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Abstract:

Solid-state thermionic structures made out of layered van der Waals heterostructures
have shown promising thermal to electrical energy conversion efficiencies theoretically.
In this work, we further study these structures using first-principles calculations
combined with Green’s function method. By calculating the electron-phonon relaxation
length, we confirm ballistic transport in these structures. We study the effect of the
number of layers, the energy barrier, and the asymmetry of the contacts on the
performance of MoSe: based thermionic converters. We show that the key to high-
performance thermionic diodes is to make a low-energy barrier, low-resistance metallic

contacts and we identify copper as the optimum metallic contact to MoSe2 based devices.
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We further show that, unlike the vacuum-based thermionic diodes, asymmetry does not

result in improved performance within the linearized transport theory.

I. Introduction

The advent of low-power portable and wearable electronics signifies the need for
mesoscale power generators and coolers [1-5]. Mechanical generators cannot be
miniaturized to such scales and hence currently we rely on batteries to power portable
electronics. Thermionic power generators and coolers can be built with nanoscale
thickness and provide a solid-state solution for energy scavenging and integrated
cooling.

A thermionic converter essentially is a heat engine that converts thermal energy directly
to electricity using electrons as the working fluid. Similar to most other heat engines,
thermionic devices can operate either as power generators or coolers. There are two main
types of thermionic converters: vacuum state thermionic (VSTI) converters and solid-
state thermionic (SSTI) converters [1,2,6-8]. In the power generation mode, heat is used
to increase the energy of electrons in the cathode. The hot electrons with energies higher
than the energy barrier can pass above the barrier with a Richardson flux. These electrons
are then collected by a colder anode. A part of the thermal energy is thus converted
directly to electricity and the rest is rejected as heat to the cold side. The energy barrier in

the case of VSTI is the cathode work function, which is on the order of a few electron volts



in typical metals. Therefore, vacuum thermionic power generators can only operate at
very high temperatures. Also, the need for a vacuum in a VSTI restricts direct access to
the electrodes. To overcome these difficulties, Shakouri and Bowers [1] proposed a
single-layer solid-state thermionic in 1997 diodes in which the vacuum is replaced by a
semiconducting material. In this structure, the semiconductor layer is the energy barrier
that an electron experiences. In the following year, Mahan proposed the idea of using
multi-layer barriers in which each layer maintains a small temperature difference [2,7].
Electrons in a solid-state thermionic device can face an effective energy barrier height on
the order of meV as the energy barrier is the difference between the electron affinity of
the semiconductor and the work function of the metal. This is compared to a few eVs
barrier heights in a vacuum thermionic device. Hence, SSTICs can operate at much lower
temperatures compared to VSTICs. Our previous theoretical work focusing on the
mathematical optimization of solid-state thermionic devices concluded that for optimum

performance the optimum barrier height should be on the order of a few KsT [9].

The transport inside the semiconducting layer of an SSTIC has to be ballistic to avoid
electron-phonon thermalization. To maintain ballistic transport in a solid-state
thermionic device, the semiconducting layer thickness should be lower than the electron
mean free path. At the same time, a minimum barrier thickness is needed to suppress

the tunneling of electrons in the device. If electrons of energy lower than the



semiconductor barrier height tunnel through, they carry less energy if their energy is
above the Fermi level, and will carry negative heat (a rare event) if their energy is below
the Fermi level. This leads to a lower Seebeck as our previous and present studies have
shown. Hence, SSTICs are considered nanoscale devices appropriate for integrated
circuits [6,10,11]. At such small scales, the main challenge of SSTICs, is their thermal
leakage [12]. To maintain a noticeable temperature difference at such a small length scale,
the thermal conductance of an SSTIC needs to be very small. Our recent work has shown
that the thermal conductance of a solid-state thermionic device should be smaller than
0.1 MWm-2K"! to obtain reasonable efficiencies [9]. To our best knowledge, within ordered
and nonporous systems, this very small thermal conductance is only possible in the van
der Waals heterostructures [13,14] due to their weak van der Waals interactions
compared to covalent bonding [15]. In one work, our group showed that five layers of
black phosphorene sandwiched between gold and graphene has a thermal conductance
value of 4-6 MWm-=2K- [16]. In another work our group theoretically calculated a thermal
conductance value of 16 MWm-2K-1 for Sc-WSe2-MoSe2-WSe2-Sc structure [17]. Other
weakly bonded structures also demonstrated extremely low thermal conductance values.
It was shown that interfacial thermal conductance between seven layers of MoS: and
crystalline silicon (c-Si) is smaller than 1IMWm=2K™. [18] In another work, it was
experimentally shown that 5-10 MWm2K" thermal conductance can be obtained in the

van der Waals structure [19]. A theoretical work based on molecular dynamic simulation



obtained a slightly higher thermal conductance value of 17 MWm-2K"! for both graphene-
WSe:-graphene and graphene-MoSez-graphene structures. In another experimental
work, a very low thermal conductance value of 0.5 MWm?2K"! was estimated for a
graphene-WSe:-graphene structure [20]. In addition, in a van der Waals heterostructure,
the barrier height, which plays a significant role in improving the device performance
can be tuned by changing the number of layers in the heterostructure from 0 in the
tunneling regime (one layer) to the bulk bandgap value for a large enough number of
layers (typically 10 layers) [16]. In recent years, these two important features of van der
Waals heterostructure have renewed interest in solid-state thermionic devices [5,16,21—

24].

Left Contact MoSe, Channel Right Contact

Figure 1. Ball stick model of a metal-MoSe2-metal device configuration.

In this work, we study thermionic transport properties of metal-MoSe>-metal structure as
shown in Fig. 1 by using density functional theory (DFT)-based first-principles

calculations combined with real-space Green’s function (GF) transport formalism. MoSe:,



a layered two-dimensional (2D) transition metal dichalcogenides (TMDs) used as the
semiconducting material in these calculations. An advantage of layered TMD materials
such as MoSe: is that the saturated covalent bonds within one layer and noncovalent
binding between the layers allow for atomically sharp and stress-free interfaces between
similar or dissimilar materials [25]. Another important feature of MoSe: is that the
electronic properties depend on the number of layers. For example, bulk MoSe: has an
indirect bandgap of 0.85 eV while monolayer MoSe: has a direct bandgap of 1.55
eV [26,27]. Moreover, the thermal transport in MoSe: in the cross-plane direction is
greatly reduced due to the lack of covalent bonding between layers. These electrical and
thermal properties make MoSe: a suitable material for designing efficient solid-state
thermionic devices.

In nanoscale electronics contacts often play a more important role than the
semiconducting material itself [28,29]. While contact in Si-based devices is no longer
challenging after many years of engineering optimization, contact to nanoscale electronic
devices based on 2D TMD materials has become a major challenge [30-33]. A strong
interface bonding creating interface states that pin the Fermi level [34] or a weak bonding
creating a potential step due to Pauli repulsion [35,36] at the interface can cause high
barrier height between the metal contact and the 2D TMDs. Therefore, for the
applicability of novel 2D TMDs such as MoSe: as nanoscale devices, a comprehensive

study of metal contacts to the 2D TMDs is very important. There are several ways to



extract the metal-2D TMD barrier height [37]. In this work, we extract the barrier height
between metal-MoSe: from the electronic transmission function. We first systematically
study the contact between MoSe2 and various metals (Au, Pt, Ni, Cu). We then study
thickness dependence of the contact and identify Ohmic contacts. We also study the
thermionic performance of these structures.

Next, we investigate the effect of asymmetric metallic contact on the performance of SSTI
devices. In a VSTI device, the output power is proportional to the work function
difference between the cathode and the anode. Hence, it is desired to have asymmetric
electrodes wherein the cathode has a larger work function compared to the anode [38-
40]. The solid-state thermionic devices designed so far have similar metallic contact as
cathode and anode [5,16,21]. Therefore, the effect of asymmetric metallic contact with
different work functions on the device performance is unknown. In our work, we
evaluate the performance of two sets of asymmetric structures (Au-MoSe:-Pt and Cu-
MoSez>-Au) and compare their performance with their symmetric counterparts (Au-

MoSe>-Au, Pt-MoSe>-Pt, and Cu-MoSe>-Cu ).

II. Computational Method

DFT calculation details

To model the proposed device, we use open boundary conditions along the z-axis, while
periodicity is imposed in the xy plane. To study the structural and electronic properties

of the metali-MoSe:-metal>: van der Waals heterostructure, we used the state-of-the-art



density functional theory (DFT) based first-principles calculations combined with real-
space Green’s function (GF) transport formalism, as implemented in the SIESTA
package [41]. We wused the exchange-correlation functional of Perdew-Burke-
Ernzerhof [42] revised for solids [43] and standard basis set, namely, double zeta plus
polarization (DZP). Real-space mesh cutoff energy was set to 300 Ry. A single k point in
the cross-plane direction whereas a 5x5 k mesh in the basal plane was used for the
Brillouin zone sampling.

Making and optimization of the SSTI structures

We first optimized the lattice parameters of Au, Pt, Cu, Ni, and MoSe: separately for the
purpose of obtaining the optimized in-plane lattice parameters of the structures. The
optimized in-plane lattice constants are 4.08 A, 3.93 A, 3.61 A, 3.52 A, 331 A respectively.
Our calculated in-plane lattice parameter of MoSe2 matches the reported value in the
literature [21,44-46]. Therefore, the in-plane lattice parameters of the relaxed <111> plane
of the metallic contacts (Au, Pt, Cu, Ni) are 2.885 A, 2.779 A, 2.553 A, and 2.489 A
respectively. In the structures, 3-6 layers of MoSe: are sandwiched between 6 layers of
<111> plane of the metallic contacts. In the DFT-GF method, the electrodes are assumed
to be semi-infinite, and using 6 layers we achieved convergence in the results. The
transport properties will not change when the number of layers of the metallic contact
increased beyond 6. The in-plane lattice parameters of the structures are fixed to the

optimized metal <111> plane for the symmetric structures while the average of relaxed



metali <111> plane and relaxed metal2 <111> plane for asymmetric structures and in-plane
MoSe: lattice parameters were adapted accordingly (2\/§aAu/pt<111> = 4acy/Ni<111> =
3amose,, a is the lattice constant) to minimize the strain. Thus, the MoSe: in the Au-MoSe:-
Au, Pt-MoSex-Pt, Cu-MoSe:-Cu, Ni-MoSe2>-Ni, Au-MoSex-Pt, and Au-MoSe:-Cu
structures experience 0.65% tensile, 3% compressive, 2.8% tensile, 0.26% tensile, 1.24%
compressive and 1.73% tensile strain respectively. It is known that the tensile strain
increases the bandgap while the compressive strain decreases the bandgap [47,48]. After
forming the devices, all the structures are optimized again. In the optimization process,
the atomic positions of two inner layers of metal from each side along with all the MoSe2
layers, called the channel region, are allowed to relax without any constraints along the
cross-plane direction until the forces on all atoms are less than 0.01 eV/A while the atomic
positions of the outer four metallic layers from each side, considered as left and right
contacts, are kept fixed. We use the non-local van der Waals DFT functional (vdW-DEF-
optb86) [49,50] to correctly take the van der Waals interaction into account during the
structure optimization.

Electron transport calculations

The electronic transport properties of the SSTI devices are studied by using density
functional theory (DFT)-based first-principles calculations combined with real-space
Green’s function (GF) transport formalism. The transport properties calculations of the

optimized structures are performed using PBE functionals. Although the GGA functional



such as PBE used in this work underestimate the bandgaps, due to the presence of two
metallic electrodes which strongly screen the Coulomb interaction, the bandgap becomes
small so that we have a cancellation of this underestimation error. This was confirmed in
our previous work by comparing with the GW calculations on the same structure [21].
The electron transmission functions are calculated using real-space Green’s function
method as in the TranSIESTA implementation [51]. TranSIESTA deals fully with the
atomistic structure of the whole system, treating both the contact and the electrodes on
the same footing. After calculating the electron transmission function using TranSIESTA,

the transport coefficients are obtained using the linear response approximation [52]:

Conductance, G = gL,
Seebeck coefficient, S = L;/qTL,

Electronic thermal conductance, k,; = (L, — L5 /Lo)/T
where, L, = 2/h [ dET(E)(E — )" (- )

where q is the electron charge, and f is the Fermi-Dirac distribution function.

Electron-phonon scattering rate and mean free path (MFP) calculation
We compute the electron-phonon scattering rate and the MFPs in bulk MoSe2 using the

tirst principles. The equilibrium properties of electrons and phonons are calculated using
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the density functional theory (DFT) and density functional perturbation theory (DFPT)
as implemented in the QUANTUM ESPRESSO package [53]. The norm-conserving
pseudopotentials [54] with the Perdew-Burke-Ernzerhof (PBE) [55] functional for the
exchange-correlation is used. A 6x6x2 and a 12x12x4 Monkhorst-Pack k-point mesh are
used for the self-consistent and non-self-consistent field calculations, respectively and the
cutoff energy of the plane wave is chosen as 60 Ry. The convergence threshold of energy
is set to be 102 Ry. Lattice was relaxed with the force convergence threshold of 10+
Ry/Bohr. The obtained relaxed lattice constant of bulk MoSe2 in the hexagonal structure
are a=b=3.31 A and c=12.89 A. The dynamical matrices and phonon perturbations are
computed on a 6x6x2 q point mesh in the phonon calculations. To obtain the electron-
phonon scattering rates, the EPW package [56] is employed to interpolate the electron-
phonon coupling matrices as well as electron and phonon eigenvalues obtained by DFT
and DFPT calculations from coarse to fine k and q point meshes (30x30x30) using the
Wannier interpolation scheme [57]. The electron group velocities are obtained from the
BoltzTrap package [58]. Finally, the MFP is obtained by multiplying the electron-phonon

scattering rates with the group velocities.

IT1. Results and Discussion

Metallic contact for MoSe: based electronics
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Today, a large number of 2D layered materials are identified. Monolayers can be peeled
off and stacked on top of each other to form a variety of desired thermal, optical,
electronic properties, opening the possibility of nanoscale electronic devices for a variety
of medical, environmental, security, and sensing applications. A challenge to make the
desired planar electronics out of these lego-type stacked layers is the formation of low-
resistance metallic contacts. The contact resistance and in particular the potential barrier
height are important parameters for thermionic transport as well as making metallic
contact in a 2D planar device consisting of TMD materials. To form low-resistance contact
between the metal and the 2D TMD materials, the potential barrier height needs to be
very low (on the order of ksT). We calculate the potential barrier height of metal-MoSe»-
metal SSTI structure consisting of 5 layers of MoSe: for different metals (Au, Pt, Cu, Ni)
as well as Au-MoSez-Au structure for 3-6 layers of MoSez. A simple way to estimate the
potential barrier height is the Schottky-Mott (SM) rule, Ev=I-W (for holes) or Ev= W-x
(for electrons), where Evis the potential barrier height, W is the metal’s work function, I
is the ionization potential of the semiconductor, and x is the electron affinity of the
semiconductor. However, this simple and approximate method does not always predict
the correct potential barrier height [16] and certainly does not work well for our studied
structures. Here, we use a more accurate first-principles-based method to extract the
potential barrier height. First, we use first-principles calculations to relax the metal-

MoSez-metal structure. Next, we calculate the transmission function of the structure using
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Green’s function method (see Fig. S1 from Supplementary Information). We then
calculate the Esb for electrons by measuring the Ec-Er for electrons and Er-Ev for holes from
the transmission function, where Er is the Fermi energy, E. (Ev) refers to the
corresponding energy levels at the start of non-zero transmission above (below) the Fermi
level. As an example, the work function of gold (111) is 5.1 eV and the ionization potential

Table I. Calculated bandgap & barrier height of metal-5 MoSez>-metal SSTI structure

Metal contact Au Pt Cu Ni

5L MoSe2 0.89 0.89 0.87 0.80

Transmission gap (eV)

Barrier Height (eV) 0.26 0.42 0.10 0.30
(Calculated) (n type) (p type) (n type) (n type)
Barrier Height (eV) 0-0.14 0-0.12 0.62 (n-type) 0-0.20
(SM rule) (p-type) (p-type) | 0.14(p-type) (p-type)

of a single layer of MoSez is 5.22 eV [59]. Therefore, the SM rule predicts a barrier height
of 0.12 eV and a p-type transport, whereas our first-principles calculation indicates a
barrier height of 0.26 eV and an n-type transport. Similarly, the calculated barrier height
is n-type for Cu, while the SM rule predicts p-type barrier height. Table I summarizes the
calculated potential barrier height of metal-5 MoSez>-metal structure, and a range of

barrier height predicted by the SM rule for Au, Pt, Cu, Ni. The table also shows the
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transmission gap Eg for MoSe: in each structure, where Eg = Ec- Ev. We note that it is more
difficult to extract this information from the local density of states as the screening effect
of the metal on its adjacent layer results in a tail in the density of states, hence we define
the transmission gap instead of bandgap. From the calculated potential barrier heights
listed in the table, we see that Cu makes low energy contact for MoSez, which becomes n-
type, with a barrier height of 0.10 eV. Therefore, it is expected that the Cu-MoSe:z based
SSTI device to have the highest electrical conductance among the studied metals.

Table II. Variation of barrier height with the numbers of MoSe: layers

Number of layers 3 layers 4 layers 5 layers 6 layers

Barrier Height (eV) 0.20 0.30 0.33 0.40

Next, we study the effect of the number of MoSe: layers on metal-MoSe: contact
resistance. The energy states of the metal significantly affect the energy states of the
adjacent layers. This screening effect damps with distance and hence it is expected that
the barrier height to be dependent on the number of layers. Here, we calculate the
potential barrier height for Au-MoSez>-Au SSTI structure where the number of layers of
MoSe: varied from 3 to 6 layers in the heterostructure. Table II shows the potential barrier
height for the Au-3-6 MoSez2-Au SSTI structure. We see that the SSTI structure with 3
layers of MoSe2 shows the lowest barrier height of 0.2 eV, therefore, expected to show the

highest electrical conductance as more electrons will overcome the energy barrier. We
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note that the transmission gap closes for 1 and 2 layers and transport is dominantly

through tunneling.
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Figure 2. (a) Transmission function (b) electrical conductance (c) Seebeck coefficient and (d) power factor
times temperature of heterostructure containing 3-6 layers of MoSe:z. The inset of figure (a) shows a closeup
of the transmission functions.

Next, we evaluate the performance of the Au-3-6 MoSe:-Au SSTI structure. Fig. 2(a)
shows the transmission function of the structure containing 3-6 layers of MoSe:. Fig. 2(b)
and Fig. 2(c) show the electrical conductance (¢) and Seebeck coefficient (S) of all the
structures. The electrical conductance of the structure with 3 layers of MoSez is maximum

and electrical conductance decreases as the number of MoSe: layers in the structure

increases. This is consistent with the barrier height of the structures as shown in table 2.
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Also due to the increase in the number of thermally excited electrons, the electrical
conductance increases as the temperature increases as shown in Fig. 2(b). The Seebeck
coefficient increases with the number of MoSe: layers in the heterostructure because the
transmission gap increases with the number of layers. The power factor times
temperature (PFT=0S5?T) is a parameter that is used to characterize the power generated
by the SSTI device is shown in Fig. 2(d) for all the structures. The PFT is optimum for the
structure with 3 layers of MoSe: at the temperature range of 200-500K and 970-1200K
while structures with 4 and 5 layers of MoSez show optimum PFT at the temperature
range of 500-750K and 750-970K respectively. A breakdown of the PFT for each of these
temperature ranges is shown in supplementary materials figure S2. The maximum power
factor for the structure with 3 layers of MoSe: is 327 MWm2K" at 1200K. For comparison,
our previously calculated structure Au-Gr-3 WSe:-Gr-Au, Pt-Gr-3 WSe:-Gr-Pt showed a
PFT of 0.83 MWm2K! and 60 MWm2K-! respectively at 800K [5] and Sc-WSe2-3 MoSe2-
WSe2-Sc showed a PFT of 427 MWm-2K-"at 1200K [21]. Note that the unit used here is for

2D structures and is different to those used for bulk thermoelectric power factor.

Asymmetric MoSe: based SSTI
In VSTI, two dissimilar metals with work function differences larger than 1 eV are used
as cathode and anode and the output power is proportional to the work function

difference between the metals. The solid-state thermionic devices designed so far have
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similar metallic contact as cathode and anode [5,16,21]. Therefore, the effect of
asymmetric metallic contact with different work functions on the device performance is
not understood. In this section, we evaluate and compare the performance of two sets of
symmetric and asymmetric SSTI devices. In the first set of calculations, we evaluate the
performance of symmetric Au-5 MoSez-Au, symmetric Pt-5 MoSe:-Pt, and asymmetric
Au-5 MoSex>-Pt structures and in the second set of calculations, we evaluate the
performance of symmetric Au-3 MoSez-Au, symmetric Cu-3 MoSe:-Cu, and asymmetric
Au-3 MoSe:-Cu structures. Since in the previous part we identified 3-5 layers as
optimally performed devices, for all calculations in this section, 3 or 5 layers of MoSe: are

used.
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Figure 3. Local density of states of (a) Au-5 MoSez>-Au (b) Pt-5 MoSez-Pt (c) Au-5 MoSez-Pt and their
corresponding transmission functions.
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Fig. 3 shows the local density of states (LDOS) of symmetric gold, symmetric platinum,
and the asymmetric structure with one side gold and another side platinum and their
corresponding transmission functions. Gold and platinum are chosen since they have

similar work functions. From the LDOS we see that the Fermi level Er is located near the
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Figure 4. Transmission function (b) Seebeck coefficient (c) electrical conductance and (d) power factor times
temperature of the gold, platinum, and gold-platinum asymmetric structure containing 5 layers of MoSez.
The black line represents the gold structure, the blue line represents the platinum structure, and the red
line represents the gold-platinum asymmetric structure. The inset of figure (a) shows a closeup of the
transmission functions.

conduction band of the gold and gold-platinum asymmetric structure which means these
structures are n-type while the Fermi level of the platinum structure is located near the
valence band making it p-type. The transmission function, Seebeck coefficient, electrical

conductance, and the power factor times temperature for all three structures are shown
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in Fig. 4. As can be seen from the LDOS and the transmission function, the gold structure
has a lower barrier height compared to the other two structures. Therefore, the gold
structure shows higher electrical conductance values as shown in Fig. 4(b). The platinum
structure shows a positive Seebeck coefficient while the gold and the gold-platinum
asymmetric structure show a negative Seebeck coefficient (Fig. 4(c)) which is consistent
with the p-type and n-type barrier height of the respective structures. The platinum
structure shows a maximum Seebeck coefficient of 620 uV/K at 620K while the maximum
Seebeck coefficient of the gold and gold-platinum asymmetric structure is -792 uV/K and
-795 uV/K at 572K and 740K respectively. The presence of the bandgap in these structures
contributes to the large Seebeck coefficients. The PFT of all three structures is shown in
Fig. 4(d). The high electrical conductance due to low barrier height and the high Seebeck
coefficient of the gold structure results in the highest PFT at high temperatures. The low
electrical conductance combined with the low Seebeck coefficient makes the platinum
structure worst performing among the three structures while the PFT of the platinum-

gold asymmetric structure is in between the PFT of the gold and platinum structure.

In the previous set of calculations, we see that while the gold and gold-platinum
asymmetric structure is n-type, the platinum structure is p-type. For the next set of
calculations, we find another metal contact that has a very close work function to gold

and creates a structure that is n-type doped. We choose copper for this calculation which

19



E-E, (eV)

Cu MoSe, Cu ) Au I'\.flc'Se2 Cu

s s s
L C 2
w Of----------mmmmmmmmm oo w w Of------mmmmmmmmmmm e
u u ui
w 1N} w

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5
Transmission Transmission Transmission
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corresponding transmission functions.

has a work function value of 4.53-5.10 eV. Therefore, Au-3 MoSez-Au, Cu-3 MoSe:-Cu are
the symmetric structures and Au-3 MoSe:-Cu is the asymmetric structure for these

calculations. The local density of states and the corresponding transmission function of

symmetric gold, symmetric copper, and a gold-copper asymmetric structure are shown
in Fig. 5. The Fermi level Er for all these structures is close to the conduction band which
means all the structures are n-type doped. The energy barrier height of the copper
structure is significantly lower than the other two structures. The electrical conductance
of all the structures is shown in Fig. 6(b). The electrical conductance of the copper
structure is very high compared to the other two structures due to the significantly lower

barrier height. The n-type doping of all the structures can be further verified by the
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Figure 6. (a) Transmission function (b) electrical conductance (c) Seebeck coefficient and (d) power factor
times temperature of the gold, copper, and gold-copper asymmetric structure containing 3 layers of MoSez.
The blue line represents the gold structure, the red line represents the copper structure, and the black line

represents the gold-copper asymmetric structures. The inset of figure (a) shows a closeup of the
transmission functions.

negative Seebeck coefficient as shown in Fig. 6(c). The maximum Seebeck coefficient of
the gold, copper, and gold-copper asymmetric structures are -451 uV/K, -321 uV/K, and
-373 uV/K respectively at 1200 K. The PFT of the gold, copper, and gold-copper

asymmetric structures are 327 MWm?K+, 917 MWm?K", and 373 MWm2K-" respectively
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at 1200 K (Fig. 6(d)). The PFT of the copper structure is the highest among all the SSTI

structures have been calculated so far [5,21,60].

We note that the transport properties of the asymmetric structure are always in between
the two symmetric ones. The only exception is the Seebeck coefficient in the range of 600K
to about 1000K wherein the asymmetric structure shows a Seebeck coefficient smaller

than both symmetric counterparts.

From these two sets of calculations, we see that the PFT of the asymmetric structure is in
between the PFT of their symmetric counterpart. Although the asymmetry of the metallic
contact improves the performance of VSTI devices, the asymmetry of metallic contact
does not affect the performance of SSTI devices. This is possibly due to the difference in
the operating temperature and barrier height between the two types. One has to keep in
mind that given the nanoscale thickness of these devices only a very small temperature
difference can be maintained between the electrodes. Since the optimal operating
temperatures of symmetric structures are very different, the performance of the
asymmetric structure can never be superior to the symmetric ones unless their barrier
height is the same. Whereas the VSTI barrier height is few eVs, the ideal barrier height of
SSTIs is only on the order of meV. Given the small temperature difference which can be

maintained in these structures, we can linearize the theory of thermionic transport, define
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equivalent Seebeck coefficient and power factor. Upon doing so, the asymmetric

structure shows average properties, in between the two symmetric counterparts similar
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Figure 7. (a) Electron-phonon scattering rate for bulk MoSe2. (b) Electron mean free path calculated along the z-
axis.

to how averaging is done in thermoelectric structures. The most important parameter in
these structures seems to be the barrier height itself. The lower the barrier height, the
higher the power factor. We know the optimum barrier height is about 2KvT which
corresponds to 50 meV at room temperature and 100 meV at 600K. The latter is close to

the barrier height of the Cu structure.

Finally, since we are describing electron transport using a coherent formalism and have
neglected inelastic scatterings, our results are only approximate at very high
temperatures where the electron mean free path can become shorter than the barrier

thickness. In practice, the electrical conductance and power factor should start decreasing
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with T at high enough temperatures. We calculated the mean free path (MFP) of bulk
MoSe: along the z-axis at different temperatures from first-principles to estimate the
effect of inelastic electron-phonon scattering on the transport properties. The energy-
dependent electron-phonon scattering rates and MFP is shown in Fig. 7. The electron
mean free path at the bottom of the conduction band at 300K is 200A and at 1000K is
35A. The length of the 3 layers and 5 layers of MoSe: devices are 19.35A and 32.25A
respectively. Therefore, up to 1000K, the inelastic electron-phonon scattering should not

affect the performance of the 3 layers and 5 layers of MoSe: based SSTI devices.

IV. Conclusion

We used first-principle density functional theory (DFT) combined with real-space
Green’s functions formalism to evaluate the performance of SSTI devices with a varying
number of MoSe: layers and with a variety of metallic electrodes. Among the studied
metals, copper makes the lowest energy contact for electron transport while platinum
makes low energy contact for hole transport with MoSez. The Cu-3 MoSe:-Cu structure
shows an extremely large PFT of 917 MWm-2K- at 1200K which is the largest power factor
calculated for thermionic structure based on TMDs. Since the barrier height can be tuned
with the number of layers, we investigated the contact barrier dependence on the number
of layers by studying the contact between gold and 3 to 6 layers of MoSe2. We found that
Au with 3 layers of MoSe: shows the lowest barrier height, hence, makes better ohmic
contact. Furthermore, we evaluated the performance of solid-state thermionic devices
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with 3-6 layers of MoSe2 sandwiched between two gold contacts and evaluated how their
performance changes with the number of layers. Structures with 1 & 2 layers of MoSe:
are not included as the transport in these structures is dominated by tunneling of carriers
which is not desirable for SSTI devices. We find that SSTI devices with 3 layers of MoSe2
show optimum performance at the temperature range of 200-500K and 970-1200K while
devices with 4 and 5 layers of MoSe: show optimum performance at the temperature
range of 500-750K and 750K-970K respectively. Therefore, the number of layers can be
optimized for a given target operating temperature. Next, we studied the performance of
two sets of asymmetric SSTI. Although an asymmetric metallic electrode enhances the
efficiency of a VSTI device, we find that asymmetry of the electrode does not play any
role in improving the performance of SSTI devices because the temperature difference
across the device is very small, and one is in the linear regime. The most important
parameter seems to be the energy barrier height and the structure with the lowest barrier
height (0.10 eV) shows the highest performance. Finally, we estimated the electron mean
free path at the Fermi level and across the MoSe: planes to be 200 A , and 35A at 300K
and 1000K respectively which is larger than the thickness of the structures considered

here.
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