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ARTICLE INFO ABSTRACT

Keywords: Climate change is expected to exacerbate drought conditions over many global regions. However, the future risk
D_m“ght posed by droughts depends not only on the climate-induced changes but also on the changes in societal exposure
Risk and vulnerability to droughts. Here we illustrate how the consideration of human vulnerability alters global
:io]}b;l] Africa drought risk associated with runoff (hydrological) and soil moisture (agriculture) droughts during the 21st-cen-
Asia tury. We combine the changes in drought frequency, population growth, and human development as a proxy of

vulnerability to project global drought risk under plausible climate and socioeconomic development pathways.
Results indicate that the shift toward a pathway of high greenhouse gas emissions and sociceconomic inequality
leads to i) increased population exposure to runoff and seoil moisture droughts by 81% and seven folds,
respectively, and ii) a stagnation of human development. These consequences are more pronounced for pop-
ulations living in low than in very high human development countries. In particular, Sub-Saharan Africa and
South Asia, where the majority of the world's less developed countries are located, fare the worst in terms of
future drought risk. The disparity in risk between low and very high human development countries can be
substantially reduced in the presence of a shift toward a world of rapid and sustainable development that actively
reduces social inequality and emissions. Our results underscore the importance of rapid human development in
hotspots of drought risk where effective adaptation is most needed to reduce future drought impacts.

1. Introduction

Droughts are amongst the costliest natural disasters that impact
human livelihoods and cause massive economic and ecological damages
every year (Keyantash and Dracup, 2002; Mishra and Singh, 2010; Dai,
2011). These losses incur from direct impacts on agriculture, water re-
sources, tourism, ecosystems, and human welfare and differ profoundly
depending on a nation’s level of development and coping capabilities
(Mishra and Singh, 2010; Gray and Mueller, 2012; Masih et al., 2014;
Grolle, 2015; Smith and Matthews, 2015; Zhang and Zhou, 2015; Sweet
et al., 2017; Vicente-Serrano et al., 2020). The massive socioeconomic
and ecological consequences of droughts have motivated large research
efforts, leading to an improved understanding of drought response to
climate change (e.g., Sheffield and Wood, 2008; Dai, 2013; Prudhomme
et al., 2014; Trenberth et al., 2014; Zhao and Dai, 2015; Lehner et al.,

2017; Samaniego et al., 2018; Ault, 2020; Cook et al., 2020; Pokhrel
et al., 2021). These efforts have revealed likely increases in drought
intensity and frequency over many global regions in response to
anthropogenic global warming. However, future risk is not only
contingent on these climate change-induced trends but also on the so-
cietal exposure and vulnerability according to the Intergovernmental
Panel on Climate Change (IPCC et al., 2012). Increasingly, studies have
shown that the world’s most vulnerable populations are disproportion-
ately exposed to the adverse impacts of climate change (Satoh et al.,
2017; Byers et al., 2018; Harrington et al., 2018; King and Harrington,
2018; Russo et al., 2019). In this vein, we seek to illustrate how
vulnerability would alter future drought risk from a global perspective.
Our study builds on substantive previous drought studies reviewed in
the following, to provide new insights regarding future drought risk
when a proxy of broad vulnerability to climate change is considered.
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The existing body of literature has focused on projecting societal
exposure to droughts. Societal exposure is expected to increase globally
because of the increased occurrence of droughts in response to higher
greenhouse-gas-induced global warming (Smirnov et al., 2016; Liu et al.,
2018; Lange et al., 2020). Using a suite of global hydrological models
driven by four climate models and historically constant global popula-
tion (set as in the year 2005), Lange et al. (2020) estimated a 370%
increase in population annually exposed to exceptional soil moisture
(agriculture) droughts in response to 2 °C global warming. Societal
exposure to future droughts is also shaped by the changes in socioeco-
nomic conditions as reflected in the Shared Socioeconomic Pathways
(SSPs, Riahi et al., 2017). In a rapid urbanization pathway (SSP1), the
exposure of global urban population to severe soil moisture droughts
would increase from 350 to 410 million people between 1.5 and 2 °C
global warming (Liu et al., 2018). With medium population growth
(SSP2), global population in extreme-to-exceptional terrestrial water
storage drought is projected to increase from 3% to 8% over the 21st
century in a medium population growth pathway (Pokhrel et al., 2021).
In a high population growth pathway (SSP3), 60% of the global popu-
lation is projected to experience more frequent and severe meteorolog-
ical droughts, mainly in Asia and Africa, in response to 4 °C global
warming (Spinoni et al., 2021).

These studies have covered only two (drought hazard and exposure)
of the three dimensions that constitute risk. They did not account of
vulnerability and hence do not present a complete risk assessment.
Consequently, vulnerability has unknown effects on future drought risk
globally. Differences in societal exposure between studies also highlight
the importance of drought definition. The choice of the drought indi-
cator (e.g., precipitation, soil moisture, and runoff) and truncation level
(i.e., a threshold indicating departure from normal leading to drought
onset) can affect the magnitude and even the sign of the projected
change in drought statistics (Sheffield and Wood, 2007; IPCC et al.,
2012; Zhao and Dai, 2015; Cook et al., 2018; Satoh et al., 2021) and thus
future exposure and risk. The importance of drought definition neces-
sitated its consideration in this study to address the following research
questions: (1) How would the incorporation of vulnerability projections
alter future drought risk? and (2) How do climate and socioeconomic
changes influence the risk posed by different categories of soil moisture
(i.e., agriculture) and runoff (i.e., hydrological) droughts?

We define drought risk as the consequence of drought frequency,
population exposure, and human development as a proxy of vulnera-
bility. We project these dimensions globally under plausible pathways of
climate and socioeconomic change. We estimate exposure to drought as
a result of the projected changes in drought frequency and population
growth. Usually, risk estimation consists of applying a robust dose-
response relationship to reflect the vulnerability within the exposed
population. Given the lack of this relationship and inspired by a recent
heatwave risk assessment (Russo et al., 2019), we incorporate pro-
jections of the Human Development Index (HDI, Crespo Cuaresma and
Lutz, 2016) as a proxy of the broad vulnerability to climate change. The
HDI was introduced by the United Nations Development Programme
(UNDP) to measure the achievement in key components of a country’s
human development. The HDI includes income, education, and health,
enabling a more comprehensive measure of vulnerability in contrast to
the Gross Domestic Product (GDP) used in previous studies (e.g., King
and Harrington, 2018). The risk posed by droughts can be driven both by
socio-economic and climatic changes, and thus, we examine their indi-
vidual importance by isolating their contributions under different
pathways.

2. Datasets and methods
2.1. Projections of soil moisture and runoff

We use global simulations of soil moisture content and total runoff
from the multi-model ensemble (88 members) of the Inter-Sectoral
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Impact Model Intercomparison Project (ISI-MIP) phase 2b (Frieler
etal., 2017). The ensemble consists of eight process-based global Impact
Models (IMs; presented in Table S1 in the supporting information and
documented in more detail at the ISI-MIP database https://www.isimip.
org/impactmodels/). The IMs are: CLM 4.5 (Thiery et al., 2017),
ORCHIDEE (Guimberteau et al., 2018), MATSIRO (Takata et al., 2003;
Pokhrel et al., 2015; Yokohata et al., 2020), HO8 (Hanasaki et al., 2018),
PCR-GLOBWB (Wada et al., 2014), WaterGAP2 (Miiller Schmied et al.,
2016), and LPJmL (Sitch et al., 2003). The IMs are driven by downscaled
and bias-adjusted climate forcing data from four Global Climate Models
(GCMs: GFDL-ESM2M, IPSL-CM5A-LR, HadGEM2-ES, and MIROC5) of
the Coupled Model Intercomparison Project (CMIP5). Climate forcings
under historical conditions during 1850-2005 and three Representative
Concentration Pathway (RCPs: 2.6, 6.0, and 8.5) during 2006-2100 are
used to drive the IMs at the spatial resolution of 0.5° by 0.5° or ~50 km
at the equator (Frieler et al., 2017). The baseline period of 1976-2005 is
selected to represent near-present climate conditions and the period of
2071-2100 is used to represent long-term future conditions. From the
combination of three RCPs, four GCMs, and eight IMs, we obtain a large
ensemble with 88 members (note that RCP8.5 simulation were not
available from two IMs, Table S1).

The ability of IMs to reproduce various streamflow signatures has
been investigated in multiple evaluation studies (Staudinger et al., 2011;
Gudmundsson et al., 2012; Velazquez et al., 2013; Giuntoli et al., 2015;
Fangetal., 2017; Huang et al., 2017; Vetter et al., 2017; Veldkamp et al.,
2018; Zaherpour et al., 2018; Schewe et al., 2019). Recently, we also
showed that the IMs capture historical terrestrial water storage (TWS)
from Gravity Recovery and Climate Experiment (GRACE) satellite
measurements (Pokhrel et al., 2021) and soil moisture drought charac-
teristics from observations (i.e., self-calibrated Palmer Drought Severity
Index) and reanalysis in some of world’s most drought-prone regions
(Elkouk et al., 2021). Consistent with these findings, soil moisture and
runoff drought frequency (i.e., percentage of times under drought)
shows a high level of agreement between models across the globe during
the baseline period (Figs. S3 and S4).

2.2. Projections of drought frequency

Here, soil moisture and total runoff (surface and subsurface) are used
to represent agricultural and hydrological droughts, respectively. Agri-
culture drought corresponds to a period of below-normal soil water
content which results in reduced vegetation growth and crop failure.
Hydrological drought corresponds to a period when surface water re-
sources, such as river streamflow and water storages in lakes or reser-
voirs, drop below their local normal conditions (Dai, 2011).

Simulated soil moisture from all models is first integrated across soil
layers in the top 1.5 m depth (see Table S1 for details). Then, monthly
soil moisture and total runoff are transformed into percentile-based
indices, to ensure that their values are comparable between different
models and scenarios (Samaniego et al., 2017). The soil moisture index
(SMI) and the runoff index (RI) percentile-indices are obtained by fitting
a non-parametric function (kernel density estimate) to avoid assump-
tions about the shape of the distribution which can introduce additional
uncertainty in the drought analysis (Samaniego et al., 2013, 2018). The
cumulative density function (CDF) is estimated for each calendar month,
grid cell, and GCM/IM combination during the baseline period of
1976-2005. The estimated CDF is then used as a reference to draw soil
moisture and runoff percentiles during the future period under different
RCPs (see Section S1 in the supporting information for further details).

The cells fulfilling SMI(t) <z and RI(t) <z during a month t are
considered under potential soil moisture and runoff drought, respec-
tively. = denotes a soil moisture or runoff value occurring less than 7 x
100% of the time during the baseline period. Drought frequency is then
defined as the probability (i.e., percentage of times) when SMI(t) <
and RI(t) < 7, denoted by Pr{SMI(t) < 7} and Pr{RI(t) < 7}, for all t. The
value of the threshold 7 is selected to reflect five drought categories
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commonly used in drought monitoring systems (Svoboda et al., 2002).
The five categories scale from abnormal (z = 0.3), moderate (z = 0.2),
severe (z = 0.1), extreme (z = 0.05), to exceptional (z = 0.02) drought.

2.3. Projections of population exposure

To estimate exposure to droughts, we use the 0.125° (~12.5 km at
the equator) resolution gridded projections of rural and urban popula-
tion averaged at ten-year intervals during the period 2010-2100 and
under SSP1-5 pathways (Jones & O’Neill, 2016; Jones and O’Neill,
2020). These projections were generated by downscaling the
national-level SSP-projections of urban and rural population using his-
torical gridded data within a gravity-type model parameterized to reflect
the changes underlying each SSP (Jones & O’Neill, 2016). First, we
aggregate population projections into the same resolution as IMs. Then,
we estimate the number of people located within areas under drought of
a given category (defined by ), at each month, and for each IM, GCM,
RCP, and SSP combination. We then calculate the average population
affected during a given 30-year period. We use population estimates for
2015 and 2075 (representing the decades of 2010-2019 and
2070-2079, respectively) to calculate the exposure during the 30-year
baseline (1976-2005) and future (2071-2100) periods, respectively.
Note that we estimate population exposure assuming that soil moisture
drought affects rural population the most because of the dependence of
their livelihood on agriculture (FAO, 2020), and that the depletion of
stored water resources due to runoff drought affects the population in
both rural and urban areas (i.e., total population).

While the three RCPs and the five SSPs result in a total of 15 pathway
combinations, we select the five most plausible combinations by
combining the one climate scenario most plausible for each of the five
SSPs (Table S2 presents the reasoning behind these combinations). The
pathway combinations consist of ‘Sustainability’ (SSP1 combined with
RCP2.6), ‘Middle of the road’ (SSP2 combined with RCP6.0), ‘Frag-
mented world’ (SSP3 combined with RCP6.0), ‘Inequality’ (SSP4 com-
bined with RCP6.0), and ‘Fossil fuel-based development’ (SSP5
combined with RCP8.5). ‘Sustainability’ is a pathway of rapid and sus-
tainable socioeconomic development and transition toward renewables
and reduction of greenhouse gas emissions. ‘Middle of the road’ is the
pathway under which socioeconomic trends follow their historical pat-
terns. ‘Fragmented world” and ‘Inequality’ are pathways of exponential
population growth and high socioeconomic inequality. ‘Fossil fuel-based
development’ is a pathway of rapid socioeconomic development as in
the path to ‘Sustainability’ but with a heavy reliance on fossil fuels and
high emissions.

2.4. Projections of human development

We use projections of the HDI (Crespo Cuaresma and Lutz, 2016) as a
proxy of vulnerability to climate change (Fig. S6). The HDI is estimated
as the geometric mean of normalized life expectancy at birth, expected
and mean years of schooling, and gross national income (GNI) per
capita. The HDI outperforms several measures of national social
vulnerability to climate change (Fiissel, 2010). It also shows a strong
correlation with the Notre Dame-Global Adaptation Initiative Country
Index (ND-GAIN) (Russo et al., 2019), an index constructed from 45
indicators of vulnerability and readiness to respond to climate change
(Chen et al., 2015). In the absence of ND-GAIN projections, HDI pro-
jections thus provide the best alternative to capture countries’ broad
vulnerability to climate change. We use HDI data from UNDP for the
year 2015 and projected HDI values under SSP1-5 for the year 2075
from Crespo Cuaresma and Lutz (2016). It is important to stress that the
HDI is not used to measure the actual vulnerability to droughts but
rather to illustrate how vulnerability shapes future drought risk.

Journal of Environmental Management 317 (2022) 115378
2.5. Projections of drought risk

Inspired by the risk analysis proposed in Russo et al. (2019),
vulnerability can be defined as 1 — HDI such that populations with the
highest HDI have the lowest vulnerability and vice-versa. An illustrative
drought risk index (expressed in %) can be subsequently calculated at
each location as the product of drought frequency Pr{I(t) < r} using a
drought index I of either SMI or RI, population, and vulnerability (1 —
HDI):

Risk index (%) =Pr{I(t) < ©},,.0ra % Populatione,sre % (1 — HDI)
x 100

vulnerability

Without normalization, the resulting risk index will mainly be driven
by population variability because exposure varies more than the values
of vulnerability (1 — HDI). We normalize exposure using CDF estimates
from fitting a Log-Normal distribution to the exposed population during
the baseline period (Fig. S7). Similarly, normalized 1 — HDI values are
drawn from the CDF estimates from fitting a non-parametric kernel
density function to 1 — HDI in 2015 (Fig. S7). CDF-normalized exposure
and 1 — HDI, therefore, vary within the probability interval [0, 1].

The risk index scores (expressed in %) cannot be interpreted as
physical or quantitative estimates of a specific negative drought conse-
quence (Russo et al., 2019), but rather to illustrate how exposure and
vulnerability affect the outlook of the future risk. Here, exposure and
risk estimates are decomposed into two drivers: climate change and
socio-economic change (Jones et al., 2015). Climate change contribu-
tion is computed by holding population and vulnerability (1 — HDI)
constant at the year 2015 and computing exposure and risk under the
different RCPs. We do the opposite for socio-economic change, as we
hold climate change constant at the baseline period and allow the
population and vulnerability to change under the different SSPs. The
individual contribution of climate and socio-economic change is then
estimated by dividing each one by the sum of the two.

3. Results

The ensemble mean change in drought frequency (Fig. 1a and b)
reveals a widespread increase in soil moisture and runoff drought oc-
currences under RCP8.5 (2071-2100) compared to the baseline period
(1976-2005). Areas witnessing an increase in drought frequency include
the Mediterranean, Central Europe, the Americas, Southern Africa and
Australia, and many parts of Asia as has been reported in earlier works
(Prudhomme et al., 2014; Zhao and Dai, 2015; Lehner et al., 2017). Soil
moisture droughts show more widespread and higher changes (Fig. 1b).
In areas of increase by 20% (Fig. 1b), moderate droughts (occurring less
than 20% of the time, 7 = 0.2) during the baseline period become twice
as frequent during 2071-2100. By contrast, the increase in runoff
droughts is lower and less widespread (Fig. 1a). The spatial pattern of
changes in drought frequency is generally comparable between the first
three drought categories (r =0.3,7=0.2, and 7=0.1 in Fig. S2).
However, model agreement on the direction of change decreases when
considering drought categories with a small probability of occurrence
(small z-value), especially for runoff droughts (Fig. S2). The weak
agreement highlights the substantial GCMs and IMs induced uncertainty
in many regions (Prudhomme et al., 2014; Samaniego et al., 2017).

Global population exposure to droughts (Fig. 1c-g) is the highest
under the ‘Fragmented world’ pathway owing to the highest global
population and high greenhouse emissions (SSP3-RCP6.0, Fig. 1e). By
contrast, global exposure is the lowest under the ‘Sustainability’
pathway with the lowest global population and emissions (SSP1-RCP2.6,
Fig. 1c). Consequently, the shift from the ‘Sustainability’ to the ‘Frag-
mented world” pathway is associated with an 81% increase in popula-
tion exposure to moderate runoff droughts (occurring less than 20% of
time, 7 = 0.2) by 2075. That is an increase from 16% to 29% of the
current total population (Table S2). This increase is more pronounced in
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Fig. 1. Changes in drought frequency (a, b), from 1976-2005 to 2071-2100 under RCP8.5, and population exposure (c—q) under plausible RCP-SSP pathways in
2075. Maps show the changes in the percentage of time under runoff (a) and soil moisture (b) droughts (occurring less than 20% of time, 7 = 0.2). Maps depict the
multi-model ensemble mean change, and hatches mark areas where more than 66% (two-third) of the models agree with the direction of mean change. Panels (c—q)
show the ensemble mean population exposure globally (c-g) and for very high (h-1) and low (m-q) human development countries. The left half-circle depicts total
population exposure to runoff droughts (RI(t) < 1), expressed as the percentage of the current global total population. The right half-circle is same as the left half, but
for population exposure in rural areas to soil moisture droughts (SMI(t) < 1), expressed as the percentage of the current global rural population. Each half-circle
depicts the relative contribution of climate (red portion) and socioeconomic (blue portion) changes. Exposure to five drought categories scaling from abnormal
(r = 0.3) to exceptional (r = 0.02) drought conditions are depicted by lighter to darker color shadings. Dashed lines represent the uncertainty bounds (+ the
ensemble standard deviation) in exposure to moderate droughts (r = 0.2). (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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rural areas, where the exposure to moderate soil moisture droughts in-
creases by seven folds (~4% versus 30% of the current global rural
population, Table S3) from the ‘Sustainability’ to the ‘Fragmented
world’ pathway. While both climate and socioeconomic change drive
exposure to droughts globally, climate change contribution (red por-
tions in Fig. 1) becomes more important when considering drought
conditions with a smaller probability of occurrence, particularly for
severe droughts (occurring less than 10% of the times, ¢ = 0.1).

Of the global exposed populations to soil moisture (runoff) droughts,
70% (62%) will be located in South and East Asia, Sub-Saharan Africa,
and the Mediterranean under the ‘Fragmented world® pathway
(Table s4). The shift from ‘Sustainability’ to ‘Fragmented world" has the
largest impact in low human development countries (HDI less than 0.55,
Fig. 56). Consequently, population exposure within rural areas in low
human development countries, mostly located in Sub-Saharan Africa, is
projected to increase from 1% to 11% of the current global rural pop-
ulation (Fig. 1m, o, and Table S3). Similarly, an increase in exposure in
rural areas by more than six folds is found within many medium human
development countries in Africa, Asia, and Latin America (Fig. 2f). By
contrast, the population of very high human development countries
(HDI greater than 0.8) is affected more by runoff droughts than soil
moisture droughts (Fig. 1h-1) because of smaller rural population in
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these countries. The highest exposure in very high human development
countries (~5% of the current total global population) is projected
under the ‘Fossil fuel-based development’ pathway (SSP5-RCPS.5,
Fig. 11). This pathway is the only case where exposure in very high
human development countries exceeds exposure in low human devel-
opment countries (~4% under SSP5-RCP8.5).

Other pathways of high population growth, notably the ‘Middle of
the road’ and ‘Inequality’ pathways (SSP4 and SSP2, combined with
RCP6.0), also lead to substantial increases in total population exposure
to runoff drought compared to ‘Sustainability’ (Figs. 1, 2). However,
exposure to soil moisture drought in rural areas follows the global rate of
urbanization. The highest exposure in rural areas is found under slow
urbanization pathways, the ‘Fragmented world” and the ‘Middle of the
road’ with 60% and 80% urbanization rates, while the lowest exposure
is found under rapid urbanization pathways, the ‘Sustainability’, the
‘Inequality’, and the ‘Fossil fuel-based development’ with 92% urbani-
zation rate (Riahi et al., 2017).

In comparison to the projections of drought frequency (Fig. 1) and
exposure (Fig. 53), drought risk projections (Fig. 3) illustrate that the
incorporation of vulnerability (1 — HDI, Fig. 59) modifies the pattern of
future risk substantially. Normalized drought risk reveals that Sub-
Saharan Africa is a global hotspot at an extremely high-risk value of

Middle of the Road (RCP6.0-S5P2)

N

C]

" Inequality (RCPG.O-SSPZI}

=50 0 50 100 200 300

(%)

=50 0 100 200 500 1000

(%)

Fig. 2. Relative changes in average population exposed to runoff and soil moisture droughts (occurring less than 20% of the time, T = 0.2) compared to the
‘Sustainability’ pathway in 2075. Maps (a-d, left column) and (e-h, right column) show the relative changes in total and rural population exposure to runoff and soil

moisture droughts, respectively. Maps depict the multi-model ensemble mean.
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Sustainability (RCP2.6-SSP1)

) 15 25 35 45

55 65 75 85 95

Drought Risk Index (Scores in %)

Fig. 3. llustrative risk index of runoff (a-e, left column) and soil meisture (f-j, right column) droughts (occurring less than 20% of the time, 7 = 0.2) under different

RCP-SSP pathways in 2075. Maps depict the multi-model ensemble mean.

up to 90% for both soil moisture and runoff droughts under the ‘Frag-
mented world’ and ‘Inequality’ pathways (Fig. 3). Similar high-risk
scores are found across South Asia, Middle East, North Africa, and
Central America. By contrast, drought risk is the lowest in highly
developed countries in Europe, North America, and Oceania under all
pathways.

Results show that 26% (24%) of the current global rural (total)

population will experience a drought risk value greater than 20% by the
end of this century under the ‘Fragmented world’” pathway (Fig. 4c and
Table 55). These figures correspond to 500% (168%) the rural (total)
population exposed to the same risk value under the ‘Sustainability’
pathway (Fig. 4a). Furthermore, 7% of the current global population,
located within low human development countries, will experience a
drought risk value greater than 70% under the ‘Fragmented world’ and
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Fig. 4. Changes in the population at risk of moderate droughts (occurring less than 20% of the time, 7 = 0.2) under different pathways of climate and socioeconomic
change in 2075. Panels show the ensemble mean population at different risk scores (0-100%, depicted by lighter to darker color shadings) globally (a—e) and for very
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of the current global rural population. Each half-circle depicts the relative contribution of climate (red portion) and socioeconomic (blue portion) changes. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

‘Inequality’ pathways (Fig. 4m, n, and Table S6), while drought risk
nowhere reaches the 70% value in the ‘Sustainability’ pathway. Socio-
economic change drives drought risk under the ‘Fragmented world’ and
‘Inequality’ pathways. On the other hand, the contribution of changes in
climate to changes in drought risk is more substantial within very high
human development countries and under rapid development pathways,
namely the ‘Sustainability’ and ‘Fossil fuel-based development’. Most
notably, climate change dominates future changes in drought risk when
considering drought conditions with a smaller probability of occurrence
during the baseline period (Fig. 510).

4. Discussion

Taking the ‘Sustainability’ pathway of rapid human development
(under SSP1) and a reduction in greenhouse gas emissions (under
RCP2.6) is the ultimate and most effective way to reduce drought risk.
The shift from this pathway into rapid population growth (under SSP3
and SSP4) and high emissions (under RCP6.0), as reflected in the
‘Fragmented world” and ‘Inequality’ pathways, substantially increases
population exposure to droughts that is greater in low human develop-
ment countries (Fig. 1). Our results are broadly consistent with recent
works (Byers et al., 2018; Liu et al., 2018; Lange et al., 2020; Spinoni
et al., 2021), but provide new findings regarding: (1) population expo-
sure using different drought indicators and categories under a wide
range of plausible climate and socioeconomic pathways; (2) how
vulnerability can affect drought risk by incorporating projections of the
HDI under different SSPs; and (3) the contribution of climate and

socioeconomic changes to drought risk.

4.1. Drought exposure implications

The projected increase in population exposure in less developed
countries under the ‘Fragmented world” and ‘Inequality’ pathways is
expected to exacerbate inequalities in water and food access, especially
for rural people. Subsistence agriculture is the major source of income
and development for populations in rural areas (FAO, 2020). The in-
crease in rural population numbers and their exposure under the
‘Fragmented world” pathway (Fig. 10) is only indicative of a strong
reliance on subsistence farming, and potentially the most exaggerated
impacts from soil moisture droughts. In the absence of adaptation, more
people, often males, could be forced to migrate, which entails additional
burdens for women and can impose long-lasting or even permanent
consequences to women's empowerment, and consequently to human
development, in less developed countries (FAO, 2020).

4.2. Drought risk and policy implications

The incorporation of human development projections as a proxy of
vulnerability widens the disparity in future drought risk between very
high and low human development countries. The world’s less developed
countries, especially across Sub-Saharan Africa and South Asia, are
disproportionately at the highest drought risk levels in the ‘Fragmented
world” and ‘Inequality’ pathways, a finding that complements prior
studies (Byers et al., 2018; Spinoni et al., 2021). Climate mitigation
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alone is evidently not enough to reduce drought risk in low human
development countries. Drought risk there is driven primarily by the
increase in exposed population (Fig. 4 and S10) and scarce improve-
ments in human development (Fig. S6). This stagnation in human
development is expected to impede the capacity to adapt to changes in
climate which in turn impairs human development. Adaptive capacity is
manifested by the state of the three pillars of human development: ed-
ucation, health, and income distribution. Educational attainment is a
significant contributor to building up adaptive capacity and solutions
(Chen et al., 2015). Skewed income distribution leads to exaggerated
drought impacts on the poorest (Byers et al., 2018) and worsens the
capacity to adapt. Overall health conditions reflect country’s internal
capacity to face drought-related health shocks (e.g., from malnutrition
and unsafe water quality) which can exacerbate poverty and lower
educational attainment to the degree that these impacts may be trans-
mitted across generations (FAO, 2020).

Less developed countries will hugely benefit from the rapid human
development under the ‘Sustainability’ pathway. However, the shift into
this extremely ambitious pathway can only be achieved if mechanisms
such as the Sustainable Development Goals (SDGs) are met and sus-
tained in the long-term (Byers et al., 2018). A very good and sustained
progress on poverty, mortality, health, and education (SDGs 1-4) is
essential to keep population growth (human development) as low (as
high) as projected in SSP1 (Abel et al., 2016). Similarly, inaction on
climate change (SDG 13) could make achieving other SDGs more chal-
lenging. All SDGs will likely contribute to improving human develop-
ment, combating climate change, and supporting the other 2030 agenda
agreements like the Sendai framework for disaster risk reduction.

4.3. Uncertainties and limitations

Overall, our results underscore the complex response of drought risk
to future climate and socioeconomic changes. While both climate and
socioeconomic changes influence drought risk, their relative importance
differ substantially depending on the level of human development (i.e.,
vulnerability), socioeconomic pathways, and how drought condition is
defined (Figs. 1, 3, and S10). Most notably, climate change is of greater
importance when considering drought conditions with a small proba-
bility of occurrence. This stems from the fact that a small probability of
occurrence in the present period leads to large relative changes in the
future, and thus dominates changes in exposure and risk (Fig. 1 and
510). Therefore, discussions on the importance of climate and socio-
economic changes need to take into consideration the extent to which
any conclusions depend on how drought is defined (Cook et al., 2018;
Satoh et al., 2021).

Drought risk scores (Fig. 3) cannot be interpreted in terms of the
probability of a specific negative drought consequence. This important
caveat underlines the lack of robust dose-response relationships to
reflect the actual vulnerability to droughts within the exposed pop-
ulations. Nonetheless, projections presented here provide direct esti-
mates of the average population located withing the life span of drought
occurrences of different categories in function of a country’s level of
development. Using national projections of human development as a
proxy of vulnerability to climate change enables a more comprehensive
risk assessment compared to other measures (e.g., GDP), but it does not
consider the heterogeneity of vulnerability within countries. Therefore,
hotspots of drought risk will benefit more from further assessment at a
smaller scale and development of dose-response relationships relating
exposure to specific drought-related impacts in combination with the
SSP storylines (Sillmann et al., 2018). Furthermore, efforts to charac-
terize and reduce the uncertainty (from IMs and GCMs) in drought
modeling will also be critical to draw more conclusive and relevant
recommendations for adaptation (Clark et al., 2016).
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5. Conclusions

This study employs the multi-model ensemble (88 members) global
hydrological simulations of the ISI-MIP2b under three emission sce-
narios (RCPs) combined with their corresponding socioeconomic (SSPs)
projections of population and human development (as a proxy of
vulnerability) to project global drought risk at the end of this century
(2071-2100). The shift from the ‘Sustainability’ pathway (SSP1-
RCP2.6) into worlds of high socioeconomic inequality and emissions, as
reflected in the ‘Fragmented world’ (SSP3-RCP6.0) and ‘Inequality’
(SSP4-RCP6.0) pathways, leads to increased exposure to runoff (by 81%)
and soil moisture (by seven folds) droughts. Combined with increased
exposure, marginal improvement in human development results in a
huge disparity in future drought risk between low and very high human
development countries. In particular, Sub-Saharan Africa and South
Asia, where the word’s less developed countries are located, are pro-
jected to endure the worst drought risk. Climate action alone is evidently
not enough to substantially reduce drought risk to what is projected
under the ‘Sustainability’ pathway. The shift into this extremely ambi-
tious pathway can only be achieved with rapid human development
through mechanisms such as the SDGs. Overall, both climate and so-
cioeconomic changes drive drought risk but their separate contributions
differ substantially depending on the level of human development, so-
cioeconomic pathways, and how drought is defined. This underscores
the complexity of drought risk response to future climate and socio-
economic changes. An important shortcoming of the risk analysis pre-
sented in this study is that it cannot be interpreted as the probability of a
specific negative drought consequence. An avenue for further research is
therefore to develop dose-response relationships and relate exposure to
specific drought-related impacts. Such relationships alongside con-
straining drought projections uncertainty are crucial to draw more
conclusive and relevant recommendations for adaptation.
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