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Abstract

Moiré patterns result from setting a 2D material such as graphene on another 2D ma-
terial with a small twist angle or from the lattice mismatch of 2D heterostructures. We
present a continuum model for the elastic energy of these bilayer moiré structures that in-
cludes an intralayer elastic energy and an interlayer misfit energy that is minimized at two
stackings (disregistries). We show by theory and computation that the displacement field
that minimizes the global elastic energy subject to a global boundary constraint gives large
alternating regions of one of the two energy-minimizing stackings separated by domain walls.

We derive a model for the domain wall structure from the continuum bilayer energy and
give a rigorous asymptotic estimate for the structure. We also give an improved estimate for
the L2?-norm of the gradient on the moiré unit cell for twisted bilayers that scales at most
inversely linearly with the twist angle, a result which is consistent with the formation of
one-dimensional domain walls with a fixed width around triangular domains at very small
twist angles.

1 Introduction.

Recent scientific and technological interest in van der Waals 2D materials such as twisted bilayer
graphene or transition metal dichalcogenides (TMDs) such as molybdenum disulfide (MoS3) has
motivated the investigation of the complex microstructure of bilayer moiré materials (see Figure

. The energy landscape with respect to the possible bilayer stackings is not uniform [1] (see

Figures and , so the twisted bilayer structure mechanically relaxes to enhance the
regions of lowest stacking energy within each moiré cell while confining the regions of highest
stacking energy to domain walls separating the moiré cells so as to maintain a global twist angle
constraint [1,[17] (see Figure [9).

Models for the relaxation of the structure of twisted bilayer materials have been proposed
in [6,9]. A general and rigorous model for the relaxation of incommensurate multilayer materials
was proposed in [7] that also includes untwisted heterostructures which have moiré superlattices
from lattice mismatch (such as untwisted WSez/MoS3) and trilayer systems which have more
complex moiré of moiré structure [19].
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Figure 1: Composite dark field image of the moiré domains in a MoSes/WSes heterostructure.
A horizontal crack separates two regions, with the bottom region exhibiting a mostly uniform
twist angle of 1°, and the top region having a non-uniform strain dominated by a .6° twist with
large shear in the upper right region. Domain walls are imaged in the dark field transmission
electron microscope using the second order Bragg peaks and superposed together to provide
contrast according to the three different Burgers vectors (see Figure [5), colored red, green, and
blue, respectively.

Transferring a two-dimensional lattice onto another with a small rotation 6 gives rise to a
moiré superlattice with lattice constant aps = ap/(2sin(6/2)) that is much larger than the single
layer lattice constant ag (see Figure ) The capability to fabricate twisted 2D bilayers such
as graphene or MoSy with precise control of small twist angles as low as 8 ~ .1° or smaller
has opened a new era in the development and design of materials with previously inaccessible
electronic, magnetic, and optical properties. For example, the discovery of Mott insulator
and superconducting electronic phases in twisted bilayer graphene at the “magic angle” of
0 = 1.05° has led to a new era in the investigation of strongly correlated electronic and
magnetic phases.

Low energy, continuum models for the electronic density of states, band structure, and
transport properties of twisted bilayer materials were derived that predicted the existence
of correlated physics (superconducting and Mott insulator phases) at the “magic angle.” More
general formulations using the local configuration or distregistry for incommensurate atomistic
structures (without a supercell approximation) were later developed and rigorously analyzed
[3,11}[11L[14}[15]. ALl of these approaches assumed that each lattice remains rigid when twisted
and then placed on another lattice, and hence each possible stacking (see Figure [3) is sampled
uniformly over the moiré unit cell.

The relaxation of bilayer structures can have a significant effect on the electronic properties
such as band gap that are predicted by the above models [13/17]. Recently developed models for
the relaxation of twisted bilayer homostructures and heterostructures have been used to obtain
more accurate computations for fundamental electronic properties such as band gaps . A
rigorous analysis of the effect of relaxation on the electronic density of states and other electronic
properties and a more efficient computational method has been recently given in .



This paper first reviews in Section the concept of disregistry of one layer with respect to
another layer following the approach given in [6,7] and is extended to the disregistry of relaxed
modulated layers in Section following [7]. The concept of the generalized stacking fault
energy is described in Section The fundamental bilayer model developed in [6,7] is then
given in Section

We derive a model for the domain wall structure from the bilayer energy in Section
and give a rigorous asymptotic estimate in Proposition for the structure. We also present
detailed computational results for the domain wall structure and compare to our theoretical
results.

In Section 4] we derive the moiré domain orientation and lengths scale and present com-
putational results for each of 4 “pure” strain fields: twisted, isotropic strain, pure shear, and
imple shear. We note that each of these moiré orientations can be found in non-uniformly
strained bilayer structures (see Figure [1| and [10]). For twisted bilayers, we also give an im-
proved estimate for the L2-norm of the gradient on the moiré unit cell (Theorem that
scales at most ‘nversely linearly with the twist angle which is consistent with the formation of
one-dimensional domain walls with a fixed width around triangular domains at very small twist
angles, as observed in simulations (see Figure [9) and experiments [17].

2 Continuum model for mismatched bilayers

2.1 Geometry

We consider stacks of two-dimensional crystalline layers, where in the reference state atoms
are distributed periodically in each layer according to

a Bravais lattice. For example, the triangular lattice 'S
associated with graphene can be described by the fun- // \
damental matrix whose columns are generating lattice 7 \

vectors:
V3/2 0 \
A=a (—1/2 1) ’ (1) T \>_ -
ag

with ag the lattice constant, such that the lattice sites /

R are given as A <T:) with m, n integers. The unit cell

of the lattice is given by

I:= {A (i) suchthatOSs,t<1},

which is equipped with periodic boundary conditions
and can also be seen as the torus R?/AZ2. Note that
there may be more than one atom in each unit cell: for
example, graphene has two atoms (typically denoted A
and B) in each unit cell (see Figure ), while molyb- Figure 2: Unit cell of graphene
denum disulfide (MoS2) has three.

We are particularly interested in stackings where a moiré pattern emerges, i.e., where the
layers, being almost aligned, have almost but not exactly the same fundamental matrix. One
particular example is the famous twisted bilayer of graphene which exhibits superconductivity
at the small so-called magic twist angle § = 1.1°: with our notation, this is obtained by rotating
slightly each layer in opposite directions, with the fundamental matrices for each layer being
given by:

. CcOSs —sin
Ay = R_gpA, Ay = RgpA,  with Ry = (sinz o f) .



More generally, moiré patterns in bilayers will be obtained whenever the fundamental matrices
of the lattices satisfy the condition

| 1Azt = 1), [A2AT — I < 1, (2)
where I stands for the identity matrix.
2.2 Disregistry
Following [@], we assume without loss of generality that the disregistry is zero at the origin, and

we define the disregistry of R; € R with respect to Ry and Rs € Ro with respect to Ry of the
unrelaxed bilayer structure by (see Figure [3)):

blag (Rl) = IIlOdl"2 (Rl) and bgﬁl(Rg) = IIlOd[‘1 (Rg),
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Figure 3: Configurations and disregistry for identical hexagonal lattices with the large twist
angle § = 6.8°. Three special configurations are identified within the moiré lattice, with close-

ups depicting the disregistry bo_,1 of layer 2 (in blue) with respect to layer 1 (in red) in each
case.



where modr, (R1) = Ry + ﬁg € T’y for appropriate ﬁ; € Rs. We have derived interpolation
formulae for undistorted lattices @

bia(x) := (I — AzAl_l)x (mod I'y) and boq(x):= (I — A1A2_1)X (mod T'y), (3)

which define slowly varying disregistries in space due to assumption , although the disregistry
is a fundamentally discrete / atomistic quantity. It is easy to check that, provided holds:

bl_,Q(X) = —AQAl_le_,l(X) (mod Fg), SO bl_,Q(X) x —bg_,l(X).
Remark 2.1. Note that we follow here the disregistry convention from 1@, which is opposite
to ,@/

We note that both disregistries are periodic as a function of the continuous position variable
x, leading us to identify the lattice and unit cell of the bilayer moiré structure (see Figure ,

Ap= (AT =A07L 0 T= Amf0,1)?%, (4)
since b_2(x) and by_,1(x) are isomorphisms [6,[7]

b Fm— Ty
=2 x > (I — AgATx = (I — AgATY)x + Ag(er +e3)  (mod Ty),

b v — T,
e x > (I — A1 A7 N)x.

Remark 2.2. We note that the mappings b1 and ba_,1 are distinct group homomorphisms
of the fundamental group of the torus. When the layers are respectively twisted by an angle
0 >0, Ay = R_gppA and Az = Ry g/9A, and we can verify that V x by = —2sinf < 0 and
V x bgﬁl =2sinf >0 .

In most cases, the underlying layer lattices are incommensurate, so the moiré lattice is only
an approximate periodicity of the system. However, we will see that in the continuum approx-
imation the bilayer system is exactly periodic at the moiré scale; however, this is not the case
for systems composed of three or more layers .

2.3 Generalized stacking fault energy . 0.016
The generalized stacking fault energy (GSFE) accounts for 0.014
local contributions to the global stacking energy and is as-

sumed to depend only on the local configuration as measured 0.012
by the disregistries. The GFSE measures the energy cost of L 0.010
the layers not being uniformly in an optimal stacking config-

uration, but rather in a slowly varying disregistry induced [ 0.008
by a global rotation or deformation of one of both layers. L 0.006
As shown in Figure |4 for bilayer graphene, it is thus mini-

mized at the AB and BA configurations and maximized at 0004
the AA configuration displayed in Figure [3l The GSFE is 0.002
computed for aligned layers and is a good approximation for < 0,000

small rotations [7].

The generalized stacking fault energy for layer 1 with
respect to layer 2 as a function of disregistry is given by
®; : I's — R and the GFSE for layer 2 with respect to layer
1 is given by &5 : I'y - R . The GFSEs for unrelaxed
bilayer structures at x € R? are thus given by ®; (b;_2(x))
and (132 (bgal(x)).

Figure 4: GSFE approximation
for bilayer graphene as a func-
tion of disregistry from plot-
ted over the unit cell and shifted
so that the minimum occurs at 0.



2.4 Bilayer model in real space

Our starting point will be the model developed in [6,7,9], where the displacement minimizes an
elastic energy that decomposes as:

2
Eluy, wp] = > Eia (W) + Einter (11 — 1g), (5)
j=1

where we assume that the displacements u;(x) and ug(x) are periodic functions with respect to
the moiré lattice . This can be motivated by equivalently assuming that the displacements
u;(x) and uy(x) are functions of the disregistries by _,2(x) and ba_,1(x), respectively [7].

The contribution & ;.. corresponds to the elastic cost of straining the layers (which we model
here by isotropic linear elasticity):
A1,
ELau] = / 5 (div up)? + p1 e(uy) : e(uy)dx,
A (6)
A2

giQntra[UZ] = /1" ? (diV u2)2 + o 6(112) : 8(u2)dX,
M

where \; and p; are Lamé parameters and e(u;) are the linear strains for layer i, while the
contribution &jyter corresponds to the misfit energy due to lattice misalignment between the two
layers:
1
Einter[V] = 2/ ®1 (b1-2(x) + v(x)) + P2 (b2 (x) — v(x)) dx. (7)
T'am

We note that the arguments of the generalized stacking fault energies ®; : 'y — R and &5 :
I'1 = R in &pter[v] are the modulated disregistries for the relative distortion of the lattice v [7]:

bi_(x) := bi_a(x) + v(x) and by (x) := by (x) — v(x). (8)

We look for a local minimum of the energy (note that the global energy minimum would have
both layers aligned in the optimal stacking configuration, but we are enforcing a fixed global
misalignment through the periodic boundary conditions on the moiré torus).

2.5 Interlayer symmetry

A common thread will be that for two vertically stacked, possibly strained but initially identical
layers and neglecting non-linear elastic effects, we can model the intralayer elastic energies by
the same values of Lamé parameters A, u between the two layers. A natural symmetry then
emerges: notice that £[uy,uz] = £[—ug, —u;] because the misfit energy depends only on the
difference v = u; — uz = (—uz) — (—uy). In fact, the displacements are uniquely determined
by the nonlinear forcing term in the linear elastic regime [7] as the Euler-Lagrange equations
associated with the minimum read:

—div (A (div ui)l +2pe(uy)) = Faq(v),
—div (A (div u2)! +2pe(u2)) = —Fu(v),

where F[v](x) := V@1 (b12(x) + 2v(x)) — V@3 (bo—,1(x) — 2v(x)). Uniqueness of the
solution of the linear elasticity problem then implies:

u:=1u; = —uy, 9)

hence knowledge of the single planar displacement u is sufficient to describe the displacement
of both layers. Furthermore, the total energy of the bilayer system thus simplifies to

Elu] = 2&ntralu] + Einter[2u], (10)

where Einrau] := / % (div u)* + pe(u) : e(u)dx.

' m



3 Domain wall structure

Our first example will be one without a moiré structure — but rather a single domain wall
at a straight interface y = 0 within a bilayer structure in disregistry with a global rotation at
angle ¢, with two half-planes +y > 0 both close to aligned, energy minimizing, non equivalent
configurations, attained at +y — oo0. Such structures may be described as partial interlayer
dislocations [8] and modeled using the same generalized Peierls-Nabarro energy adapted from
above (5)).

3.1 Geometry

More precisely, we assume here that the lattice fundamental matrices and initial disregistry are
given by

A=Ay = R4A, so bioa(y) = —bai(y) = Ry [bsp + tanh(ny)Ab],

where n — 0% is a small parameter.

The disregistry Ab between left and right half-planes is chosen such that the unrotated
GSFE profile has minima at bgp + Ab and a saddle point at bgp, leading to a double well profile
on a segment [bgp —cAb, bgp + cAb] for some ¢ > 1. In the case of bilayer graphene with lattice
given by , such structures appear at the interface between Bernal stacked arrangements, with
three non translationally equivalent choices corresponding to the 27/3 rotational symmetry of
the lattice:

1 (0 1 (+/3)2 1 (/32
bsp.1 =3% |, ) bsp 2 = 500 12 ) bsp 3 = 500 1)

V31 V3 (=12 VB =12
Abl = ?ao <0> 5 Abg = 6 ag (\/§/2> N Abg = 6 aq (_\/3/2> 5

such that for i = 1,2, 3, bap = bgp ; +Ab; corresponds to AB stacking, while bga = bgp ; —Ab;
corresponds to BA stacking. The disregistry path associated with each is presented in Figure
For example, we note that the going from the BA configuration (3) to the AB configuration (1)
on Figure |3| corresponds to the third choice here.

(a) (b)

Figure 5: Three possible orientations of the disregistry path across a domain wall for hexagonal
bilayers.
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Figure 6: GSFE potential profile along domain wall, comparisons to analytic potentials

3.2 Domain Wall Relaxation

One expects the formation of a domain wall at such an interface between stable domains,
modeled by an interlayer displacement which we may assume depends only on the transverse
coordinate y and is aligned with the vector RyAb. By symmetry between the layers @, we
obtain: Since the disregistry is bi_,2(x) 4+ u1(x) —u2(x) = b1_,2(x) +2u(x), we define the scalar
interlayer displacement u(y) by

u(x) i= uy(x) = ”(23/) RyAb,  uy(x) = —“(23“’) RyAb.
Plugging this ansatz into the minimization problem , we replace the integration of the
energy over the moiré cell I'y4 by an average energy per unit length along the domain wall.
This yields the simplified energy minimization problem for domain wall relaxation:

e = [ 5 (A5l Reb 02 + IABE ) i) + 2 Luty)] 1)

with the boundary conditions u(y) — =£1 for y — +o00, where we introduced the effective
one-dimensional, angle-independent GSFE potential:

<I>[u] = (I)l[R¢(bSP + uAb)] = @2[—R¢(bsp + uAb)].

We recall that A + p is the bulk modulus and g is the shear modulus. The potential ® has
a double-well even profile over the the interval [—c, ¢], with minimal value ®.,;, attained at
u = *1, and kpin = ®"(—1) = ®”(1) > 0.

We further non-dimensionalize the problem as follows: let us define the order parameter v
by rescaling position with respect to the characteristic width /4:

(A + 1) cos(flo + ¢)* +
kain

Y(t) = u(lypt), where [y = \/ |Ab], (12)

with 6 + ¢ is the angle between the interlayer translation direction Rg3Ab and the domain wall
normal (6 = 0 for Fig[5h, 6y = 27/3 for Fig [5b, and 6y = 4/37 for Fig[5t), and the normalized
Ginzburg-Landau-type potential:




From the Euler-Lagrange equation associated with the minimization problem , we obtain
the non-dimensionalized, one-dimensional relaxation boundary value problem with the angle-
independent order parameter profile ¢ interpolating between the two minima +1 of the double
well potential U (1)):

¢// — U ( b),

P(t) — +1 as t — +oo. (13)

The minimization problem with double well profile as well as the associated Euler-
Lagrange equation are classical examples exhibiting topological soliton or kink solutions,
with typical examples being the Allen-Cahn (or quartic) or sine-Gordon equations for which an
analytic formula for the solution is available. Under mild regularity conditions on the GSFE
functional ®, we have the following classical result (see e.g. [12], Prop. 2.1):

Proposition 3.1. Assume U(v) is even, twice continuously differentiable, with global minimum
U(*1l) =0,U >0 for =1 < <1 and U"(£1) = 1. Then, there exists a unique profile ¥ (t)
solution of such that ¥ (0) = 0. In addition, we have the asymptotic estimates with k,C > 0:

[(t) + 1 — re!| < Ce?, [(t) — 1+ ke | < Ce Vt e R.

Hence, the relaxation model predicts the formation of an exponentially localized domain wall
with the profile u(y) = ¥ (y/ly), such that the characteristic width Ay is smallest for a shear

boundary (interlayer translation R,Ab parallel to the domain wall) with I| = /55| Ab],

2kmin
and largest for a tensile boundary (interlayer translation orthogonal to the domain wall) with
I = é\kﬁHHAbH This behavior matches experimental observation

4 Four types of moiré lattices

When stacking two layers of the same material on top of each other, a large-scale moiré pattern
may emerge due to a small rotation or defor-
mation of one or both layers. In this section,
we present the “pure” cases of such global pat-
terns: first, the well-studied twisted bilayer
case; next, isotropic strain, pure shear, and
simple shear. We observe from experimen-
tal images, Figure [1) and Figure [7] that each
of these cases can exist in a non-uniformly
stacked bilayer structure and the results in
this section on the orientation of the moiré
patterns can guide the interpretation of the
local stacking.

4.1 Twist

The layers are respectively twisted by an angle
0: Figure 7: Experimental Dark Field Image of a
MoSey/WSey heterostructure exhibiting a va-
A1 = R_gpA, Az = R gpA. riety of moiré patterns due to a non-uniform
strain field.

'Note that in the GSFE profile across the domain wall is approximated by the sine-Gordon potential
D(Au) = %(1 —cos(2mAuw)) for 0 < Au < 1 allowing for an explicit solution, and a different normalization was
used with & = ®[0] — ®min the saddle point energy, resulting in a slightly different expression for the thickness

of the domain wall.
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Figure 8: Moiré patterns obtained by applying a small uniform strain to two hexagonal layers.

This case has been extensively studied both experimentally as well as theoretically @@
The moiré pattern in this case is a triangular lattice with fundamental matrix

1

A= 2sin(6/2)

JA where J=R_, ;= [_01 (1]] ,

i.e., it is rotated by —m/2 from the reference lattice, and scaled inversely proportionally to the
twist angle as seen on Figure [8a] We can similarly calculate that

b . Fpm— Ty, b . Ppm— T,
2 x o 2sin(0/2)J Ry 9%, U ) x s 2 sin(6/2)J R_g/9X.

By symmetry of the unrelaxed twisted bilayer structure, there exists a single GSFE func-
tional ®g(x) := ®1(b12(x)) = ®2(ba—1(x)) where @y : I'yy — R. We can then derive the local
interlayer energies with relative displacements v(x) to be

‘I)l(bl_,Q (X) + V(X)) + <I)2(b2_,1(x) — V(X))
= Pp(x — (2 sin(0/2))_1JR_9/2v) + Pp(x — (2 sin(9/2))_1JRg/2v)

and the total interlayer energy to be

Eimter|V] = % /F Do (x — (2sin(6/2)) " TR_gav) + Bo(x — (2sin(6/2)) "I Rypv) dx.  (14)

10



Following [7], we can perform an asymptotic study by introducing a new angle-independent
reference cell 'y such that

B 1
~ 2sin(0/2)

RO = A()Zz,

(6
wm() Ty := R?/Ry,

Iy, where { with Ap := JA. (15)

We can then obtain by the scaling X = 2sin(6/2)x and ¥((X) = ®((2sin(0/2))71R) = Pp(x)
the relaxation problem recast as a problem on the fixed reference cell I'g:

Minimize 800 [u] = 2gi?ltm [11] + gienter [211]7 (16)
where

0 A2

Enmalu] == | S (div u)® + pe(u) : e(u),
Io 2
1 1

0 . > ~ ~

Einter[ V] 1= 15n2(0)2) /FO 3 (Wo(R — JRyjav) + Wo(R — JR_g)v)) dR.

This explicit rescaling allows us to state the following result, improving on previous results in 7]
by a simple variational argument:

Theorem 4.1. Assume that the functional Vg is twice continuously differentiable. Then for
any angle 8 which is not an integer multiple of m, there exists periodic minimizers u* to the
relaxation problem in the Sobolev space Wol’Q(Fo) ={ue Wol’Z(FQ) | fFo u(X)dx = 0},
which satisfy

I ! /[w ) GldR)
1’2\28111(9/2) MC}l ry o(X min |&X )

where C}l is a fully identifiable constant depending on the lattice basis A only.

This new estimate shows in particular that the L?-norm of the gradient on the moiré unit
cell scales at most inversely linearly with the twist angle, i.e., linearly with the width of the
moiré domains, a result consistent with the formation of one-dimensional domain walls with a
fixed width around triangular domains at very small twist angles, as observed in simulations
(see Figure[9) and experiments [17].

Proof. As noted in Remark 4.5 and Theorem 4.10 in [7], there exists global minimizers u* in
VVO1 ’Q(Fo) to problem which solve the associated Euler-Lagrange equation and satisfy the

following bound:
L [V¥e

pCY 4sin%(6/2)’

where C' is a constant such that the following Korn-type inequality is satisfied for all functions
ue Wy*(To):

lu*[12 <

/ AV -u)? + 2pe(u) : e(u)dR > pClhul? .
o

On the other hand, we note that the energy bound

1 ~
0

directly implies

pChjlu*[3 5 < / AV - u*)? + 2pe(u*) : e(u*)dx = EF[u*] — & e [2u*]
o
1

S —5= Vo (X) — Umin |dX.
4 gin? /2 /Fo[ 0(%) Jax

11
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to calculate displacements
, using an exagerated misfit

)

Fig. and relaxed (Fig.

R

(

(¢) Schematic description of domain formation in
twisted bilayer structures

3.1°) with misfit energy amplified by a factor of 100.
12

Relaxed configuration

)

b

(

Figure 9: Twist moiré (0
AB and BA type, minimizing the local interlayer stacking fault energy, with the dominant

deformation inside the domains being a local counter-twist of each layer.
nature as maxima of the GSFE are pinned and act as topological defects , and where

interlayer translation (Burgers vector) across the boundary is parallel to the domain wall
an additional twist can be observed, dramatically reducing the area of the node.

itself, with three possible orientations, experimentally distinguishable (see Figure [1).
— The domain walls intersect at nodes of AA type (see e.g. Figure , which due to their

— Large triangular domains form where the two layers are in quasi-registry of alternating
— These domains are separated by narrow domain walls of shear type, meaning that the

To visualize the nature of the relaxed pattern in the case of twisted bilayers with a hexagonal
energy for illustration purposes. Resulting features are summarized in Figure

atomic moiré patterns, computed using the methods of Section

lattice (such as graphene or other TMDs), we present unrelaxed
u1, uy and displacing the atoms of layer i = 1,2 as R — R + u;(
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(b) Order parameter v plotted across an AB-
BA domain wall for various angles. At 0.8° plot is
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(a) Relaxed GSFE over various twist (c) Relaxed GSFE with angle of 0.2° (top) and 0.1°

angiles (from Ehe top down: 0.8°, 0.4%, (bottom) plotted across the same region and a con-
0.2°, and 0.1°) scaled and recentered sistent scale.

to show the moiré scale (left).

Figure 10: Numerical results for twisted bilayer graphene plotted in real space.
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We further present in Figure a numerical study of the moiré pattern using realistic
parameters for twisted bilayer graphene as the twist angle decreases from .8° to .1° (see Section
for a description of the discretization approach and parameters). In particular, we note that
the domain wall structure, pictured by plotting the order parameter across one of the AB-BA
boundaries, converges at angles below .5° to the universal shape and angle-independent width
predicted from the analysis in Section

4.2 Isotropic Strain (Dilation)

Consider now the case where the layers are respectively isotropically contracted and dilated.
The deformed lattices and moiré are given by the fundamental matrices:

1—(g/2)?
Al =(1—¢€/2)A, Ay = (1+¢/2)A, such that Ay = #A.
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(b) Relaxed configuration (¢) Schematic description of domain formation in

dilated bilayer structures

Figure 11: Isotropic strain moiré (¢ = 6%) with misfit energy amplified by a factor of 100.
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The resulting moiré lattice is triangular and aligned with the underlying reference lattice, and
scales inversely proportionally to the dilation parameter, e. Mathematical analysis is identical to
the twisted case above (Theorem, but the resulting pattern has some differences, as seen on
Figure In addition to the orientation difference with respect to crystallographic directions
(which can be experimentally detected by analyzing the diffraction pattern), the domain walls
are tensile boundaries, and thus thicker than in twisted structures as given in the theoretical

estimate .

4.3 Pure Shear

When the layers are subject to trace-free tensile strain, or pure shear:
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(b) Relaxed configuration (c) Schematic description of domain formation in

the purely sheared bilayer structures

Figure 12: Purely sheared moiré (¢ = 6%) with misfit energy amplified by a factor of 100.
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(a) Relaxed GSFE over various pure
shear values (from the top down:
0.0125 0.00625 0.003125 0.0015625)
scaled and recentered to show the
moiré scale (left).
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(b) Order parameter 1) plotted across an AB-BA
domain wall for various pure shear values. At 0.0125
plot is cut off beyond the AB and BA points.

2728.5
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(c) Relaxed GSFE with pure shear value of 0.003125
(top) and 0.0015625 (bottom) plotted across the
same region and a consistent scale.

Figure 13: Numerical results for purely sheared bilayer graphene plotted in real space.
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the moiré orientation is obtained by mirror symmetry along the horizontal axis from the un-
derlying crystal lattices, and scales inversely proportionally to the dilation parameter e.

A defining feature of the relaxation in the pure shear case is that domain walls of a different
nature occur throughout the pattern: as seen on Figure vertically oriented walls are tensile
boundaries while diagonal ones are shear boundaries. The analysis from Section[3|then indicates
that the vertical walls will be thicker than the diagonal ones, matching numerical predictions
presented on Figure

Remark 4.2. Another important observation is that the AA nodes in pure shear patterns
are topologically different from the vertices in twisted or dilated cases, forming so-called anti-
vortices (10]: indeed, when coloring the domain walls as blue (B), green (G) or red (R) according
to the three possible orientations of the interlayer translation across the corresponding boundary
(see Figures |1 and @, a clockwise loop around vortices encounters domain walls in the order

RGBRGB (Fig. @ and while a clockwise loop around anti-vortices has the order RBGRBG

(Fig.[12).

4.4 Simple Shear

Finally, consider the case where the layers are subject to horizontal, uniaxial simple shear strain:

1 —¢/2
0 1

A Ay= |t 2|4

A1 = 0 1

This is a particular case where A7' — Ay is not invertible, indicating that the moiré lattice
does not have full rank.

Indeed, as pictured on Figure[8d|we observe a one-dimensional moiré in the vertical direction:
generalizing

0 O
S RS I
AM (Al AQ ) 1/5 0 A
where (A7! — A7 1T is the Moore-Penrose inverse of (A7' — A51).
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Figure 14: Relaxation in the simply sheared case (¢ = 10%) with misfit energy amplified by a
factor of 100.
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We present on Figure [14] the resulting relaxed pattern. Mathematical analysis in this case is
similar to that of the one-dimensional domain walls in Section|3; depending on the initial config-
uration, a series of horizontal domains alternating between AB and BA registry configurations
is created, separated by narrow shear-type boundaries.

Patterns of parallel, elongated domains mirroring are often observed in experimental
images in regions where shear dominates the local strain: see Figures (1| and

5 Numerical Method and Study

To demonstrate the above model, we numerically simulate the relaxation of bilayer graphene
under each of the four transformations. Graphene has a triangular multilattice structure with
basis:

V3 A3
A = /3ag 2, 2 where ap = 1.42 nm.
2 2

The interlayer GSFE potentials ®; : I's — R and ®5 : I'; — R are assumed to have the form [7]:

P1(vy) = <75(27TA2_172)7 Do(vy) = ¢(27TA1_1’71)7

where ¢ is defined periodically on [0, 27)?:

¢ ([ZD := ¢ + c1[cos(v) + cos(w) + cos(v + w)]

+ ca[cos(v + 2w) + cos(v — w) + cos(2v + w)]
+ c3[cos(2v) + cos(2w) + cos(2v + 2w)].

The Lamé parameters A, p of the graphene layers and the GSFE coeflicients ¢y_3 obtained from
vdW-DFT calculations [7] are summed up in Table

A 7 Co 1 C2 c3
37,950 | 47,352 || 7.076 | 4.064 | -0.374 | -0.095

Table 1: Elastic moduli and GSFE coefficients for graphene bilayers in units of meV /unit cell
area (with cg slightly increased to make the minimum of the GSFE to be 0).

We directly discretize the minimization problem to support more general bilayers even
though we have shown that for layers with identical elastic moduli, u; = —us. So, let us define
a uniform N x N grid on the torus [0,1)? and wave numbers for its plane waves:

1 N -1

2
Gn = {O,N, — } and G¥ :={0,1,--- , N —1}%. (17)

We want to compute the unknown displacements uf and uj’ for the uniform sampling of the
moiré unit cell AxI"»q. We interpolate these nodal values by the Fourier series

ud (x) = Z ﬁlftveﬂ”k'Axfllx, u) (x) = Z ﬁgf{\leizﬂk'Aﬁx, x € '\, (18)
keG¥ keG¥
where
N - iy 1 _ionk
g = N2 D, u (Ang)e e, =37 2 W (Auge P kegy, (19)
&eln &egn

18



to obtain extensions of u} and u}’ from AxGy to continuous periodic functions on I'x4. The
elastic energy can then be computed exactly and the misfit energy can be approximated by
uniform quadrature:

Sner( ) ~ i ST |6 (2 (€4 43" (ul (Anid) — ud (Aue6)))
&eln

+ ¢ (2m (€ + AT (ulY (Amé) —ud (Am8)))) |-

The gradients for these energies can also be explicitly calculated. We implemented this

method in the Julia language with the limited-memory BFGS quasi-Newton algorithm from the
Optim.jl library for the numerical minimization of the total energy.
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