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Future socio-ecosystem productivity 
threatened by compound drought–
heatwave events

Jiabo Yin    1  , Pierre Gentine    2,3, Louise Slater    4, Lei Gu5, Yadu Pokhrel    6, 
Naota Hanasaki    7, Shenglian Guo1, Lihua Xiong    1 & Wolfram Schlenker    8

Compound drought–heatwave (CDHW) events are one of the worst 
climatic stressors for global sustainable development. However, the 
physical mechanisms behind CDHWs and their impacts on socio-ecosystem 
productivity remain poorly understood. Here, using simulations 
from a large climate–hydrology model ensemble of 111 members, we 
demonstrate that the frequency of extreme CDHWs is projected to increase 
by tenfold globally under the highest emissions scenario, along with a 
disproportionate negative impact on vegetation and socio-economic 
productivity by the late twenty-first century. By combining satellite 
observations, field measurements and reanalysis, we show that terrestrial 
water storage and temperature are negatively coupled, probably driven 
by similar atmospheric conditions (for example, water vapour deficit 
and energy demand). Limits on water availability are likely to play a more 
important role in constraining the terrestrial carbon sink than temperature 
extremes, and over 90% of the global population and gross domestic 
product could be exposed to increasing CDHW risks in the future, with more 
severe impacts in poorer and more rural areas. Our results provide crucial 
insights towards assessing and mitigating adverse effects of compound 
hazards on ecosystems and human well-being.

Droughts and heatwaves are driven by complex interactions between 
physical processes and are often initiated by similar synoptic circula-
tion anomalies1,2; they are thus likely to occur simultaneously3,4. As 
droughts are occurring more frequently and atmospheric warming 
triggers stronger land–atmosphere feedback, the risks of compound 
drought–heatwave (CDHW) events are intensified across the globe5,6, 
amplifying adverse impacts on socio-economic sustainability and 
human well-being7,8. CDHWs can exacerbate vegetation mortality, 

for example, which in turn may cascade into other hazards, such as 
wildfires and crop yield losses9–11; they can also jeopardize electric grid 
reliability and adversely affect a wide range of natural and human-made 
systems12. In the United States alone, three CDHWs between 2011 and 
2013 caused economic damages of roughly $60 billion6.

How CDHWs regulate ecosystem productivity is also an important 
issue. The terrestrial biosphere acts as a prominent sink for anthro-
pogenic CO2, sequestering about 30% of annual CO2 emissions13,14. 
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an ‘AND’ hazard scenario of CDHWs under a bivariate non-stationary 
framework, and we systematically quantified the associated uncer-
tainty (more details are provided in the Methods).

Results
Observed water–heat–carbon dynamics in climatic extremes
Indicators of land water content (that is, TWS and SM) and Tmax are 
negatively correlated globally (Fig. 1i and Extended Data Fig. 1), prob-
ably due to the increase in evapotranspiration during the warm season. 
The bimodality (that is, the binning distribution towards both ends) 
suggests that extreme stressors should not be assessed in isolation 
(Extended Data Fig. 1e–h) and can be explained by land–atmosphere 
coupling29. To disentangle the influence of atmospheric conditions 
on climatic extremes, we estimated the anomalies of composite vari-
ables during drought events, heat extremes and concurring CDHW 
events. Heat extremes (above the 90th percentile of Tmax) occur under 
large-scale atmospheric conditions such as high convective avail-
able potential energy (CAPE) and high convective inhibition (CIN) 
co-occurring in higher-latitude regions (Fig. 1a,b). High CAPE suggests 
a high moist convection potential, thereby enhancing the likelihood 
of intense rainstorms. The moist convection potential over land is also 
linked to higher sensible heat flux, latent heat flux (upward positive) and 
column-integrated water vapour (CIWV), correlated with higher spe-
cific humidity (SH) over most lands in the Northern Hemisphere (Fig. 
1c–f). Nevertheless, atmospheric moisture transport has weakened 
across almost the entire global land surface, as indicated by widespread 
negative anomalies of vertically integrated moisture convergence 
(VIMC), and thus decreases relative humidity (RH) over land (Fig. 1g,h). 
In the tropics and in several regions of the mid-latitudes, low CAPE is 
accompanied by high CIN and weak water–heat transport strength 
(negative anomalies of latent heat flux, CIWV, SH, VIMC and RH), which 
may enhance air dryness and thus propagate into terrestrial droughts 
(Fig. 1a–h). At higher latitudes and in dry conditions (as identified by a 
TWS-based drought severity index, TWS-DSI < −0.8; more details are 
provided in the Methods), we detected negative anomalies of CAPE, 
CIWV, SH and latent heat flux, which is opposite to the patterns found 
during extreme heat conditions (Supplementary Fig. 2). In the remain-
ing land regions, the patterns of anomalies of water–heat variables are 
largely consistent with heat conditions, even though their responses 
to dry events are weaker than the responses to heat extremes. Due to 
these regionally divergent impacts of heat and dry extremes, the atmos-
pheric conditions during concurrent hot–dry conditions generally 
indicate a more severe air dryness as well as less moist convection and 
water vapour transport, particularly in the mid-latitudes and tropics 
(Supplementary Fig. 3).

We then evaluated the impacts of these climatic extremes on the 
terrestrial carbon budget at global eddy-covariance tower sites (Sup-
plementary Fig. 4 and Supplementary Table 2). We found a strong 
negative correlation between observed Tmax and daily Global Land 
Data Assimilation System (GLDAS)-based TWS (r = −0.2, P < 0.001) 
(Fig. 1n), along with a bimodal behaviour (Fig. 1j). GPP responds 
to Tmax both nonlinearly and non-monotonically: at low Tmax, GPP 
is enhanced with rising Tmax as it promotes photochemistry by 
warming30,31; however, when Tmax is very high, further increases in 

However, climatic extremes can adversely affect its ability to func-
tion as a sink; for example, the 2003 European drought and heatwave 
reduced plant productivity by ~30%, thereby cancelling four years of 
CO2 net uptake over Europe15. After severe CDHWs, plant recovery usu-
ally lags owing to reduced growth, non-reversible losses in hydraulic 
conductance or depletion of carbon reserves16,17. This lagged growth 
may in turn increase vulnerability to another CDHW if it occurs before 
complete recovery8, potentially limiting the capacity of continents to 
act as carbon sinks18,19.

With growing evidence about these damages, CDHWs are 
increasingly regarded as one of the worst climatic stressors to global 
socio-economic sustainability and ecosystem health20–22. Under-
standing CDHW dynamics in a warming Earth is thus essential for the 
implementation of the United Nations Sustainable Development Goals 
(SDGs), in particular SDG13, which aims to combat climate change and 
its impacts. Yet, how to describe CDHWs remains an open question, 
particularly in terms of defining a fully representative stress index23. 
Previous studies have assessed droughts through a variety of indices 
such as the (self-calibrated) Palmer Drought Severity Index and the soil 
moisture (SM) drought index24. More recently, terrestrial water storage 
(TWS), a key determinant of global water and energy budgets, has been 
employed to reveal large-scale drought impacts on hydrologic systems 
and plant growth. TWS represents the vertically integrated water stor-
age as opposed to conventional indices that only capture partial water 
storages or fluxes25,26. However, the effects of TWS on future shifts in 
CDHW dynamics and the resulting impacts on socio-ecosystem pro-
ductivity remain unexamined.

Here we present a quantitative assessment of the socio-economic 
and ecological consequences of CDHWs at a global scale, under both 
current and future climates. We first analysed the association between 
daily maximum near-surface temperature (Tmax) and TWS from satellite 
observations, field measurements, and Gravity Recovery and Climate 
Experiment (GRACE)-constrained reconstruction and reanalysis data 
during 1979–2020. We detected strong multi-temporal-scale coupling 
during the warm season (Supplementary Fig. 1), highlighting the high 
likelihood of concurrent drought and heat extremes. To assess the 
physical mechanisms behind CDHWs, we measured the responses 
of large-scale and local-scale atmospheric dynamics to heat stress, 
drought and their temporally compounding extremes. We then evalu-
ated the effects of climatic extremes on the terrestrial carbon budget 
by using net ecosystem productivity (NEP) as well as its partitioning 
into photosynthesis (that is, gross primary productivity (GPP)) and 
respiration (that is, total ecosystem respiration (TER)). We did this by 
employing in situ eddy-covariance flux tower observations, a recent 
satellite-based machine-learning-generated solar-induced chlorophyll 
fluorescence (SIF) dataset27 and a light use efficiency theory-based GPP 
dataset28. Moreover, we assessed future shifts in CDHWs for various 
socio-economic and ecological subgroups using a large ensemble (96 
scenarios) of climate–hydrology simulations under the Inter-Sectoral 
Impact Model Intercomparison Project Phase 2b (ISIMIP2b; Supple-
mentary Table 1) and 15 members of TWS simulations by driving the 
H08 global hydrological model (GHM) with bias-corrected Coupled 
Model Intercomparison Project Phase 6 (CMIP6) ensemble outputs. 
Finally, we examined the changes in joint return period ( JRP) using 

Fig. 1 | Anomalies of composite water–heat–carbon variables during extreme 
climatic events. a–h, Anomalies of CAPE (a), CIN (b), sensible heat flux (c), 
latent heat flux (d), CIWV (e), SH (f), VIMC (g) and RH (h) during extreme heat 
events. The extreme heat events in a–h are identified using the 90th percentile 
of ERA5 Tmax in each grid cell. i, Pearson’s correlation coefficient (r) between 
daily GLDAS TWS and ERA5 Tmax. j, Mean probability of each percentile bin of Tmax 
and daily GLDAS TWS across 73 flux tower sites. k–m, Mean anomalies of GPP 
(k), TER (l), and NEP (m) for each percentile bin of Tmax and GLDAS TWS across 
73 flux tower sites. These three panels share the same colour bar. n, Pearson’s 
correlation coefficient between Tmax and TWS (or SM) from different datasets 

across 73 flux tower sites. JPL, Jet Propulsion Laboratory; CSR, Center for Space 
Research; GSFC, Goddard Space Flight Center. o, Anomalies of GPP, TER and NEP 
above 90th percentiles of Tmax and below 10th percentiles of daily TWS (or SM) 
across 73 flux tower sites. The daily TWS in j–m and the box plot in o are from the 
GLDAS-2.2 dataset. In n,o, the mean values of different datasets are marked by 
different shapes, and the centre lines indicate the median values; the box bounds 
indicate the 25th/75th percentile values, and the whiskers indicate the minimum/
maximum values. At each site/grid, anomalies of the variables are calculated as 
the difference between the daily values in extreme events and the mean daily 
values in the five-month warm season.
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Tmax cause GPP stress (Fig. 1k), which strongly inhibits plant pho-
tosynthesis32. TER increases with Tmax but at a more moderate pace 
than GPP (Fig. 1l), so that net ecosystem exchange still responds 

negatively to the highest Tmax (Fig. 1m). TWS depletion might reduce 
GPP and TER, as water stress reduces photosynthesis through sto-
matal and non-stomatal regulation and respiration through soil 
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enzyme activities. Under concurrent high Tmax and low TWS, NEP 
mean anomalies (−1.42 gC m−2 d−1) are largely determined by GPP 
anomalies (−1.25 gC m−2 d−1), while TER is slightly increased with 
a mean anomaly of 0.30 gC m−2 d−1 (Fig. 1o). When assessing these 
same relationships using in situ root-zone SM as well as monthly TWS 
from three GRACE/GRACE-FO solutions, we still detected impairing 
effects of heat and dry extremes on terrestrial carbon uptake (Fig. 1o 
and Extended Data Fig. 2). The machine-learning-generated SIF and 

MODIS-retrieved GPP anomalies are negative in most regions during 
extreme heat, drought and concurrent extremes (Extended Data  
Fig. 3), except in boreal regions and small areas of tropical rainforests 
such as the Amazon forests, where SIF and GPP are enhanced because 
ecosystems tend to be temperature limited29,33. The potential for 
heat- or dryness-related carbon loss therefore needs to be under-
stood when exploring the impacts of concurrent extreme climatic 
events on ecosystems.
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Fig. 2 | Recent changes in frequency and intensity of CDHWs as well as related 
socio-economic exposure. a,b, Changes in frequency (a) and severity (b) of 
CDHWs between two periods (recent, 1999–2019, minus past, 1979–1998). The 
insets in a,b show the histogram of the relative change percentages, with the 
dashed vertical line representing the mean value. c, Temporal dynamics of the 
global average CDHWr and the fraction of land area (Land), population (POP) 
and GDP that is exposed to CDHWs. The asterisks indicate that the change is 
significant (P < 0.05) as detected by the Mann–Kendall test. d, Relationship 
between r(Tmax, TWS) and CDHWr across the land grids (excluding Greenland and 
Antarctica); the two-sided F-test was used for testing significance. e,f, Box plots 
of coincidence rates (e) in 21 different Giorgi climate regions (f). In the box plots 

in e, the centre line indicates median value, the box bounds indicate the 25th/75th 
percentile values, the whiskers indicate the minimum/maximum values and 
the circles indicate the outliers. The droughts are identified by reconstructed 
TWS data, and the heatwaves are detected by using Tmax from the Berkeley Earth 
Surface Temperatures (BEST) dataset. AUS, Australia; AMZ, Amazon Basin; SSA, 
Southern South America; CAM, Central America; WNA, Western North America; 
CAN, Central North America; ENA, Eastern North America; ALA, Alaska; GRL, 
Greenland and Northern Territories; MED, Mediterranean Basin; NEU, Northern 
Europe; WAF, Western Africa; EAF, Eastern Africa; SAF, Southern Africa; SAH, 
Sahara; SEA, Southeast Asia; EAS, East Asia; SAS, South Asia; CAS, Central Asia; 
TIB, Tibet; NAS, North Asia.
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Observed increases in climatic extremes and their impacts
Recent changes in climatic extremes are evaluated in terms of their 
frequency, days, duration and severity (see the definitions in the Meth-
ods). Globally, the frequencies of the three types of climatic extreme 
events (heatwave, drought and CDHW) are increasing; for example, 67% 
of global land areas have experienced more CDHWs in recent decades 
(Fig. 2a). The duration and severity of CDHWs are greatly increasing in 
the eastern United States, central South America, parts of central Africa, 
eastern Europe, the Middle East and parts of eastern Asia (Fig. 2b and 
Supplementary Fig. 5). Furthermore, the global average coincidence 
rate (that is, the ratio of CDHW to heatwave events (CDHWr), 2.75% per 
decade), exposed land area (4.94% per decade), exposed population 
(4.65% per decade) and exposed gross domestic product (GDP) (5.24% 
per decade) have all significantly increased since 1979 (Fig. 2c). Eight 
of the Giorgi climate regions are identified as CDHW hotspots (that 
is, AMZ, CAM, ENA, CNA, MED, SSA, NAS and EAS; see the locations 
in Fig. 2f), where CDHWs have both long duration and severe magni-
tude (Supplementary Fig. 6). The hotspots are located in areas with 
high CDHWr, where heatwaves and droughts have a high likelihood 
of occurring simultaneously and are accompanied by stronger nega-
tive r(TWS, Tmax) (Fig. 2d,e). Five (three) out of eight hotspots show 
significant (insignificant) increases in socio-economic (either GDP or 
population-weighted) exposure due to exacerbated CDHWs (Extended 
Data Fig. 4 and Supplementary Fig. 7); some regions even show increas-
ing rates of >10% per decade for both GDP and population exposure. 
The three GRACE/GRACE-FO solutions detect similar hotspots to the 
reconstructed data (Supplementary Figs. 8–10) but indicate stronger 
trends and socio-economic exposures (Supplementary Figs. 11–13), 
which may be driven by more rapid intensification of warming and 
drying in the past decade, implying that tackling and adapting to these 
climatic hazards is a growing societal challenge.

A comparison of the coupled TWS-DSI with traditional drought 
indices suggests that the TWS-DSI provides new information and a 
stronger signal of drought exacerbation in recent decades. Unlike the 
standardized runoff index, which is highly correlated with the standard-
ized precipitation index, the TWS-DSI exhibits substantial changes over 
time in most of the Giorgi regions (Supplementary Figs. 14–16), because 
it encompasses all surface and subsurface storage components that 
are relevant to terrestrial water availability. The TWS-DSI also differs 
from the standardized precipitation evapotranspiration index (SPEI) 
and SM-based indices, which fail to characterize real conditions of soil 
and groundwater (surface water storage such as ice and snow) (Sup-
plementary Figs. 17–19). The TWS-DSI suggests that the drought magni-
tudes have substantially changed across most Giorgi regions in recent 
decades, while the other indices show negligible changes between the 
recent and past periods, thus underestimating drought intensification 
in most subregions and at the global scale. This considerable difference 
between the abilities of different indices to estimate temporal changes 
underscores the importance of considering groundwater and human 
activities in assessing drought risks26,34, by using an integrated index 
such as the TWS-DSI.

Projections of climatic extremes and socio-ecosystem effects
Before projecting future CDHW characteristics, we first evaluated the 
anomalies of composite water–heat–carbon variables during extreme 
climatic events, under historical and future periods (Supplementary 
Figs. 20–22, Supplementary Text 1 and Fig. 3). RH is globally decreas-
ing and surface downwelling short-wave and long-wave radiation are 

globally increasing, both with stronger rates during CDHWs than during 
individual climatic extremes. In contrast, the SH anomalies are not glob-
ally consistent and display a different sign in the tropics and other land 
regions (Fig. 3a–l). Heat-extreme GPP anomalies are negative in most 
regions except in the water-limited boreal regions (Supplementary Fig. 
20m–o). TER is greatly enhanced in boreal regions but slightly reduced 
over most other regions between 50° S and 50° N, in agreement with 
flux tower sites (Supplementary Fig. 20p–r and Fig. 1l), which are mostly 
located in the mid and low latitudes (Supplementary Fig. 4). The nega-
tive effect of extreme low TWS on GPP significantly exceeds the effect of 
extreme high Tmax in future simulations over more than 80% (75%) of land 
areas under Representative Concentration Pathway (RCP) 8.5 (RCP6.0), 
highlighting the increasing importance of water limitation for future 
carbon assimilation (Supplementary Figs. 20–22m–u). We also project 
the anomalies of GPP, TER and NEP using the Community Land Model 
(CLM4.5) forced by bias-corrected GFDL-ESM2M climate data, and these 
independent evaluations corroborate the increasing constraining role 
of limited water availability for the future carbon sink (Extended Data 
Fig. 5 and Supplementary Fig. 23). During concurrent heat and drought 
conditions, photosynthesis and respiration are both reduced, as detected 
by strong negative anomalies of GPP, TER and NEP in most global land 
areas except for the boreal high latitudes (Fig. 3m–u), implying large 
reductions in ecosystem carbon uptake in a future warmer climate.

Negative NEP anomalies under CDHWs are much stronger than 
when considering only one extreme, particularly under future climate 
(Fig. 3, Supplementary Figs. 20–23 and Extended Data Fig. 5). The pro-
jected reductions in carbon uptake during compounding drought–heat 
events occur alongside general increases in global productivity from 
CO2 fertilization35,36. This paradox may be explained by the fact that the 
CO2 fertilization effect on GPP is offset by the increase in compound 
events in some regions (for example, the Amazon region and southern 
Europe)19, where the respiration losses lead to lower future NEP than in 
historical simulations with minimal projected increases in GPP. Vegeta-
tion mortality and subsequent regrowth and succession processes are 
usually poorly simulated by Earth system models (ESMs). If large drops 
in productivity driven by extreme events lead to enhanced vegetation 
mortality, the effects of climatic extremes on terrestrial productivity 
and carbon storage may be greater than those simulated by ESMs37.

The occurrence of CDHWs is projected to increase fourfold over 
half of the global landmasses (Fig. 4a–c), and the number of CDHW 
days is projected to increase sixfold in 68% of the globe under all RCPs 
(Extended Data Fig. 6). Almost 70% of global land areas are projected 
to experience a fourfold intensification of CDHW duration and severity 
under the medium- and high-emission pathways (that is, RCP6.0 and 
RCP8.5), while RCP2.6 suggests a weaker (that is, twofold) intensifica-
tion rate (Fig. 4d–f and Extended Data Fig. 6). Generally, the intensifi-
cation is greatest for CDHWs, followed by heatwaves, then droughts, 
which suggests that heatwaves may play a dominant role in exacerbat-
ing future CDHWs (Fig. 4, Extended Data Fig. 6 and Supplementary Fig. 
24). The increased CDHWr indicates that the interdependence between 
heatwaves and droughts is growing as the climate warms (Fig. 4g). 
The fractions of the global land area, population and GDP exposed to 
CDHWs are generally projected to increase until the late twenty-first 
century (Fig. 4h–j). Under RCP2.6, the global land area exposed to 
CDHWs increases from 18% during the baseline period to 34% by the end 
of the twenty-first century, while the exposed global fractions of popu-
lation and GDP increase from 19% and 18%, respectively, to ~36% each 
by the 2070s and then slightly decrease to 31% and 30%, respectively, 

Fig. 3 | Anomalies of water, heat and carbon fluxes due to concurrent hot–
drought conditions during historical and future periods as estimated by 
climate models. a–l, Anomalies of RH (a–c), SH (d–f), surface downwelling 
short-wave radiation (SR) (g–i) and long-wave radiation (LR) (j–l) during CDHWs. 
m–u, Anomalies of GPP (m–o), TER (p–r) and NEP (s–u) due to high monthly Tmax 
(above the 90th percentile) and low TWS (TWS-DSI < −0.8). Anomalies of RH, 

SH, SR and LR (GPP, TER and NEP) are calculated as the difference between daily 
(monthly) values in concurrent hot–drought conditions and the mean values 
during the entire warm season. Stippling denotes regions where the sign of the 
relative changes is consistent with the sign of the multi-model means (as shown 
in the figure) in at least 80% of ESM–THM combinations. The historical anomalies 
(left column) combine historical and RCP6.0 TWS data to estimate the TWS-DSI.
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by end of this century. Under RCP6.0 (RCP8.5), substantial increases 
are projected in CDHW exposure, global fractional land area, popula-
tion exposure and GDP exposure, from ~17% (16%) during the baseline 

period to 40%, 38% and 41% (38%, 36% and 36%), respectively. Overall, 
an additional 17–21% of the global population and 18–25% of the GDP are 
projected to be exposed to CDHWs in future climates, which translates 
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to an additional ~1.4 billion to ~1.7 billion people and ~US$13 trillion 
to ~US$20 trillion (at 2015 purchasing power parity) per year. With 
TWS simulated by the H08 model forced by five bias-corrected CMIP6 
models under three Shared Socio-economic Pathways (SSPs) (see the 
details in the Methods), we found stronger exacerbation of CDHWs 
and associated socio-economic exposure than the CMIP5-oriented 
projections, accompanied by a reduced uncertainty (Extended Data 
Fig. 7 and Supplementary Fig. 25).

Future bivariate risks of CDHWs and associated uncertainty
Under RCP8.5, the JRPs of the historical 50-year CDHW (as measured 
during the period 1976–2005) are projected to be below 10 years in more 

than 85% of global land areas (or 52% and 75% under RCP2.6 and RCP6.0). 
We found high inter-model agreement, implying that the occurrence 
of CDHW extremes will be at least fivefold globally by the end of this 
century (Fig. 5d and Supplementary Fig. 26a–c). Most hotspots might 
even experience a tenfold intensification of CDHW occurrence by the 
end of the century, as the historical 50-year CDHW is projected to occur 
once every 5 years by then under RCP8.5. Similarly, the three RCP sce-
narios project that over 90% of the population and GDP in most global 
land areas will be exposed to increasing CDHW risks by the end of this 
century (Supplementary Fig. 26d–i). Moreover, the exposed land area, 
population and fraction of global GDP are all increasing as the climate 
warms, with the global average fraction of land area exposed to the 
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Fig. 4 | Future changes in the characteristics of CDHWs and socio-economic 
exposure to CDHWs under model simulations. a–f, Relative changes in the 
frequency (a–c) and severity (d–f) of CDHWs from the historical period to 
the future period. The insets in show the histograms of the relative change 
percentages, with the dashed vertical line representing the mean value. Stippling 
denotes regions where the sign of the relative changes is consistent with the sign 

of the multi-model means (as shown in the figure) in at least 80% of the GCM–
THM models. g–j, Temporal dynamics of the global average coincidence rate (g), 
exposed land area (h), exposed population (i) and exposed GDP (j). The shading 
represents ±1 s.d., and the historical exposures are presented only by combining 
historical and RCP2.6 TWS data in estimating the TWS-DSI. These results are 
derived from the ISIMIP2b multiple impacts model ensemble.
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historical 50-year CDHW increasing from about 82% to nearly 100% by 
end of this century (Fig. 5a–c). The CMIP6-based ensemble simulations 
from H08 indicate even higher bivariate risks of CDHWs, as the frac-
tions of population and GDP that are exposed might approach 100% 
with smaller uncertainty by 2100, and the average JRP of the historical 
50-year CDHW is projected to be below the 5-year return period across 
almost all the climate regions under SSP585, suggesting a tenfold inten-
sification (Extended Data Fig. 8a–m).

Last, we decomposed the overall uncertainty into different compo-
nents of seven different sources for CMIP5-based projections (or three 
sources for CMIP6-based projections) at the global scale by using the 
multivariate analysis of variance (MANOVA) method (Methods). The 
uncertainty contribution ratios vary across different regions, due to 
the different RCPs and terrestrial hydrological models (THMs) (Sup-
plementary Fig. 26j–p and Extended Data Fig. 8n). For example, in the 
Amazon forests, the RCPs and THMs induce ~27% and 22% of the overall 
uncertainty, respectively. The interactions between scenarios, global 
climate models (GCMs) and THMs also play an important role (Fig. 5e) 
and reveal the importance of examining CDHW changes by using a large 
climate-scenario ensemble and exploring the interactions of different 
models for projecting future climatic extremes.

Discussion
Large-scale atmospheric anomalies (blocking, subsidence and free 
tropospheric warming) play a key role in the coupling of Tmax and TWS, 
and they have been recognized as important drivers of the onset and 
development of droughts and heatwaves38–40. The strong coupling of 
Tmax and TWS suggests that the impacts of associated extremes (that 
is, heatwaves and droughts) should not be assessed in isolation. Com-
pound droughts and heat extremes reduce terrestrial carbon uptake 
much more strongly than either of the two in isolation. The decline in 
carbon uptake induced by compound extreme events could be partially 
offset by CO2 fertilization effects in the future19, but this offset does not 
occur in most regions in the projections by models. Climate models 
project increases in the negative effects of compound extreme events 
on NEP such that, despite CO2 fertilization effects, future NEP during 
compound extreme events remains unchanged or decreases slightly 
in reference to historical conditions, especially in the Amazon and 
southern Europe. Our large climate–hydrology model ensemble under 
both CMIP5 and CMIP6 projects that CDHW magnitudes (occurrence, 
duration and severity) will quadruple in 70% of global land areas under 
medium- and high-emission scenarios. The CDHWr is also increasing 
globally, indicating that the interdependence between heatwaves and 
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droughts is strengthening as the climate warms. Importantly, we found 
that the frequency of extreme CDHWs (historical 50-year events) will 
increase tenfold under the highest-emission scenario, and over 90% of 
the world population and GDP is projected to be exposed to increasing 
bivariate CDHW risks in the future climate under all SSPs and RCPs.

As poor people often live in risky areas and have limited capacity 
to adapt, they might be more exposed or more vulnerable to natural 
disasters than wealthier people41,42. Numerous studies have reported 
that climate change might have unequal impacts on people with dif-
ferent levels of annual income43,44. We therefore examined whether the 
CDHW risks and corresponding socio-economic exposure are different 
between poorer and richer subgroups (refer to Supplementary Text 2 
for identification). Focusing on the bottom and top quintiles (that is, 
grid cells where the GDP per capita is below the 20th percentile or above 
the 80th percentile in each climate region), we found that the poorer 
areas have a higher fraction of the population and GDP (0.44 and 0.44, 
respectively) exposed to CDHWs than the richer areas (0.39 and 0.38, 
respectively) by 2070–2099 under SSP585 (Extended Data Fig. 9). Poorer 
people in most Giorgi regions (for example, AUS, EAS and TIB) are more 
vulnerable to CDHWs than wealthy people in terms of higher CDHWr 
and socio-economic exposure. These disproportionate effects are not 
found in a few other regions (for example, AMZ and NEU), suggesting 
that regional complexity should be considered when designing climate 
mitigation policies. Similarly, people in urban areas are generally more 
capable of adapting, mitigating and insulating themselves and their 
livelihoods from the effects of CDHWs, relative to rural populations. 
We therefore also compared the CDHW risks in rural versus urban areas, 
which are defined by using the bottom and top quintiles of population 
density in each region (Supplementary Text 2). Rural areas are projected 
to face higher CDHWr and higher GDP and population exposures than 
urban areas under climate change across all SSPs (Supplementary  
Fig. 27). When the rural/urban (or poor/rich) areas are defined by using 
a more extreme threshold (that is, the 10th/90th percentile values), the 
effects of CDHWs are even more disproportionate (Supplementary 
Figs. 28 and 29), suggesting that poorer people currently live in mar-
ginal areas that are more exposed to extreme climatic conditions. We 
should note that our analysis keeps the definition of bottom quintile 
for GDP per capita and population density fixed at the 2015-year level 
and therefore does not consider human migration or regional GDP 
changes. The distribution of poor and rural regions might shift under 
climate change (Extended Data Fig. 10 and Supplementary Fig. 30), and 
the ultimate societal impact of CDHWs is a function of the exposure and 
vulnerability of various groups. In future works, human management 
and vulnerability should be considered in different regions to under-
stand the impacts of CDHWs on socio-economic systems. Neverthe-
less, our findings provide a firm conclusion that future CDHW hazards 
are projected to intensify significantly and challenge the sustainable 
development of future socio-ecosystems. This work thus calls for stark 
mitigation and adaptation actions to reduce the adverse impacts of 
warming on societies and to sustain ecosystem productivity, easing the 
growing pressures on global sustainable development, particularly for 
poorer and more rural areas.

Methods
Models, simulation settings and forcing data
The large ensemble simulations include 96 scenario–model combina-
tions from CMIP5 and 15 combinations from CMIP6. The CMIP5-based 
projections include three emission scenarios (that is, RCPs 2.6, 6.0 and 
8.5), four GCMs and eight THMs. The eight THMs include six GHMs, 
CWatM, H08, MPI-HM, PCR-GLOBWB, WaterGAP2 and WaterGAP2-2c; 
one global land surface model, CLM4.5; and one dynamic global vegeta-
tion model, LPJmL. All models simulate the key terrestrial hydrological 
(for example, soil, vegetation and river) processes (see the details in 
Supplementary Table 3), which are forced by the ISIMIP2b daily mete-
orological forcing data45 from four GCMs under CMIP5 (Supplementary 

Table 1). For each GCM, we used both bias-corrected outputs and the 
TWS simulations from eight THMs, which cover both the histori-
cal baseline (1976–2005) and the future projections (2006–2099). 
To improve the robustness of the future projections, we also used 
TWS simulated by the H08 model forced by outputs from five CMIP6 
GCMs (that is, M6A-LR, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2-0 and 
UKESM1-0-LL) under three SSPs (SSP126, SSP370 and SSP585), which 
have been systematically bias-corrected under ISIMIP3b46. To assess 
the projected impacts of climatic extremes on ecosystem productiv-
ity, we also used the GPP, autotrophic respiration and heterotrophic 
respiration outputs from the CLM4.5 model under historical conditions 
and two RCPs (RCP2.6 and RCP6.0), which is forced by bias-corrected 
GFDL-ESM2M outputs. We deduced TER by summing autotrophic 
respiration and heterotrophic respiration and then calculated NEP by 
subtracting TER from GPP. We also used the GPP, TER and NEP of the 
outputs from GFDL-ESM2M, HadGEM2-ES and IPSL-CM5A-LR (not avail-
able in MIROC5). All simulations were conducted at a spatial resolution 
of 0.5° × 0.5°, but the results were bilinearly interpolated to a spatial 
resolution of 2° × 2° for a robust projection. In each model grid cell, 
we defined the warm season as the five-month period with the highest 
mean Tmax in the historical period.

GRACE/GRACE-FO and reconstructed TWS datasets
TWS anomalies from GRACE/GRACE-FO satellite measurements were 
used to evaluate global terrestrial droughts for the 2002–2020 period. 
We used the latest mascon products from three processing centres: the 
Jet Propulsion Laboratory of the California Institute of Technology, 
the Center for Space Research at the University of Texas at Austin and 
the National Aeronautics and Space Administration’s Goddard Space 
Flight Center. To consider possible uncertainty sourced from different 
processing procedures, we used the GRACE/GRACE-FO ensemble mean 
TWS anomalies by calculating the average time series of the three mas-
con datasets. To provide a long-term evaluation of climatic extremes, 
we also used observation-constrained monthly TWS data with a res-
olution of 0.5° × 0.5° covering 1979–2019, which is constructed by 
training a statistical model with multi-source satellite and reanalysis 
datasets47. Based on two different GRACE products and three different 
meteorological forcing datasets, this reconstructed dataset consists 
of six reconstructed products of 100 ensemble members each, which 
has been well validated over 90 large (>500,000 km2) river basins and 
annual streamflow series from 12,496 small (<10,000 km2) basins. 
We averaged all six products to develop an ensemble mean recon-
structed TWS. To assess different drought indices, we also used the 
global 0.5° × 0.5° SPEI data for 2002–2020 from the Climatic Research 
Unit version 2.6. In addition, we used the daily 0.25° × 0.25° TWS data 
for 2003–2020 from the Catchment Land Surface Model simulation 
under GLDAS-2.2.

Reanalysis and Global Land Evaporation Amsterdam  
Model data
We used the hourly CAPE, CIN, CIWV, surface sensible heat flux, latent 
heat flux, 2 m air temperature (T2m), 2 m dew point temperature (Tdew) 
and air pressure (pr) from the fifth-generation atmospheric reanalysis 
of the European Centre for Medium-Range Weather Forecasts (ERA5, 
1979–2020). First, the 2 m hourly RH was computed on the basis of T2m 
and Tdew, and the 2 m SH was derived by Tdew and pr. We then derived 
Tmax and daily average values of the other variables. We also used the 
global gridded Tmax data for 1979–2019 from BEST, which incorpo-
rates approximately 39,000 land stations. To identify the droughts 
by different indices, we used the monthly root-zone (0–100 cm) SM, 
precipitation and runoff from ERA5. We also used the daily root-zone 
SM for 1980–2020 from the Global Land Evaporation Amsterdam 
Model (GLEAM) version 3.5a. In the observational analysis, the results 
of all the different gridded datasets were bilinearly interpolated to a 
spatial resolution of 1° × 1°. We evaluated climatic extremes only in 
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the warm season because heat-related morbidity and mortality in the 
summer tend to exert the more severe impacts on socio-ecosystems. 
We therefore defined the warm season as the hottest five months of the 
climatology of the ERA5 Tmax for each grid cell (Supplementary Fig. 1).

FLUXNET2015 data
We used half-hourly temperature, SM, GPP, TER and NEP data from the 
FLUXNET2015 dataset. SM is measured as the volumetric soil water con-
tent (percentage) at all available depths. These data were processed 
following a consistent and uniform processing pipeline. We used tempera-
ture and SM that were gap-filled using the marginal distribution method48. 
NEP was obtained using a variable friction velocity (u*) threshold for 
each year, with references selected on the basis of model efficiency, and 
was partitioned into GPP and TER following the night-time partitioning 
method49. We selected 73 sites (830 site years) with data covering no less 
than three years (Supplementary Table 2 and Supplementary Fig. 4). 
Daytime half-hourly data (7:00 to 19:00) in the warm season were aggre-
gated to daily values. The warm season is defined as days when running 
seven-day mean temperatures are higher than the 60th percentile of daily 
temperature for the site. We also used a machine-learning-constrained 
SIF dataset and a MODIS-retrieved GPP dataset27,28. The SIF dataset was 
generated by training a machine learning algorithm on the basis of Orbit-
ing Carbon Observatory-2 (OCO-2) SIF observations and surface reflec-
tance from the MODIS. This dataset can capture the seasonal and spatial 
variability of raw OCO-2 SIF at the far-red band (767 nm), which has been 
demonstrated to strongly relate to spatiotemporal variation of GPP27. In 
this study, we used the clear-sky daily SIF for 2000–2020 with a four-day 
temporal resolution and a 0.5° spatial resolution. The retrieved GPP 
dataset is based on an improved light use efficiency theory and is driven 
by satellite data from MODIS and climate data from NCEP Reanalysis II, 
and it has moderate spatial (500 m) and temporal (eight-day) resolutions 
over the entire globe for 2000–201928.

Socio-economic data
For the analysis of the global socio-economic index affected by histori-
cal (1979–2020) climatic extremes, we used the global gridded 2015 
population data from the Socioeconomic Data and Applications Center 
at Columbia University. These population data are consistent with 
national censuses and have been adjusted to match the 2015 Revision of 
the United Nations’ World Population Prospects country totals, which 
are produced at 30-arcsecond (~1 km at the Equator) resolution. We also 
used a global gridded 2015 GDP dataset at a 30-arcsecond resolution, 
which was produced by fully making use of all available subnational 
data and the World Bank dataset50. To project future global exposure 
of populations and assets to climatic extremes, we employed a spatially 
explicit global dataset produced by employing population and urbani-
zation projection models and the Cobb–Douglas production model51. 
This dataset includes gridded population and GDP data under five SSPs, 
covering 2010–2100 at a spatial resolution of 0.5° × 0.5°, and has been 
widely used in climate change impact assessments34. Considering the 
socio-economic challenges to mitigation by different development 
roads, the RCP2.6 (RCP6.0) scenario is associated with SSP1 (SSP4), 
while the RCP8.5 is associated with SSP5 (ref. 52).

Deriving near-surface RH and SH
As near-surface RH and SH are not available in the ERA5 dataset, they 
were calculated by using T2m, Tdew and pressure. The Clausius–Clapeyron 
relationship can describe the relationship between saturation vapour 
pressure (esat) and temperature (T)52:

esat(T) = es0 exp [
Lv
Rv

( 1T0
− 1
T )] (1)

where T0 = 273.16 K and es0 = 611 Pa are integration constants; and Lv 
and Rv refer to the latent heat of vaporization (2.5 × 106 J kg−1) and the 
vapour gas constant (461 J kg−1 K−1), respectively.

As Tdew represents the temperature above which water vapour 
will achieve saturation under constant water vapour content and 
pressure, it can be used to measure actual water vapour pressure. RH 
can thus be deduced by substituting T2m and Tdew into equation (1) as 
RH = esat(Tdew)/esat(T2m).

SH refers to the ratio of the water vapour mass to the total air mass, 
which can be calculated using pr and Tdew

53:

SH = 0.622 esat(Tdew)
pr − 0.378esat(Tdew)

(2)

Tmax–TWS coupling and impacts
The Tmax–TWS coupling was evaluated by calculating Pearson’s correla-
tion coefficient between them. We also sorted observed Tmax and daily 
SM (daily or monthly TWS) from the flux tower sites (GLDAS or GRACE/
GRACE-FO) into 10 × 10 percentile bins in each site and calculated the 
mean probability of each percentile bin of Tmax and SM (or TWS) across 
the 73 sites. We calculated mean daily anomalies of GPP, TER and NEP 
in the 10 × 10 percentile bins to assess the observed mean responses of 
these variables to daily temperature and TWS (or SM), especially the 
responses to extreme high Tmax and low TWS (or SM). The dry extremes 
were determined according to TWS-DSI ≤ −0.8, and the heat extremes 
were identified by daily Tmax being above its 90th percentile over the 
whole observation period (or the historical period of model simula-
tions). In addition, we examined the impacts of compound extremes 
on a variety of water and heat variables (for example, RH, SH and 
CAPE). For both observations and GCM simulations, we calculated 
their anomalies as the difference between the daily (monthly) values 
in heat extremes and CDHWs (droughts) and the mean values in the 
warm season. As the daily carbon flux data are not typically archived 
for most GCMs, we assessed the responses of GPP, TER and NEP to heat 
(measured by monthly Tmax above its 90th percentile over the historical 
period), droughts and the concurring conditions at a monthly scale, in 
historical and future simulations individually.

TWS-DSI
The recently proposed TWS-DSI was used to identify terrestrial drought 
conditions54. A negative TWS-DSI means that the TWS is lower than 
the average level during the study period; this was used to represent 
drought magnitudes. The TWS-DSI was deduced as follows:

TWS − DSIi,j = (TWSi,j − TWSj)/σj (3)

where TWSi,j refers to the TWS anomalies at year i and month j, and TWSj 
and σj denote the mean value and standard deviation of TWS anomalies 
at month j.

For the GCM–THM TWS outputs, we determined the same 
time-mean baseline as the GRACE/GRACE-FO dataset, and we thus 
obtained monthly TWS anomalies during 1976–2099 after subtracting 
the mean values of TWS for 2004–2009. In calculating the mean and 
standard deviation of TWS for any specified period, we used a common 
reference period (that is, 1976–2099) to avoid potential exaggeration in 
estimating TWS variability and drought evolution, and for consistent 
comparison. The drought pattern in the historical period may differ 
slightly in each RCP/SSP, as the TWS-DSI is derived from both historical 
and future TWS data. The droughts are characterized by four metrics: 
frequency, the total number of drought events during the study period; 
days, defined as the total number of drought months; the commonly 
used drought severity (Ds); and duration, identified by the run theory34. 
The probability density functions for both the globe and different 
Giorgi climate regions during two periods were estimated using the 
non-parametric kernel density method. To compare the different 
drought indices, we first fit the monthly ERA5 precipitation and runoff 
data to the gamma distribution function to obtain monthly climato-
logical distributions. We then converted the cumulative probabilities 
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to standard normal deviates by inversing the respective cumulative 
distribution function, and thus the standardized precipitation index 
and standardized runoff index were calculated. Besides these two indi-
ces and the Climatic Research Unit SPEI data, we used both ERA5 and 
GLEAM SM data instead of TWS to characterize the drought conditions.

CDHW identification
A heatwave refers to a spell of at least three consecutive days with Tmax 
exceeding the heat threshold, which is defined as the 90th percentile of 
Tmax in the warm season over the entire study period. Considering pos-
sible epidemiological significance55, two successive heatwave events 
are considered independent if separated by a minimum of two days; 
otherwise, they are clustered into a single event. We also assessed the 
heatwave characteristics using four metrics: frequency, days, duration 
and the heatwave severity (HWs). HWs was estimated by summing the 
daily Tmax anomalies:

HWs =
d=D
∑
d=1

(
Tmax,d − T25p
T75p − T25p

) ;D ≥ 3 (4)

where D indicates the duration of the heatwave event, Tmax,d is the 
daily maximum temperature at day d in this event, and T25p and 
T75p are the 25th and 75th percentiles of Tmax in the warm season, 
respectively.

CDHWs are identified when a heatwave coincides with a monthly 
drought event24. We also calculated CDHWr to represent CDHW char-
acteristics on the basis of the ratio of the total number of CDHWs and 
heatwave events occurring at any given location24. The severity of 
CDHWs was estimated as the product of the daily standardized values 
of Tmax and the daily TWS-DSI (the value was determined to be the same 
with the monthly TWS-DSI for each month) in the CDHW event. The 
severity for a CDHW (CDHWs) is thus given as:

CDHWs =
d=CDHWD

∑
d=1

[(−1 × TWS-DSId) × (
Tmax,d − T25p
T75p − T25p

)] ;CDHWD ≥ 3

(5)

where CDHWD represents the duration of the coinciding days, and 
TWS-DSId is the TWS-DSI value at day d, which is consistent at a monthly 
scale.

Bivariate risk assessments of CDHW
We first quantified changes in the frequency, days, duration and sever-
ity (and CDHWr) of droughts, heatwaves and CDHWs from the histori-
cal period to the future period (2070–2099). Furthermore, to jointly 
understand the changes in both heatwave and drought severity under 
CDHW hazards, we analysed the shifts of the bivariate return period 
by using non-stationary copulas, which are often used to describe the 
dependence between physical variables56. Here we initially estimated 
the marginal distributions of HWs and Ds of CDHWs during the historical 
period by using six candidate distributions (that is, gamma, normal, 
GEV, Weibull, log-normal and inverse Gaussian). We then considered 
commonly used bivariate copula families (Gaussian copula, Student’s t 
copula and Archimedean copulas) to link the marginal distributions of 
historical HWs and Ds. To reduce the uncertainty sourced from different 
marginal and joint distributions, only the best-fitting functions were 
used for fitting HWs and Ds under future climates. We chose the Akaike 
information criterion to determine both the best-fitting marginal 
distributions and the associated copulas57, and we employed the ‘AND’ 
definition of JRP to measure the bivariate hazards of CDHWs, which is 
consistent with the approach of counting concurrent exceedances58. 
The JRP is therefore given as:

JRP = E
1 − FHW − FDR + C(FHW, FDR)

(6)

where FHW (FDR) is the marginal cumulative distribution of HWs (Ds), 
C(FHW, FDR) represents the joint distribution of FHW and FDR, and E denotes 
the average inter-arrival time between compound events.

Using copulas to model the dependence of heatwave and drought 
allows an assessment of the change in the likelihood of extreme (that 
is, 50-year) CDHWs. Therefore, the time-varying copula functions 
of HWs and Ds were constructed by moving a 30-year window, with 
the aim to investigate the shifts of the bivariate CDHW hazard as well 
as the socio-economic exposure to increasing risks under climate 
change. We first estimated the quantiles of HWs and Ds under a given 
JRP during the historical period (Th, determined as the 50-year JRP in 
this study). As there are infinite points on the isoline of a given JRP, the 
likelihood of each event must be taken into consideration. The most 
likely realization is therefore optimized by achieving the maximum 
joint probability density34,59:

{
(HW∗

s ,D∗s ) = argmax f(HW,DR) = c(FHW, FDR) × fHW × fDR

c(FHW, FDR) =
dC(FHW ,FDR)
d(FHW)d(FDR)

(7)

where c(FHW, FDR) is the copula probability density function; fHW and fDR 
denote the probability density functions of FHW and FDR, respectively; 
and (HW∗

s ,D∗s ) is the most likely realization under the given historical 
JRP (Th).

After estimating (HW∗
s ,D∗s ) during the historical period by linking 

equations (6) and (7), we used the 30-year period as a sliding time window 
(consistent with the length of the historical period), and we constructed 
the time-varying marginal distributions and copula functions moving 
from 2006 to 2099 at a 30-year window. After substituting (HW∗

s ,D∗s ) into 
the time-varying distribution function of the kth sliding window in the 
future period (Tf), we calculated an updated JRP, Tf(k). If Tf(k) < Th, it 
means that the bivariate CDHW risk in the kth time window increases, 
and vice versa. As a result, the socio-economic exposure arising from 
increasing bivariate risks can be measured by the following formula:

EPOP =
I[Th − Tf(k)] × POPk

∑k=N2
k=N1 POPk

× 100% (8)

EGDP =
I[Th − Tf(k)] × GDPk

∑k=N2
k=N1 GDPk

× 100% (9)

where EPOP and EGDP denote the population and GDP exposures to 
increasing bivariate CDHW risks, respectively; POPk and GDPk denote 
the population and GDP in the kth year; I(·) is an indication function 
(when Th − Tf(k) > 0, I = 1; otherwise, I = 0); and N1 and N2 denote the 
starting and ending years of the study period, respectively.

Uncertainty decomposition using MANOVA
To project future changes in the JRP of CDHWs, we implemented 96 
scenarios in the impact modelling chain, which consists of three RCPs, 
four GCMs and eight THMs under ISIMIP2b. In this study, the overall 
uncertainty was estimated by the variance of the average JRP during 
the future period and was then decomposed into the contributions 
from different sources using MANOVA60. The change in the climatic 
indicator Δyi,j,k (that is, the updated JRP of the historical 50-year CDHW 
in this study) is assumed to follow the following model:

Δyi,j,k = μ + Ri + Gj + Hk + Ii,j,k (10)

where μ represents the mean change of the model ensemble of the 
climatic indicator; Ri,Gj and Hk represent the effects on the climatic 
indicator of the ith RCP, the jth GCM and the kth THM, respectively; and 
Ii,j,k represents the sum of the effects due to the interactions between 
different sources.
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On the basis of the MANOVA method, the total variance (overall 
uncertainty, VT) can be decomposed into contributions from different 
sources as follows:

VT = VR + VG + VH + VIRG + VIRH + VIRGH (11)

where VR, VG and VH represent the variance contributed by the effects 
of RCPs, GCMs and THMs, respectively; and VIRG, VIRH and VIRGH rep-
resent the variance from interaction effects between RCPs–GCMs, 
RCPs–THMs and RCPs–GCMs–THMs, respectively. By dividing the 
variance from different sources by the total variance, we obtained the 
fractional contributions of different sources to the overall uncertainty. 
We also employed MANOVA to quantify the contributions of uncer-
tainty sources in the CMIP6-based projections.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The CMIP5-based TWS simulations are freely available from the ISI-
MIP project portal (https://data.isimip.org/search/tree/ISIMIP2b/
InputData/climate/). The three GRACE/GRACE-FO products are 
available from http://www2.csr.utexas.edu/grace/, https://grace.
jpl.nasa.gov/data/get-data/ and https://earth.gsfc.nasa.gov. The 
long-term reconstructed TWS data are available on Figshare (https://
doi.org/10.6084/m9.figshare.7670849). The TWS simulations under 
CMIP6 are available at the repository in the Open Science Frame-
work (https://osf.io/hy96r/); this dataset cannot be accessed now, 
because the data are in an embargo period and currently shared 
only among the ISIMIP participants. The SPEI dataset is available 
at https://spei.csic.es/database.html. The GLDAS-2.2 data are avail-
able at https://ldas.gsfc.nasa.gov/gldas/forcing-data. The ERA5 rea-
nalysis data are from https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5. The GLEAM 3.5a data are from https://www.
gleam.eu/. The FLUXNET2015 dataset is from https://fluxnet.org/
data/fluxnet2015-dataset/. The gridded SIF dataset is from https://
doi.org/10.17605/OSF.IO/8XQY6, and the gridded GPP dataset is 
available from https://data.tpdc.ac.cn/en/data/582663f5-3be7-
4f26-bc45-b56a3c4fc3b7/. The global gridded population data are 
available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-p
opulation-density-adjusted-to-2015-unwpp-country-totals-rev11; the 
global gridded GDP data and the GDP per capita data are available 
from https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0. 
The BEST dataset is available at Berkeley Earth (http://berkeleyearth.
org/data/).

Code availability
The R (version 4.1.0) code used for producing Figs. 1–5 and the MATLAB 
(version 2020a) code used for data analysis are available at the reposi-
tory in the Open Science Framework (https://osf.io/dnuxv/).
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Extended Data Fig. 1 | Relationship between daily maximum near-surface 
temperature (Tmax) and terrestrial water storage (TWS) or root-zone soil 
moisture (SM) during 2002–2020. a-d, Pearson’s correlation coefficient 
between: monthly GRACE/GRACE-FO ensemble mean TWS and ERA5 Tmax (a), 
monthly reconstructed TWS and Tmax from Berkeley Earth Surface Temperatures 

(b), daily ERA5 SM and Tmax (c), daily GLEAM SM and ERA5 Tmax (d). Insets in a-d 
show the histogram of the correlation coefficient, with the dashed vertical line 
representing the median value. The graph on the right of each panel shows the 
latitudinal median. e-h, Mean probability of each percentile bin across all land 
grid cells (excluding Greenland and Antarctica in all analyses).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Coupling of Tmax and monthly TWS from the three 
GRACE/GRACE-FO solutions dataset and their impacts on terrestrial carbon 
uptake. a-c, Probability of each percentile bin of Tmax and monthly TWS across 
73 flux tower sites. d-f, Mean anomalies of GPP for each percentile bin of Tmax and 
TWS. g-i, Mean anomalies of TER for each percentile bin of Tmax and TWS. j-l, Mean 
anomalies of NEP for each percentile bin of Tmax and TWS. The three columns 

represent the GRACE/GRACE-FO TWS data produced from JPL, CSR and GSFC, 
respectively. At each site, anomalies of GPP, TER, and NEP are calculated as the 
difference between the daily values in extreme events and the mean daily values 
in the warm season (defined as days when running 7-day mean temperatures are 
higher than the 60th percentile of daily temperature for the site).
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Extended Data Fig. 3 | Anomalies of SIF and GPP during extreme climatic 
events. a, b, Anomalies of SIF (a) and GPP (b) during extreme heat events. c-d, 
Anomalies of SIF (c) and GPP (d) during extreme dry events. e, f, Anomalies of SIF 
(e) and GPP (f) in concurrent heat and dry conditions. At each grid, anomalies 
of SIF (GPP) are calculated as the difference between the 4-day (8-day) values 

in extreme events and the mean 4-day (8-day) values in the warm season. Dry 
conditions are identified using GRACE/GRACE-FO ensemble mean TWS data, 
and the heat conditions are identified by ERA5 Tmax. Insets show the histogram of 
the anomalies, with the dashed vertical line representing the median value. The 
graph on the right shows the latitudinal median value.
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Extended Data Fig. 4 | Temporal dynamics of the GDP exposures to CDHW in 
21 Giorgi climate regions. Each panel has a cluster of 21 grey lines, which show 
the ensemble of the regional GDP exposures in all regions. The black line in each 
figure represents the exposure value in each region, and the color lines represent 

trends of GDP exposures during recent, past and entire periods. The droughts 
are identified by reconstructed TWS data, and the heatwaves are detected by 
using Tmax from the BEST dataset. The * indicates the trend is significant (p < 0.05) 
detected by Mann-Kendall test.
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Extended Data Fig. 5 | Anomalies of GPP, TER and NEP due to extreme heat 
or drought conditions in the GFDL-CLM4.5 model. a-i, Anomalies of carbon 
fluxes in the historical period (a-c), RCP 2.6 (d-f) and RCP 6.0 (g-i) due to extreme 
heat conditions (monthly Tmax above the 90th percentile). j-r, Anomalies of 

carbon fluxes in the historical period (j-l), RCP2.6 (m-o) and RCP6.0 (p-r) due to 
droughts (TWS-DSI < −0.8). The graph on the right shows the latitudinal median 
and 90% confidence interval. The TWS and carbon fluxes are projected by CLM4.5 
model with bias-corrected GFDL-GCM2M outputs.
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Extended Data Fig. 6 | Future changes in characteristics of CDHW and 
heatwaves. Insets in each figure show the histogram of the relative change 
percentages, with the dashed vertical line representing the mean value. Stippling 
denotes regions where the sign of the relative changes is consistent with the sign 

of the multi-model means (as shown in the figure) in at least 80% of GCM-THM 
models. These results are derived from the ISIMIP2b multiple impacts model 
ensemble.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Future changes in the characteristics of CDHW and 
socioeconomic exposure to CDHW under CMIP6. a-l, Relative changes in the 
frequency (a-c), average duration (d-f), average severity (g-i) and coincidence 
rate (j-l) of CDHW from the historical to the future periods. m-p, Temporal 
dynamics of the global average coincidence rate (m), exposed land area (n), 
exposed population (o) and exposed GDP (p). Insets in a-l show the histogram 
of the relative change percentages, with the dashed vertical line representing 

the mean value. Stippling in a-l denotes regions where the sign of the relative 
changes is consistent with the sign of the multi-model means (as shown in the 
figure) in at least 80% of GCMs. In m-p, the shading represents ±1 standard 
deviation, and only the historical exposures linking to SSP126 TWS data are 
presented. For projecting CDHW, the TWS is simulated by driving H08 forced by 
five bias-corrected GCMs under CMIP6.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Projected JRP of historical 50-year bivariate CDHW 
and socioeconomic exposure under CMIP6. a-c, Average JRP in the future 
period under a non-stationary bivariate framework. d-i, Population (d-f) and GDP 
(g-i) exposure due to increasing risk of bivariate CDHW in the future period. j-l, 
Temporal dynamics of the global average exposed land area (j), population (k) 
and GDP (l) due to increasing CDHW risk; the solid curve and shading indicate 
multi-model mean ± SD. m, Boxplot of updated JRP of the historical 50-year 
CDHW in different Giorgi climate regions under SSP585; the centre line indicates 

median value, and the box bounds (whiskers) indicate 25th/75th percentile 
(min/max) values. n, Average contribution ratios of seven uncertainty sources in 
different Giorgi climate regions and in the global landmass (Glob). Stippling in a-i 
denotes regions where the sign of the JRP is consistent with the sign of the multi-
model means (as shown in the figure) in at least 80% of GCMs. For projecting 
CDHW, the TWS is simulated by driving H08 forced by five bias-corrected GCMs 
under CMIP6.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | CDHW coincidence rate and socioeconomic exposures 
to CDHW in rich versus poor areas. a-f, Temporal dynamics of the global 
average coincidence rate (a, b), and exposed GDP fraction (c, d) and population 
fraction (e, f) to CDHW. g-i, Average coincidence rate (g), GDP exposure fraction 
(h) and population exposure fraction (i) during 2070–2099 in different Giorgi 
climate regions under SSP585. In a-f, the shading represents ±1 standard 

deviation, and only the historical exposures linking to SSP126 TWS data are 
presented. For projecting CDHW, the TWS is simulated by driving H08 forced by 
five bias-corrected GCMs under CMIP6. Rich (poor) areas are identified where the 
2015-year GDP per capita exceeds (is below) the 80th (20th) percentile values in 
different regions.
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Extended Data Fig. 10 | Gridded Gross Domestic Product (GDP) per capita (purchasing power parity) in constant 2011 international US dollars (USD) for six 
typical years during 1990–2015. a-f, GDP per capita in year of 1990 (a), 1995 (b), 2000 (c), 2005 (d), 2010 (e) and 2015 (f).
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection We use the python code released by European Centre for Medium-Range Weather Forecasts to download the ERA5 dataset. For all the other 
data such as GRACE/GRACE-FO and FLUXNET2015 dataset, we download them in the website without any software.

Data analysis We use Matlab (version 2020a) and R (version 4.1.0) for data analysis.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

The CMIP5-based TWS simulations are freely available from the ISIMIP project portal (https://data.isimip.org/search/tree/ISIMIP2b/InputData/climate/). The three 
GRACE/GRACE-FO products are available from http://www2.csr.utexas.edu/grace/, https://grace.jpl.nasa.gov/data/get-data/ and https://earth.gsfc.nasa.gov. The 
long-term reconstructed TWS data are available on Figshare (https://doi.org/10.6084/m9.figshare.7670849). The TWS simulations under CMIP6 are available at the 
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repository in the Open Science Framework (https://osf.io/hy96r/); this dataset cannot be accessed now, because the data is in embargo period and currently only 
shared among the ISIMIP participants. The SPEI dataset is available at https://spei.csic.es/database.html. The GLDAS-2.2 data are available at https://
ldas.gsfc.nasa.gov/gldas/forcing-data. The ERA5 reanalysis data are from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The GLEAM 3.5a 
data are from https://www.gleam.eu/. The FLUXNET2015 dataset is from https://fluxnet.org/data/fluxnet2015-dataset/. The gridded SIF dataset is from https://
doi.org/10.17605/OSF.IO/8XQY6, and the gridded GPP dataset is available from https://data.tpdc.ac.cn/en/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7/. The 
global gridded population data are available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-
rev11; the global gridded GDP data and the GDP per capita data are available from https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0. The Berkeley 
Earth Surface Temperatures (BEST) dataset are available at Berkeley Earth (http://berkeleyearth.org/data/). 

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender Our study is not relevant with human characteristics such as sex and gender.

Population characteristics Our study is not relevant with population characteristics.

Recruitment We do not have human participants in this work.

Ethics oversight Our study is not relevant with this issue.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We investigate the physical mechanisms behind compound drought-heatwave events and their impacts on socio-ecosystem 
productivity. To achieve this goal, we combine satellite observations, reanalysis and model simulations. The data of field 
measurements are collected from FLUXNET2015, which is also an open access dataset.

Research sample Our data are collected from international community, such as GRACE/GRACE-FO, ERA5 reanalysis and CMIP6. All the dataset can be 
access by the public.

Sampling strategy Our study is conducted at a global scale. We use Person's test to validate the correlation between different variables, and use the M-
K method to test the trends. 

Data collection We use the python code released by European Centre for Medium-Range Weather Forecasts to download the ERA5 dataset. For all 
the other data such as GRACE/GRACE-FO and FLUXNET2015 dataset, we download them in the website without any software.

Timing and spatial scale Most of our daily data in observational period (1979-2020) have the spatial resolution of 0.25°, and our data of model simulations 
have the spatial resolution of 0.5°. We conduct our analysis at a global scale. 

Data exclusions We exclude some stations of the FLUXNET2015, because those stations have short observation period. We also provide the lists of 
our used stations in Supplementary Information.

Reproducibility All of our results can be repeated by running our codes. 

Randomization To reduce uncertainty of our results, we conduct our analysis by using a large model ensemble of 111 members. We also quantify the 
uncertainty contributions from different sources at a global scale. All the results confirm that our main conclusions are robust.

Blinding Our data are collected from open access platform, and we have clearly illustrated our analysis at a global scale.   

Did the study involve field work? Yes No
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Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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