Both proteins show unimodal asphericity distributions (Eq. 3) 191 

with maxima around A ≅ 0.18, which qualitatively differ from the Gaussian chain model (Fig. 2C) 192 

peaking at A = 0. Compared to p53TAD, Pup has a higher tendency to adopt a more spherical 193 

conformation. Another useful measure of the overall shape of individual snapshots is the 194 

prolateness P (Eq. 4). The distribution of P is bimodal for both proteins with the global 195 

maximum corresponding to prolate-shaped (cigar-like) structures (P = 1) and a second (local) 196 

maximum corresponding to disk-like structures (P = -1). The distribution of the prolateness of 197 

Pup is more balanced between positive and negative values with <P> = 0.2 than for p53TAD, 198 

which has a higher tendency to adopt prolate-shaped conformers (<P> = 0.35), whereas the 199 

Gaussian chain distribution (<P> = 0.3) lies between the two IDP distributions. The distinct 200 

asphericity distribution and increased prolateness of p53TAD is at the origin of its increased <Rg> 201 

over the Gaussian random coil model. 202 

σ Rg
2 =1− Rg

2
Rg

2
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 203 

 204 

Fig. 2. Gyration tensor properties of IDP ensembles of p53TAD and Pup across 10 1-µs MD 205 
trajectories. The distributions of gyration tensor aspherities A are shown for (A) p53TAD and (B) 206 
Pup in comparison with (C) a Gaussian chain. The distributions of gyration tensor prolateness P 207 
are shown for (D) p53TAD and (E) Pup in comparison with a (F) Gaussian chain. 208 

 209 

Validation against R1, R2 relaxation data. Experimental and computed 15N R1, R2 relaxation 210 

rates are shown in Fig. 3. R1 relaxation rates determined from simulations (Eq. 7–12) are in close 211 

agreement with experiment(63) evidenced by small RMSEs (0.10 s-1 for p53TAD and 0.12 s-1 for 212 

Pup) and Pearson correlation coefficients R of 0.78 for p53TAD and 0.86 for Pup (Fig. 3A,B). 213 

R2 relaxation rates determined from the simulations are also in good agreement with experiment 214 

with correlation coefficients R of 0.88 for p53TAD and 0.70 for Pup and RMSEs of 0.84 s-1 for 215 

p53TAD and 0.81 s-1 for Pup and (Fig. 3C,D). It can be seen that the simulations tend to 216 

underestimate R1 and overestimate R2 rates, although only slightly, in a manner that is notably 217 

uniform for the R1 values of both proteins and for the R2 values of p53TAD. The 10 N-terminal 218 

residues of p53TAD are very flexible with small R2’s, which closely follow the experiment. For 219 

Pup, differences in R2 between MD and experiment display the same trend and are most 220 

pronounced for residues 30–48. The error bars of the computed relaxation rates, which represent 221 

the root-mean-square deviations over all 10 MD trajectories, are fairly uniform along the 222 

polypeptide chains and systematically larger for R2 than for R1, again with the exception of the 223 
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10 N-terminal residues of p53TAD. For both proteins, not all 10 1-µs MD trajectories 224 

individually reproduce the experimental data equally well. Either 1 (p53TAD) or 2 (Pup) 225 

trajectories have more compact average IDP structures, which quantitatively affect the agreement 226 

with experiment (Fig. S2). 227 

Correlation times of backbone N-H bond vectors in both proteins fitted from the average 228 

correlation functions range from picoseconds to about 20 ns (Fig. 3E,F). Consistent with the 229 

finding for other IDPs,(55, 64) the dominant contribution to the time correlation functions stems 230 

from dynamics on the intermediate time scale around 1 ns reporting about backbone j,y jumps. 231 

Fast dynamics on the time scale of 100 ps or faster report on local 15N-1H bond librations, similar 232 

to those observed in secondary structures of folded proteins,(65) and slower dynamics on the 233 

time scale between 3 and 20 ns reports on collective IDP chain motions. The presence of slower 234 

modes correlate with increased R2 values most pronounced for residues 30–48 in Pup. This is 235 

consistent with relaxation theory (Eq. 12), which predicts that in solution transverse spin 236 

relaxation rates R2 are in good approximation proportional to the effective overall correlation 237 

time experienced by the 15N-1H spin pairs. 238 

 239 

 240 

 241 

 242 

 243 

 244 

 245 

 246 

 247 

 248 
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 249 

Fig. 3. Back-calculated R1, R2 NMR 15N-spin relaxation rates in comparison with experiment 250 
along with underlying motional time scale distributions. R1, R2 rates calculated from average 251 
correlation functions are plotted in blue with error bars representing standard deviations across 252 
individual MD trajectories. Correlation time distribution of individual 15N-1H bonds of IDPs 253 
extracted from correlation functions for (E) p53TAD and (F) Pup where the size of the blue 254 
squares are proportional to the associated motional amplitudes Ai. The squares at the bottom 255 
indicate the aggregate of dynamics contributions with correlation times faster than 100 ps. 256 
Dominant dynamics time scales range from about 100 ps to about 10 ns depending on the residue, 257 
with the exception of Thr12 in Pup which exhibits dominant dynamics time scales faster than 258 
100 ps. 259 
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Increased transverse NMR spin relaxation is indicative of the presence of collective 260 

segmental motions in IDPs, which are modulated by the formation of transient secondary 261 

structures and inter-residue side-chain interactions. To examine these relationships, 262 

instantaneous secondary structures and average contact maps were determined from the MD 263 

trajectories (Fig. 4). A contact is defined in an MD snapshot when the nearest distance between 264 

atoms from two different residues is smaller than 4 Å (uninformative first-neighbor (i,i+1) and 265 

second-neighbor (i,i+2) contacts between residues were excluded (white band along diagonal in 266 

Fig. 4A,B)). The most frequent contacts are relatively short range, but contacts over larger 267 

distances occur for p53TAD and even more frequently for Pup. Some contacts are linked to the 268 

transient formation of short secondary structures, a-helices and b-strands (Fig. 4C,D), whereas 269 

other regions display frequent contacts largely independent of secondary structure propensity 270 

often involving arginine residues, such as Arg65 of p53TAD and Arg28/29 and Arg56 of Pup. 271 

Fig. 4C,D also shows that selected trajectories possess regions with well above-average 272 

secondary structure propensities, such as trajectories #4 of p53TAD and trajectories #5 and #7 of 273 

Pup, which are the same trajectories that contribute to the lengthening of R2 along parts of the 274 

polypeptide sequences mentioned above.  Due to their atypical (outlier) nature, not representative 275 

of the other trajectories, they were not included in the following residue-cluster analysis. For 276 

p53TAD, regions that tend to form a-helices do not form b-strands and vice versa (except for 277 

trajectory #4). For Pup, on the other hand, a number of regions exist in its N-terminal half that 278 

can transiently switch between these two types of local secondary structures. 279 

 280 

 281 

 282 

 283 

 284 

 285 

 286 

 287 
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 288 

Fig. 4. Average IDP contact maps and time-dependent secondary structure formation of each 289 
residue. (A, B) Pairwise contact occupancies were determined from MD simulations (without 290 
outlier trajectories, Fig. S2, Tables S4, S5) for (A) p53TAD and (B) Pup. Darker/lighter shades 291 
of blue denote contacts that are more frequently/rarely formed according to legend (vertical bar). 292 
Self-contacts, first-neighbor contacts (between residues i,i+1), and second-neighbor contacts 293 
(between residues i,i+2) are not shown since they are present in most snapshots. (C, D) 294 
secondary structure of each residue in MD simulations are predicted using the DSSP algorithm 295 
with a-helices shown in red and b-strands in blue. (E, F) In the residue clusters at the bottom, 296 
pairwise contacts with occupancies > 0.2 are depicted as an edge connecting two nodes (residues) 297 
with edge widths proportional to the pairwise contact occupancies. Labels A1–A5 denote 298 
dominant clusters in p53TAD and B1–B8 in Pup. Examples of transiently formed subclusters are 299 
indicated by dashed lines (A1.1, A1.2, and A1.3 in p53TAD and B1.1 and B1.2 in Pup). 300 
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Inter-residue contact propensities. Different residues along the polypeptide chain display 301 

different tendencies to form contacts with other residues. Fig. 5A,B shows the average number 302 

of contacts per snapshot for each residue, which was calculated as the total number of contacts 303 

formed by a residue divided by the total number of MD snapshots. To better visualize the 304 

different behaviors, the residues were divided into four distinct groups: the majority of residues 305 

that form 0.5–1.5 contacts per snapshot (colored in black), residues that form an unusually small 306 

number of contacts (< 0.5) (colored in blue), residues that form a moderately large number of 307 

contacts (1.5–2) (colored in yellow), and residues that form a relatively large number of contacts 308 

(> 2) are colored in red. For Pup, there are three distinct regions that form the largest numbers of 309 

contacts (red) comprising residues (1) Lys7, Arg8, (2) Arg28, Arg29, and (3) Arg56. They 310 

perfectly align with the three centers of Fig. 3 with elevated R2 values, namely (1) Arg8, (2) 311 

Arg29, and (3) Arg56. For p53TAD, the residue that forms the largest number of contacts is 312 

Arg65, which is surrounded by residues with a number of contacts below average between 0.5 313 

and 1.0. This rationalizes why R2 of Arg65 shows a local maximum that is still lower than R2 in 314 

other regions of p53TAD, such as residues 19–26 forming a residue cluster with an intermediate 315 

number of contacts. Notably, the 11 N-terminal residues of p53TAD display a lower-than-316 

average amount of contacts, which is consistent with low R2 values observed across all 10 317 

individual MD trajectories. When the same type of contact analysis is performed with side-chain 318 

atoms only, a similar behavior is observed with only a small, systematic reduction in contacts 319 

(Fig. S3) reflecting that the majority of medium- to long-range inter-residue contacts are made 320 

by side-chain atoms. 321 

We also grouped the number of contacts per snapshot formed by each residue according 322 

to residue type and normalized them by the number of residues of the same type. The resulting 323 

value for each amino acid residue type present in p53TAD and Pup reflects their inherent contact 324 

propensity (Fig. 5C,D). These profiles display the following trends: positively charged residues 325 

arginine and lysine are on average most prone to form contacts, followed by hydrophobic 326 

residues isoleucine and leucine as well as aromatic residues tryptophan and phenylalanine. 327 

Negatively charged residues aspartate and glutamate, however, are least disposed to form 328 

contacts. This may be also a consequence that both IDPs are overall negatively charged (-14e for 329 

p53TAD and -12e for Pup). When acidic residues outnumber basic residues, the former tend to 330 

repulse each other, thereby increasing Rg, while the latter have more options to interact with an 331 
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acidic residue than vice versa leading to an increase of the contact propensity of basic over acidic 332 

residues. 333 

 334 

 335 

Fig. 5. Number of close contacts formed by each residue during MD simulations of p53TAD and 336 
Pup (without outliers) along with average residue-type specific contact propensities. For each 337 
residue, the number of contacts was normalized by the number of snapshots for (A) p53TAD and 338 
(B) Pup. Residues with their number of contacts per snapshot below 0.5 are depicted in blue, 339 
0.5–1.5 in black, 1.5–2 in yellow, and above 2 in red. Primary sequences of p53TAD and Pup are 340 
given at the bottom and colored as in Panels A, B. Average contact propensities according to 341 
amino-acid residue type, which is the number of contacts per snapshot averaged over all residues 342 
of the same type, are shown for (C) p53TAD, (D) Pup. Error bars correspond to the standard 343 
deviations among different residues of the same type. 344 
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Contact analysis by graph theory. To investigate the nature of some of the most frequent 345 

pairwise contacts in these IDPs, the MD snapshots were analyzed by graph theory where each 346 

snapshot is represented as an undirected graph with each residue corresponding to an edge and 347 

an inter-residue contact corresponds to an edge connecting the two residues (nodes). The 348 

resulting graphs were then analyzed in terms of clusters, which are disconnected graph 349 

components that do not have any edges to nodes outside of the cluster. On average 6.0 clusters 350 

per snapshot are found for p53TAD and 5.4 clusters for Pup. The probabilities of a cluster to 351 

have a given size are represented for both IDPs by the histograms of cluster sizes (Fig. 6A), 352 

which reveal that clusters consisting of 2 nodes are most abundantly present (around 40%) in 353 

both p53TAD and Pup. Moreover, the cluster size probability decreases rapidly with increasing 354 

size. For instance, the fraction of clusters with 10 or more nodes (residues) is only 2–3%. Despite 355 

their sequence independence and different lengths, the two IDPs have strikingly similar cluster 356 

size distributions. The number of edges grows on average linearly with the number nodes 357 

(straight solid line), which is much slower than the quadratic behavior of complete graphs 358 

(dashed line, Fig. 6B). In fact, most of the clusters formed during MD simulations are sparse 359 

graphs with a relatively small average edge-to-node ratio of 1.54, which is indicative of tree-like 360 

graphs consisting mostly of linear branches with few cross-links. Fig. 6 also depicts residue 361 

clusters (on the right) where pairwise contacts with occupancies > 0.2 are depicted as an edge 362 

connecting two nodes (residues) with edge widths proportional to the pairwise contact 363 

occupancies. 364 

The graph-theoretical representation of the transient interaction network uncovers the 365 

relationship between R2 profiles and transient contact formation and the types of interactions that 366 

are prevalent in IDP structures. For p53TAD, the three centers in the sequence with an elevated 367 

experimental R2 profile are (1) Lys24, (2) Glu51, and (3) Met66, and they are involved in or are 368 

sequentially adjacent to clusters A1, A3, and A2, respectively. Electrostatic interactions are 369 

important for residue cluster formation in p53TAD, in particular in cluster A2 featuring the 370 

pairwise contacts Lys65–Asp57 and Arg65–Glu62. The largest elevation of R2, however, is the 371 

result of the largest interaction network A1. Hydrophobic and aromatic residues Phe19, Leu22, 372 

Trp23, Leu25 and Leu26 belong to a p53TAD segment that displays increased helical 373 

propensity(66, 67) (secondary structure propensities determined from chemical shifts are shown 374 

in Fig. S5) and which undergoes distinct loop closure dynamics.(68) In particular, residues 375 
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Phe19, Trp23, and Leu26 form the hydrophobic triad that is crucial for the binding of p53TAD to 376 

MDM2.(67) Similar to cluster A1, the smaller cluster A3 centered around Ile50 is also driven by 377 

hydrophobic interactions. 378 

The regions of Pup with elevated R2 values (Fig. 3D) around Arg8, Ile18, Thr22, Arg29, 379 

Arg56 are all involved in clusters B1, B4, or B3 (Fig. 4E,F). Separate clusters can involve 380 

sequentially adjacent residues, such as clusters B2 and B3 or clusters B3 and B5 and thereby 381 

mediate cooperative behavior. The most dominant inter-residue interaction in Pup is of 382 

electrostatic nature resulting in the transient formation of salt bridges involving residue pairs in 383 

cluster B1.2 (Arg8–Asp14, Arg8–Asp15) and cluster B3 (Arg56–Asp53, Arg56-Glu52). Many of 384 

these residues appear to play the role of hubs promoting enhanced interactions also with other 385 

residues as visualized by the graphs in Fig. 4E,F. 386 

 387 

 388 

 389 
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 390 

Fig. 6. Graph theoretical analysis of inter-residual interactions and transient interaction networks 391 
of p53TAD and Pup. (A) Clusters consisting of 2 nodes (residues) dominate in the MD structures 392 
of p53TAD and Pup (without outlier trajectories), followed by clusters of size 3, etc. (B) The 393 
majority of the unique clusters are sparse graphs, with their number of edges much smaller than 394 
the number of edges in complete graphs growing with N(N-1)/2 where N is the number of nodes. 395 
The average edge-to-node ratio is 1.54 (slope indicated by solid black line), indicating 396 
predominantly tree-like graphs that sometimes have a few additional edges (cross-linked 397 
branches). 398 

 399 

  400 
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DISCUSSION 401 

Disordered proteins play a prominent role in many regulatory processes using their unique 402 

malleability to interact with their targets. Details of conformational substates of IDPs and how 403 

they are shaped by the complex interplay of inter-residue interaction networks are currently 404 

poorly understood both experimentally and computationally. In this work, we showed how the 405 

latest advances in MD force fields and computational protocols allow the nearly quantitative 406 

prediction of the complex behavior of the two IDPs p53TAD and Pup, including their dynamics 407 

time scales from site-resolved NMR spin relaxation. Both proteins have been characterized by a 408 

host of experimental techniques, including X-ray crystallography,(69, 70) NMR,(7, 63, 67, 71-409 

73) small-angle X-ray scattering (SAXS),(61, 74) FRET,(75, 76) and fluorescence correlation 410 

spectroscopy.(68)  411 

 The global dimensions of IDPs can be experimentally characterized by SAXS providing 412 

information about their radius of gyration Rg for direct comparison with MD ensembles. For Pup, 413 

<Rg> from the 10 1-µs MD simulations follows the power law of Eq. 6 with a Flory exponent n 414 

= 0.601, which closely mirrors the behaviour of a self-avoiding random coil (n = 0.598). By 415 

contrast, p53TAD is more expanded with n = 0.624, which is consistent with previous 416 

experimental results reported for this protein.(61) Such behaviour could be the result of stronger 417 

repulsive intra-residual forces caused by a slightly higher negative net charge (-14e of p53TAD 418 

vs. -12e of Pup) and a high percentage of prolines (18% in p53TAD vs. none in Pup) known to 419 

increase extendedness.(77) The relatively high n values of both proteins suggest that their 420 

interactions with water solvent are highly favorable preventing the hydrophobic collapse of their 421 

polypeptide chains.   422 

 The 10 1-µs MD trajectories allow extensive sampling of the radius of gyration over time 423 

and extract characteristic time scales from its autocorrelation function (Fig. 1). For both proteins, 424 

the time-correlation function follows in good approximation a biexponential decay with 425 

correlation times around 10 and 55 ns. Global distance fluctuations can be studied 426 

experimentally by nanosecond fluorescence correlation spectroscopy (nsFCS), which found for 8 427 

M urea denatured ubiquitin global reconfiguration times tr in the range of 50–90 ns.(16) A 428 

nsFCS study of a-synuclein, which is about twice as long in sequence as the IDPs studied here, 429 

identified two reconfigurational correlation times of tr1 = 23 ns and tr2 = 136 ns.(30) These 430 
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correlation times are within a factor 2–3 of those found in the current study, although it should be 431 

kept in mind that they report about a donor/acceptor pair, i.e. S42C/T92C in the case of a-432 

synuclein, rather than about Rg. 433 

Heteronuclear 15N relaxation offers a complementary view of IDP dynamics. 434 

Longitudinal R1 and transverse R2 relaxation rates are caused by local spin interactions, namely 435 

the magnetic dipole-dipole coupling and chemical shielding anisotropy, and they reflect 436 

reorientational dynamics amplitudes and timescales due to local conformational fluctuations as 437 

well as longer-range reorientational motional modes of the order of an IDP’s persistence length 438 

and beyond. Model-free analysis is not applicable to IDP relaxation data due to the absence of a 439 

well-conserved global rotational diffusion tensor as reference frame.(27) Instead, a residue-by-440 

residue interpretation can applied where the correlation function of each site is described as a 441 

multiexponential function of the type of Eq. 8 with 6 exponential dynamics modes.(28, 50, 55, 442 

64, 78) The hierarchy of dynamics modes depicted in Fig. 3 shows a broad distribution of time 443 

scales including rapid librational motions (< 100 ps) and dominant low nanosecond motions, 444 

which sample the different local energy basins of backbone j,y dihedral angles. The slowest 445 

modes with time scales in the range of 3–20 ns represent predominantly collective segmental 446 

reorientational motions. A similar hierarchy of time scales has been observed by fluorescence 447 

depolarization kinetics measurements of a-synuclein.(48) These collective motions involve 448 

medium to longer-range interactions between residues that can be elucidated by graph theoretical 449 

analysis of the MD trajectories described here. For Pup, many of these slower motional modes 450 

have correlation times around 3–4 ns whereas for p53TAD they are on average twice as large. 451 

For both proteins the three distinct bands of time scales are pervasive across their polypeptide 452 

sequence (Fig. 3E,F). 453 

MD methodology has made great strides in recent years to toward an increasingly 454 

realistic representation of disordered proteins.(26) Besides experimental scattering data, 455 

quantitative NMR has played a key role for the independent validation of MD ensembles. 456 

Because NMR spin relaxation parameters fully quantitatively reflect IDP dynamics at atomic-457 

level resolution both in terms of motional amplitudes and time scales, their accurate reproduction 458 

by MD has been an important but also very challenging task. A recent comparison of commonly 459 

used MD force fields that do not use residue-specific backbone potentials showed for several 460 
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IDPs significant force-field dependences with the best results obtained when the analysis was 461 

restricted to average correlation functions of chunks of 10-ns subtrajectories.(56) The need to 462 

exclude slower time-scale motions, which are prominent in both experimental data and 463 

simulations (see for example Fig. 3), may reflect the lack of convergence due to limited 464 

sampling. Beneficial for all simulations was the improvement of the TIP4P-D water model over 465 

TIP3P preventing overly collapsed IDP ensembles, which is consistent with other computational 466 

studies.(38, 57) Because of the observed discrepancies between experiments and MD simulations, 467 

some studies applied post factum adjustments to the MD simulations in order to improve 468 

agreement, which include uniform or selective scaling of the MD time scale or correlation 469 

times(27-30) or the reweighting of sub-trajectories.(64) Here, we chose a different approach: 470 

rather than relying on post factum modifications, we use the residue-specific ff99SBnmr2 force 471 

field, which was specifically designed for the improved representation of IDPs without the need 472 

of any corrections.(57, 58) A correction-free MD approach has recently been reported for the 473 

intrinsically disordered SH4UD protein with the Amber ff03ws force field, which does not use 474 

residue-type independent backbone dihedral angle potentials, and no time-scale dependent data, 475 

such as NMR spin relaxation, were used for validation.(79) NMR chemical shifts were back-476 

calculated using SHIFTX2,(80) which, besides 3D structural information, makes extensive use of 477 

protein sequence data. Here, we back-calculated NMR chemical shifts using PPM(81) (Fig. S4), 478 

which only uses the physical parametrization of chemical shifts with respect to 3D protein 479 

structure of each snapshot, achieving very good agreement with experiment.(73)  480 

The close correspondence observed between experimental and computed 15N relaxation 481 

R1 and R2 relaxation rates for both IDPs studied here (Fig. 3), without the need for post factum 482 

corrections, attests to the accuracy and robustness of the computational protocol used. It applies 483 

REMD for the generation of conformational ensembles belonging to different temperatures from 484 

which 10 representative structures at 300 K were randomly selected as starting structures for 1-485 

µs MD trajectories whereby all simulations made use of the ff99SBnmr2 force field and the 486 

TIP4P-D water model. MD-derived longitudinal 15N R1 follow the shapes of the experimental R1 487 

profiles with a small tendency to underestimate the experimental 15N R1 rates by 4–6% whereas 488 
15N R2 relaxation rates overestimate the experimental values on average by 26% for Pup and 489 

34% for p53TAD. This level of agreement is significantly better than for previously reported 490 

comparisons of this type.  491 
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Few individual trajectories (10–20%) show systematically larger differences with respect 492 

to experiment than the rest. For the proteins studied here, they are trajectories #4 of p53TAD and 493 

#5 and #7 of Pup (Fig. S2, Table S4). These trajectories are characterized by the persistent 494 

formation of secondary structure (#4 of p53TAD and #5 of Pup) (Fig. 4C,D) or by a collapsed 495 

overall geometry with a reduced <Rg> compared to the other trajectories (trajectory #7 of Pup) 496 

(Table S5). At the individual trajectory level, these outlier trajectories are in poorer agreement 497 

with experimental data and their removal from the set of 10 trajectories during the back-498 

calculation of relaxation rates further improves the agreement with experiment (Fig. S3). From 499 

such diagnostic analysis it follows that these outlier trajectories are either overrepresented in the 500 

original simulations or the result of simulation artifacts, for example, caused by inaccuracies of 501 

the underlying force field. Removal of individual trajectories based on comparison with 502 

experiment should be applied with great care and be reserved primarily for diagnostic purposes, 503 

such as the analysis of shortcomings of the simulations. While post factum trajectory selection or 504 

reweighting can provide better agreement with experiment, it is generally unclear whether the 505 

altered ensembles are in fact consistent with an alternative, physics-based force field, thereby 506 

complicating the physical interpretation of such ensembles.   507 

Although it is difficult to identify individual force field terms responsible for the IDP 508 

behaviour observed in the outlier trajectories, these results can nonetheless provide useful input 509 

to guide future force field improvements. With more computer power, it will be possible to gain 510 

better statistics by generating a larger number of trajectories for the improved sampling of 511 

conformational space allowing the more rigorous assessment of the underlying force field, the 512 

water model, and other aspects of the computational methods used. Conversely, such insights 513 

may allow the further improvement of force fields and methods for applications also to other 514 

proteins. In fact, the ff99SBnmr1 force field, which is the parent force field of ff99SBnmr2, was 515 

developed and optimized using this strategy by the systematic reweighting of MD snapshots 516 

based on many trial force fields using experimental NMR data of intact proteins.(82) 517 

The good agreement of the MD simulation with experimental observables both motivates 518 

and justifies the analysis of other protein properties observed in the MD trajectories that are 519 

difficult to measure. This includes the analysis of transient inter-residue interactions. The 520 

molecular driving forces of these interactions are fundamentally similar to those of ordered 521 

proteins although average hydration properties may differ.(79) In contrast to ordered proteins, 522 
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inter-residue interactions between non-sequential amino acids are short-lived. Therefore, the 523 

time-averaged interaction maps (Fig. 4A,B) offer only partial insights as they conceal the 524 

compositions and distributions of instantaneous interaction clusters. In fact, the relatively large 525 

network reflected by the average contact map contrasts the much smaller size of graphs that exist 526 

at any given time, which attests to the very heterogeneous and transient nature of instantaneous 527 

contact clusters. The highest occupancy of pairwise contacts found is around 0.5, which mostly 528 

belong to (i,i+3) contacts. For a list of the most frequent pairwise contacts, see Tables S2, S3. 529 

Snapshot by snapshot analysis revealed the dominance of small cluster sizes over larger 530 

ones (Fig. 6). For both p53TAD and Pup, clusters with 2 or 3 residues make up more than 50% 531 

of all clusters and clusters with more than 10 residues have notably low occurrence, although 532 

their formation could be functionally relevant during molecular recognition events. Because 533 

clusters consisting of residue pairs dominate intra-residual interactions in both IDPs, further 534 

analysis of the interaction network was performed based on pairwise contacts. Contact maps 535 

were generated for p53TAD and Pup averaged over all MD trajectories and pairwise contacts 536 

that have occupancies larger than 0.2 visualized as separate graphs (Fig. 4E,F).  Instantaneous 537 

clusters can belong to such larger graphs as exemplified by clusters A1.1, A1.2, A1.3 for 538 

p53TAD and clusters B1.1 and B1.2 for Pup (Fig. 4E,F). The dominant clusters are 539 

characterized by a mix of hydrogen bonds, salt bridges (e.g., involving Arg65 in cluster A2, 540 

Arg8 in star-like cluster B1.2, and Arg56 in cluster B3), hydrophobic and aromatic interactions 541 

(e.g., Phe19, Leu22/25/26, and Trp23 in cluster A1). These are consistent with the driving forces 542 

attributed to liquid-liquid phase separation, namely intermolecular contacts among aromatic 543 

residues,(83-85) electrostatic interactions,(86-88) and hydrophobic interactions.(89) 544 

The majority of clusters are linear graphs with few circular sub-graphs leading to the 545 

linear relationship between the number of nodes and number of edges (Fig. 6B). Acidic residues 546 

tend to have low cluster participation whereas arginine residues have the highest participation in 547 

both proteins (Fig. 5A,B). This difference in cluster participation between cationic and anionic 548 

residues is also evident in Fig. 5C,D. Among the neutral amino acids, those with larger side-549 

chains are more prone to interactions with non-neighboring residues due to their intrinsically 550 

larger distance range. In fact, Pro, Val, Ser, Ala, Gly have the lowest interaction propensities 551 

among neutral residues and among pairs of chemically similar residues, such as Gln vs. Asn and 552 

Leu vs. Val, the larger residue (Gln, Leu) dominates the smaller one (Asn, Val).  553 
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A primary biological function of p53TAD is to negatively regulate p53 by interacting 554 

with the ubiquitin ligases MDM2 and MDMX for the degradation of p53. This interaction is one 555 

of the earliest and best studied interactions between an IDP and a folded protein both by 556 

experiment(67-69) and computation.(90) In order to better understand the molecular recognition 557 

mechanism underlying the formation of this complex, a realistic and accurate description of the 558 

free state of p53TAD is of central importance. For MD studies, the choice of the protocol, 559 

especially of the force field and water model, is consequential. A recent unbiased REMD study 560 

of free p53TAD reported the detailed comparison using five different MD force fields all without 561 

residue-specific backbone potentials. Based on 1-µs long replicas major differences were 562 

revealed in terms of the structural propensities among them and also with respect to experimental 563 

data.(91) An even longer simulation of residues 10–39 of p53TAD for a total length of 1.4 ms 564 

analyzed by Markov state models identified substantial populations of b-sheets across the 565 

sequence,(92) a behavior that is at variance with the above mentioned REMD ensembles(91) as 566 

well as with experimental solution NMR data.(67) These together with many other studies show 567 

that force fields need to be chosen following extensive testing to ensure that long trajectories, 568 

generated with considerable computational effort, offer the most realistic biophysical insights 569 

about these highly complex, heterogeneous systems.  570 

In addition to forming transient intramolecular contacts, IDPs can also dynamically 571 

interact with other IDPs driving the formation of liquid-liquid phase separation. With a rapidly 572 

increasing body of experimental data on LLPS condensates,(9, 10, 93) all-atom MD simulations 573 

have an important role to play for a mechanistic understanding of emerging phase separation 574 

properties. Since the molecular driving forces of LLPS are the same as for intramolecular IDP 575 

interactions,(94) such as those described here, the optimal accuracy of force fields along with 576 

adequate sampling schemes of the heterogeneous condensate environment will be key for the 577 

quantitative interpretation of experimental data, allowing the prediction of condensate formation 578 

and eventually may open the way for new interventional approaches to actively reprogram 579 

condensates and their properties.  580 

 Although a possible role of Pup in LLPS is not known, LLPS involving full-length p53 581 

has been documented and p53TAD has been implicated in both phase separation and oncogenic 582 

amyloid aggregation.(76, 95) Multivalent electrostatic interactions between the N-terminal 583 
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domain, p53TAD, and the C-terminal domain were identified as critical for LLPS, which were 584 

shown to be positively modulated through molecular crowding and negatively modulated by the 585 

addition of DNA and ATP molecules and post-translational modification. It was suggested that 586 

compartmentalization of p53 into the droplets suppresses its transcriptional regulatory function, 587 

while its release from droplets under cellular stress can activate p53.(76) These findings point to 588 

the need for the comprehensive characterization of these intermolecular interactions at residue- 589 

and atomic-level resolution. The agreement with experiment reported here clearly suggests that 590 

MD methodology has reached a level of accuracy allowing it to make critical contributions 591 

toward this goal. 592 

The results of our study further advance the long-held premise of MD simulations to 593 

realistically describe IDP ensembles on their native dynamics time scales toward the better 594 

understanding of their biophysical properties and biological function. Both IDPs chosen in this 595 

study, p53TAD and Pup, undergo folding upon binding to their protein targets and it will be 596 

interesting to see how the protocol will perform for IDPs that do not fold when interacting with 597 

other proteins. For both p53TAD and Pup, the use of REMD allows the adequate sampling of 598 

conformational space for the generation of a representative set of initial structures that are then 599 

subjected to long, continuous MD simulations. The close agreement found for the extendedness 600 

of the simulated IDPs with experiment and polymer theory suggests an appropriate balance 601 

between the ff99SBnmr2 force field and the TIP4P-D water model at the global scale. It 602 

favorably complements the authentic IDP behavior achieved by this protocol on the local scale in 603 

terms of its compliance at the individual residue level with coil libraries, scalar couplings, and 604 

chemical shifts. In addition to the realistic modeling of ensemble properties, our protocol also 605 

reproduces motional amplitudes and time scales encoded in quantitative NMR spin relaxation 606 

data with near experimental accuracy suggesting that the dominant minima of the free energy 607 

surface together with their many low-lying transition states are realistically captured by this 608 

comprehensive computational framework. These results prompted a more detailed analysis of 609 

short-lived inter-residue interactions, which was achieved by graph theory revealing 610 

characteristic inter-residue contact patterns and the extraction of residue-type specific interaction 611 

propensities. The realistic IDP conformational dynamics model achieved by the protocol 612 

described here advances our increasingly mechanistic and predictive understanding of IDPs 613 
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along with their interactions and binding properties with ordered and disordered molecular 614 

targets ranging from regulatory pathways to emerging LLPS phenomena. 615 

 616 

METHODS 617 

Molecular dynamics simulations. Fully extended structures of p53TAD and Pup were prepared 618 

using the LEaP program in AmberTools16.(96) After equilibration, they were used to run 619 

replica-exchange MD (REMD) simulations for the sampling of conformational space (36 620 

replicas for each IDP covering a temperature range from 298–353 K for p53TAD and 298–365 K 621 

for Pup, see Supplementary Material) with each replica being 1 µs of length. Exchange was 622 

attempted every 10 ps and the exchange probability was about 0.3. For each IDP, 10 structures 623 

were randomly selected from the room-temperature (298 K) REMD ensemble and used as initial 624 

structures to run free MD simulations for 1 µs in the NPT ensemble at 300 K and 1 atm. The 625 

protein force field and water model used in all simulations were AMBER ff99SBnmr2 and 626 

TIP4P-D. 627 

All MD simulations were performed using the GROMACS 2020.2 package.(97) The 628 

integration time step was set to 2 fs with all bond lengths containing hydrogen atoms constrained 629 

by the LINCS algorithm. Na+ or Cl- ions were added to neutralize the total charge of the system. 630 

A 10 Å cutoff was used for all van der Waals and electrostatic interactions. Particle-mesh Ewald 631 

summation with a grid spacing of 1.2 Å was used to calculate long-range electrostatic 632 

interactions. A cubic simulation box extending 8 Å from the protein surface in all three 633 

dimensions was used. Energy minimization was performed using the steepest descent algorithm 634 

for 50,000 steps. The system was simulated for 100 ps at constant temperature and constant 635 

volume with all protein heavy atoms positionally fixed. The pressure was then coupled to 1 atm 636 

and the system was simulated for another 100 ps. The final production run of 1 µs length was 637 

performed in the NPT ensemble at 300 K and 1 atm. For simulation details, see Table S1. 638 

Radius of gyration tensor calculations and derived quantities. In order to map the global 639 

shape of p53TAD and Pup conformers, radius of gyration tensors were computed as 3×3 640 
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matrices S from each snapshot of the room-temperature REMD ensemble and the free MD 641 

simulations as follows:(98) 642 

     (2) 643 

where  is cartesian coordinate a (b) (= x, y, z) of atom i in the coordinate system that has its 644 

origin in the center of mass of the molecule. Diagonalization of S yields three non-negative 645 

eigenvalues from which the radius of gyration Rg is obtained, , 646 

the asphericity A,(98, 99) 647 

     (3) 648 

and the prolateness P,(100) 649 

   (4) 650 

The asphericity measures the degree to which the three axis lengths of the ellipsoid of inertia 651 

(eigenvalues) are equal, whereas the prolateness P indicates whether the largest or smallest axis 652 

length is closer to the middle axis length. P takes values between -1 and 1, quantifying the 653 

transition from oblate to prolate shapes. Normalized time-correlation functions of Rg(t), made 654 

offset-free, were computed according to 655 

CRg(t) = <(Rg(t) - <Rg>)(Rg(t+t) - <Rg>))>t /<(Rg(t) - <Rg>)2>t   (5) 656 

as an average over all 1-µs MD trajectories. 657 

 According to polymer theory, for an unfolded polymer the ensemble-averaged Rg scales 658 

with the number of residues N as(62, 77) 659 

<Rg> = r0 Nn         (6) 660 

where r0 is a constant reflecting the average size of a residue and the Flory exponent 661 

n determines the overall compactness of the polymer serving as a reference.  662 
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Back-calculation of R1, R2 relaxation rates. For IDPs, the normalized time-autocorrelation 663 

function C(t) of the lattice part of the spin-relaxation active magnetic dipole-dipole interaction 664 

cannot be factorized into an overall tumbling part and an internal dynamics part. Rather, we 665 

compute the full C(t) directly from an MD trajectory using the second-order Legendre 666 

polynomial: 667 

𝐶(𝑡) = !
"
〈3[𝒆(𝜏)𝒆(𝜏 + 𝑡)]" − 1〉    (7) 668 

where e(t) is the unit vector defining the 15N–1H bond orientation whereby snapshots were not 669 

aligned with respect to a reference snapshot. The angular brackets indicate averaging from time t 670 

= 0 to TMD – t, where TMD is the total trajectory length. The calculation of C(t) was efficiently 671 

performed by the fast Fourier transform (FFT) using the Wiener–Khinchin theorem. For 672 

acceptable statistical convergence, the analysis of C(t) was limited to its initial portion from t = 0 673 

- TMD /3. Next, a multiexpoential decay function was fitted to C(t):(101) 674 

𝐶(𝑡) = 	∑ 𝐴#𝑒$%/'!(
#)!       (8) 675 

where Ai and ti are the best fitting parameters subject to the conditions: 676 

∑ 𝐴#(
#)! = 1			𝐴# ≥ 0, 𝜏# ≥ 0     (9) 677 

The spectral density function J(w) can be then analytically obtained via Fourier transformation of 678 

C(t): 679 

𝐽(𝜔) = 2∫ 𝐶(𝑡)cos	(𝑡)d𝑡*
+ = ∑ ",!'!

!-(/'!)"
(
#)!      (10) 680 

NMR spin relaxation parameters R1 and R2 were then computed using the standard 681 

expressions:(102-105) 682 

𝑅! = 𝑑++[3𝐽(𝜔1) + 𝐽(𝜔2 − 𝜔1) + 6𝐽(𝜔2 + 𝜔1)] + 𝑐++𝜔1" 𝐽(𝜔1)   (11) 683 

𝑅" =
!
"
𝑑++[4𝐽(0) + 3𝐽(𝜔1) + 𝐽(𝜔2 − 𝜔1) + 6𝐽(𝜔2) + 6𝐽(𝜔2 + 𝜔1)] +

!
(
𝑐++𝜔1" [4𝐽(0) +684 

3𝐽(𝜔1)]      (12) 685 



 30 

where 𝑑++ =
!
"+
(3#
45
)"( 6

"5
)"𝛾2"𝛾1"〈𝑟12$7〉" and 𝑐++ =

!
!8
∆𝜎". µ0 is the permeability of vacuum, h is 686 

Plank’s constant, gH and gN are the gyromagnetic ratios of 1H and 15N, and rNH = 1.02 Å is the 687 

backbone N-H bond length. The 15N chemical shift anisotropy was set to Ds = -160 ppm.  688 

Analysis of inter-residue contacts and residue clusters by graph theory. Contact analysis was 689 

performed on all snapshots of the MD simulations of both p53TAD and Pup. A contact is 690 

considered formed when the nearest distance between atoms from two different residues is 691 

smaller than 4 Å. First-neighbor contacts (between residues i,i+1), and second-neighbor contacts 692 

(between residues i,i+2) were excluded since they are present for most residues. For each residue 693 

in p53TAD and Pup, the total number of contacts formed by a particular residue is determined 694 

and normalized by the number of MD snapshots. Each snapshot was converted to a graph where 695 

residues are represented as nodes and contacts between two residues are represented as edges 696 

between them. The initial graph was then decomposed into a maximal number of disconnected 697 

graph components called clusters, i.e. there is no edge between any node in the cluster and any 698 

node outside the cluster. The size of a cluster corresponds to the number of its nodes. 699 
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SUPPORTING INFORMATION 709 

Fig. S1. Radius of gyration of the IDPs p53TAD and Pup in 10 1-µs MD trajectories each at 300 710 
K with starting structures randomly chosen from replica exchange simulations. 711 
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Fig. S2. Mean R1, R2 errors from 10 1-µs MD simulations of p53TAD and Pup in comparison 712 
with experiment. 713 

Fig. S3. Back-calculated R1, R2 15N backbone spin relaxation rates from microsecond MD 714 
simulations of p53TAD and Pup excluding outlier trajectories in comparison with experiment. 715 

Fig. S4. Comparisons of experimental and predicted chemical shifts of p53TAD. 716 

Fig. S5. Experimental and MD-derived secondary structure propensities of p53TAD. 717 

Fig. S6. Average number of contacts formed by a particular residue in p53TAD and Pup per 718 
snapshot using only side-chain atoms. 719 

Fig. S7. Contact propensities according to amino-acid residue type for both proteins combined. 720 

Table S1. MD and REMD simulation details for p53TAD and Pup. 721 

Table S2. Most frequent pairwise residue contacts in p53TAD from MD simulations. 722 

Table S3. Most frequent pairwise residue contacts in Pup from MD simulations. 723 

Table S4. Chemical shift comparisons for p53TAD. 724 

Table S5. Radius of gyration pf p53TAD and Pup. 725 

  726 
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