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ABSTRACT

Inland lakes have been increasingly impacted by climate change and human activities, leading to unprecedented en-
vironmental consequences. Among many rapidly changing lakes is the Tonlé Sap Lake (TSL) in Cambodia—Southeast
Asia's largest inland lake—which is under growing threats from altered flows and inundation dynamics due to
compounding effects of climate change and dam construction in the Mekong River basin (MRB). While previous stud-
ies have examined the potential causes of recent changes in open water areas, a mechanistic quantification of the lake's
shifting hydrologic balance and inundation dynamics due to natural climate variability and dam operations is lacking.
Here, using a hydrological-hydrodynamic modeling system that includes the major dams in the MRB, we show that
while climate variability has been a key driver of inter-decadal variabilities in the lake's water balance, the operation
of Mekong dams has exerted a growing influence—especially after 2010—on the Mekong flood pulse, Tonlé Sap Riv-
er's flow reversal, and the TSL's inundation dynamics. The dam-induced dampening of the Mekong's peak discharge
increased from 1-2% during 1979-2009 to ~7% in the 2010s, causing comparable alterations in the peak of inflow
from the Mekong into TSL. More crucially, during the 2010s, the dams caused a reduction in annual inflow volume
into TSL by 10-25% and shortened the annual inundation duration by up to 15 days in the lake's periphery. Further,
seasonally inundated areas decreased (increased) most substantially by ~245 km? or ~3% (~270 km? or ~6%) in
August (April) during the 2010s. These results demonstrate that Mekong dams have already caused substantial alter-
ations in the hydrologic balance and inundation dynamics of the TSL. Our findings offer critical insights relevant for
improved transboundary water management and decision making in light of growing concerns about the adverse im-
pacts of large dams in the MRB.
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1. Introduction

Inland lakes around the world have been increasingly impacted by
climate change and human activities, leading to unprecedented scale
of adverse environmental impacts. Some examples of the disastrous con-
sequences from water management activities in the past century include
the desiccation of the Aral Sea (Micklin, 2016, 2007; Pokhrel et al.,
2017), Lake Urmia (AghaKouchak et al., 2021; Chaudhari et al.,
2018), Poyang Lake (Liu et al., 2016) and Lake Chad (Coe and Foley,
2001; Gao et al., 2011) among others. In Southeast Asia, the Tonlé Sap
Lake (TSL)—the region's largest inland lake that supports one of the
world's biggest inland fisheries is increasingly affected by the changes
in the flood pulse of the Mekong River basin (MRB) due to upstream
dam construction (Arias et al., 2014b; Chen et al., 2021; Kummu and
Sarkkula, 2008; Shin et al., 2020). While these dams generate capital
and expand productive capacity via power generation, agricultural
water management, and flood mitigation, there are growing concerns
that the continued dam-induced alteration of the MRB hydrology, po-
tentially exacerbated by climate change and variability, is causing fun-
damental shifts in the water balance and inundation dynamics of TSL
(Arias et al., 2014a; Frappart et al., 2018; Pokhrel et al., 2018b;
Vastil4 et al., 2010; Yu et al., 2019; Yun et al., 2020).

Historically, water levels at Kompong Luong, located at the edge of the
TSL permanent water body, has varied between ~1.2 m to 10.4 m (Arias
et al., 2012; Kummu and Sarkkula, 2008; Pokhrel et al., 2018b). The aver-
age volume of water stored in the TSL and its floodplain during these fluc-
tuations ranges from ~1.6 km® to 59.7 km? (Siev et al., 2016). The TSL has
a vast surface area that extends from ~2500 km? in the dry season to
~15,000 km? in the wet season (Arias et al., 2012), driven primarily by
the strong seasonality in the Mekong River flow, known as the Mekong
flood pulse (Arias et al., 2013; Junk, 1999; Pokhrel et al., 2018b). This dra-
matic seasonal fluctuation of the inundated extent around the lake is the
foundation of the area's rich biodiversity and productive fishery and agri-
cultural systems. The lake's seasonal inundation dynamics provide crucial
areas for flood-recession farming (Cramb, 2020; Fox and Ledgerwood,
1999), diverse vegetation growth (Arias et al., 2013), and spawning and
feeding locations for migratory fish (Barlow et al., 2008; Chua et al.,
2021), among many other important societal and ecosystem services. The
TSL fishery accounts for 8-12% of Cambodia's gross domestic product
and 80% of animal protein consumed in the country (Baran and Gallego,
2015; Hortle et al., 2004; Teh et al., 2019). Thus, the TSL, with its unique
hydrologic dynamics, has been a critical lifeline upon which local liveli-
hoods and natural ecosystems have relied for generations.

The TSL has a watershed that drains into the lake, but a substantial por-
tion of the lake's inflow is supplied by the Tonlé Sap River (TSR), the only
channel that connects the lake to the Mekong mainstream. In terms of an-
nual water balance, ~54% of the lake's inflow comes from the Mekong
River through the TSR, with the remaining 34% and 12% contributed by
the lake's watershed and precipitation over the lake and floodplains, respec-
tively (Arias et al., 2014b; Kummu et al., 2013; Kummu and Sarkkula,
2008). Annually, more than 80% of rainfall in the MRB occurs during the
summer monsoon season (Wen et al., 2021) resulting in a substantial in-
crease in the Mekong mainstream flow. During this wet period, which typ-
ically begins between mid-May (Piman et al., 2013) and late-June (Arias
et al., 2014b; Kummu and Sarkkula, 2008), water flows into the TSL from
the Mekong through the TSR. As seasonal rains subside in the dry season
that typically begins between October (Arias et al., 2014a) and December
(Piman et al., 2013), the TSR flow reverses, draining the lake's water back
into the mainstream Mekong, supplying additional flow to the downstream
areas, specifically the Mekong Delta in Vietnam. This annual flow reversal
—the primary driver of the TSL's unique hydrodynamics—has historically
been modulated by the Mekong flood pulse (Pokhrel et al., 2018b). How-
ever, the intricate relationship between flow in the Mekong mainstream
and the TSR flow reversal has begun to change in recent times. In particular,
there have been shifts in the timing, duration, and magnitude of the flow
reversal due to multiple factors including natural hydrological variability,
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climate change, and human alteration of the Mekong flood pulse (Arias
et al., 2012; Kummu and Sarkkula, 2008; Li et al., 2017).

Because over half of the TSL water volume originates from the Mekong
River, the alterations in the mainstream Mekong's hydrological characteris-
tics caused by upstream dams can have direct impacts on the lake's water
balance and inundation dynamics. Compared to other large global river ba-
sins, the MRB remained relatively undammed throughout the 20th century
(Grumbine and Xu, 2011). However, since 2010, multiple mega-dams have
been built in the Mekong mainstream including the Xiaowan (built in 2010)
and Nuozhadu (built in 2014) dams in the Upper Mekong region (known as
Lancang River in China). The construction of these mega-dams combined
with other projects on the Mekong tributaries has doubled the basin-wide
reservoir storage capacity compared to previous decades (Shin et al.,
2020). In light of the growing energy demands driven by rapidly develop-
ing regional economies (Phoumin et al., 2021), combined with added
flood and drought mitigation benefits (Fung et al., 2019; Wang et al.,
2017), rich untapped hydropower potential and its perceived readiness
(Schmitt et al., 2018), affordability (Intralawan et al., 2019), and the intent
to promote renewable energy (Khan et al., 2018; Zhang et al., 2021), hydro-
power development in the MRB involving large dams is likely to continue in
the foreseeable future.

As dam construction accelerated in the MRB in recent times, the region
has also faced increased occurrence of hydrologic extremes such as severe
floods (Delgado et al., 2010) and droughts (Lu and Chua, 2021;
Thilakarathne and Sridhar, 2017), likely due to the intensified hydrological
cycle under climate change (Wang et al., 2020; Wen et al., 2021; Yun et al.,
2020). These extreme events, combined with the hydrological alterations
inherent to dam operation, are altering the natural rhythm of the Mekong
flood pulse (Binh et al., 2020b; Kummu and Sarkkula, 2008; Pokhrel
et al., 2018b) and, consequently, the TSR flow reversal (Arias et al., 2013;
Pokhrel et al., 2018b). The impacts have begun to manifest as alterations
in the inundation dynamics of the Cambodian floodplains, adversely
impacting agriculture and fishery yield (Halls and Hortle, 2021; Keskinen
etal., 2007; Teh et al., 2019). In the long run, the impacts could potentially
destabilize the regional economy and undermine food security (Burbano
et al., 2020; Kontgis et al., 2019; Orr et al., 2012; Pokhrel et al., 2018b;
Yoshida et al., 2020; Ziv et al., 2012).

With regard to the recent acceleration in dam construction across the
MRB, the body of scientific literature has grown substantially in the past de-
cade, with many studies focusing on the potential impacts of existing and
planned dams as reviewed in Pokhrel, Burbano, et al. (2018) and
Soukhaphon et al. (2021). These studies have provided important insights
regarding the changes in hydrological and ecological systems in the MRB
and TSL. Similarly, many studies have linked the recent hydrological shifts
in the TSL to not only dam operations (Arias et al., 2014b, 2013; Bussi et al.,
2021; Piman et al., 2013; Wang et al., 2020), but also multiple other factors
including irrigation expansion (Arias et al., 2012; Kummu and Sarkkula,
2008), climate variability (Chen et al., 2021; Frappart et al., 2018, 2006;
Guan and Zheng, 2021), and excessive sand mining (NG and Park, 2021)
by analyzing the in-situ observations and remote sensing products using
various empirical and statistical techniques.

However, there are major gaps and limitations in these past studies.
More specifically, since most previous studies have used observed data—ei-
ther ground- or satellite-based—there is a lack of explicit attribution of the
observed changes to climate variability and dams. The process-based nu-
merical models used in the present study can overcome these limitations
by enabling factorial simulations, for example, with and without dams. Fur-
ther, many studies have focused on a short period within the last two de-
cades (Ji et al., 2018; Lin and Qi, 2017) from 2000s to 2010s, leaving
opportunities for a more temporally complete understanding of the effects
of climate variability and dams. Some recent studies have attempted to ad-
dress the limitation by using numerical models to examine the changes in
the hydrology of the MRB (Binh et al., 2020b; Lee et al., 2020; Pokhrel
et al., 2018b; Yun et al., 2021) between the 1980s and the 2010s as well
as predicting future changes, but none have directly attributed the changes
in flows and inundation dynamics of the TSL to climate variability and dam
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operation. Given the acceleration in dam construction in the past decade
and findings of adverse impacts on the TSL hydrodynamics, it is imperative
that we develop a more quantitative understanding of the lake's response to
climatic and human drivers.

The goal of this study is to fill the aforementioned research gaps by
using multi-decadal hydrological simulations that explicitly account for
the impacts of dams on the Mekong flood pulse and hence on the hydro-
logic balance of the TSL. The central scientific question that we ask is:
How have the dams in the mainstream Mekong altered the hydrologic bal-
ance and inundation dynamics of the TSL? The specific research objectives
are to: (1) examine the changes in the mainstream Mekong flood pulse and
the TSR flow reversal, (2) quantify the alterations in the water balance of
the TSL, and (3) investigate the changes in flood occurrences in and around
the TSL. In all of the analyses, the changes in hydrology and inundation dy-
namics are first examined under natural conditions. Then, the changes
caused by dams are explicitly quantified.

2. Data and methods
2.1. Data

Observed water level and river discharge data at the three selected
gauging stations in the mainstream Mekong, one station in the TSR and
one station near the TSL obtained from the Mekong River Commission
(MRC) are used for model validation (see Section 3.1). These are the sta-
tions within the study domain that include relatively complete observa-
tional data during the 1979-2016 period.

Attributes of dams and reservoirs including dam location, dam height,
reservoir capacity, project purpose (e.g., irrigation and power generation),
and commissioned year required for the reservoir operation scheme (see
Section 2.3) are obtained from the Research Program on Water, Land,
and Ecosystem (WLE; https://wle-mekong.cgiar.org/). Specifically, we
use 86 dams (Fig. 1) selected from this database by Shin et al. (2020)
based on the following criteria: (1) dam height is at least 15 m (=15 m),
(2) storage capacity is over 1 million cubic meters (Mm®), and (3) energy
generation capacity is over 100 Mega Watts (MW). Additionally, only
dams that are operational as of 2016 are considered; 2016 is the end of
our simulation period determined by the availability of forcing data (see
Section 2.2).

Other relevant information required in constraining the reservoir oper-
ation scheme, particularly the reservoir operation rules, and downstream
demands met by a given reservoir, is not publicly available for most reser-
voirs across the MRB; limited information was accessible only for a handful
of reservoirs. Thus, water demand for irrigation is taken from simulated re-
sults of the Human Impact and Ground Water Modules in MATSIRO
(HiGW-MAT) model, following Shin et al. (2019). These irrigation results
are globally validated using available statistics (Pokhrel et al., 2015,
2012a). We generate turbine design flow and general reservoir operation
rules using an optimization approach (Shin et al., 2020, 2019) considering
the common practice of maximizing power production by storing water
during low-demand (i.e., wet) periods and releasing it during high-
demand (i.e., dry) periods (see Section 2.3). This is a commonly used ap-
proach in the MRB given the lack of open data on hydropower operation
(Dang et al., 2020).

2.2. Model description and simulation settings

The modeling framework used in this study comprises of two models:
CaMa-Flood-Dam (v3.94) (Shin et al.,, 2020) that simulates river-
floodplain-reservoir hydrodynamics and the global hydrological model
HiGW-MAT (Pokhrel et al., 2017, 2015) that simulates runoff required as
input in CaMa-Flood-Dam. Such a combination where CaMa-Flood is
driven by runoff from a global hydrological model has been used to simu-
late river-floodplain-reservoir systems over many global regions including
the MRB (Pokhrel et al., 2018b; Shin et al., 2021, 2020; Wang et al.,
2021; Yamazaki et al., 2014).
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Fig. 1. A spatial map of the MRB depicting the location of the 86 selected dams
(color-coded circles) that are included in the model. The color-coding and size of
the circles indicate the decade of commissioning and maximum storage capacity,
respectively. The dams located in the Mekong mainstream (as of 2016) are
named. The background shows the river network (blue lines) with scaled
thickness based on simulated long-term mean river discharge from 1979 to
2016 at the 3-arcmin (~5 km) spatial resolution. The lower-left inset showcases
the Cambodia floodplain, with the TSL and TSR indicated in magenta and the

boundary of the lake's watershed indicated by the dashed black line.

The CaMa-Flood-Dam is an enhanced version of the Catchment-based
Macro-scale Flood-plain (CaMa-Flood) model version 3.94 (Yamazaki
et al., 2014, 2011) that includes a reservoir operation scheme (Shin et al.,
2019). CaMa-Flood is a global hydrodynamic model that solves shallow
water equations of open channel flow, explicitly accounting for backwater
effects using the local inertial approximation (Yamazaki et al., 2013) to
compute river-floodplain hydrodynamic properties (i.e., river discharge,
water level, and inundated areas). Considering computational require-
ments, the spatial resolution is set at 3-arcmin (~5 km), and the simulated
inundated area is downscaled to a higher resolution of 3-arcsec
(~90 m) using a 90 m digital elevation model (DEM). The high resolution
DEM used here is the MERIT (Multi-Error-Removed Improved-Terrain;
Yamazaki et al., 2017) DEM. Water levels and inundated areas are diag-
nosed from water storage in each unit catchment, river discharge from
each unit catchment is calculated using shallow water equations, and
water storage in each unit catchment is updated by a mass conservation
equation considering inflow from the upstream unit catchment(s), outflow
to the down-stream unit catchment and local runoff. Further details regard-
ing model physics in CaMa-Flood, parameterization methods, and sensitiv-
ities to input parameters can be found in the previous literature on model
description (Yamazaki et al., 2011, 2013) and application in the MRB
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(Pokhrel et al., 2018b; Yamazaki et al., 2014). Details on the reservoir oper-
ation scheme are provided in (Shin et al., 2020, 2019); for completeness, a
brief description of the scheme is presented in Section 2.3.

CaMa-Flood is driven by runoff simulated using HIGW-MAT (Pokhrel
et al., 2015), a global hydrological model based on the MATSIRO (Takata
et al., 2003) land surface model that simulates both the natural water
cycle and human activities from canopy to bedrock including evapotranspi-
ration, infiltration, irrigation, flow regulation, and groundwater pumping on
a full physical basis. Because reservoirs are simulated within CaMa-Flood,
the runoff based on natural simulation—with the reservoir scheme in
HiGW-MAT turned off—is used. The spatial resolution of HIGW-MAT is
set to ~50 x ~50 km and the meteorological forcing data are taken from
the WATCH Forcing Data using the ERA-Interim (WFDEI) database
(Weedon et al., 2018). A complete description of HIGW-MAT can be found
in our previous studies (Pokhrel et al., 2015, 2012b; Takata et al., 2003).

To quantify the historical impact of reservoir operation on the hydrody-
namics of the MRB and TSL, two simulations are conducted: (1) natural
simulation without considering dams (NAT), and (2) regulated simulation
by implementing dams based on their commissioned year (DAM). All sim-
ulations are conducted for the entire MRB to account for the impacts of
dams across the basin, but results are analyzed only for a region around
the TSL (Fig. 1).

2.3. Reservoir operation scheme

The reservoir operation scheme is based on Shin et al. (2020) and in-
cludes the same number of dams (i.e., 86; Fig. 1). Dam categorization is
based on the reservoir's purpose as noted in the WLE database (i.e., 22 irri-
gation, 62 hydropower, and 2 multipurpose dams). While water release
from irrigation dams is simulated to meet downstream water demands,
the operation of hydropower and multipurpose dams is set to maximize
power generation. Detailed information on the scheme and its implementa-
tion into CaMa-Flood model can be found in Shin et al. (2019, 2020); for
completeness, a brief description of reservoir release calculations is pro-
vided in the following.

For irrigation dams, when reservoir storage meets the normal operating
condition between the minimum and maximum capacity, a targeted
monthly release 1y, [L3/T1, is applied, which is calculated based on
demand-controlled release ratio R [ — ], release coefficient ks [ — 1, provi-
sional monthly release r,,’ [L3/T], and long-term monthly inflow i, [L3/
T] as follows:

P =R kus -7 4+ (1=R) - iy,

where the interannual variability of storage is considered in calculating k;;
[ -1 while the water demand variability is reflected in the provisional
monthly release r;,,” [L3/T]. When the reservoir storage increases to its max-
imum capacity, the scheme provisions spillway release in addition to
targeted monthly release r;, [L3/T], and when storage drops to the mini-
mum (set at 10% of maximum storage capacity) reservoir release is set to
zero.

For hydropower and multipurpose dams, the scheme optimizes power
benefits F [$] in determining reservoir release as:

T

F= ;()P(t) : W(t) “At=P-n-y- min (Q(t)! Qrurbine ) ) H(t) - At

where P(t) [$/Watts-hour] is electricity price, W(t) [Watts] is generated en-
ergy over the time of At [hr], y [—1] is efficiency, y [kg/m®] is specific
weight of water, Q(t) [m®/s] is reservoir release, Qupine [M>/s] is turbine
design flow, and H(t) [m] is turbine head. Since power pricing requires a
tremendous amount of information on multiple technical and political as-
pects to calculate and predict, here, we consider it to be constant over
time for simplicity. Hence the reservoir release is calculated to maximize
total power generation. From our previous study, the streamflow with a
30% exceedance probability is found to be a reasonable proxy of Quupine
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in the Mekong region (Shin et al., 2020), thus, we utilize this value as it is
also widely adopted in previous hydropower literature (Gernaat et al.,
2017; Hoes et al., 2017; Zhou et al., 2015).

Additional details regarding other factors influencing reservoir release,
specifically those related to storing excess water during low-demand, wet
season and releasing it during high-demand, dry season with cascade oper-
ation optimization can be found in our previous study (Shin et al., 2020).
We note that with any generic operational rules, it is challenging to fully
capture the complex dynamics of real-world reservoir operation. Often-
times, hydropower projects may not run at the designed capacity or
optimized power generation due to reasons such as environmental con-
cerns, power demand fluctuations, maintenance operation, among others.
However, it is difficult to represent such operation uncertainties in the
model, hence are not considered in the current operation scheme.

3. Results
3.1. Model validation

The HiIGW-MAT and CaMa-Flood modeling system has been thoroughly
validated over the MRB in our previous studies (Pokhrel et al., 2018b; Shin
et al., 2020) using observed river discharge and water level data from the
MRC, and satellite-based surface water products from Landsat and
Sentinel-1. For completeness, here, we revisit the evaluation of water levels
and discharge at selected stations both in the mainstream Mekong and the
TSL (Fig. 2). Model performance is indicated by statistical measures includ-
ing the Nash-Sutcliffe coefficient (NSE), Kling-Gupta efficiency (KGE) and
Coefficient of determination (R?). Complete time series validation of simu-
lated river discharge at the three stations on the Lower Mekong mainstream
is also presented in the supplementary information (Fig. S1). High values of
the statistical measures suggest that the long-term variability in water levels
and its seasonal cycle in the main stem as well as around TSL is well
reproduced by the model (Fig. 2b—d). The simulated discharge at the
most upstream station (i.e., Kratie; KT) agrees very well with observations.
However, at Kompong Cham (KC, Fig. 2c) station, river discharge is
underestimated, which is likely due to the challenges in representing chan-
nel bifurcation processes prevalent in that region. Further downstream, at
Phnom Penh Port (PP, Fig. 2d) station, the performance is relatively
good, but the model tends to slightly overestimate river discharge. In
terms of water level, simulated results agree well with observations in the
mainstream Mekong stations (Fig. 2e-g), Kompong Luong (KL, Fig. 2h) in
the TSL and Prek Kdam (PK, Fig. 2i) in the TSR. The water levels in the
mainstream are slightly underestimated, especially during the dry season.
Given the complexity of river-floodplain hydrodynamics and the use of a
large and basin-wide model, we consider these results to be reasonable, es-
pecially to assess the effects of changes in the mainstream hydrology on the
TSL hydrodynamics. Some of the model-observation discrepancies could be
attributed to various factors including uncertainties in forcing data (Kabir
et al., 2022), model parameters (e.g., channel width) and the use of a ge-
neric reservoir operation scheme.

The long-term average of simulated flood depth for the TSL region is
also shown in Fig. 2a but this could not be directly evaluated because ob-
served flood depth data are nonexistent. While there have been recent stud-
ies and tools developed to derive flood depth using remote-sensing
products (Bryant et al., 2021; Cohen et al., 2019; Nguyen et al., 2016),
such derived data have been location-specific and there are no global
datasets or datasets for the MRB that are readily available. Further, such
data could not be used for direct model validation because of the need for
manual correction (Cian et al., 2018; Teng et al., 2017) and inherent uncer-
tainties arising from computational errors and biases, among other com-
mon issues in remote sensing products. Regardless, since the water level
in the model is diagnosed from flood depth, the validation of water level
serves as an indirect evaluation of flood depth. Overall, the accurate simu-
lation of water levels at both the mainstream and lake locations provides
confidence that the model reasonably simulates various flood attributes
around the TSL.
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Fig. 2. Long-term (1979-2016) average of simulated flood depth over the TSL area (a). Comparison of the seasonal cycle of simulated river discharge (b-d) and water levels
(e-g) with observations at Kratie (KT; b and e), Kompong Cham (KC; c and f), and Phnom Penh Port (PP; d and g) stations. Shadings (red, blue, and grey for simulated river
discharge, simulated water level, and observations, respectively) indicate interannual variability presented as the upper and lower 25% quantiles for each month. A complete
time series validation of daily water level at Kompong Luong (KL; h) and Prek Kdam (PK; i) stations are also presented. Nash-Sutcliffe coefficient (NSE), Kling-Gupta efficiency

(KGE) and Coefficient of determination (R?) are indicated for each station.

3.2. Effects of climate variability and dams on river discharge and water level

Table 1 presents a summary of the dam-induced changes in the magni-
tude of river discharge at the selected mainstream Mekong stations and av-
erages for each decade beginning in the 1980s. The following observations
can be made from these results. Evidently, dams have consistently reduced
the peak flow and decreased the low flow at each of these stations, but the
impacts vary across stations, between maximum and minimum flows, and
over decades. Notably, the proportion of reduction in peak flow (~1.4%
to 7.3%) is smaller than the increase in low flow (~8% to 30%) across sta-
tions. Further, our results are in line with previous findings (Binh et al.,
2020b; Shin et al., 2020) that the impacts are highly pronounced during
the 2010s compared to the preceding decades; for example, the dam-
induced impact at both KT and KC stations surged from ~1.4-2.1% (during
1979-2009) to 7.1-7.3% (during the 2010s).

Fig. 3a depicts the decadal average of seasonal water level fluctua-
tion at the KL station (location shown in Fig. 2). The figure reveals
that, even in the NAT simulation, TSL water levels in the wet season dur-
ing the 2000s were higher than the 38-year average, as well as those in
the 1980s and 1990s, by ~0.74 m at the peak level (i.e., mid-October;
Fig. 3a). On the contrary, TSL average water levels during the 2010s
were substantially lower than the long-term average (i.e., by ~0.66
m), meaning that water levels during the 2010s dropped by ~1.4 m
from those in the 2000s. Inflow to the TSR (Fig. 3b) during the wet sea-
son illustrates a similar pattern over the decades. Compared to the long-
term average discharge, the peak outflow at Prek Kdam (PK) station was
higher by ~1270 m3/s in the 2000s (late-October). And from the 2000s
to 2010s, this outflow peak dropped by ~1750 m>/s. Evidently, an early
increase in TSL water level closely follows the early start of TSR inflow
in the 2000s, while the extended period of low water level in the 2010s

Table 1

Difference in maximum, average, and minimum flows at three Mekong mainstream
stations between DAM and NAT simulations. The results shown are averages for
each decade and the entire period of 1979 to 2016. The highest values of reduction
in maximum flow and increase in minimum flow are highlighted in pink and green
colors, respectively.

Station Period Difference in discharge (%)
Max Avg Min
Kratie 1980-1989 -1.8% - +15.6%
1990-1999 —1.4% - +14.1%
2000-2009 —2.1% —0.2% +19.5%
2010-2016 -7.3% -1.5% +31.6%
Long term average —2.8% -0.3% +15.7%
Kompong Cham 1980-1989 -1.5% +0.2% +15.2%
1990-1999 -1.5% —0.1% +13.6%
2000-2009 -1.9% +0.3% +19.2%
2010-2016 =7.1% —0.8% +30.6%
Long term average —2.2% +0.1% +15.7%
Phnom Penh Port 1980-1989 -1.0% +0.2% +8.1%
1990-1999 -1.2% +0.2% +13.2%
2000-2009 -1.4% +0.4% +16.5%
2010-2016 —4.5% —0.6% +14.0%
Long term average -1.8% +0.1% +12.9%
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Fig. 3. Decadal (color-coded lines) and long-term (thick black lines; 1979-2016) average of water levels at the KL station in the TSL (a) and river discharge at the PK station in

the TSR (b). Solid and dashed lines represent the DAM and NAT simulation results,

corresponds to a late onset of inflow (Fig. 3a and b). We note that the pe-
riod between the onset of inflow from the mainstream Mekong into TSL
(mid-June) and outflow from TSL (early-October) is referred to as the
“wet season”, which remains relatively unchanged among different de-
cades (Fig. 3b).

Comparison of lake water levels from the NAT and DAM simulations
(Table S1) for each decade during 1979 to 2016 indicates that the dam-
induced reduction in water levels during the wet season prior to 2010 is rel-
atively small (i.e., ~8 cm or <1%). During the 2010s, the numbers almost
tripled to 23 c¢m (or 2.8%); given high water levels during the wet season
(i.e., ~8 m), the percentage reduction of ~3% is not dramatic but could
constitute a large decline in water volume. Dam-induced changes are
more prominent during the dry season, especially in the 2000s and
2010s, during which water levels increased by 23 cm (13.6%) and 28 cm
(22.1%), respectively. Note that the percentage figures are high for these
dry season changes because those are relative to lower water levels com-
pared to that in the wet season.

The dam-induced changes in TSL water levels are direct consequences
of the altered flow reversal in the TSR driven by the changes in mainstream
Mekong water levels and river discharge. A comparison of the peak of the
two-way flow in the TSR from the DAM and NAT simulations (Table S2)
suggests that dams substantially dampened these peaks. In line with results
presented earlier, these TSR peak flow alterations are highly pronounced
during the 2010s with a reduction in the peak of inflow to and outflow
from the TSL by ~9% and ~6%, respectively. These are an order of magni-
tude higher than both the long-term average and the decadal averages for
the preceding decades (Table S2).

3.3. Effects of dams on the TSL water balance

Even though the effects of dams on the mainstream Mekong flow are
rather small and have increased only in recent times (Section 3.2;

respectively.

Table 1), the impacts on TSL water balance are relatively substantial
(Fig. 4). In general, and as also discernible in Fig. 3b, the effects of the
dam operations manifest as a substantial reduction in both inflow into
and outflow from the lake (Fig. 4). While some inter-annual variability in
this impact is evident, there is a clear tendency of increased impacts over
time with a large reduction in both inflow and outflow volume during the
2010s; the reduction in the inflow of ~25% in 2015 is the highest. Note
that both the changes in inflow and outflow volumes for a given year are
not similar because the reduction in inflow into the lake can alter other hy-
drological processes within the lake, leading to an altered outflow dynamic.
Further, the percentage changes are higher for inflows because the baseline
values (i.e., inflow and outflow volumes under natural conditions) are dif-
ferent — outflow includes the TSL watershed contribution in addition to
the TSR inflow.

3.4. Effects of climate variability and dams on inundation dynamics

The decadal shift in flood occurrence (Fig. 5) detected in the NAT simu-
lation results indicates that there is no monotonous decline in flood occur-
rence over time because of strong inter-annual and inter-decadal
variability. In comparison to the long-term average, the declines in flood oc-
currence across the lake were small (~2.5%) during both the 1980s and the
1990s (Fig. 5b and c). A notable increase in flood occurrence throughout the
entire seasonally flooded portion of the lake can be observed in the 2000s
(Fig. 5d), which ranges from 5 to 10%. This increase is equivalent to a longer
inundated duration from 15 to 40 days. In contrast, the following decade
(i.e., the 2010s) witnessed a notable drop in flood occurrence compared to
the long-term average (Fig. 5e), especially in the outer periphery of the
lake, ranging from 7.5 to more than 10% (i.e., 27 to more than 40 days).

Fig. 6 depicts the dam-induced changes in the decadal average of flood
occurrence from the 1980s to the 2010s. In terms of the broad spatial pat-
terns of change, flood occurrence increases around the main lake body as



H. Dang et al.

Science of the Total Environment 831 (2022) 154833

(%) @bejuadiad

Outflow (km?3)

Fig. 4. Difference in annual inflow (a) and outflow (b) volume (bars; left y-axis) between DAM and NAT simulations at the Prek Kdam station in the TSR. Grey lines (right y-

axis) show the difference in percentage figures relative to the NAT simulation.

well as TSR and along mainstream channels and distributaries in the down-
stream region but decreases in the outer periphery of the lake. Relatively,
the alterations in flood occurrence caused by dams are smaller than the
temporal shifts under natural conditions (Fig. 5). However, as opposed to
the large inter-decadal variability in the temporal shifts of the natural
flood occurrence, there is a consistent increase in the magnitude of changes
in flood occurrence caused by dams over time. Notably, the impacts are
substantial during the 2010s (Fig. 6d) and constitute a large increase
from the prior decades. The ~4% change in flood occurrence (~15 days re-
duction in inundation period) in the outer periphery of the lake during the
2010s on a decadal-average basis suggests a clear shift in inundation dy-
namics of the TSL as a result of mainstream Mekong flow regulation.

The dam-induced changes in flood occurrence relate to a substantial al-
teration in the Lake's surface area (Fig. 7). Consistent with our results on the
shift in water levels and inundation dynamics (Figs. 3 and 6), the lake's sur-
face area has increased (decreased) during the dry (wet) season as a result
of the Mekong flow alteration by dams. A larger impact of dams is also ev-
ident through the months (except for January) in the 2010s compared to
the preceding decades. In the 2010s, the dam-induced increment (deduc-
tion) of inundated area of the TSL is ~2 times higher during February—
July and ~3-5 times during August-December than in the prior decades
(i.e., 1980s and 1990s). An increase in inundated areas by ~270 km? dur-
ing April, equivalent to ~6% of the lake's surface area in the NAT simula-
tion (Table S4), signifies a substantial alteration of the lake inundation
cycle due to dam-induced alteration of the Mekong flood pulse. In the latter
half of the 2010s, a similar magnitude of impact can be observed with a
maximum decline in inundated areas by ~365 km? in October, while Au-
gust has the highest percentage of reduction (~3%, equivalent to ~245
km?). The timing of this reduction is supported by our findings on the
dam-induced shifts on lake water levels (Fig. 3).

4. Discussion

Numerous studies have examined the changing hydrology of the TSL,
primarily by using ground- and satellite-based observation; however, a di-
rect quantification of the impacts of climate change and Mekong dams on
the observed hydrologic shifts in the lake is lacking. In this study, we
used factorial model simulations to mechanistically quantify these impacts
over the past four decades. While climate variability is found to be a key
driver of the inter-decadal variations, the Mekong dams are found to have
caused an accelerating impact on the lake's hydrologic regime, especially
in the most recent decades.

No substantial differences are found in the annual river discharge in the
mainstream Mekong between DAM and NAT simulations, suggesting that
the annual water balance of mainstream Mekong has remained generally un-
affected, which is in line with findings (Binh et al., 2020a). However, the dif-
ference in magnitude of peak (maximum) and low (minimum) flows at the
mainstream Mekong stations indicate an increasing impact of newly added
dams in recent years. Such alterations in flow signatures reflect the expected
impacts of reservoir operation (i.e., dampened flood pulse and enhanced dry
season flow); however, our results provide crucial insights on the magnitude
of these effects and their time evolution under increased dam construction.

Regarding water levels in the TSL, our results indicate a direct influence
of the Mekong dams on the lake's water level, corroborating previous find-
ings (Arias et al., 2014a, 2012; Kummu et al., 2013; Kummu and Sarkkula,
2008) that TSL hydrological regime is strongly modulated by the Mekong
mainstream through the TSR. However, our results provide crucial addi-
tional insights by directly attributing the changes in TSL water levels to cli-
mate variability and dams, including for more recent periods compared to
the prior studies. Our results are also in line with recent findings (Lin and
Qi, 2017; Lu and Chua, 2021; NG and Park, 2021) that there is an obvious
decline in lake's water levels and extents between 2000 and 2016. The de-
cline is detected in both NAT and DAM simulations, suggesting that climate
variability also partly contributed to the decline. However, a comparison of
the results from the NAT and DAM simulations (Table 1 and Fig. 3) suggests
that while the broad patterns of inter-decadal variabilities in the lakes
water levels could be related to climate variability, the impacts of dams
have consistently increased over time, and the impacts are more prominent
during the dry season.

Over the study period (1979-2016), the lake's water balance underwent
a fundamental shift as the impacts of dams became relatively more pro-
nounced on the Mekong mainstream and, consequently, on the reversal
flow in the TSR especially during the 2010s. Our results indicate that in-
creased dam operations led to a two-fold reduction in annual volume of
both inflow and outflow through the TSR in the 2010s compared to prior
decades. Further, the results suggest that even though the dam-induced
changes in the mainstream Mekong flow have yet to reach a critical point
of hydrologic regime shift, the alterations in TSL hydrology are substantial.
The recent acceleration in the reduction of inflow and outflow volumes also
points to a potentially dramatic shift in TSL hydrologic regime if the current
pace of dam development continues.

In terms of lake inundation dynamics, the seasonally inundated area in
the outer periphery of the TSL is highly sensitive to both climate variations
and dam operations. As noted above, our findings suggest that, according to
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the NAT simulations, there has been a substantial variation in climate in the
most recent decades (2000-2016) compared to the prior period
(1979-1999). The impact of these climate variations is especially notice-
able in the outer periphery of the lake, evidenced by a large alteration of an-
nual inundation period (up to one month increase or decrease). In addition,
our study also highlights that the impacts of dams on the outer area of the
TSL have steadily increased since the 1980s, with the 2010s seeing a 15
days reduction in inundation duration between in DAM simulation com-
pared to the NAT.

In contrast, dams increased flood occurrence in the inner areas around
the permanent water body of the lake over the last four decades, suggesting
that dams have been fundamentally altering the flood pulse rhythm
through counterbalancing effects during both flood and dry seasons.
These results indicate that there have already been observable impacts of
dam-induced altering of the lake's inundation dynamic and there are clear
linkages to the dampening (enhancing) of peak (low) flow of the Mekong
flood pulse. Regarding the magnitude of change in flood occurrence during
the 2010s (Fig. 6d), our results are comparable to the dam-induced changes
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in flood occurrence under 20-30% dampening of mainstream Mekong
flood peak (Pokhrel et al., 2018b), which imply that the transition toward
a ceased reversal of the TRS flow and a more drastic transformation of
TSL inundation dynamics is likely if the alteration of Mekong flow is further
increased by new dams.

Moreover, our results also highlight that the countering effects of dam
operations on the lake in the 2010s are not only substantially higher than
previous decades in terms of decadal average but also monthly average es-
pecially on the total lake inundated areas. By comparing the monthly

inundated area in each decade (Fig. 7), our study shows that there is a rel-
atively monotonous trend of increase over the decades presented between
February and July. However, from August to December, the magnitude of
dam impact in 2010s on reducing the lake inundated area is evidently
much higher than in the previous decades. Considering that the 2010s is
the driest decade of the analysis period with evidently lower natural inflow
and lake water levels (Fig. 3), the climate condition of this decade has am-
plified the dam impacts. While this may imply that the Mekong dams could
potentially mitigate drought impacts in the TSL by increasing its inundated
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Fig. 7. Differences in decadal-average inundated areas (color-coded bar; left y-axis) between DAM and NAT simulations. Results shown are spatial average for the TSL
watershed shown in Fig. 1. Color-coded lines (right y-axis) show the difference in percentage figures relative to the total inundated areas in the NAT simulation.
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area during the dry season, there may be broader implications due to the al-
teration of the annual flood dynamics. Overall, dam-induced changes in the
Mekong flood pulse have been increasingly weakening the seasonal fluctu-
ations of total inundated areas in and around the TSL, which have impor-
tant implications on socio-ecological systems and local communities.

As is true across the Lower Mekong River basin (Intralawan et al.,
2019), the social and ecological effects of dam development on the Tonlé
Sap will be significant and highly uneven, creating opportunities for some
and threatening the livelihoods and food security of others. The dam-
induced dampening of the TSL's flood pulse imperils fish populations and
the people who depend on them. Elevated dry season water levels threaten
the forests surrounding the lake, which will have “a notable impact on sed-
imentation processes, ecosystems and aquatic productivity” (Keskinen
et al., 2015). And the reduced extent and duration of wet season flooding
limit spawning and feeding possibilities for fish, leading to reductions in
“mean body size, fecundity, survival, and ultimately catches,” especially
of large species (Halls and Hortle, 2021). While further study of the rela-
tionship between hydrological changes and fish populations is needed, re-
cent reports of dramatic fish catch declines—as high as 31% between
December 2019 and December 2020 according to a recent government re-
port (Chanvirak, 2020)—merit attention in a country where “up to 80% of
all animal protein consumption...comes from fish and other aquatic ani-
mals, and [and where domestic] fisheries contribute considerably to re-
gional food security thanks to fish migration and fish export” (Keskinen
et al., 2012). While aquaculture production is offsetting the decline in cap-
ture fisheries to some degree, it is likely that those who benefit from aqua-
culture are in most cases not the same people whose livelihoods and food
security are most negatively affected by declines in capture fisheries
(Intralawan et al., 2019).

The dampened flood pulse is also changing the agricultural landscape
and possibilities for farmers, and again, the effects will be uneven. While
some in the upper floodplain may see the benefits of land no longer flooded
in the wet season, thus opening possibilities for irrigated agriculture and
tree crops, those in the lower floodplain may experience the loss of arable
land due to higher dry season water levels (Keskinen et al., 2015). Further,
the reduced extent and duration of wet season floods, along with the
replenishing sediment they bring, “reduces the potential for flood-
recession rice” (Cramb, 2020), a cornerstone of livelihoods and food secu-
rity in Lower Mekong floodplain communities for centuries (Fox and
Ledgerwood, 1999). Importantly, these changes are occurring within the
context of rapid and inequitable agrarian transformation, characterized
by dispossessory Economic Land Concessions (Beban et al., 2017;
Schoenberger and Beban, 2018) and a recent uptick in relocations of com-
munities on the lake, further complicating the future for farmers, fishers,
and communities in the Tonlé Sap Basin.

We note that for a more comprehensive analysis of the lake's hydrolog-
ical dynamics, all drivers that have potential impacts other than climate and
dam operations should be considered, including detail of changes in river-
bed morphology, land use, land cover, among others. Those drivers have
been considered to remain unchanged throughout the study period due to
lack of relevant, basin-wide information that can be used in our model. Fur-
ther, our hydrodynamic model and generic dam operational rules might not
have fully captured the complex dynamics of real-world reservoir operation
due to limitation in available information and current computing capacity.
However, the results presented in this study contribute to the understand-
ing of the lake's hydrological shift in recent times and are fundamental for
the quantification of climate variability and dam operations impacts.

5. Conclusion

In this study, the effects of altered mainstream Mekong flood pulse
caused by upstream dams on the shifts in hydrologic balance and inunda-
tion dynamics of the TSL are quantified. To the best of the authors' knowl-
edge, the study is the first to directly attribute the changes in river flow and
flood dynamics of the lake to climate variability and dam operation by
using a hydrological-hydrodynamic modeling system that explicitly
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simulates dam operation. We find that while climate variability has been
a key driver of the inter-decadal variabilities in the lake's hydrology, the
Mekong dams have exerted a growing influence over time—more pro-
nouncedly after 2010—on the Mekong flood pulse, the TSR flow reversal,
and TSL water balance and its inundation dynamics. Results indicate that
even though the overall water balance of the mainstream Mekong has re-
mained relatively unaltered by dams, its flood pulse has been dampened
through ~7% reduction in the peak discharge in the 2010s compared to
just 1-2% during 1979-2009 period, leading to a similar impact on the
peak inflow from the Mekong to the TSL. It is found that during the
2010s, dams caused a reduction in the volume of annual inflow from the
Mekong into the TSL by 10-25%, reducing the lake's peak water level by
~3% (~23 cm). These shifts in the lake's water balance led to a reduction
in the duration of annual inundation in the lake's periphery by ~15 days
(~4% of flood occurrence), effectively shrinking the lake's seasonally inun-
dated areas. Further, there is a comparable magnitude of reduction in an-
nual inflow and outflow volume of the TSL through the TSR, which
suggests that the dams have caused a more noticeable shift in the lake's
water balance by minimizing its annual interaction with the mainstream
Mekong in the 2010s than in the previous decades. Comparison of
decadal-average inundated areas of the TSL suggests that during the
2010s, inundated areas decreased (increased) most substantially by ~245
km? or ~3% (~270 km? or ~6%) in August (April), essentially dampening
the lake's seasonal inundation dynamics. Overall, the alterations of the
TSL's hydrologic balance and inundation dynamics by the Mekong dam op-
eration in the 2010s have far exceeded the impacts in prior decades, indi-
cating a continued—and potentially an accelerated—impacts of Mekong
dams on the TSL. The results should be interpreted with caution because
they likely contain uncertainties arising from various sources including cli-
mate forcing data, model parameters, and the dam operation scheme,
among others. Despite these limitations, the findings echo many growing
concerns from a range of diverse stakeholders within and across the region
regarding the adverse and multifaceted impacts of large dams in the MRB.
To this end, our results offer novel and important insights for improved
transboundary water management, water infrastructure development, fish-
eries conservation, riparian livelihood protection and overall decision mak-
ing in light of rising concerns about the adverse and growing impacts of
large dams in the MRB. The research framework presented could also be
useful to climate and dam induced hydrologic shifts in other river basins
such as the Amazon and Congo.
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