This article has been accepted for publication in IEEE Transactions on Transportation Electrification. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TTE.2023.3270870

IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION

Integration of Hardware and Software for Battery Hardware-In-the-Loop
Towards Battery Artificial Intelligence

Saehong Park, Scott Moura, Kyoungtae Lee* Member, IEEE

Abstract—This paper demonstrates a novel, compact-sized
hardware-in-the-loop system, and its verification using machine
learning and artificial intelligence features in battery controls.
Conventionally, a battery management system involves algorithm
development for battery modeling, estimation, and control. These
tasks are typically validated by running the battery tester
open-loop, i.e., the tester equipment executes the pre-defined
experimental protocols line by line. Additional equipment is
required to make the testing closed-loop, but the integration
is typically not straightforward. To improve flexibility and
accessibility for battery management, this work proposes a low-
cost highly reliable closed-loop charger and discharger. We first
focus on the electronic circuit design for battery testing systems
to maximize the applied current accuracy and precision. After
functional verification, we further investigate applications for
closed-loop battery management systems. In particular, we extend
the proposed architecture into the learning-based control design,
which is a feedback controller. We utilize reinforcement learning
techniques to highlight the benefits of closed-loop controls. As an
example, we compare this learning-based control strategy with a
conventional battery charging control. The experimental results
demonstrate that the proposed experimental design is able to
handle the learning-based controller and achieve a more reliable
and safer charging protocol driven by artificial intelligence.

Index Terms—Advanced battery management system,
Hardware-in-the-Loop, Programmable current controller,
Battery status monitoring, Deep reinforcement learning

I. INTRODUCTION

Electrified transportation requires real-time monitoring and
controls for large-scale battery systems. This requires real-time
feedback control in order to ensure safety and performance.
Especially, there have been enormous efforts in the area of
modeling, estimation and controls for the battery management
system (BMS).

The proper mathematical battery modeling is essential for
battery control research. Battery models can be categorized
into two groups: equivalent circuit models (ECMs) and elec-
trochemical models. ECMs model the input-output behavior
using circuit elements, such as resistors and capacitors. How-
ever, ECMs do not capture the physical phenomena inside
the battery, including lithium transport, solid-electrolyte inter-
phase dynamics, and degradation mechanisms. On the other
hand, electrochemical models directly incorporate diffusion,
intercalation, and electrochemical kinetics from physics per-
spectives, and formulate fundamental mathematical structures.
Furthermore, physics-based models provide insights about
how batteries degrade in various formations, such as solid
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electrolyte interphase (SEI) layer growth, Lithium plating, and
mechanical stresses [1], [2], [3].

The electrochemical parameter estimation is an essential
procedure to enhance the electrochemical model, as these pa-
rameters reveal the material properties, such as state-of-charge
(SOC), state-of-health (SOH), and state-of-power (SOP). A
non-destructive parameter estimation requires the design of
experiments that various input current profiles are applied to
the battery for maximizing parameter identifiability, and then
matched the output response with a specific parameter set
[4]. In literature, the sensitivity of electrochemical parameters
is analytically derived based on a physics-based model for
parameter estimation [5]. The authors in [6] identify a subset
of the physics-based model using a short duration of pulse pro-
file. Bayesian optimization is applied to quantify the statistical
parameter estimates as well as automated process in [7]. After
key electrochemical parameters are identified, internal states
in the battery system can be estimated by designing a state
estimator [8].

Accurate battery modeling and its parameter estimation
improve the battery control quality, leading to better lifespan
and performance [9]. Several studies have been conducted
to study the health-aware rapid battery charging technique
for electrochemical models. A constrained feedback control
strategy via reference governor is implemented to prevent
battery degradation mechanisms using internal state estimation
for battery charging in [10]. The authors in [11] formulate
a minimum-time charging problem with health-related con-
straints and use nonlinear model predictive control (MPC).
Similarly, the authors in [12] apply stochastic MPC to charge
the battery packs under the presence of parameter uncertain-
ties. The authors in [13] propose ultra-fast charging method
for urban air mobility by using the asymmetric temperature
modulation method. The authors in [14] design a wireless
charging system for electric vehicles to provide constant power
transfer.

In recent years, machine learning and artificial intelligence
(ML & AI) have attracted attentions in a various way. The
authors in [15] propose a electrochemical-thermal-neural-
network model as a combination of physics-based and data-
driven models. For battery capacity estimation, the authors
in [16] apply a deep long short-term memory (LSTM) neural
network for cells under diverse working conditions. Prognostic
and diagnostic for battery management system widely utilize
machine learning techniques to predict battery health or critical
points [17], [18], [19]. However, the learning performance
is limited by lab protocols, as the ML models rely on the
data collected from pre-defined current profiles. Finding an
optimal current profile that maximizes the performance is a
challenging task, and therefore, automated exploration using
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Figure 1: Proposed advanced battery management system architecture.

an Al is critical. This drives a high need for a hardware-in-the-
loop system (HIL) with real-time current control and battery
monitoring.

Real-time HIL is essential for an advanced battery man-
agement system. The controller can set the battery current in
real-time, which is especially critical for deep neural network
(DNN) based algorithms, as the battery current is determined
by battery output measurements at previous time points. How-
ever, most conventional battery testers run open-loop, and lack
real-time control. They run based on a pre-determined battery
current profile that the user provides. External devices are
required to make the tester system closed-loop, but integration
is not trivial and requires additional expenses and learning
curves. More importantly, the battery testers are bulky and
expensive, precluding simultaneously testing many cells (i.e.
more than 20) and BMS implementation in a product.

Real-time HIL for an advanced battery management must
1) monitor the battery status, such as temperature and voltage,
2) control the current accurately with a wide dynamic range
in real-time, and 3) be a portable size for expansion. However,
no previous works have satisfied all these requirements. Many
works focused on battery voltage and temperature monitoring
[20], [21], [22]. A pulse width modulation (PWM) based
chopper strategy was used for charging, but high-frequency
noise is inevitable, and thus it lacks a precise current control
[23]. A power operation amplifier (OPAMP) and proportional-
integral-derivative (PID) control-based CC-CV charger was
proposed, but settling time, current resolution, and noise
information are not presented [24]. A switching mode power
supply-based battery testing system was introduced, but the
system is open-loop (i.e. it does not have a negative feedback
loop to mitigate noise and interference), and thus it lacks a

stable current control [25]. Therefore, we need a real-time
HIL platform that enables accurate charging and discharging
current control, as well as battery status monitoring.

Here, we present an integration of hardware and software
for an advanced battery management system as shown in
Figure 1. A printed circuit board (PCB) is designed to interface
between the hardware and software for battery management,
called PCB-BMS. The PCB-BMS receives the desired current
input from the user in the software layer and applies the exact
amount of current for charging or discharging. The PCB-BMS
also measures battery voltage and temperature in real-time.
The current inputs and outputs from the battery are stored
in the digital (software) layer and used for modeling, esti-
mation, and controls. We highlight this integrated system for
identifying the battery model and training the parameterized
controller (agent) to allow a health-aware battery fast-charging
output feedback control.

We summarize our novel contributions as follows. Firstly,
the hardware design for the battery charging and discharging
control scheme is proposed. Specifically, we implement -5 A
to +5 A battery current control within < 10 mA accuracy by
exploiting a negative feedback loop in the hardware. Accurate
and precise real-time current control with output measure-
ments allows users to easily apply a learning-based control
strategy where an electrochemical-thermal model is used to
train the agent to design a feedback controller for battery fast
charging. To the best of the authors’ knowledge, this is the
first hardware implementation of a deep neural network-based
fast-charging controller. The learning-based battery charging
controller achieves reliable battery charging with minimal tem-
perature rise, compared to the conventional CC-CV charging
that overheats the battery. This work further provides insights
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into not only the charging controller design using a deep neural
network but also the importance of combining a physics-
based model with parameter adaptation for training the Al
agent. In this work, we define battery artificial intelligence
terminology as designing a learning-based controller to the
battery. Note that although we chose a DNN for hardware
verification, this platform can be used to test and apply other
battery management algorithms.

This paper is organized as follows. Section II introduces
the hardware design. Section III presents static and dy-
namic measurement results. Section IV briefly reviews an
electrochemical-thermal model, its parameter estimation via
sensitivity analysis, and learning-based control scheme for
battery management system. In Section V, we conduct the
battery charging experiments using the proposed hardware
architecture, and provide a use case for the learning-based
control. We summarize our efforts and provide future direction
in Section VIIL.

II. BATTERY HARDWARE-IN-THE-LOOP SYSTEM DESIGN

A. Specifications

Design requirements of the portable on-line hardware-in-
the-loop system for advanced battery management and testing
are listed below. Note that the specifications described below
are chosen for demonstration of the prototype. Thus, they can
be changed depending on the target application by simply
modifying circuit elements such as resistors, capacitors, and
transistors without changing the overall system architecture.
Design trade-offs and passive element value calculations are
described in the system analysis sections (see Section II-B).

o Software-based on-line battery monitoring and con-
trol To give a maximum battery management flexibility to
the user, this system minimizes the role of the hardware.
The user controls the battery current with almost no
latency (less than 10 ms). The battery terminal voltage,
battery current, battery temperature, and printed circuit
board (PCB) temperature information are transferred to
the user in real-time. This way, almost every feature
can be implemented in the software, including CC-CV
charging/discharging and safety monitoring. In addition,
as demonstrated in the results section, minimal latency
design makes it possible to set the battery current in real-
time by a learning algorithm almost instantaneously.

o Accurate battery charging and discharging current
control with a wide dynamic range In this work, we
aim for -5 A to +5 A battery current control within < 10
mA accuracy. Then, the standard deviation of the battery
current fluctuation when the system is in a steady state
should be less than 10 mA. The battery current varies due
to temperature drift, Nyquist-Johnson thermal noise, and
circuit non-idealities (non-linear response, voltage offsets,
and gain uncertainty). This drives the need for using a
negative feedback loop, providing a stable control using
high gain amplifiers.

« High temporal resolution battery current control with
minimal rise time and damping Fast and low latency

current control is essential to minimize unwanted dis-
tortion in the desired current waveform. In this work, 1
second temporal resolution for current control is achieved
with 95 % settling time less than 10 ms. 0.02 second
control is also possible by sacrificing current uncertainty
due to the finite settling time. Stabilizing the negative
feedback loop by analyzing in the frequency domain is
critical.

« Battery status monitoring Ambient and battery temper-
ature, as well as battery terminal voltage, Viagery, are mon-
itored in real-time. This provides additional dimensions
of information to the user, allowing for better battery
control. Vpaery is quantized with 1.2 mV resolution,
which can be further improved by using a better analog
to digital converter (ADC). A Type-K thermocouple tem-
perature sensor attached on the battery provides real-time
battery temperature information. In addition, a thermistor
measures the PCB temperature for safety monitoring with
10 mV/°C, leading to a 0.12 °C resolution.

« Portable size for scalability Conventional battery testing
relies on using bulky external equipment, precluding
testing many batteries (>20) at the same time. This work
integrates all the necessary circuitry within a small form
factor (10x 10 cm?) similar to the battery size, suitable for
a large-scale battery testing and research. In addition, the
system can be utilized in a product for real-time battery
monitoring due to the small form factor.

B. System Design

1) Charging: Figure 2 illustrates the schematic diagram
of the proposed system. The charging system (see charg-
ing control area in Figure 2) consists of a variable gain
instrumentation amplifier (IA), 5 m{) current sense resistor,
Riense ¢, operational amplifier (OPAMP), and high power P-
type metal-oxide-silicon field effect transistor (PMOS), M..
These components form a negative feedback loop to accurately
and linearly control the battery current, Ipauery, using the input
voltage, Vi . The negative feedback can be checked by going
around the loop. Suppose Ipaery increases due to noise. Then
the input voltage difference to the IA, Vi ¢ — Vpaery, increases,
leading to an increase in the IA output voltage, Viaou . Then,
the OPAMP output voltage, Vopou o increases. The current
flowing through the PMOS decreases as the gate voltage,
Vopour ¢ increases. As a result, fpuery decreases, eventually
canceling out the initial current increase due to noise. The-
oretically, the negative feedback loop rejects fluctuations on
any node in the loop except that on the input, Vy c.

The DC loop-gain (LG) of the system can be computed as:

LG = Apc_ia x Apc_opamp X gm_c X Reense_c; (D

where LG is the loop gain, Apc 1a and Apc_opamp are the
DC gains of the IA and OPAMP, respectively, gm ¢ is the
transconductance (0I/9V") of the PMOS transistor (M.), and
Riense_c 15 the current sensing resistance. The loop gain needs
to be large enough to minimize a DC error. The DC gain of
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Figure 2: System schematic diagram.

the IA can be set by two resistors, Rja; ¢ and Rjaz ¢, as shown

below.
RIAZ_C

Apcia =1+ Rinre 2)

In this work, Ria1 ¢ and Ryaz ¢ are 909Q2 and 31.6k(), respec-
tively, leading to Apc 14 = 35.8.

If the negative feedback loop is functional, the loop tries to

keep the positive and negative nodes of the input summing

node the same. Therefore, because the loop gain is much

greater than 1, the overall closed-loop gain is

Olvattery _ Apc_oramP X Gm_c
aV;:trl_c 1 + ADC_IA X ADC_OPAMP X Gm_c X Rsense (3)

1
~ ———— ~ 559,
ADC_IA Rsense

For example, if Vo decreases by 1 V, Ipuery decreases by

5.59 A. The relationship between Vi1 ¢ and Ipauery is highly

proportional due to the large loop gain. Note that depending on

the application, the closed-loop gain can be set to another value

by choosing different values for Rja; ¢, Riaz ¢, and Riense c-

However, if Apc 14 is too high, the loop becomes unstable.
The output voltage of the IA can be calculated as:

R
VIAout_c = VIAref_c + (V;_c - Vbattery) (1 + RIAZ_C> . (4)
IAl_c

To control Ipyery from O to 5 A with 10 mA resolution,
Viu_c should be controlled with 10mA/5.59 ~ 1.79mV
resolution. Therefore, 12 bit resolution for Vi . control is
enough. Finally, Ipaery is determined as below.

V;:trl_c - VvIAref_c

Ibattery = = 5-59(%@_0 — 01) (5)

ADC_IA Rsense

In this work, Viarer ¢ is set to 0.1 V. Therefore, the maximum
value of Vi . is 54/5.59 4+ 0.1 ~ 0.99V.

Exploiting the negative feedback loop, Ipauery 18 not affected
by Vhatery Or power supply voltage, Viupply = 4.5V, as long
as Vpatery does not exceed Viyppiy — 0.1V, Lastly, it is note-
worthy that Vipply is preferred to be similar to Viagery, ideally
Veupply = max(Voaery) 0.1V to minimize waste in power and
heat dissipation from the M. PMOS transistor, as the power
dissipation in the PMOS transistor is Viupply Ibattery — Vi_c Toattery-

Ensuring feedback stability is essential, especially when
there are more than one low frequency poles in the loop.
In our circuit configuration, the IA has a dominant pole at
Apc_1a/ funity_r4, where funy 74 iS a unity gain frequency
of the IA. Similarly, the dominant pole of OPAMP is at
Apc_opamp/ funity_oPAM P, Where funiy_opAnp is a unity gain
frequency of the OPAMP. To ensure feedback stability, there
should be only one dominant pole in the loop-gain. Since the
dominant pole of the TA depends on its gain configuration and
is at much higher frequency than that of the OPAMP (5,600 Hz
and 0.8 Hz for the TA and OPAMP, respectively), we decided
to decrease the OPAMP pole frequency by placing Rfieri ¢
and Cher 1 in a low pass filter configuration. This guarantees
stability for both small and large signal step responses.

2) Discharging: Discharging control uses the same circuit
components used for charging, an IA, OPAMP, and PMOS
transistor. Ryja1_ g and Riaz qc are 909€2 and 110k€2, respec-
tively, resulting in Apc_ 14 = 122. Similar to the charging case,
the closed-loop gain for discharging is

aIbattery ~ 1
OVewl_de

_ ~ —1.64. (6)
ADC_IA Rsense_dc

Unlike the charging circuit, the closed-loop gain is negative.
That i, Ipatery decreases as Viy_dc increases.
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According to the datasheet of the IA (LTC2053), the input
common range is limited as follow.

0V < (Vi_ae — Vhattery) + Viaretac <5 —1.3V.  (7)

Due to this limit, Viarer _dc 15 set to be 3.5 V. Therefore, Ipattery
can be determined by Vi dc as shown below.

‘/ctrl_dc - ViAref_dc o ‘/Ctrl_dc -

1.64

Note that negative Ipauery refers to discharging. For example,
Tvagery = -1 A means 1 A of current is being drained out from
the battery.

The voltage across the discharging resistor, Rgischarges 1S
TyatteryRdischarge, Which varies from 0 V to 5Rgischarge-
Therefore, 5Rg;scharge must be smaller than Vigitery to en-
sure 5 A discharging. However, if Rgischarge 1 too small,
most power is dissipated from the PMOS transistor (M),
generating unwanted heat on the PCB. As a result, we used
0.6 Q for Rdischarge-

Similar to the charging circuit, Rfier ac and Chier de are
selected for feedback stability. The low pass filter architecture
for discharging is slightly different from that for charging
because the impedance that PMOS transistors encounter is
different.

3) Data Conversion and Temperature Monitoring: Battery
voltage (Vparery) and IA output voltages (Viaou_c and Viaour_dc)
are sampled by a 16-bit analog to digital converter (ADC,
ADSI1115, Texas Instruments) with a voltage resolution of 0.19
mV. Four 12-bit digital to analog converters (DAC, MCP4921,
Microchip) set the reference voltages for the TAs (Viaref ¢
and Viarer o) and control voltages (Voy o and Vig ac). The
Arduino (Arduino Uno Rev. 3, Arduino) controls the ADC
and DACs and conveys the data to a laptop via USB. The

3.5

®)

]batter -
Yy 4 R
DC_IA{lsense_dc

battery temperature is monitored in real time using a Type-
K thermocouple with a thermocouple amplifier (MAX31855,
Maxim). The Type-K thermocouple is directly attached to
the surface of the cell can. Lastly, a thermistor (MCP9700,
Microschip) is placed on the PCB near the PMOS transistors
to measure the PCB surface temperature for safety monitoring.

4) Hardware and Software Integration: A python-based
program is developed to interface between the Arduino and
user script (i.e. the algorithm). A python multiprocessing
module is used to segregate the role of the software. One
processor (i.e. Arduino handler) continuously gathers mea-
sured data from the Arduino, and relays the data to the
user script every 1 second. It also receives the desired Ipasery
value from the user script, and sends it to the Arduino every
1 second. The user script communicates with the Arduino
handler via pipes. This strategy ensures that the Arduino
handler is running concurrently from the user script. Therefore,
data and communication are not lost even when the user
script uses most resources. In addition, the proposed software
architecture can be easily integrated with GPU or cloud-based
cluster computing service.

III. BATTERY HARDWARE-IN-THE-LOOP SYSTEM
VERIFICATION

Figure 3 displays a picture of the overall system. The power
supply provides 4.5 V for charging the battery. All the circuit
components except Rgischarge are integrated in a PCB. The
PCB dimensions are 10 x 10 cm?. Two 3 x 3 cm? fans
mitigate the PCB temperature rise due to heat dissipation from
the PMOS transistors. A separate PCB (the load island in
Figure 3) includes ten 1.5 {2 cement resistors, resulting in
Ryischarge = 0.6€2. Note that the load island can be replaced
by other components (i.e. electric motor or lights) as long
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Figure 4: Static measurement results.

as the voltage does not exceed Vpatery — 0.1 V. The Arduino
board relays the data between the laptop and PCB. Lastly,
a python-based program running on the laptop controls the
PCB. It is noteworthy that although it is not demonstrated due
to the current supply limit of the power supply that we use,
the system can theoretically handle Ipaery higher than 5 A by
using a better power supply.

A. Static Measurement Results

Figure 4(a)-(c) depict the static measurement results for
charging. The current command (lemg, the Tpauery value that
the user desires) is swept from O to 5 A with the finest
step (~ 7 mA) and the actual Ipayery is measured. As shown
in Figure 4(a), they are highly linear with R? value greater
than 0.9999. No saturation is observed. Since the system is
essentially a digital (Icma) to analog (fpauery) converter, con-
ventional metrics to evaluate a DAC can be used. Differential
nonlinearity (DNL) measures the monotonicity of a DAC and
adds additional quantization noise. The DNL is defined as
below.

_ Ibattery(i + 1) - Ibattery (Z)
Toma(t + 1) — Iema(4)

where i indicates the i-th step. The DNL shows the slope of
Tvauery With respect to Iemg at each step. The DNL value higher
than -1 guarantees the monotonicity of the system. Figure 4(b)
shows the DNL measurement result from O to 5 A. All DNL
values are within 0.25 least significant bit (LSB), indicating
that the system is highly accurate. The absolute current error,
Icmd — Ibatery, measurement result at each step is shown in
Figure 4(c). In every step, the absolute error is well within
+6 mA, smaller than the finest resolution of the system for
charging (7 mA).

9

DNL(i) ~1,

Figure 4(d)-(e) show the static measurement results for
discharging. Similar to charging, as shown in Figure 4(d), the
system is highly linear with R? value greater than 0.9999 for
discharging. The DNL values for discharging are within +
0.43 LSB for all range (see Figure 4(e)). The absolute error
exceeds + 10 mA at certain range of I.;,q, but the relative error
still remains within an acceptable range (i.e. 10 mA error at
Tema = -1 A means 1 % relative error).

B. Dynamic Measurement Results

Figure 5(a) and (b) show the dynamic measurement results
for charging and discharging, respectively. For charging, I g
is changed from 2.5 A (-2.5 A for discharging) to 0.5, 1, 1.5,
2,3,35,4,45, and 5 A (negative values for discharging) at t
=0s, and Tpaery is measured using an oscilloscope. The 95 %
settling time (i.e. the time it takes for Iyyery to reach 95 % of
the I.mq) for charging and discharging are less than 9.75 ms
and 8.53 ms, respectively. If the temporal resolution is 1 sec
(i.e. Icmq changes every second), this ensures more than 99.6
% accuracy in charge to/from the battery (Q = [ Idt). Fast
settling time enables even higher temporal resolution at the
cost of charge uncertainty. For example, 0.02 second control
(i.e. I.mg changes every 20 ms) is possible, but the charge
accuracy is 84.2 %.

C. Viuppiy and Viayery Dependency Measurement Results

Since the system senses and controls the current flowing
through the current sensing resistors (Rsense c and Rsense_dc)
using negative feedback loops, the system is not affected
by variations in other parameters such as Vippy oF Viagery-
Figure 6(a) shows the Iyuuery variation for discharging when
Vbattery varies (Iemg = -1 A). Ipayery varies within 4= 6.5 mA,
which is smaller than the I 4 resolution (7 mA). Similarly,
Figure 6(b) depicts Ipaery variation for charging when Viagery
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Figure 6: Viypply and Vpagery dependency measurement results.

varies (Icmg = 1 A), and the Ipayery €rror is less than 2.1 mA.
Lastly, Ipaery variation for charging when Viyppiy varies (Iemg
=1 A) is shown in Figure 6(c). The Ipayery error is well within
+ 0.3 mA, indicating that the system does not require high
precision power supplies and makes the overall cost relatively
cheap.

IV. BATTERY MANAGEMENT SYSTEM ALGORITHMS
DESIGN

In this section, we briefly describe battery modeling, estima-
tion, and controls perspectives. The design of the estimation &
control algorithm is based on the dynamical system modeling
to represent real battery behaviors. Specifically, a physics-
based model is able to capture the internal electrochemical
reaction mechanisms in granular detail, and is used for predict-
ing the battery behavior. A non-invasive parameter estimation
technique is used to reduce the gap between the system model
and the battery experiment. Once the parameters are identified
to represent the actual cell closely, then a learning-based
control policy is trained via reinforcement learning for the
purpose of minimum charging time while not violating the
state constraints. The highlight of this proposed framework
is enabling ‘learning-based control’ as a use case for the
proposed closed-loop hardware-in-the-loop architecture.

A. Electrochemical-Thermal Model

Firstly, we will go through the mathematical battery model
employed in this study. High-fidelity battery model can pro-
vide insights into battery cell design by assessing the influence
of physical characteristics on battery performance. Based on
the porous electrode theory, a mathematical model has been
developed in which Li-ions are intercalated in spherical par-
ticles in the negative/positive electrodes. For instance, Li-ions
are deintercalated from the positive electrode, dissolved in the
electrolyte, and diffused to the negative electrode in charging
process. We consider the Doyle-Fuller-Newman (DFN) model
to predict the evolution of lithium concentration in the solid
cE(x,r,t), lithium concentration in the electrolyte c.(z,t),
solid electric potential ¢F (x,t), electrolyte electric potential
be(x,t), ionic current iF (z,t), molar ion fluxes j;¥(z,t), and
thermal model to represent battery core, surface temperature
T.(t), and Ts(t). Discretization via finite element method
is conducted to simulate the physics-based model in the
x-direction including the negative electrode, separator, and
positive electrode. The governing equations are written as:

oct 10 oct
Bt (z,rt) = e [ Sir2 5 (z,r, t)} ,
(10)
0l 0 - Ocd 1—-¢0 .
7 e _ 7 eff (g e (Y]
Ee 8t (:E,t) - (956 |:De (Ce) 633 (1.7t) + F Ze(xat):| )
(11)
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dT.(t)  Tu(t) - Tu(t) -
Ce i i +Q, (12)
AT,(t)  Tu(t) — Tu(t) | Ta(t) — Tu(t)

where 7 indicates the negative electrode, separator, and posi-
tive electrode, denoted by j € {—, sep+}. According to [26],
the heat generation inside the cylindrical cell, @, is defined
as:

Q=I(t) [U*(t) -
0

U= (t) - V(1)

_ +(t -
IOTO 5 U0 -U~ @], (4
and the algebraic equations of the model are given by
+
ot Oy — it 10, a9

ox

where ¢ represent the solid electric potentials and i, is the
ionic current in algebraic variables,

+
o OO 0 1) = it )~ 1), (16)
X
o¢ : 2RT
eff . e — _;* eff . _ 40
K(ee) - 22 ) = i (o) 1) - 2 (1 1)
dlnfc/a 8lnce
X (1 + dlnce (xﬂt)) 83) ('T?t))
(7)

where ¢, is the electrolyte electric potential across the x-
direction. The ionic current is governed by the algebraic
equation,

oiF

ox
where j are the molar ion flux in the anode and cathode,
input to the spherical particles, and governed by following
algebraic equation,

(,t) = a* Fjy (a,1),

(18)

1 agF + ack
JE(x,t) = Fi(ﬂf(x,t) {eTTF” (@t) _ ¢~ T
this expression represents Butler-Volmer kinetics [26], the
exchange current density, i, is defined as:

ig(x,t) =i+ [ci(m,t)]a“ [ce(m,t) (c;'fmax

*(z, t)} . (19)

_ csis(x, t))} o ,
(20)

where ¢t stands for the Lithium concentration at surface

expressed by:

ci(m,t) = cf(%Rff,t), (21

and overpotential is governed by following equation:

(@, ) = 65 (2, 8) = de(2,1) = U™ (e (2,1) — FRF 5 (x,1).
(22)

The state-dependent parameters such as D" = D.(c.) -
(gg)brug’ O_eff,j — 0'(514‘6 )brug and Heff _ KZ( ) (5J)br% are
the effective electrolyte diffusivity, effective solid conductivity,
and effective electrolyte conductivity, respectively, given by
the Bruggeman relationship. The details of boundary condi-
tions for PDEs (10) — (11), ODEs (16), (17), and (18) can be
found in the authors’ previous work [4].

Note that thermal dynamics depend on the battery cell
geometry, such as cylindrical or pouch. In this work, we use
18650 cylindrical battery cell using two thermal states, namely
core temperature, 1., and surface temperature, 7. Regardless
of cell geometry, electrochemical parameters, D¥, D,, k., and
k*, vary with temperature via the Arrhenius relationship:

E
Z/J = djrefexp |:]3:b (1]; - Tl):| )

where 1 represents a temperature-dependent parameter, Fy
is the activation energy, and ..y is the reference parameter
value at room temperature. The model input is the applied
current density I(¢) [A/m?], and the output is the voltage
measured across the current collectors,

V(t) = d)j(OJrat) - d)si(Oivt)'

After using  suitable numerical methods, the
electrochemical-thermal model can be simply expressed
as:

(23)

(24)

X = f(x,z,u; 0)7 X(to) = X0, (25)
0= g(X7 Z,U; 0)7 Z(t(]) = Zo, (26)
y = h(x,2,v;0), (27)
where the states are x = [c;,c] Fce,T.,Ts]" € R™ and

2 = (67, 0F iz, i, be gy df]T € R™, and parameters are
denoted by & € R™. The output variables are defined as
y = [V(t),T;(t)]T in (24), (13), and the input current, u,
represents the applied current, I(¢) in (16).

B. Parameter Estimation

Sensitivity analysis is used to determine how the output
of the model is affected by changes in parameter values
[27]. Based on the nominal parameter values, local sensitivity
analysis can be derived as the first-order partial derivatives
of the system output with respect to the parameters. In this
section, we briefly summarize how the local sensitivities in
dynamical systems (25)-(27) are derived. With the sensitivity
information, we can further extend to a parameter estimation
framework via nonlinear least squares.

Define sensitivity variables as follows:

ox g 02 g Y
00 00 00’
where Sx € R*»*" S, € R™*" and S, € R™*"r are
sensitivity vectors. The 4,7 matrix element is defined as the
partial derivative of the i-th variable to the j-th parameter, e.g.

[Sxi,i(t) = 6;;(;) :

The evolution of the sensitivity variables is governed by the
sensitivity differential algebraic equations (SDAEs), which can
be derived following the procedure in [28]:

of of of

Sx = (28)

(29)

Sx = gpxt g%t 5g0 Sx(0) =5, (0
_ g Jg dg _
= 8xSx 3 =85, + == 20° Sz(0) = S, 31
oh oh . oh
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The SDAEs provide a rigorous mathematical computation
of the sensitivities compared to a perturbation method where
sensitivities are obtained by perturbing each parameter slightly
and calculating the output difference with respect to nominal
parameters. Note that SDAEs are linear time-varying DAEs,
which require computation of the Jacobian with respect to
states and parameters at each time step. We utilize automatic
differentiation tool since it provides more accurate, automated,
and fast Jacobian calculations. In particular, the CasADi is
adopted for efficient computing the derivatives [29]. In this
work, the battery model DAEs (25) — (27) and the correspond-
ing SDAEs (30) — (32) are simulated by running the IDAS
integrator provided by SUNDIALS via the CasADi interface
[30]. Subsequently, these sensitivity vectors are utilized to
minimize the voltage/temperature prediction in a nonlinear
least squares fashion, namely,

(33)

To iteratively solve the optimization problem (33) we
adopt the Levenberg-Marquardt (L-M) algorithm [31], [32]. In
essence, L-M adaptively blends the parameter update scheme
between the gradient descent method and the Gauss-Newton
method based on

[ITT + Mdiag(TT )] B; =T (y — 9), (34)
where J = 97/ 90 is the local sensitivity of the output y at
given local parameter 6, which is equivalent to the sensitivity
vector computed from (30)-(32). The parameter, )\, trades off
gradient descent update and Gauss-Newton update. Finally, the
parameter estimates can be updated iteratively according to

Ori1 = 01, + Bp- (35)

C. Fast Charging Control Problem

One of the critical tasks in the battery management system is
to charge the battery as quickly as possible while suppressing
the battery aging mechanisms. In this context, one could
formulate a constrained control problem where the goal is
to reach the final SOC in a minimum time without violating
constraints. The control input is the applied current in the
battery charger hardware, which is limited by,

*Imax S I(t) S Oa (36)

where the negative sign indicates charging mode during the
battery operation. To restrict the various degradation mech-
anisms of the cell, we capture different level of constraints
in the battery charging problem. Firstly, the battery cell
temperature cannot surpass a certain limit, 7},,x, such as:

T(t) < Tinax- (37

Note that the high temperature contributes to solid-
electrolyte interphase (SEI) layer growth [9], which is a
primary degradation mechanism.

Taking the temperature impact into account, the following
control problem can be formulated:

max

I1(t)
subject to
battery dynamics, (10) — (22),

input current constraint, (36),

—ty (38)

temperature constraint, (37),
initial states, V' (tg) = Vo, T(to) = To,
SOC(tf) = SOCrf,

where tg = 0 and ¢y are the initial and final time of the
charging procedure, respectively, Vy and Ty are the initial
values for voltage and temperature, respectively. SOC(¢) can
be computed by coulomb counting method, and SOC,s is
the reference SOC at which the charging is considered to
complete. When the full-order electrochemical-thermal model
is considered, this becomes a large-scale optimization problem
due to the hundreds number of states. We explored this
challenge in the previous work [33], and the reinforcement
learning (RL) approach provides the solution via approximated
dynamic programming, where the value function is estimated
from generated samples while improving the controller perfor-
mance, called actor-critic approach. In this work, we highlight
that the proposed HIL configuration enhances the data-driven
solutions experimentally. Readers are referred to the authors’
former work [33] for more details of RL in battery controls.

Note that the structure of the actor-critic networks remains
consistent during training and experimental testing in this
work. Deep neural network topologies with varying numbers
of neurons are used to build the actor-critic networks [34].
Specifically, we adopt the same configuration as our previous
work to make consistent results (i.e. two hidden layers with
20 - 20 neurons in the actor-network and two hidden layers
with 100 - 75 neurons in the critic network). Training hyper-
parameters for these networks are summarized in Table I.
Readers are referred to equations (9) — (15) in [33] for detailed
actor-critic description.

Variable Description Value
¥ Discount factor 0.99
Nz, NQ | Learning rate of actor and critic network 10~4, 1073
T Soft update rate of target networks 10—3

Table I: hyper-parameter lists for actor-critic networks.

The RL requires to design appropriate reward function,
which needs to represent the optimization problem (38). In this
work, we integrate the objective and constraints into reward
function, such as:

Tt+1 = Tast T Tsafety(sty a‘t)7 (39)

where g,y is an immediate penalty for each time step before
reaching the reference SOC. The state constraint is also for-
mulated by means of linear penalty functions at each time step
[35] Notice that the RL does not require specific knowledge
of the system, so-called environment, which implies constraint
violation will necessarily be experienced by the agent during
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the training. While the model-based RL can be examined
to guarantee robust constraint satisfaction for safety-critical
applications, such as autonomous driving [36], the actor-critic
approach is allowed to exceed the constraints for learning
purposes since the battery is a marginally stable system [37]
and learning will not create unsafe instabilities. The key factor
is that the simulation model should be identical to actual cell
prior to experiments via parameter estimation, otherwise, the
agent might experience un-explored state-action pairs during
the testing. We formulate the following reward function using
the available output measurements, namely,

rsafely(sta a't) = Tlemp(8t7 at) + TVOIt(Stv a't); (40)

where reward function, 7iemp and 7y, are computed at each
time step by measuring the outputs,

pem (T(t) - Tmax)» lf T(t) Z Tmax
rtemp(st’ a:) = 0t ' otherwise @1
Vo V t) — Vmax 9 lf V t Z Vmax
rn(s, ag) = { oV ) ) (42)
0, otherwise.

The fast charging term, 7, and penalty function coeffi-
cients, Tgfery, are tuned as Tpnax = 35°C, rpg = —0.1, and
Premp = —5. The maximum allowable voltage is obtained
as Viax = 4.2V according to the datasheet and the voltage
constraint is set to pyox = —100. The charging current is
restricted by the hardware setup, such as [0, 1.8C], where C
is the C-rate related to the considered cell. The performance
of RL agent in simulation is investigated in [38]. In this
work, we demonstrate that the RL agent can be deployed to
the real battery system as an output-feedback controller in
the proposed HIL architecture. Notice that the proposed HIL
architecture can handle any learning algorithm.

V. BATTERY MANAGEMENT SYSTEM ALGORITHMS
VALIDATION

In this section, we demonstrate the functionality of the
proposed HIL system, starting from validating the physics-
based model, conducting parameter estimation, and applying
learning-based control for battery fast-charging. The objective
is to show how the hardware and software are integrated
and validated for a fast-charging application. As previously
mentioned, we count on the electrochemical-thermal model to
represent real battery behavior discussed in Section IV-A. The
electrochemical parameters of the battery model are adopted
from the author’s previous work [4], which was to identify
the electrochemical parameters in a non-invasive fashion for
a 18650 Lithium nickel cobalt aluminum oxide cathode and a
graphite anode (NCA) battery. Figure 7 presents a comparative
analysis between the simulated model outputs and the experi-
mental measurements using the proposed battery hardware-in-
the-loop system. The measured voltage is equivalent t0 Vpagery
in Section III and compared with the electrochemical-thermal
model voltage output (24). The overall root mean square error
(RMSE) achieves 14.9 mV for the pulse profile and 11.3
mV for the urban dynamometer driving schedule (UDDS)

Method Tmax Tmax Tmax Target SOC
H Reach Time | Violation Time | Reach Time | Reach Time

RL Not reached 0 sec. Not reached 2,186 sec.
PID ‘ 648 sec. ‘ 1,294 sec. ‘ 1,410 sec. ‘ 1,942 sec.

Table II: Summary of charging time [seconds] up to 80% SOC
under the temperature constraint.

driving cycle profile. This voltage RMSE implies that there
exists a model-mismatch between the physics-based model
described in Section IV-A and the actual cell due to battery cell
aging or manufacturing variation. This model-mismatch can be
minimized by conducting the parameter estimation algorithm
described in Section IV-B until the voltage difference is lower
than the acceptable threshold.

It is desired to compare the difference between the input
current command, Icmg and the applied current input, Ipagery
as a validation purpose discussed in Section III, and the
results are presented in the second subplot. Note that the
applied current input, Ipagery, 1S used because this is the actual
current applied to the battery. Quantitatively, the proposed
BMS achieves RMSE of 8.6 mA for pulse profile and 4.6
mA for driving cycle profile, which meets the design criteria
for hardware development discussed in Section II.

Another output comparison between the experiment and
the mathematical model is the surface temperature of the
cell. We first simulate the model with the nominal thermal
parameters, denoted as ‘before thermal parameter estimation’.
The RMSE between measurement and initial model output is
0.7848 °C for pulse profile and 0.8019 °C' for UDDS profile.
Even though the electrochemical parameters are identified
and validated from previous work [4], one can notice that
the thermal parameters, such as heat convection, R, and
conduction resistance, R, remained as not-identified, which
motivates us to identify them using the surface temperature
measurement and model output (13) shown in Figure 7. As
described in Section IV-B, these thermal parameters, namely,
0 = [R.,R,]", are identified via the nonlinear least square
method with sensitivity vectors of these parameters with
respect to surface temperature measurement as an output
discussed in Section IV-B. After the iterative process, the
identified thermal parameters achieve 0.4713 °C RMSE for
pulse profile and 0.2053 °C' RMSE for UDDS profile denoted
as ‘after thermal parameter estimation’. To ensure safety
during the battery testing, the PCB temperature is monitored
by the hardware-in-the-loop in real time.

After validating the electrochemical-thermal model in terms
of output measurements, such as output voltage and battery
surface temperature, we train the actor-critic networks via rein-
forcement learning described in Section I'V-C. To ensure safety
and health during charging, the battery surface temperature
constraint is set to Tyax = 35°C in (37). The conventional con-
stant current constant voltage (CC-CV) is also implemented
via PID control approach as a baseline. Figure 8 presents
the comparison of the learning-based charging control with
the conventional approach in terms of temperature constraint
violation and time for reaching the target SOC. Table II
summarizes this comparative study. The battery starts at 2.8
V and the SOC is simply computed by looking up open-
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Figure 7: The comparison between the electrochemical model and battery experiment with the proposed BMS architecture.

94'5 ______________________________ control while the surface temperature exceeds the temperature
gss— —eamnebased GO 1 constraint around 66% of charging time. The learning-based
£ .l — Conventional (CC-CV) | control, which is trained from a physics-based model in order
Z s ‘ ‘ ‘ . not to violate the temperature constraint, achieves the charging
0 500 o ) 1500 2000 2500 task without violating the temperature constraint. To compare
8 : . its charging performance, SOC is computed by adding the
< 6 Zoom-In : cumulative coulomb counting from its initial SOC. Due to
g 47 === 495 1 the presence of temperature constraint, the learning-based
3 2] ] controller takes 2,186 seconds which is longer than 1,942
% 500 1000 1500 2000 2500  seconds from the baseline, however, this difference can be
2 Time (s) compensated by not violating the constraint. It’s remarkable
S |- - Temperature constraint to state that training the agent in simulation space perfectly
E S I i works in experimental space by using a deep neural network
%30 r 7 output-feedback controller.
ézso 5(‘)0 10‘0 . 15‘0 . 20‘0 . 2500 In this work, our objective is to demonstrate how the
Time (s) proposed battery HIL system can be utilized to apply the
1 actual charging control from the trained agent. Note that
the agent is trained for learning the best charging policy
§°'5’ i while not violating the temperature constraint throughout the
0 ‘ ‘ learning process. To make the training process more reliable,

0 500 1000Time © 1500 2000 2500  one needs to make the environment close to the real world,
which is the reason why we used the physics-based model and
Figure 8: Comparison of NCA 18650 Li-ion battery charging validated electrochemical parameters. Although there exists a
controls between learning-based (reinforcement learning) and model mismatch between the real battery and the physics-
conventional approach (CC-CV via PID control). based model, we observe that such model mismatch does not
impact the charging policy when it comes to comparing with
circuit-voltage with coulomb counting. Note that the battery the conventional approach as shown in Figure 8.
starts to charge with different idle time in order to present the
voltage/current/temperature curves distinctly. The conventional
CC-CV charging scheme is set to the maximum allowable A Scalability
charging current, SA, and constant voltage, 4.2 V as Vjax. The The proposed battery HIL system is inherently scaling-
CC-CV method reaches the Vi« faster than the learning-based friendly to test many battery cells independently and simulta-

VI. DISCUSSION
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neously. Firstly, the PCB controls each battery independently
by measuring the current through the shunt resistor and
controlling it in a negative feedback loop. Therefore, several
PCBs can be stacked up in parallel to test multiple batteries
simultaneously. The cost per PCB is relatively cheap (~ $100
USD) compared to the existing battery tester channel, and
the user can scale the system by simply stacking additional
PCBs. Secondly, the proposed battery HIL system is able to
connect multiple PCBs to a single PC through a USB hub.
Theoretically, one USB port can handle up to 127 devices.
Given the data rate each PCB requires (<0.1 Mbps), large-
scale (~100) battery testing can be achieved using a USB port.
Also, multiple Python programs can be run independently in
separate threads, making the scaling straightforward. Lastly,
multiple PCBs can share a power supply as long as the
summation of charging currents for every battery at a given
time point does not exceed the maximum allowable current
value that the power supply can output. For example, a
commercially available 1,000 A power supply supports 200
batteries charging at 5 A current simultaneously.

B. Current control accuracy

In the proposed system, Ipgyery is firstly converted into the
voltage domain via the shunt resistor (Fsense_c OF Rsense_dc) and
measured by sampling output voltage of the instrumentation
amplifier TA) (Maout_¢ OF Viaout_dc)- Since the input impedance
of the ADC is ~22 Mohm which is much larger than the output
impedance of the TA and resistive divider (<<150 kohm),
Tpagery measurements have high accuracy. In addition, the IA
has the gain error of ~0.001, ensuring minimal distortion
during the signal amplification. Therefore, Iyaiery measurement
results would be close to the actual battery current.

The proposed system accurately controls the battery current
even with a temperature drift. The negative feedback sup-
presses any drift or noise (including temperature drift or 60 Hz
noise) in the loop if the loop gain is large enough. However,
there are errors that the negative feedback cannot mitigate,
leading to directly or indirectly affecting the accuracy. Firstly,
the negative feedback cannot suppress the error of the control
voltage input, Vey o or Vig .. However, because they are
supplied by 12-bit high precision DACs with only £+ 0.2
differential nonlinearity (DNL) and =+ 2 integral nonlinearity
(INL), the worst case current error would be ~ 13 mA
for charging and ~ 1.5 mA for discharging, respectively.
In addition, resistance change due to the temperature drift
affects the current measurement accuracy. However, the shunt
resistors have a temperature coefficient of only &+ 75ppm/°C.
Therefore, the resistance will only change 0.18 mf2 even with
the temperature drift of 25°C', leading to the maximum current
error of 9 mA at 5 A Iyu¢tery. To measure the temperature
change, the thermistor is placed right next to the shunt
resistors. As shown in Figure 7, the PCB temperature does
not change more than 5 °C, indicating that the temperature
effect would be negligible.

C. Battery requirements

The proposed battery HIL system can be utilized to test any
batteries, as long as the battery operating voltage is within the

(2V,5.5V) range, suitable for most Li-ion batteries (cylindri-
cal, prismatic, and pouch). Specifically, the system requires
that the battery voltage should be within 0~5.5 V during
charging, and higher than Ripuq X Ipayery during discharging.
For example, in this study, the battery voltage should be higher
than 3.0 V when discharging with the maximum current, 5 A,
as Rjpaq is set to 0.6 €. If the discharging current is small,
the battery voltage can be less than 2.5 V. For instance, 1 A
discharging current allows the battery voltage higher than 0.6
V. Note that although we chose 0.6 €2 for Rjy,q to test a Li-ion
battery for this work, the user can set Rjyg value accordingly
depending on the application and battery operating voltage.

D. Hardware specifications

Table III summarizes the component ratings and specifi-
cations. Note that the discharging resistors were chosen for
demonstration purposes, and they can be replaced to any
electrical loads (e.g. motors or displays).

E. Software implementations

The proposed battery HIL system is running on a Python
platform, which allows users to apply a variety of Python
packages. Specifically, we exploit the PyTorch deep learning
toolbox for implementing reinforcement learning algorithm in
this work. The training process is performed on a Python
running an Intel core i9-9900K CPU with a clock rate of
3.60 GHz, and a GPU, GeForce RTX 2080 Ti. The agent
parameterized by deep neural network is trained by interacting
with the OpenAl Gym environment. It is remarkable to note
that the environment should represent the actual battery cell
prior to training, and the training process needs to be executed
in simulation for reliable experimental validation afterward.

VII. CONCLUSION

In this paper, we propose a compact, low-cost battery HIL
system consisting of battery monitoring and control, digital
communication, and a Python-based hardware controller. The
proposed charging and discharging hardware design is rigor-
ously verified by measuring the actual current to the battery on
a millisecond time-scale. This also allows users to control the
battery charging and discharging current for validating battery
management algorithms.

As an application for the proposed system, we experimen-
tally demonstrate a reinforcement learning algorithm using
deep neural networks for fast-charging applications. A deep
neural network-based controller is trained by a physics-based
simulator with temperature constraints and deployed to the
actual battery for validation. The experimental results show
that the proposed learning-based control achieves safer battery
charging control compared to the existing simple constant
current constant voltage approach. With this hardware-in-the-
loop, the user could validate any type of battery management
algorithms including system identification, design of state es-
timator, connection to electrified transportation, and learning-
based battery materials discovery.

Learning-based approach requires a training process to
learn the control objective before use. Once the training is
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Size Operatin, Operating voltage
Component Model Quantity (L xW x Hmm3 ) tempel;ature %OC) orI:)peratigng povfer
Shunt resistor CSS2H-3920-K-5LOOF 2 10x5.2x0.1 —55 ~ 170 2W
PMOS transistor IPD042P03L3GATMA1 2 6.6x10.6x2.3 —55 ~ 175 150 W
Instrumentation amplifier LTC2053-HMS8 2 3.0x4.9x1.1 —40 ~ 125 0~55V
OP amp OPA2344 2 8x9.5x4 —40 ~ 85 0~55V
Discharging resistor TUWIS5JIRSE 10 49x13x12 Not specified 15W
ADC ADS1115 1 5x3x1.1 —40 ~ 125 0~55V
DAC MCP4921 4 8x9.5x4 —55 ~ 125 0~55V
Thermistor MCP9700AT-E/TT 1 29x2.4x1 —40 ~ 150 0~55V
Arduino Arduino Uno Rev 3 1 69x53x15 —40 ~ 85 0~5V
Thermocouple amplifier MAX31855 1 5.1x6.0x2.5 —40 ~ 125 0~33V
Thermocouple type-K Adafruit 1 N/A —200 ~ 1350 N/A

Table III: Hardware specifications.

done, the controller is fixed in most cases, determining the
battery current based on the previous observations. This lacks
an adaptive control, and thus ignores battery-to-battery and
environmental variations. However, as shown in our previous
work [38], the learning-based algorithm can be adaptively
tuned during the actual operation. In this work, we believe that
the proposed HIL system can bring adaptive battery control
capability into the real world. It is highly envisioned that
the proposed HIL system enables optimized battery-specific
charging and discharging control to maximize the battery
performance.
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