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Compound drought-heatwave (CDHW) events are one of the worst
climatic stressors for global sustainable development. However, the

physical mechanisms behind CDHWs and their impacts on socio-ecosystem
productivity remain poorly understood. Here, using simulations

from alarge climate-hydrology model ensemble of 111 members, we
demonstrate that the frequency of extreme CDHWs is projected to increase
by tenfold globally under the highest emissions scenario, along with a
disproportionate negative impact on vegetation and socio-economic
productivity by the late twenty-first century. By combining satellite
observations, field measurements and reanalysis, we show that terrestrial
water storage and temperature are negatively coupled, probably driven

by similar atmospheric conditions (for example, water vapour deficit

and energy demand). Limits on water availability are likely to play a more
importantrolein constraining the terrestrial carbon sink than temperature
extremes, and over 90% of the global population and gross domestic
product could be exposed to increasing CDHW risks in the future, with more
severe impacts in poorer and more rural areas. Our results provide crucial
insights towards assessing and mitigating adverse effects of compound
hazards on ecosystems and human well-being.

Droughts and heatwaves are driven by complex interactions between
physical processes and are often initiated by similar synoptic circula-
tion anomalies™?; they are thus likely to occur simultaneously®*. As
droughts are occurring more frequently and atmospheric warming
triggers stronger land-atmosphere feedback, the risks of compound
drought-heatwave (CDHW) events are intensified across the globe*®,
amplifying adverse impacts on socio-economic sustainability and
human well-being”®. CDHWs can exacerbate vegetation mortality,

for example, which in turn may cascade into other hazards, such as
wildfires and crop yield losses’"'; they can also jeopardize electric grid
reliability and adversely affect awide range of natural and human-made
systems'. In the United States alone, three CDHWs between 2011 and
2013 caused economic damages of roughly $60 billion®.

How CDHWs regulate ecosystem productivity is also animportant
issue. The terrestrial biosphere acts as a prominent sink for anthro-
pogenic CO,, sequestering about 30% of annual CO, emissions™**,
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However, climatic extremes can adversely affect its ability to func-
tion as asink; for example, the 2003 European drought and heatwave
reduced plant productivity by ~-30%, thereby cancelling four years of
CO, net uptake over Europe”. After severe CDHWSs, plant recovery usu-
ally lags owing to reduced growth, non-reversible losses in hydraulic
conductance or depletion of carbon reserves'®”. This lagged growth
may inturnincrease vulnerability to another CDHW if it occurs before
complete recovery®, potentially limiting the capacity of continents to
actas carbon sinks™",

With growing evidence about these damages, CDHWs are
increasingly regarded as one of the worst climatic stressors to global
socio-economic sustainability and ecosystem health?°~*2, Under-
standing CDHW dynamics in awarming Earth is thus essential for the
implementation of the United Nations Sustainable Development Goals
(SDGs), in particular SDG13, which aims to combat climate change and
its impacts. Yet, how to describe CDHWs remains an open question,
particularly in terms of defining a fully representative stress index*.
Previous studies have assessed droughts through a variety of indices
such as the (self-calibrated) Palmer Drought Severity Index and the soil
moisture (SM) droughtindex®. More recently, terrestrial water storage
(TWS), akey determinant of global water and energy budgets, has been
employed toreveal large-scale droughtimpacts on hydrologic systems
and plantgrowth. TWS represents the vertically integrated water stor-
age as opposed to conventional indices that only capture partial water
storages or fluxes”?*. However, the effects of TWS on future shifts in
CDHW dynamics and the resulting impacts on socio-ecosystem pro-
ductivity remain unexamined.

Here we present a quantitative assessment of the socio-economic
and ecological consequences of CDHWs at a global scale, under both
currentand future climates. We first analysed the association between
daily maximum near-surface temperature (7,,,) and TWS fromsatellite
observations, field measurements, and Gravity Recovery and Climate
Experiment (GRACE)-constrained reconstruction and reanalysis data
during1979-2020. We detected strong multi-temporal-scale coupling
during the warm season (Supplementary Fig. 1), highlighting the high
likelihood of concurrent drought and heat extremes. To assess the
physical mechanisms behind CDHWs, we measured the responses
of large-scale and local-scale atmospheric dynamics to heat stress,
drought and their temporally compounding extremes. We then evalu-
ated the effects of climatic extremes on the terrestrial carbon budget
by using net ecosystem productivity (NEP) as well as its partitioning
into photosynthesis (that is, gross primary productivity (GPP)) and
respiration (that s, total ecosystem respiration (TER)). We did this by
employing in situ eddy-covariance flux tower observations, a recent
satellite-based machine-learning-generated solar-induced chlorophyll
fluorescence (SIF) dataset” and a light use efficiency theory-based GPP
dataset®. Moreover, we assessed future shifts in CDHWs for various
socio-economic and ecological subgroups using alarge ensemble (96
scenarios) of climate-hydrology simulations under the Inter-Sectoral
Impact Model Intercomparison Project Phase 2b (ISIMIP2b; Supple-
mentary Table 1) and 15 members of TWS simulations by driving the
HO8 global hydrological model (GHM) with bias-corrected Coupled
Model Intercomparison Project Phase 6 (CMIP6) ensemble outputs.
Finally, we examined the changes in joint return period (JRP) using

an ‘AND’ hazard scenario of CDHWSs under a bivariate non-stationary
framework, and we systematically quantified the associated uncer-
tainty (more details are provided in the Methods).

Results

Observed water-heat-carbon dynamics in climatic extremes
Indicators of land water content (that is, TWS and SM) and T,,,, are
negatively correlated globally (Fig. 1i and Extended Data Fig.1), prob-
ably duetotheincreasein evapotranspiration during the warmseason.
The bimodality (that is, the binning distribution towards both ends)
suggests that extreme stressors should not be assessed in isolation
(Extended Data Fig. 1e-h) and can be explained by land-atmosphere
coupling®. To disentangle the influence of atmospheric conditions
on climatic extremes, we estimated the anomalies of composite vari-
ables during drought events, heat extremes and concurring CDHW
events. Heat extremes (above the 90th percentile of T,,,,) occur under
large-scale atmospheric conditions such as high convective avail-
able potential energy (CAPE) and high convective inhibition (CIN)
co-occurring in higher-latitude regions (Fig.1a,b). High CAPE suggests
a high moist convection potential, thereby enhancing the likelihood
of intense rainstorms. The moist convection potential over land is also
linked to higher sensible heat flux, latent heat flux (upward positive) and
column-integrated water vapour (CIWV), correlated with higher spe-
cific humidity (SH) over most lands in the Northern Hemisphere (Fig.
1c-f). Nevertheless, atmospheric moisture transport has weakened
across almost the entire global land surface, as indicated by widespread
negative anomalies of vertically integrated moisture convergence
(VIMC), and thus decreases relative humidity (RH) over land (Fig. 1g,h).
In the tropics and in several regions of the mid-latitudes, low CAPE is
accompanied by high CIN and weak water-heat transport strength
(negative anomalies of latent heat flux, CIWV, SH, VIMC and RH), which
may enhance air dryness and thus propagate into terrestrial droughts
(Fig.1a-h). Athigher latitudes and in dry conditions (asidentified by a
TWS-based drought severity index, TWS-DSI < -0.8; more details are
provided in the Methods), we detected negative anomalies of CAPE,
CIWV, SH and latent heat flux, which is opposite to the patterns found
during extreme heat conditions (Supplementary Fig. 2). Inthe remain-
inglandregions, the patterns of anomalies of water-heat variables are
largely consistent with heat conditions, even though their responses
to dry events are weaker than the responses to heat extremes. Due to
theseregionally divergentimpacts of heat and dry extremes, the atmos-
pheric conditions during concurrent hot-dry conditions generally
indicate amore severe air dryness as well as less moist convection and
water vapour transport, particularly in the mid-latitudes and tropics
(Supplementary Fig. 3).

Wethen evaluated the impacts of these climatic extremes onthe
terrestrial carbon budget at global eddy-covariance tower sites (Sup-
plementary Fig. 4 and Supplementary Table 2). We found a strong
negative correlation between observed T,,, and daily Global Land
Data Assimilation System (GLDAS)-based TWS (r=-0.2, P<0.001)
(Fig. 1n), along with a bimodal behaviour (Fig. 1j). GPP responds
to T« both nonlinearly and non-monotonically: at low T,,,,, GPP
is enhanced with rising T,,,, as it promotes photochemistry by

warming®**'; however, when T,,,, is very high, further increases in

Fig.1| Anomalies of composite water-heat-carbon variables during extreme
climatic events. a-h, Anomalies of CAPE (a), CIN (b), sensible heat flux (c),
latent heat flux (d), CIWV (e), SH (f), VIMC (g) and RH (h) during extreme heat
events. The extreme heat events in a-h are identified using the 90th percentile
of ERAS T,..«in each grid cell. i, Pearson’s correlation coefficient (r) between

daily GLDAS TWS and ERAS T,,,,..j, Mean probability of each percentile bin of T,,,,,
and daily GLDAS TWS across 73 flux tower sites. k-m, Mean anomalies of GPP

(k), TER (I), and NEP (m) for each percentile bin of T;,,, and GLDAS TWS across

73 flux tower sites. These three panels share the same colour bar. n, Pearson’s
correlation coefficient between T, and TWS (or SM) from different datasets

across 73 flux tower sites. JPL, Jet Propulsion Laboratory; CSR, Center for Space
Research; GSFC, Goddard Space Flight Center. 0, Anomalies of GPP, TER and NEP
above 90th percentiles of T,,,, and below 10th percentiles of daily TWS (or SM)
across 73 flux tower sites. The daily TWS in j-m and the box plot in 0 are from the
GLDAS-2.2 dataset. In n,0, the mean values of different datasets are marked by
different shapes, and the centre lines indicate the median values; the box bounds
indicate the 25th/75th percentile values, and the whiskers indicate the minimum/
maximum values. At each site/grid, anomalies of the variables are calculated as
the difference between the daily values in extreme events and the mean daily
valuesin the five-month warm season.
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Tmax cause GPP stress (Fig. 1k), which strongly inhibits plant pho-
tosynthesis®’. TER increases with T,,,, but at a more moderate pace
than GPP (Fig. 11), so that net ecosystem exchange still responds
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negatively to the highest T,,,, (Fig. Im). TWS depletion might reduce
GPP and TER, as water stress reduces photosynthesis through sto-
matal and non-stomatal regulation and respiration through soil
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Fig.2|Recent changesin frequency and intensity of CDHWs as well as related
socio-economic exposure. a,b, Changes in frequency (a) and severity (b) of
CDHWs between two periods (recent,1999-2019, minus past, 1979-1998). The
insets ina,b show the histogram of the relative change percentages, with the
dashed vertical line representing the mean value. ¢, Temporal dynamics of the
global average CDHW, and the fraction of land area (Land), population (POP)
and GDP that is exposed to CDHWs. The asterisks indicate that the change is
significant (P < 0.05) as detected by the Mann-Kendall test. d, Relationship
between r(T,,,, TWS) and CDHW, across the land grids (excluding Greenland and
Antarctica); the two-sided F-test was used for testing significance. e,f, Box plots
of coincidence rates (e) in 21 different Giorgi climate regions (f). In the box plots

ine, the centreline indicates median value, the box bounds indicate the 25th/75th
percentile values, the whiskers indicate the minimum/maximum values and

the circlesindicate the outliers. The droughts are identified by reconstructed
TWS data, and the heatwaves are detected by using 7., from the Berkeley Earth
Surface Temperatures (BEST) dataset. AUS, Australia; AMZ, Amazon Basin; SSA,
Southern South America; CAM, Central America; WNA, Western North America;
CAN, Central North America; ENA, Eastern North America; ALA, Alaska; GRL,
Greenland and Northern Territories; MED, Mediterranean Basin; NEU, Northern
Europe; WAF, Western Africa; EAF, Eastern Africa; SAF, Southern Africa; SAH,
Sahara; SEA, Southeast Asia; EAS, East Asia; SAS, South Asia; CAS, Central Asia;
TIB, Tibet; NAS, North Asia.

enzyme activities. Under concurrent high 7,,, and low TWS, NEP
mean anomalies (-1.42 gC m2d™) are largely determined by GPP
anomalies (-1.25gC m™2d™), while TER is slightly increased with
amean anomaly of 0.30 gC m™2d™ (Fig. 10). When assessing these
same relationships using insitu root-zone SM as well as monthly TWS
from three GRACE/GRACE-FO solutions, we still detected impairing
effects of heatand dry extremes on terrestrial carbon uptake (Fig. 1o
and Extended DataFig. 2). The machine-learning-generated SIF and

MODIS-retrieved GPP anomalies are negative in most regions during
extreme heat, drought and concurrent extremes (Extended Data
Fig.3), exceptinboreal regions and small areas of tropical rainforests
such as the Amazon forests, where SIF and GPP are enhanced because
ecosystems tend to be temperature limited***. The potential for
heat- or dryness-related carbon loss therefore needs to be under-
stood when exploring the impacts of concurrent extreme climatic
events on ecosystems.
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Observed increasesin climatic extremes and theirimpacts
Recent changes in climatic extremes are evaluated in terms of their
frequency, days, duration and severity (see the definitions inthe Meth-
ods). Globally, the frequencies of the three types of climatic extreme
events (heatwave, drought and CDHW) are increasing; for example, 67%
of global land areas have experienced more CDHWsin recent decades
(Fig.2a). The duration and severity of CDHWs are greatly increasing in
the eastern United States, central South America, parts of central Africa,
eastern Europe, the Middle East and parts of eastern Asia (Fig. 2b and
Supplementary Fig. 5). Furthermore, the global average coincidence
rate (thatis, the ratio of CDHW to heatwave events (CDHW,), 2.75% per
decade), exposed land area (4.94% per decade), exposed population
(4.65% per decade) and exposed gross domestic product (GDP) (5.24%
per decade) have all significantly increased since 1979 (Fig. 2¢). Eight
of the Giorgi climate regions are identified as CDHW hotspots (that
is, AMZ, CAM, ENA, CNA, MED, SSA, NAS and EAS; see the locations
in Fig. 2f), where CDHWs have both long duration and severe magni-
tude (Supplementary Fig. 6). The hotspots are located in areas with
high CDHW,, where heatwaves and droughts have a high likelihood
of occurring simultaneously and are accompanied by stronger nega-
tive r(TWS, T,..,) (Fig. 2d,e). Five (three) out of eight hotspots show
significant (insignificant) increasesin socio-economic (either GDP or
population-weighted) exposure due to exacerbated CDHWs (Extended
DataFig.4 and Supplementary Fig.7); some regions even show increas-
ing rates of >10% per decade for both GDP and population exposure.
The three GRACE/GRACE-FO solutions detect similar hotspots to the
reconstructed data (Supplementary Figs. 8-10) but indicate stronger
trends and socio-economic exposures (Supplementary Figs. 11-13),
which may be driven by more rapid intensification of warming and
dryinginthe past decade, implying that tackling and adapting to these
climatic hazards is a growing societal challenge.

A comparison of the coupled TWS-DSI with traditional drought
indices suggests that the TWS-DSI provides new information and a
stronger signal of drought exacerbationinrecent decades. Unlike the
standardized runoffindex, whichis highly correlated with the standard-
ized precipitationindex, the TWS-DSI exhibits substantial changes over
timein most of the Giorgiregions (Supplementary Figs.14-16), because
it encompasses all surface and subsurface storage components that
are relevant to terrestrial water availability. The TWS-DSI also differs
from the standardized precipitation evapotranspiration index (SPEI)
and SM-based indices, which fail to characterize real conditions of soil
and groundwater (surface water storage such as ice and snow) (Sup-
plementary Figs.17-19). The TWS-DSI suggests that the drought magni-
tudes have substantially changed across most Giorgiregionsin recent
decades, while the other indices show negligible changes between the
recent and past periods, thus underestimating drought intensification
inmost subregions and at the global scale. This considerable difference
between the abilities of differentindices to estimate temporal changes
underscores theimportance of considering groundwater and human
activities in assessing drought risks®***, by using an integrated index
such as the TWS-DSI.

Projections of climatic extremes and socio-ecosystem effects

Before projecting future CDHW characteristics, we first evaluated the
anomalies of composite water-heat-carbon variables during extreme
climatic events, under historical and future periods (Supplementary
Figs.20-22, Supplementary Text 1and Fig. 3). RH is globally decreas-
ing and surface downwelling short-wave and long-wave radiation are

globally increasing, both with stronger rates during CDHWs than during
individual climatic extremes. In contrast, the SH anomalies are not glob-
ally consistent and display a different sign in the tropics and other land
regions (Fig. 3a-1). Heat-extreme GPP anomalies are negative in most
regions exceptinthe water-limited boreal regions (Supplementary Fig.
20m-o). TERis greatly enhanced in boreal regions but slightly reduced
over most other regions between 50° S and 50° N, in agreement with
flux tower sites (Supplementary Fig.20p-r and Fig.11), which are mostly
located in the mid and low latitudes (Supplementary Fig. 4). The nega-
tive effect of extreme low TWS on GPP significantly exceeds the effect of
extreme high T, in future simulations over more than 80% (75%) of land
areasunder Representative Concentration Pathway (RCP) 8.5 (RCP6.0),
highlighting the increasing importance of water limitation for future
carbonassimilation (Supplementary Figs.20-22m-u). We also project
the anomalies of GPP, TER and NEP using the Community Land Model
(CLM4.5) forced by bias-corrected GFDL-ESM2M climate data, and these
independent evaluations corroborate the increasing constraining role
of limited water availability for the future carbon sink (Extended Data
Fig.5and Supplementary Fig.23). During concurrent heat and drought
conditions, photosynthesis and respirationare both reduced, as detected
by strong negative anomalies of GPP, TER and NEP in most global land
areas except for the boreal high latitudes (Fig. 3m-u), implying large
reductions in ecosystem carbon uptake in a future warmer climate.
Negative NEP anomalies under CDHWSs are much stronger than
when considering only one extreme, particularly under future climate
(Fig.3, Supplementary Figs. 20-23 and Extended Data Fig. 5). The pro-
jectedreductionsin carbon uptake during compounding drought-heat
events occur alongside general increases in global productivity from
CO, fertilization®>**, This paradox may be explained by the fact that the
CO, fertilization effect on GPP is offset by the increase in compound
eventsinsomeregions (for example, the Amazonregionand southern
Europe)”, where therespirationlosses lead to lower future NEP thanin
historical simulations with minimal projected increases in GPP. Vegeta-
tionmortality and subsequent regrowth and succession processes are
usually poorly simulated by Earth system models (ESMs). If large drops
in productivity driven by extreme events lead to enhanced vegetation
mortality, the effects of climatic extremes on terrestrial productivity
and carbon storage may be greater than those simulated by ESMs™.
The occurrence of CDHWs is projected to increase fourfold over
half of the global landmasses (Fig. 4a—c), and the number of CDHW
daysisprojected toincrease sixfoldin 68% of the globe under allRCPs
(Extended Data Fig. 6). Almost 70% of global land areas are projected
toexperience afourfold intensification of CDHW duration and severity
under the medium- and high-emission pathways (that is, RCP6.0 and
RCP8.5), while RCP2.6 suggests aweaker (that is, twofold) intensifica-
tionrate (Fig. 4d-fand Extended Data Fig. 6). Generally, the intensifi-
cation is greatest for CDHWs, followed by heatwaves, then droughts,
which suggests that heatwaves may play adominantrolein exacerbat-
ing future CDHWs (Fig. 4, Extended Data Fig. 6 and Supplementary Fig.
24).Theincreased CDHW, indicates that the interdependence between
heatwaves and droughts is growing as the climate warms (Fig. 4g).
The fractions of the global land area, population and GDP exposed to
CDHWs are generally projected to increase until the late twenty-first
century (Fig. 4h-j). Under RCP2.6, the global land area exposed to
CDHWsincreases from 18% during the baseline period to 34% by the end
ofthetwenty-first century, while the exposed global fractions of popu-
lation and GDP increase from 19% and 18%, respectively, to ~36% each
by the 2070s and then slightly decrease to 31% and 30%, respectively,

Fig.3| Anomalies of water, heat and carbon fluxes due to concurrent hot-
drought conditions during historical and future periods as estimated by
climate models. a-1, Anomalies of RH (a-c), SH (d-f), surface downwelling
short-wave radiation (SR) (g-i) and long-wave radiation (LR) (j-1) during CDHWs.
m-u, Anomalies of GPP (m-o0), TER (p-r) and NEP (s-u) due to high monthly T,
(above the 90th percentile) and low TWS (TWS-DSI < -0.8). Anomalies of RH,

SH, SRand LR (GPP, TER and NEP) are calculated as the difference between daily
(monthly) values in concurrent hot-drought conditions and the mean values
during the entire warm season. Stippling denotes regions where the sign of the
relative changes is consistent with the sign of the multi-model means (as shown
inthe figure) in at least 80% of ESM-THM combinations. The historical anomalies
(left column) combine historical and RCP6.0 TWS data to estimate the TWS-DSI.
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by end of this century. Under RCP6.0 (RCP8.5), substantial increases  period to40%,38% and 41% (38%,36% and 36%), respectively. Overall,
are projected in CDHW exposure, global fractional land area, popula-  anadditional 17-21% of the global population and 18-25% of the GDP are
tion exposure and GDP exposure, from~17% (16%) during the baseline  projected tobe exposed to CDHWs in future climates, which translates
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Fig. 4| Future changes in the characteristics of CDHWs and socio-economic
exposure to CDHWs under model simulations. a-f, Relative changesin the
frequency (a-c) and severity (d-f) of CDHWSs from the historical period to

the future period. The insets in show the histograms of the relative change
percentages, with the dashed vertical line representing the mean value. Stippling
denotes regions where the sign of the relative changes is consistent with the sign
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of the multi-model means (as shown in the figure) in at least 80% of the GCM~
THM models. g-j, Temporal dynamics of the global average coincidence rate (g),
exposed land area (h), exposed population (i) and exposed GDP (j). The shading
represents +1s.d., and the historical exposures are presented only by combining
historicaland RCP2.6 TWS datain estimating the TWS-DSI. These results are
derived from the ISIMIP2b multiple impacts model ensemble.

to an additional ~1.4 billion to ~1.7 billion people and ~-US$13 trillion
to ~US$20 trillion (at 2015 purchasing power parity) per year. With
TWS simulated by the HO8 model forced by five bias-corrected CMIP6
models under three Shared Socio-economic Pathways (SSPs) (see the
details in the Methods), we found stronger exacerbation of CDHWs
and associated socio-economic exposure than the CMIP5-oriented
projections, accompanied by a reduced uncertainty (Extended Data
Fig. 7 and Supplementary Fig. 25).

Future bivariate risks of CDHWs and associated uncertainty
Under RCP8.5, the JRPs of the historical 50-year CDHW (as measured
during the period 1976-2005) are projected to be below 10 yearsin more

than85% of globalland areas (or 52% and 75% under RCP2.6 and RCP6.0).
We found high inter-model agreement, implying that the occurrence
of CDHW extremes will be at least fivefold globally by the end of this
century (Fig. 5d and Supplementary Fig. 26a-c). Most hotspots might
even experience a tenfold intensification of CDHW occurrence by the
end of the century, as the historical 50-year CDHW is projected to occur
once every 5 years by then under RCP8.5. Similarly, the three RCP sce-
narios project that over 90% of the populationand GDP in most global
land areas will be exposed to increasing CDHW risks by the end of this
century (Supplementary Fig. 26d-i). Moreover, the exposed land area,
population and fraction of global GDP are allincreasing as the climate
warms, with the global average fraction of land area exposed to the
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Fig.5|Projected JRP of historical 50-year bivariate CDHWs and socio-
economic exposure. a-c¢, Temporal dynamics of the fractions of global average
exposed land area (a), population (b) and GDP (c) due to increasing CDHW risk;
the solid curves and shading indicate the multi-model means + s.d. d, Box plots
of'the updated JRP of the historical 50-year CDHW in different Giorgi climate

regions under RCP8.5; the centre line indicates the median value, the box bounds
indicate the 25th/75th percentile values and the whiskers indicate the minimum/
maximum values. e, Average contribution ratios of seven uncertainty sources in
different Giorgi climate regions and the global landmass (Glob). These results are
derived from the ISIMIP2b multiple impacts model ensemble.

historical 50-year CDHW increasing from about 82% to nearly 100% by
end of this century (Fig. 5a-c). The CMIP6-based ensemble simulations
from HO8 indicate even higher bivariate risks of CDHWs, as the frac-
tions of population and GDP that are exposed might approach 100%
with smaller uncertainty by 2100, and the average JRP of the historical
50-year CDHW is projected to be below the 5-year return period across
almost all the climate regions under SSP585, suggesting atenfold inten-
sification (Extended Data Fig. 8a-m).

Last, we decomposed the overall uncertainty into different compo-
nents of seven different sources for CMIP5-based projections (or three
sources for CMIP6-based projections) at the global scale by using the
multivariate analysis of variance (MANOVA) method (Methods). The
uncertainty contribution ratios vary across different regions, due to
the different RCPs and terrestrial hydrological models (THMs) (Sup-
plementaryFig. 26j-p and Extended Data Fig. 8n). For example, in the
Amazon forests, the RCPs and THMs induce ~27% and 22% of the overall
uncertainty, respectively. The interactions between scenarios, global
climate models (GCMs) and THMs also play animportant role (Fig. 5e)
andreveal theimportance of examining CDHW changes by using a large
climate-scenario ensemble and exploring theinteractions of different
models for projecting future climatic extremes.

Discussion

Large-scale atmospheric anomalies (blocking, subsidence and free
tropospheric warming) play akey role in the coupling of T;,,,and TWS,
and they have been recognized as important drivers of the onset and
development of droughts and heatwaves®*°, The strong coupling of
Tax and TWS suggests that the impacts of associated extremes (that
is, heatwaves and droughts) should not be assessed inisolation. Com-
pound droughts and heat extremes reduce terrestrial carbon uptake
much more strongly than either of the two inisolation. The declinein
carbonuptakeinduced by compound extreme events could be partially
offset by CO, fertilization effects in the future®, but this offset does not
occur in most regions in the projections by models. Climate models
projectincreasesin the negative effects of compound extreme events
on NEP such that, despite CO, fertilization effects, future NEP during
compound extreme events remains unchanged or decreases slightly
in reference to historical conditions, especially in the Amazon and
southern Europe. Our large climate-hydrology model ensemble under
both CMIP5 and CMIP6 projects that CDHW magnitudes (occurrence,
duration and severity) will quadruple in 70% of global land areas under
medium- and high-emission scenarios. The CDHW, is also increasing
globally, indicating that the interdependence between heatwaves and
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droughtsis strengthening as the climate warms. Importantly, we found
that the frequency of extreme CDHWs (historical 50-year events) will
increase tenfold under the highest-emission scenario, and over 90% of
the world populationand GDPis projected to be exposed to increasing
bivariate CDHW risks in the future climate under all SSPs and RCPs.

As poor people often live in risky areas and have limited capacity
to adapt, they might be more exposed or more vulnerable to natural
disasters than wealthier people**2. Numerous studies have reported
that climate change might have unequal impacts on people with dif-
ferentlevels of annual income****, We therefore examined whether the
CDHW isks and corresponding socio-economic exposure are different
between poorer and richer subgroups (refer to Supplementary Text 2
for identification). Focusing on the bottom and top quintiles (that is,
grid cellswhere the GDP per capitais below the 20th percentile or above
the 80th percentile in each climate region), we found that the poorer
areas have a higher fraction of the population and GDP (0.44 and 0.44,
respectively) exposed to CDHWs than the richer areas (0.39 and 0.38,
respectively) by 2070-2099 under SSP585 (Extended Data Fig.9). Poorer
peopleinmost Giorgiregions (for example, AUS, EAS and TIB) are more
vulnerable to CDHWs than wealthy people in terms of higher CDHW,
and socio-economic exposure. These disproportionate effects are not
found in a few other regions (for example, AMZ and NEU), suggesting
that regional complexity should be considered when designing climate
mitigation policies. Similarly, people in urban areas are generally more
capable of adapting, mitigating and insulating themselves and their
livelihoods from the effects of CDHWSs, relative to rural populations.
We therefore also compared the CDHW risks inrural versus urban areas,
which are defined by using the bottom and top quintiles of population
density ineachregion (Supplementary Text 2). Rural areas are projected
to face higher CDHW, and higher GDP and population exposures than
urban areas under climate change across all SSPs (Supplementary
Fig.27). Whenthe rural/urban (or poor/rich) areas are defined by using
amoreextreme threshold (thatis, the 10th/90th percentile values), the
effects of CDHWs are even more disproportionate (Supplementary
Figs. 28 and 29), suggesting that poorer people currently live in mar-
ginal areas that are more exposed to extreme climatic conditions. We
should note that our analysis keeps the definition of bottom quintile
for GDP per capita and population density fixed at the 2015-year level
and therefore does not consider human migration or regional GDP
changes. The distribution of poor and rural regions might shift under
climate change (Extended Data Fig.10 and Supplementary Fig. 30), and
the ultimate societalimpact of CDHWSsis a function of the exposure and
vulnerability of various groups. In future works, human management
and vulnerability should be considered in different regions to under-
stand the impacts of CDHWSs on socio-economic systems. Neverthe-
less, our findings provide a firm conclusion that future CDHW hazards
are projected to intensify significantly and challenge the sustainable
development of future socio-ecosystems. This work thus calls for stark
mitigation and adaptation actions to reduce the adverse impacts of
warming on societies and to sustain ecosystem productivity, easing the
growing pressures onglobal sustainable development, particularly for
poorer and more rural areas.

Methods

Models, simulation settings and forcing data

Thelarge ensemble simulationsinclude 96 scenario-model combina-
tions from CMIP5 and 15 combinations from CMIP6. The CMIP5-based
projectionsinclude three emission scenarios (thatis, RCPs 2.6, 6.0 and
8.5), four GCMs and eight THMs. The eight THMs include six GHMs,
CWatM, HO8, MPI-HM, PCR-GLOBWB, WaterGAP2 and WaterGAP2-2c;
onegloballand surface model, CLM4.5; and one dynamic global vegeta-
tionmodel, LPJmL. All models simulate the key terrestrial hydrological
(for example, soil, vegetation and river) processes (see the details in
Supplementary Table 3), which are forced by the ISIMIP2b daily mete-
orological forcing data* from four GCMs under CMIP5 (Supplementary

Table 1). For each GCM, we used both bias-corrected outputs and the
TWS simulations from eight THMs, which cover both the histori-
cal baseline (1976-2005) and the future projections (2006-2099).
To improve the robustness of the future projections, we also used
TWS simulated by the HO8 model forced by outputs from five CMIP6
GCMs (thatis, M6A-LR, GFDL-ESM4, MPI-ESM1-2-HR, MRI-ESM2-0 and
UKESM1-0-LL) under three SSPs (SSP126, SSP370 and SSP585), which
have been systematically bias-corrected under ISIMIP3b*. To assess
the projected impacts of climatic extremes on ecosystem productiv-
ity, we also used the GPP, autotrophic respiration and heterotrophic
respiration outputs from the CLM4.5 model under historical conditions
and two RCPs (RCP2.6 and RCP6.0), which is forced by bias-corrected
GFDL-ESM2M outputs. We deduced TER by summing autotrophic
respiration and heterotrophicrespirationand then calculated NEP by
subtracting TER from GPP. We also used the GPP, TER and NEP of the
outputs from GFDL-ESM2M, HadGEM2-ES and IPSL-CM5A-LR (not avail-
ablein MIROCS). All simulations were conducted at aspatial resolution
of 0.5° x 0.5°, but the results were bilinearly interpolated to a spatial
resolution of 2° x 2° for a robust projection. In each model grid cell,
we defined the warm season as the five-month period with the highest
mean T, in the historical period.

GRACE/GRACE-FO and reconstructed TWS datasets

TWS anomalies from GRACE/GRACE-FO satellite measurements were
used to evaluate global terrestrial droughts for the 2002-2020 period.
We used the latest mascon products from three processing centres: the
Jet Propulsion Laboratory of the California Institute of Technology,
the Center for Space Research at the University of Texas at Austin and
the National Aeronautics and Space Administration’s Goddard Space
Flight Center. To consider possible uncertainty sourced from different
processing procedures, we used the GRACE/GRACE-FO ensemble mean
TWS anomalies by calculating the average time series of the three mas-
condatasets. To provide along-term evaluation of climatic extremes,
we also used observation-constrained monthly TWS data with ares-
olution of 0.5° x 0.5° covering 1979-2019, which is constructed by
training a statistical model with multi-source satellite and reanalysis
datasets”. Based on two different GRACE products and three different
meteorological forcing datasets, this reconstructed dataset consists
of six reconstructed products of 100 ensemble members each, which
hasbeenwell validated over 90 large (>500,000 km?) river basins and
annual streamflow series from 12,496 small (<10,000 km?) basins.
We averaged all six products to develop an ensemble mean recon-
structed TWS. To assess different drought indices, we also used the
global 0.5° x 0.5° SPEl datafor 2002-2020 from the Climatic Research
Unit version 2.6. In addition, we used the daily 0.25° x 0.25° TWS data
for 2003-2020 from the Catchment Land Surface Model simulation
under GLDAS-2.2.

Reanalysis and Global Land Evaporation Amsterdam

Model data

We used the hourly CAPE, CIN, CIWV, surface sensible heat flux, latent
heat flux, 2 m air temperature (7,,,), 2 m dew point temperature (7,,)
and air pressure (pr) from the fifth-generation atmospheric reanalysis
ofthe European Centre for Medium-Range Weather Forecasts (ERAS,
1979-2020).First, the 2 m hourly RH was computed on the basis of T,
and Ty.,, and the 2 m SH was derived by T,., and pr. We then derived
Tmax @nd daily average values of the other variables. We also used the
global gridded T,,,, data for 1979-2019 from BEST, which incorpo-
rates approximately 39,000 land stations. To identify the droughts
by different indices, we used the monthly root-zone (0-100 cm) SM,
precipitation and runoff from ERAS. We also used the daily root-zone
SM for 1980-2020 from the Global Land Evaporation Amsterdam
Model (GLEAM) version 3.5a. In the observational analysis, the results
of all the different gridded datasets were bilinearly interpolated to a
spatial resolution of 1° x 1°, We evaluated climatic extremes only in
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the warm season because heat-related morbidity and mortality in the
summer tend to exert the more severe impacts on socio-ecosystems.
Wetherefore defined the warm season as the hottest five months of the
climatology of the ERAS T, for each grid cell (Supplementary Fig. 1).

FLUXNET2015 data

We used half-hourly temperature, SM, GPP, TER and NEP data from the
FLUXNET2015 dataset. SMis measured as the volumetric soil water con-
tent (percentage) at all available depths. These data were processed
followinga consistent and uniform processing pipeline. We used tempera-
tureand SM that were gap-filled using the marginal distribution method*®.
NEP was obtained using a variable friction velocity (u*) threshold for
eachyear, withreferences selected on the basis of model efficiency, and
was partitioned into GPP and TER following the night-time partitioning
method*®. We selected 73 sites (830 site years) with data covering noless
than three years (Supplementary Table 2 and Supplementary Fig. 4).
Daytime half-hourly data (7:00t019:00) in the warm season were aggre-
gated to daily values. The warm season is defined as days when running
seven-day meantemperaturesare higher thanthe 60th percentile of daily
temperature for the site. We also used a machine-learning-constrained
SIF dataset and a MODIS-retrieved GPP dataset”**. The SIF dataset was
generated by training amachine learning algorithm on the basis of Orbit-
ing Carbon Observatory-2 (OCO-2) SIF observations and surface reflec-
tance fromthe MODIS. This dataset can capture the seasonal and spatial
variability of raw OCO-2 SIF at the far-red band (767 nm), which has been
demonstrated to strongly relate to spatiotemporal variation of GPP?.In
this study, we used the clear-sky daily SIF for 2000-2020 with afour-day
temporal resolution and a 0.5° spatial resolution. The retrieved GPP
datasetis based onanimproved light use efficiency theory andis driven
by satellite data from MODIS and climate data from NCEP Reanalysis I,
andithas moderate spatial (500 m) and temporal (eight-day) resolutions
over the entire globe for2000-2019%,

Socio-economic data

For the analysis of the global socio-economic index affected by histori-
cal (1979-2020) climatic extremes, we used the global gridded 2015
population datafromthe Socioeconomic Dataand Applications Center
at Columbia University. These population data are consistent with
national censuses and have been adjusted to match the 2015 Revision of
the United Nations’ World Population Prospects country totals, which
areproduced at30-arcsecond (-1 kmatthe Equator) resolution. We also
used aglobal gridded 2015 GDP dataset at a30-arcsecond resolution,
which was produced by fully making use of all available subnational
data and the World Bank dataset*. To project future global exposure
of populations and assets to climatic extremes, we employed aspatially
explicitglobal dataset produced by employing population and urbani-
zation projection models and the Cobb-Douglas production model*".
This datasetincludes gridded populationand GDP data under five SSPs,
covering 2010-2100 at a spatial resolution 0of 0.5° x 0.5°,and has been
widely used in climate change impact assessments**. Considering the
socio-economic challenges to mitigation by different development
roads, the RCP2.6 (RCP6.0) scenario is associated with SSP1 (SSP4),
while the RCP8.5is associated with SSP5 (ref. 52).

Deriving near-surface RHand SH
As near-surface RH and SH are not available in the ERAS dataset, they
were calculated by using T,,,, Tye,wand pressure. The Clausius—Clapeyron
relationship can describe the relationship between saturation vapour
pressure (e,,) and temperature (7)°%

et (1) = €50 exp [ILT\V, (Tio - ;_)] 0

where T,=273.16 K and e,, = 611 Pa are integration constants; and L,
and R, refer to the latent heat of vaporization (2.5 x 10°J kg™) and the
vapour gas constant (461 kg K™), respectively.

As T4, represents the temperature above which water vapour
will achieve saturation under constant water vapour content and
pressure, it can be used to measure actual water vapour pressure. RH
can thus be deduced by substituting 7, and T, into equation (1) as
RH= esa(( Tdew)/esat(TZm)'

SHrefersto the ratio of the water vapour mass to the total air mass,
which canbe calculated using prand T.,,**:

esat(Tdew) (2)

SH=0.622 ————————
pr— 0-378esat(Tdew)

T..ax-TWS coupling and impacts

The T,,,,-TWS coupling was evaluated by calculating Pearson’s correla-
tion coefficientbetween them. We also sorted observed T, and daily
SM (daily or monthly TWS) from the flux tower sites (GLDAS or GRACE/
GRACE-FO) into 10 x 10 percentile bins in each site and calculated the
mean probability of each percentile bin of T;,,, and SM (or TWS) across
the 73 sites. We calculated mean daily anomalies of GPP, TER and NEP
inthe10 x 10 percentile bins to assess the observed mean responses of
these variables to daily temperature and TWS (or SM), especially the
responses to extreme high 7, and low TWS (or SM). The dry extremes
were determined accordingto TWS-DSI < -0.8, and the heat extremes
were identified by daily T,,, being above its 90th percentile over the
whole observation period (or the historical period of model simula-
tions). In addition, we examined the impacts of compound extremes
on a variety of water and heat variables (for example, RH, SH and
CAPE). For both observations and GCM simulations, we calculated
their anomalies as the difference between the daily (monthly) values
in heat extremes and CDHWs (droughts) and the mean values in the
warm season. As the daily carbon flux data are not typically archived
for most GCMs, we assessed the responses of GPP, TER and NEP to heat
(measured by monthly T;,,,aboveits 90th percentile over the historical
period), droughts and the concurring conditions atamonthly scale, in
historical and future simulations individually.

TWS-DSI

Therecently proposed TWS-DSIwas used to identify terrestrial drought
conditions®*. A negative TWS-DSI means that the TWS is lower than
the average level during the study period; this was used to represent
drought magnitudes. The TWS-DSIwas deduced as follows:

TWS - DSI;; = (TWS;; — TWS))/g; @)

where TWS, ;refers to the TWS anomalies atyeariand monthj, and WSJ
and g;denote the mean value and standard deviation of TWS anomalies
atmonthj.

For the GCM-THM TWS outputs, we determined the same
time-mean baseline as the GRACE/GRACE-FO dataset, and we thus
obtained monthly TWS anomalies during 1976-2099 after subtracting
the mean values of TWS for 2004-2009. In calculating the mean and
standard deviation of TWS for any specified period, we used acommon
reference period (thatis, 1976-2099) to avoid potential exaggerationin
estimating TWS variability and drought evolution, and for consistent
comparison. The drought pattern in the historical period may differ
slightlyineach RCP/SSP, asthe TWS-DSlis derived fromboth historical
and future TWS data. The droughts are characterized by four metrics:
frequency, the total number of drought events during the study period;
days, defined as the total number of drought months; the commonly
used drought severity (D); and duration, identified by the run theory**.
The probability density functions for both the globe and different
Giorgi climate regions during two periods were estimated using the
non-parametric kernel density method. To compare the different
droughtindices, wefirstfit the monthly ERAS precipitation and runoff
data to the gamma distribution function to obtain monthly climato-
logical distributions. We then converted the cumulative probabilities
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to standard normal deviates by inversing the respective cumulative
distribution function, and thus the standardized precipitation index
and standardized runoffindex were calculated. Besides these two indi-
ces and the Climatic Research Unit SPEI data, we used both ERAS5 and
GLEAM SMdatainstead of TWS to characterize the drought conditions.

CDHW identification

Aheatwavereferstoaspell of at least three consecutive days with T;,,
exceedingthe heat threshold, whichis defined asthe 90th percentile of
Tnaxinthewarmseason over the entire study period. Considering pos-
sible epidemiological significance®, two successive heatwave events
are considered independent if separated by a minimum of two days;
otherwise, they are clustered into asingle event. We also assessed the
heatwave characteristics using four metrics: frequency, days, duration
and the heatwave severity (HW,). HW, was estimated by summing the
daily 7,,,,anomalies:

=D Toaxa =T
HWS:Z(M) :D>3 )
=1

T75p - TZSp

where D indicates the duration of the heatwave event, T, »is the
daily maximum temperature at day d in this event, and 7,5, and
T;sp are the 25th and 75th percentiles of T,,,, in the warm season,
respectively.

CDHWs are identified when a heatwave coincides with amonthly
drought event®*. We also calculated CDHW, to represent CDHW char-
acteristics on the basis of the ratio of the total number of CDHWs and
heatwave events occurring at any given location?. The severity of
CDHWSs was estimated as the product of the daily standardized values
of T,,.xand the daily TWS-DSI (the value was determined to be the same
with the monthly TWS-DSI for each month) in the CDHW event. The
severity fora CDHW (CDHW,) is thus given as:

d=CDHWp Tmax,d _ TZSp
CDHW; = > [(~1x TWS-DSIy) x (#ﬂ ;CDHW, >3
d=1 75p 25p

()]

where CDHW,, represents the duration of the coinciding days, and
TWS-DSI,is the TWS-DSlvalue at day d, whichis consistent at amonthly
scale.

Bivariate risk assessments of CDHW

Wefirst quantified changesin the frequency, days, duration and sever-
ity (and CDHW,) of droughts, heatwaves and CDHWs from the histori-
cal period to the future period (2070-2099). Furthermore, to jointly
understand the changesinboth heatwave and drought severity under
CDHW hazards, we analysed the shifts of the bivariate return period
by using non-stationary copulas, which are often used to describe the
dependence between physical variables®. Here we initially estimated
the marginal distributions of HW, and D,of CDHWs during the historical
period by using six candidate distributions (that is, gamma, normal,
GEV, Weibull, log-normal and inverse Gaussian). We then considered
commonly used bivariate copula families (Gaussian copula, Student’s t
copulaand Archimedean copulas) to link the marginal distributions of
historical HW, and D,. To reduce the uncertainty sourced from different
marginal and joint distributions, only the best-fitting functions were
used for fitting HW,and D, under future climates. We chose the Akaike
information criterion to determine both the best-fitting marginal
distributions and the associated copulas®, and we employed the ‘AND’
definition of JRP to measure the bivariate hazards of CDHWSs, whichis
consistent with the approach of counting concurrent exceedances’®.
The)RPis therefore given as:

E

RP =
J 1 - Fuw — Fpr + C(Fuw, For)

(6)

where F,,, (Fpg) is the marginal cumulative distribution of HW, (D),
C(Fyw» For) represents the joint distribution of F,,y and Fir, and E denotes
the average inter-arrival time between compound events.

Using copulasto model the dependence of heatwave and drought
allows an assessment of the change in the likelihood of extreme (that
is, 50-year) CDHWs. Therefore, the time-varying copula functions
of HW, and D, were constructed by moving a 30-year window, with
the aim to investigate the shifts of the bivariate CDHW hazard as well
as the socio-economic exposure to increasing risks under climate
change. We first estimated the quantiles of HW, and D, under a given
JRP during the historical period (T, determined as the 50-year JRP in
thisstudy). Asthere are infinite points onthe isoline of agivenJRP, the
likelihood of each event must be taken into consideration. The most
likely realization is therefore optimized by achieving the maximum
joint probability density***:

(HW;,D}) = arg max f(HW, DR) = c(Fuw. Fpr) X fuw X for

dC(FHW’FDR) (7)

cFrw-For) = 5 O

where c(Fy,, Fpg) is the copula probability density function; fi,,y and fyr
denote the probability density functions of F,,, and Fyg, respectively;
and (HW;, D) is the most likely realization under the given historical
JRP (T).

After estimating (HW;, D) during the historical period by linking
equations (6) and (7), we used the 30-year period as asliding time window
(consistent with the length of the historical period), and we constructed
the time-varying marginal distributions and copula functions moving
from2006t02099 at a30-year window. After substituting (HW;, D¥)into
the time-varying distribution function of the kth sliding window in the
future period (7;), we calculated an updated JRP, Ti(k). If T(k) < T,,, it
means that the bivariate CDHW risk in the kth time window increases,
and vice versa. As aresult, the socio-economic exposure arising from
increasing bivariate risks can be measured by the following formula:

_ I[T, — T¢(k)] x POPy

=N,

EPOP k=N,
Y POP;

x 100% 8

I[Th - Tf(k)] X GDPk

_— x 100% ©)
v GDPy

EGDP =

where E,qp, and Egpp denote the population and GDP exposures to
increasing bivariate CDHW risks, respectively; POP,and GDP,denote
the population and GDP in the kth year; I(:) is an indication function
(when T, - T{k) > 0, /=1; otherwise, /= 0); and N, and N, denote the
starting and ending years of the study period, respectively.

Uncertainty decomposition using MANOVA

To project future changes in the JRP of CDHWs, we implemented 96
scenarios intheimpact modelling chain, which consists of three RCPs,
four GCMs and eight THMs under ISIMIP2b. In this study, the overall
uncertainty was estimated by the variance of the average JRP during
the future period and was then decomposed into the contributions
from different sources using MANOVA®°. The change in the climatic
indicator Ay, (thatis, the updated JRP of the historical 50-year CDHW
inthis study) is assumed to follow the following model:

Ay,;,;k :ﬂ+Ri+Gj+Hk+li,j,k (10)

where u represents the mean change of the model ensemble of the
climatic indicator; R;,G; and H; represent the effects on the climatic
indicator of the ith RCP, the jth GCM and the kth THM, respectively; and
I, represents the sum of the effects due to the interactions between
different sources.
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On the basis of the MANOVA method, the total variance (overall
uncertainty, VT) canbe decomposed into contributions from different
sources as follows:

VT = VR + VG + VH + Vigg + Vlgy + Vggn an

where VR, VG and VH represent the variance contributed by the effects
of RCPs, GCMs and THMs, respectively; and Vlgg, Vlg, and Vg, rep-
resent the variance from interaction effects between RCPs-GCMs,
RCPs-THMs and RCPs-GCMs-THMs, respectively. By dividing the
variance from different sources by the total variance, we obtained the
fractional contributions of different sources to the overall uncertainty.
We also employed MANOVA to quantify the contributions of uncer-
tainty sources in the CMIP6-based projections.

Reporting summary
Furtherinformation onresearch designisavailableinthe Nature Port-
folio Reporting Summary linked to this article.

Data availability

The CMIP5-based TWS simulations are freely available from the ISI-
MIP project portal (https://data.isimip.org/search/tree/ISIMIP2b/
InputData/climate/). The three GRACE/GRACE-FO products are
available from http://www2.csr.utexas.edu/grace/, https://grace.
jpl.nasa.gov/data/get-data/ and https://earth.gsfc.nasa.gov. The
long-term reconstructed TWS data are available on Figshare (https://
doi.org/10.6084/m9.figshare.7670849). The TWS simulations under
CMIP6 are available at the repository in the Open Science Frame-
work (https://osf.io/hy96r/); this dataset cannot be accessed now,
because the data are in an embargo period and currently shared
only among the ISIMIP participants. The SPEI dataset is available
at https://spei.csic.es/database.html. The GLDAS-2.2 data are avail-
able at https://Idas.gsfc.nasa.gov/gldas/forcing-data. The ERA5 rea-
nalysis dataare from https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/eraS. The GLEAM 3.5a data are from https://www.
gleam.eu/. The FLUXNET2015 dataset is from https://fluxnet.org/
data/fluxnet2015-dataset/. The gridded SIF dataset is from https://
doi.org/10.17605/0SF.1I0/8XQY6, and the gridded GPP dataset is
available from https://data.tpdc.ac.cn/en/data/582663f5-3be7-
4f26-bc45-b56a3c4fc3b7/. The global gridded population data are
available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-p
opulation-density-adjusted-to-2015-unwpp-country-totals-revll; the
global gridded GDP data and the GDP per capita data are available
from https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0.
The BEST dataset is available at Berkeley Earth (http://berkeleyearth.
org/data/).

Code availability

TheR (version4.1.0) code used for producing Figs. 1-5and the MATLAB
(version2020a) code used for data analysis are available at the reposi-
tory inthe Open Science Framework (https://osf.io/dnuxv/).
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Extended Data Fig.1| Relationship between daily maximum near-surface
temperature (T,,,,) and terrestrial water storage (TWS) or root-zone soil
moisture (SM) during 2002-2020. a-d, Pearson’s correlation coefficient
between: monthly GRACE/GRACE-FO ensemble mean TWS and ERAS T, (a),
monthly reconstructed TWS and T,,,,, from Berkeley Earth Surface Temperatures
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(b), daily ERA5SM and T,,,, (c), daily GLEAM SM and ERA5 T,,,,, (d). Insets ina-d
show the histogram of the correlation coefficient, with the dashed vertical line
representing the median value. The graph on the right of each panel shows the
latitudinal median. e-h, Mean probability of each percentile bin across all land
grid cells (excluding Greenland and Antarcticain all analyses).
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Extended Data Fig. 2| Coupling of T,,,, and monthly TWS from the three
GRACE/GRACE-FO solutions dataset and theirimpacts on terrestrial carbon
uptake. a-c, Probability of each percentile bin of T,,,,, and monthly TWS across

73 flux tower sites. d-f, Mean anomalies of GPP for each percentile bin of T, and
TWS. g-i, Mean anomalies of TER for each percentile bin of T,,,,,and TWS. j-1, Mean
anomalies of NEP for each percentile bin of T,,,,, and TWS. The three columns

represent the GRACE/GRACE-FO TWS data produced fromJPL, CSR and GSFC,
respectively. At each site, anomalies of GPP, TER, and NEP are calculated as the
difference between the daily values in extreme events and the mean daily values
inthe warm season (defined as days when running 7-day mean temperatures are
higher than the 60" percentile of daily temperature for the site).
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Extended Data Fig. 3| Anomalies of SIF and GPP during extreme climatic in extreme events and the mean 4-day (8-day) values in the warm season. Dry
events. a, b, Anomalies of SIF (a) and GPP (b) during extreme heat events. c-d, conditions areidentified using GRACE/GRACE-FO ensemble mean TWS data,
Anomalies of SIF (c) and GPP (d) during extreme dry events. e, f, Anomalies of SIF and the heat conditions are identified by ERAS T,,,,. Insets show the histogram of
(e) and GPP (f) in concurrent heat and dry conditions. At each grid, anomalies the anomalies, with the dashed vertical line representing the median value. The
of SIF (GPP) are calculated as the difference between the 4-day (8-day) values graph on the right shows the latitudinal median value.

Nature Sustainability


http://www.nature.com/natsustain

Article https://doi.org/10.1038/s41893-022-01024-1

5 AUS AMZ SSA
°[ === 1979-2018 (3.35 %/decade)* == 1979-2018 (5.69 %/decade)" == 1979-2018 (7.4 %/decade)"
- 1979-1998 (0.54 %/ddchde) = 1979-1998 (6.07 %/ddchde) - 1979-1998 (0.53 %/ddchde)

80

e 1999-2018|(17.41 Yo/decade)” e 1999-2018|(16.9 %/decade) e 1999-2018| (14 .2 %/decade)
60|
40

20

)
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015

. CAM WNA CNA
= 1979-2018 (1.83 %/decade) = 1979-2018 (6.92 %/decade)" = 1979-2018 (2.91 %/decade)

gof = 1979-1998 (11.59 %/ = 1979-1998 (2.2 %/dedalde) | = 1979-1998 (-2.21 %/decade)
= 1999-7018|(0.61 %/dbade) = 1999-7018)(+20.42 %/decade) = 1999-7018)(-29.84 %/decade)

60

40

20

o 1 L 1 1 L 1 1 n 1 L 1 1
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015
. ENA ALA GRL

e 1979-2018 (0.37 %/decade — 1979-2018 (4.75 %/decade) — 1979-2018 (-2.47 %/decade)*

e 1979-1998 (-2.52 %/d e 1979-1998 (10.42g0/decade) | == 1979-1208 (-5.76 %/dade)

80
e 1999-#018(+10.09 %/ e 1999-2018| (56.43 Ro/decade)” (+91.86 %/dedade)

60

40

20,

o)
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015

MED NEU WAF
— 1979-2018 (6.28 %/decade)* —1979-2018 (5.19 %/decade)* = 1979-2018 (8.47 %/decade)*
ol = 1979-1998 (15.79 %/decade)} — 1979-1998 @1.57 %/delcade) | = 1979-1998 (3.09 %/ddcade)
s 1999-7018)(-5.88 f/decade) e 1999-7018 = 1999-7018|(2.08 %/(decade)

o O ' 1 ) '

0 1 L
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015

. EAF SAF SAH
| == 1979-2018 (11.8 %/decade)* = 1979-2018 (2.29 %/decade) = 1979-2018 (8.58 %/decade)*
gob == 1979-1998 (8.82 %/ddcade)t | == 1979-1998 (2.45 %/ddcade) | == 1979-1998 (~0.06 %/ddcade)

e 1999-7018|(6.31 %/(decade) 1999-7018) (1085 %/decade) e 1999-7018) (13 Po/decade)

o)
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015

SEA EAS SAS
== 1979-2018 (-1.44 %/decade) == 1979-2018 (10.04 %/decade)" == 1979-2018 (-6.59 %/decade)"
ol == 1979-1998 (~0.79 %/decads) = 1979-1998 (7.05 %/ddcade) | == 1979-1998 (-22.65 %]decade)*
e 1999-7018|(4.42 %/decade) s 1999-7018|(+-33.03 %/decade)

e 1999-2018|(+16.44 %/decade)
60

I
1999 2003 2007 2011 2015

0 1 1 L
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987

1
1991 1995

CAS TIB NAS
= 1979-2018 (8.69 %/decade)* = 1979-2018 (3.34 %/decade) = 1979-2018 (5.08 %/decade)*
ol == 1979-1998 (1.12 %/ddcade) | == 1979-1998 (-5.34 %/decads) | == 1979-1998 (0.71 %/ddclade)
&= 1999-7018|(-17.71 %/degade) == 1999-7018| (-3 54 Y/decade) &= 1999-7018| (-25.19 %/decade)
60| B B
40
20|
o Ph RUSPES N AT L e
1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015 1979 1983 1987 1991 1995 1999 2003 2007 2011 2015
Year Year Year
Extended Data Fig. 4 | Temporal dynamics of the GDP exposures to COHW in trends of GDP exposures during recent, past and entire periods. The droughts
21Giorgi climateregions. Each panel has a cluster of 21 grey lines, which show areidentified by reconstructed TWS data, and the heatwaves are detected by
the ensemble of the regional GDP exposures in all regions. The black line in each using T,,,, from the BEST dataset. The *indicates the trend is significant (p < 0.05)

figure represents the exposure value in each region, and the color lines represent detected by Mann-Kendall test.

Nature Sustainability


http://www.nature.com/natsustain

Article https://doi.org/10.1038/s41893-022-01024-1

80°N

40°N

0°

Historical

40°s

80°N

40°N

0°

RCP 2.6

40°S

80°N

40°N

0°

RCP 6.0

40°S

80°N

40°N

0°

Historical

40°S

80°N

40°N

RCP 2.6

0°

40°s

80°N

40°N

RCP 6.0

0°

40°s

01

3 15 0 15 3 105 0 05 1 -1 05 0 05 1 —
GPP anomaly (g C m “day ) TER anomaly (g C m™~ day ) NEP anomaly (gC m “day ) — NEP
Extended Data Fig. 5| Anomalies of GPP, TER and NEP due to extreme heat carbon fluxes in the historical period (j-1), RCP2.6 (m-0) and RCP6.0 (p-r) due to
or drought conditions in the GFDL-CLM4.5 model. a-i, Anomalies of carbon droughts (TWS-DSI < -0.8). The graph on the right shows the latitudinal median
fluxes in the historical period (a-c), RCP 2.6 (d-f) and RCP 6.0 (g-i) due to extreme and 90% confidence interval. The TWS and carbon fluxes are projected by CLM4.5

heat conditions (monthly T,,,,above the 90" percentile). j-r, Anomalies of model with bias-corrected GFDL-GCM2M outputs.
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Extended Data Fig. 6 | Future changes in characteristics of COHW and of the multi-model means (as shown in the figure) in at least 80% of GCM-THM
heatwaves. Insets in each figure show the histogram of the relative change models. These results are derived from the ISIMIP2b multiple impacts model

percentages, with the dashed vertical line representing the mean value. Stippling ~ ensemble.
denotes regions where the sign of the relative changes is consistent with the sign

Nature Sustainability


http://www.nature.com/natsustain

https://doi.org/10.1038/s41893-022-01024-1

SSP126

Frequency

SSP58

Duration

Severity

Coincidence rate

Fractional ratio
© o o o
N w N ol

o
g

2036 2056

Year

1976 1996 2016

[} Exposed population

2076 2099 1976 1996

2036 2056 2076 2099

Year
Exposed GDP

2016

o
5

©
IS
T

o
w

©
¥}

Fractional ratio

o
o

2036 2056

Year

1976 1996 2016

Extended Data Fig. 7 | See next page for caption.

2076 2099 1976 1996

2076 2099

2036 2056

Year

2016

Nature Sustainability


http://www.nature.com/natsustain

Article

https://doi.org/10.1038/s41893-022-01024-1

Extended Data Fig. 7 | Future changes in the characteristics of COHW and
socioeconomic exposure to COHW under CMIP6. a-1, Relative changes in the
frequency (a-c), average duration (d-f), average severity (g-i) and coincidence
rate (j-1) of CDHW from the historical to the future periods. m-p, Temporal
dynamics of the global average coincidence rate (m), exposed land area (n),
exposed population (o) and exposed GDP (p). Insets in a-1show the histogram
ofthe relative change percentages, with the dashed vertical line representing

the mean value. Stippling in a-1 denotes regions where the sign of the relative
changes is consistent with the sign of the multi-model means (as shown in the
figure) in at least 80% of GCMs. In m-p, the shading represents +1standard
deviation, and only the historical exposures linking to SSP126 TWS dataare
presented. For projecting CDHW, the TWS is simulated by driving HO8 forced by
five bias-corrected GCMs under CMIP6.
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Extended Data Fig. 8 | Projected JRP of historical 50-year bivariate COHW
and socioeconomic exposure under CMIP6. a-c, Average JRP in the future
period under a non-stationary bivariate framework. d-i, Population (d-f) and GDP
(g-i) exposure due to increasing risk of bivariate CDHW in the future period. j-I,
Temporal dynamics of the global average exposed land area (j), population (k)
and GDP (I) due to increasing CDHW risk; the solid curve and shading indicate
multi-model mean + SD. m, Boxplot of updated JRP of the historical 50-year
CDHW in different Giorgi climate regions under SSP585; the centre line indicates

median value, and the box bounds (whiskers) indicate 25th/75th percentile
(min/max) values. n, Average contribution ratios of seven uncertainty sourcesin
different Giorgi climate regions and in the global landmass (Glob). Stippling in a-i
denotes regions where the sign of the JRP is consistent with the sign of the multi-
model means (as shownin the figure) in at least 80% of GCMs. For projecting
CDHW, the TWS is simulated by driving HO8 forced by five bias-corrected GCMs
under CMIP6.
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Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9| CDHW coincidence rate and socioeconomic exposures deviation, and only the historical exposures linking to SSP126 TWS dataare

to CDHW inrich versus poor areas. a-f, Temporal dynamics of the global presented. For projecting CDHW, the TWS is simulated by driving HO8 forced by
average coincidencerate (a, b), and exposed GDP fraction (c, d) and population five bias-corrected GCMs under CMIP6. Rich (poor) areas are identified where the
fraction (e, f) to CDHW. g-i, Average coincidence rate (g), GDP exposure fraction 2015-year GDP per capita exceeds (is below) the 80th (20th) percentile values in
(h) and population exposure fraction (i) during 2070-2099 in different Giorgi different regions.

climate regions under SSP585. In a-f, the shading represents +1standard
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Extended Data Fig. 10 | Gridded Gross Domestic Product (GDP) per capita (purchasing power parity) in constant 2011 international US dollars (USD) for six
typical years during 1990-2015. a-f, GDP per capitain year of1990 (a), 1995 (b), 2000 (c), 2005 (d), 2010 (e) and 2015 (f).
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Data collection  We use the python code released by European Centre for Medium-Range Weather Forecasts to download the ERAS dataset. For all the other
data such as GRACE/GRACE-FO and FLUXNET2015 dataset, we download them in the website without any software.
Data analysis We use Matlab (version 2020a) and R (version 4.1.0) for data analysis.
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- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The CMIP5-based TWS simulations are freely available from the ISIMIP project portal (https://data.isimip.org/search/tree/ISIMIP2b/InputData/climate/). The three
GRACE/GRACE-FO products are available from http://www?2.csr.utexas.edu/grace/, https://grace.jpl.nasa.gov/data/get-data/ and https://earth.gsfc.nasa.gov. The
long-term reconstructed TWS data are available on Figshare (https://doi.org/10.6084/m9.figshare.7670849). The TWS simulations under CMIP6 are available at the
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repository in the Open Science Framework (https://osf.io/hy96r/); this dataset cannot be accessed now, because the data is in embargo period and currently only
shared among the ISIMIP participants. The SPEI dataset is available at https://spei.csic.es/database.html. The GLDAS-2.2 data are available at https://
Idas.gsfc.nasa.gov/gldas/forcing-data. The ERAS reanalysis data are from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The GLEAM 3.5a
data are from https://www.gleam.eu/. The FLUXNET2015 dataset is from https://fluxnet.org/data/fluxnet2015-dataset/. The gridded SIF dataset is from https://
doi.org/10.17605/0SF.I0/8XQY6, and the gridded GPP dataset is available from https://data.tpdc.ac.cn/en/data/582663f5-3be7-4f26-bc45-b56a3c4fc3b7/. The
global gridded population data are available from https://sedac.ciesin.columbia.edu/data/set/gpw-v4-population-density-adjusted-to-2015-unwpp-country-totals-
revl1; the global gridded GDP data and the GDP per capita data are available from https://datadryad.org/stash/dataset/doi:10.5061/dryad.dk1j0. The Berkeley
Earth Surface Temperatures (BEST) dataset are available at Berkeley Earth (http://berkeleyearth.org/data/).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender Our study is not relevant with human characteristics such as sex and gender.

Population characteristics Our study is not relevant with population characteristics.
Recruitment We do not have human participants in this work.
Ethics oversight Our study is not relevant with this issue.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description We investigate the physical mechanisms behind compound drought-heatwave events and their impacts on socio-ecosystem
productivity. To achieve this goal, we combine satellite observations, reanalysis and model simulations. The data of field
measurements are collected from FLUXNET2015, which is also an open access dataset.

Research sample Our data are collected from international community, such as GRACE/GRACE-FO, ERAS reanalysis and CMIP6. All the dataset can be
access by the public.

Sampling strategy Our study is conducted at a global scale. We use Person's test to validate the correlation between different variables, and use the M-
K'method to test the trends.

Data collection We use the python code released by European Centre for Medium-Range Weather Forecasts to download the ERAS dataset. For all
the other data such as GRACE/GRACE-FO and FLUXNET2015 dataset, we download them in the website without any software.

Timing and spatial scale  Most of our daily data in observational period (1979-2020) have the spatial resolution of 0.25°, and our data of model simulations
have the spatial resolution of 0.5°. We conduct our analysis at a global scale.

Data exclusions We exclude some stations of the FLUXNET2015, because those stations have short observation period. We also provide the lists of
our used stations in Supplementary Information.

Reproducibility All of our results can be repeated by running our codes.

Randomization To reduce uncertainty of our results, we conduct our analysis by using a large model ensemble of 111 members. We also quantify the
uncertainty contributions from different sources at a global scale. All the results confirm that our main conclusions are robust.

Blinding Our data are collected from open access platform, and we have clearly illustrated our analysis at a global scale.
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Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
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