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Abstract— The internal condition of lithium-ion batteries, in
particular State-of-Health (SoH), needs careful monitoring to
ensure safe and efficient operation. In this paper, we propose
a hybrid online SoH estimation pipeline for series-connected
heterogeneous cells. Implementing a single cell parameter esti-
mation scheme for a battery pack with hundreds to thousands
of cells is computationally intractable. This challenge is solved
in this work using feature-based adaptive polling of cells
with “extreme” parameter values. Furthermore, the electrical
parameters for the polled cells are estimated using online
recursive least squares with forgetting factor. The key novelty
lies in accounting for the uncertain state dependence of the
parameters. We use sparse Gaussian process regression to
obtain the parameter bounds as a function of both SOC and
temperature. The pipeline is validated through a simulation
study, using experimental data from Li-NMC cells.

I. INTRODUCTION

Battery technology plays a pivotal role in achieving global
energy sustainability and reduction of green house gas emis-
sions. Due to high energy density, low self-discharging rate
and long cycle life, li-ion batteries span a wide array of
applications including consumer electronics, electric vehicles
and grid-level energy storage. In recent years, much emphasis
has been placed on developing real-time control and estima-
tion of a battery’s internal states. However, with increasing
performance demands, safe and efficient operation of Li-ion
batteries remains a challenge.

Battery packs can contain up to hundreds or thousands
of cells connected in series and parallel, depending on their
application, such as electric vehicles and stationary grid stor-
age. As such, it is crucial to monitor the internal states, such
as state-of health (SoH), to ensure safety, performance and
prolonged life. This is usually done by an advanced battery
management system (BMS) that deploys real-time estimation
and control schemes. However, SoH estimation in packs is
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challenging due to: (i) scalability and computational cost,
(i1) limited sensing, and (iii) complicated battery dynamics.
An important fact often ignored during battery modeling is
the time-varying electrical parameters. In practice, internal
parameters, e.g. resistances and capacitances, depend non-
linearly on the cell’s temperature and SoC.

SoH estimation in batteries has been typically accom-
plished through two different routes. The first one consists in
carrying out specific experimental procedures. This is algo-
rithmically simple but requires one to stop battery operation
and/or use specialized lab equipment [1]. The second route
relies on models. It can be divided into data-driven and
physics-based approaches for battery modeling. Examples
of the former type include neural networks [2] and support
vector machines [3] used to estimate SoH parameters like ca-
pacity. The drawback of these approaches is that they require
large data sets and do not necessarily represent the battery
physics. The latter physics-based approach describes battery
dynamics using first-principles electrochemical models or
electrical circuit analogies. Electrochemical models have
been used to estimate SoH via the Levenberg—Marquardt
method [4], Kalman filters [5], and Lyapunov methods [6],
for instance. Although electrochemical models are relatively
descriptive, they are difficult to identify given their sheer
number of parameters [7] and associated identifiability issues
[8]. They also tend to be complex nonlinear differential-
algebraic equation systems. In contrast, equivalent circuit
models (ECMs) are abstractions of the battery dynamics
that strike a good balance between simplicity and ease
of interpretation. Parameter estimation in ECMs includes
nonlinear curve fitting [9], genetic algorithms [10], least-
squares method [11] and Kalman filters [12], to name a few.

Most of the aforementioned efforts for SoH estimation
have been centered around single cells, whereas few studies
estimate parameters for interconnected cells in battery packs.
For instance, Kalman filters were employed for combined
SOC and SoH estimation in the context of equivalent circuit
models [13], [14], [15], whereas global optimization ap-
proaches and particle filters [16], [17] also demonstrated high
estimation accuracy. However, most of these approaches (i)
lump the entire pack as one single virtual cell thereby losing
critical cell heterogeneity information, or (ii) enforce one
estimator on each in-pack cell and hence impose tremendous
amount of computational burden. The estimation of param-
eters for every single cell in a battery pack of thousands
of cells using highly non-linear and coupled dynamics is



computationally intractable. The proposed SoH framework
is scalable, since it derives the upper and lower bounds of
all electrical parameters for all cells in a pack. Moreover,
the framework uses sparse Gaussian process regressions to
estimate parameter values from selected operating points
to all the operating points of the battery pack. Given the
aforementioned literature, this paper contributes:

« A novel framework to estimate parameter value bounds
as a function of SOC and temperature, using sparse
Gaussian process regression.

« An analysis of the voltage-based features for intelligent
polling of representative cells in a battery pack.

The remainder of this paper is organized as follows. The
equivalent circuit model for a single cell is developed in
Section II. Next a brief motivation for the work is presented
in Section III. The SoH framework for heterogeneous battery
packs is developed in Section IV with Section IV-A outlining
the SoH pipeline algorithm. Finally, a numerical assessment
of the SoH pipeline is carried out in Section V.

Definition. Throughout the paper, Representative Cells are
defined as cells in a battery pack whose parameters form
the upper and lower bounds and enclose all the unmea-
sured parameters of all the cells in the pack. Furthermore,
Operating Point is defined as the state of the battery pack -
SoC (&(r)) and Temperature (I'(z)) at any given time z. For
the purposes of proper battery operation, the operating range
is fixed to be & € [20%,100%)] and T € [10°C,60°C].

II. MODEL DEVELOPMENT

This section reviews an equivalent-circuit model (ECM)
for a single cell, which is then electrically interconnected
with other cells to form a series arrangement.

A. ECM for Single Cell

The ECM for a single cell indexed k, consisting of a
resistor in series with an R — C pair and an open-circuit
voltage (OCV), is defined by

&) = 5 (), 0
. 1 1
Vealt) = Ck(ék»rk)lk(t) - Rz,k(ék,rk)ck(ﬁk,rk)Vc’k(t)7 @
Vi(t) = Vocv (& t) + Ve (1) + I ()R 1 (&, Tk), 3)

Here & (t) represents the SOC for the k-th cell, V. .(r)
denotes the voltage across the R, ; — Cj pair, Ry j is the ohmic
resistance, and Iy is the cell temperature. The electrical
model parameters, namely Ry, Ry and Cy are a function
of cell SoC and temperature. It should be noted that cell
capacity Q; (given in Amp-hours, Ah) is a constant. The
output (3) for any cell k in a pack expresses the relationship
between the terminal voltage and open circuit voltage (V,ey
(a nonlinear function of SoC), voltage across resistor Rj g,
and voltage across the R;j-Cy pair. Throughout the paper,
positive current is specified for charging and negative for
discharging.
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Fig. 1.  Voltage response of a battery pack heterogeneous in electrical
parameters Ry, Q and initial SoC when given HPPC current profile.
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Fig. 2. Experimental data on Li-NMC cells. A reference performance test
consisting of hybrid pulse power characterization was used to estimate true
parameter values at temperatures [10°C,60°C] and [20%,90%] SOC. The
plot shows R;, R, and C during discharge.

III. MOTIVATION

In this section, we illustrate cell heterogeneity with respect
to electrical parameters Ry, R, C and Q using an open-
loop simulation study [18], [19]. Without loss of generality,
we consider five LiNiMnCoO2/Graphite(Li-NMC) cells in
series, each with a 2.8Ah nominal capacity. Through this
simulation we will demonstrate that the “reductionist” ap-
proach prevalent in the literature of collapsing a battery pack
with thousands of cells to two fixed representative cells — the
“strongest” and “weakest” cells with respect to voltage, leads
to incorrect conclusions.

In this formulation, all the cells have identical SoC-OCV
relationship and the heterogeneity comes from:

« Difference in electrical parameters.

« Difference in SOC initialization.

« Difference in capacity Q.

For this demonstration, a modified Hybrid Pulse Power Char-
acterization (HPPC) test cycle is applied at a temperature of
30°C to 50 cells in series as shown in Fig.1. The electrical
parameters as a function of (§,T") are plotted in Fig 2.

For the demonstration, all three types of the aforemen-
tioned heterogeneity are applied to the pack of 50 cells,
simultaneously, where the parameters and SoC are within
+5% of the fresh cell electrical parameters at 30°C, as
shown in Fig. 2. As can be seen in Fig. 1, the voltage
response of the battery pack Vypper and Vigwer is not strictly



Algorithm 1: State-of-Health Pipeline
Inputs: Diagnostic current cycle
Outputs: R|,R,,C:= f(&,T), O
forT'=1:T do
for E=1:N do
e Run Diagnostic Cycle
o Poll representative cells using voltage features
corresponding to each electrical parameter R;,
R,, C, and Q
o Estimate Ry, Ri, R», R>, C, C, Q, O using
single cell recursive least square algorithm

end

end

e Estimate parameters as f(E,T) V & € [20%,100%)]
and T € [10°C,60°C] using sparse Gaussian Process
Regression

correlated to the “extreme” cells - defined in literature as
cells with min/max electrical parameters, and initial SoC. It
can be observed that the cell with lowest ohmic resistance,
and highest SoC-Q, doesn’t always have the highest voltage.
Similarly, the cell with highest ohmic resistance and lowest
SoC and Q doesn’t always have the lowest voltage response.
Therefore, it can be concluded that using Vi, and Vipax as
proxies for all the cells in a battery pack leads to incorrect
bounds on parameter values. Moreover, in a large battery
pack, the parameter values differ vastly. As such, collapsing
the four dimensional parameter space to one dimension is
incomplete. A new category of approaches is needed that
takes into account (i) the heterogeneity of cells with respect
to electrical parameters, and (ii) estimates parameters as a
function of SoC and temperature.

IV. STATE-OF-HEALTH FRAMEWORK

In this section we introduce the State-of-Health pipeline
that is divided into three parts: (i) feature analysis & cell
polling, (ii) single cell electrical parameter estimation using
recursive least squares (RLS), and (iii) sparse Gaussian
process regression (sGPR) for estimating electrical param-
eters as a function of (&,I") where & € [20%,100%)] and
I' € [10°C,60°C] .

A. SoH Pipeline

This section provides a brief overview of the SoH pipeline
as outlined in Algorithml. The objective is to estimate
bounds on parameters Ri,R»,C,Q across the pack, where
the first three are functions of (&,T’). Broadly, the pipeline
intelligently “polls” individual cells in the pack for char-
acterization, and then uses sGPR to extrapolate parameter
estimates across the pack.

The SoH pipeline uses output voltage measurement from
a fixed charge-discharge pulse cycle that will be referred
to as a “Diagnostic Cycle” for the remainder of the paper
(see Appendix). The algorithm is divided into three main
steps. These steps are executed for 9 fixed (£,T") operating

points. First, the voltage measurement from the diagnostic
cycle is used to identify a set of representative cells using
feature analysis discussed in Section IV-B. Second, using
single cell online RLS with forgetting factor, the parameters
of the representative cells are estimated. Finally, using sGPR,
the upper bound and lower bound estimates of representative
cells for 9 operating points are used to estimate an upper and
lower bound parametric surface in R3, since the electrical
parameters Ry, R and C are functions of (&,T"). It should
be noted that cell capacity is not a function of (&,T).

B. Cell Polling and Feature Analysis

The cell to cell variation in a battery pack over its lifetime
is often overlooked in approaches that estimate electrical
parameters representative of the entire pack. However, as
illustrated in Section III, the representative cells that cor-
respond to the upper (max) and lower (min) bounds of
the electrical parameters vary during operation and do not
necessarily correlate with the best (Vinax) and worst (Vinin)
performing cell. Moreover, the representative cells for each
electrical parameter differ and seldom overlap as seen in Fig.
1. This motivates the need for an approach that can easily
identify representative cells in real-time using the measured
voltage signal. In [20], the authors developed “CiS” - Cells
in Series approach to screen the cell to cell variation using
voltage-based indexing as opposed to current capacity-based
indexing. The CiS approach [20] was shown to consistently
outperform existing capacity-based approaches.

In this section we discuss and demonstrate, via simulation,
the voltage-based feature analysis used to intelligently poll
representative cells corresponding to each electrical param-
eter. The slope of the charge/discharge voltage curves are
known to provide insight on the electrical parameter values.
This is widely used in industry for reference performance
tests. The variation in resistance and capacity of the cells in
a battery pack are directly related to variations in the voltage
curve slope at the end of a pulse discharge and constant
current discharge. As a result, the voltage response to a fixed
pulse charge/discharge current cycle are leveraged to identify
SoC-invariant voltage features that have high correlation
coefficients with respect to (w.r.t.) electrical parameters.
These correlation coefficients are then used to index the
cells to identify the representative cells with maximum and
minimum parameter values in the battery pack.

For the simulation study, a pack of 50 Li-NMC cells
connected in series is used to generate voltage responses
using the ECM model (1)-(3) with varying parameters, whose
values are extracted from experimental data (Fig. 2). For this
demonstration, the Ry, Ry, C and Q parameters are varied
+5% from the nominal value and the simulation is performed
at a fixed temperature, 30°C. The goal is two fold: (i) identify
voltage features that have the highest correlation factor w.r.t.
to the parameters and (ii) identify the voltage features that
are invariant w.r.t. SoC, i.e they have high correlation factors
at all SoC levels (& € [10%-100%]). The second goal is
important because it provides the flexibility of intelligently



polling the representative cells at any given SoC during
battery pack operation.
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Fig. 3. Diagnostic pulse current profile and voltage response used

throughout the paper for feature analysis, polling and the recursive least
square algorithm. The bottom subplot indicates the voltage features used
for intelligent polling.

Figure 3 shows the voltage response to the Diagnostic
cycle — comprised of charge/discharge pulses — and the
features used to perform the correlation analysis for all
four electrical parameters. As can be seen in Fig. 4, the
difference between discharge voltage at the start of the
pulse and end of the pulse AVy, s = Vip s — Vapena, and
the voltage at the end of the pulse V;.,q give correlation
factors of -0.99 and -0.91 respectively, for ohmic resistance
R; [Q]. Other voltage features, namely the end of charge
Voltage - V.pena and end of relaxation voltage - Vs rerax
give smaller correlation factors w.r.t. Ry [Q]. Furthermore,
the features were analyzed at different SoC levels to check
the dependence on SoC and AVy,  consistently had high
correlation factor at all operating points. A similar two-
phase feature analysis is conducted for the other electrical
parameters Ry i, C and Q, for k € [1,50], to obtain voltage
features that correspond to representative cells w.r.t. to all
4 electrical parameters. The features with correlation factor
p > 0.9, corresponding to ECM parameters (R»,C,Q) are :
(Vdp,end - Vdp,sr+1 ) Vdis,relaxa Vdp,relax - Vdp,end+1) respectively.
These identified features are used in Section V to intelligently
poll the representative cells. Specifically, in Section IV-C we
describe how polling involves estimating parameters of the
representative cells using online Recursive Least Squares.

C. Recursive Least Squares (RLS) Model for Single Cell
In this section, we present the RLS algorithm for estimat-

ing a single cell’s electrical parameters R[], R2[Q], C[UF]
and Q[Ah] for a fixed temperature and SoC. The RLS model

TABLE I
PARAMETER TRANSFORMATIONS

(R1,R2,C) — (61,62,65) | (61,62,65) = (R1,R2,C)
— _T-2R,C R —00
1= ~112R2c 1= "i+e,
g, — — RitRy 1R RyC R, — 2651616
2= T+2R,C G
__ Ri+Ry—2R|R,C —1 (61+1)
6 =— 1+2R,C C=7 0:+0,6,

is divided into two parts: (i) First we formulate the RLS
model for estimating R;, R, and C along with V,, which
is treated as unknown. (ii) We use the inverted SOC-OCV
relationship for formulating another RLS model to estimate
cell capacity Q[Ah]. The RLS model for estimating R;, R,
and C is adopted from [21]. Equations (2) and (3) are linear
in the parameters, since SoC and temperature are fixed.

The algorithm begins by formulating a parametric model,
where we take the Laplace transform, apply the bilinear
transform, and then use the inverse Z transform:

I(s) 1
Vi(s) = 2 v, 4
Wel) = L~ Vel @
Vi Ve R 5
k() —Vocv (s) =1I1.(s) <]+1+R2C) )
2 14z
— 6
=7 1_Z 1 (6)
Via™ ) =Voev(z ) =L(z")-P (7
where,
R\T+RyT+2RR,C + R\T+RyT-2R\R,C -1
P T+2R,C T+2R,C z ®)

T-2R,C\ .1
(1 + T+2R2c> 2
Using the inverse Z transform, we obtain a linear in the
parameters output equation given by

Vi(k) = ©)
Voev(k) = 01Voey(k— 1)+ 01 Vi (k— 1) + 620 (k) + 6L, (k— 1)

~ (1= 601)V,oep(k)+ 61V, (k— 1)+ 01 (k) + 031 (k— 1)
(10)

A key assumption to further simplify (9) to (10) is Ve, (k —
1) = V,ey (k). Since we consider V,., as an unknown parame-
ter, we assume that changes in V.., are negligible to facilitate
RLS. This assumption does not significantly affect our results
since our voltage features in SectionIV-B are based on very
short duration charge/discharge pulses that conserve total
SoC. Moreover, this assumption allows us to estimate V.,
and not assume SoC-OCV to be constant over the lifetime
of the battery. Table I below gives the forward and inverse
transformations from (Rj,R,,C) +> (61,0,,65). Finally, we
have the RLS model of the form:

() =5"9(1) (1n

where the regressor ¢ and parameters ¢ are given by
¢:[13Vt(k71)a1(k)71(k71)] (12)
Y= [(I_QI)VOC(k)a91392793] (13)



Corr: -0.99 SOC: 40 Corr: -0.91 SOC: 40

Corr: 0.92 SOC: 40 Corr: 0.17 SOC : 40

0.07 0.07 0.07 0.07;
N
— 0.06 —0.06 — 0.06 — 0.06 |
= = = =
x x o o :
0.05 ) 0.05 0.05 0.051
0.04 0.04 0.04 0.04
-0.16 0 14 -012 -01 34 342 344 346 348 3.72 3 74 3.76 3.78 3.59 3.6 3.61
du st (v VdD.end \J co end v dls relax (v

Fig. 4. Feature analysis based on voltage response to diagnostic current profile for 50 heterogeneous cells. Four features with varying correlation factors

corresponding to R at a fixed SOC are shown.

We use recursive least square optimization with forgetting
factor to estimate ¢ directly from (11). The parameters 6,,6,,
and 05 are identified using,

y(K) = 0 (R)B(K) (14)
P(k— 1)9(k)"

K0 = SoP—1)o®T T 4 (13

D(k) = d(k— 1)+ K(k)[z(k) =9 (k)D(k—1)  (16)

Pty — (KR~ 1) .

where 9 (k) is the estimate of parameters ¥ in (13), P(k) is
the covariance matrix, K(k) is the gain and A € [0,1] is the
forgetting factor.

Finally, using a similar approach but in continuous time,
we formulate an RLS model for estimating the cell capacity
Q[AH] by first taking the Laplace of (1) to derive the transfer
function from () to &(r)

8'5(8):_51(8)

We have a linear in the parameter system. However it
involves a derivative of a measured signal. Therefore we
apply a first order filter to both sides of (18):

(18)

1 A
AB)  sHA 1
which leads to
sA -1 A
{s+z}z“>gg{s+x}’“> 29
{(s) (s)
={(s =p(s

and we get a linear in the parameter form using the inverse
Laplace transform given by (21) with estimation parameter

6=—1/0.
§(e)=6"p(1)

Finally, we estimate Q using RLS with forgetting factor as
defined in (14) - (17) where ¥ is the estimate of 6 which
in this step.

2n

is
0
D. Sparse Gaussian Process Regression

In this section, we briefly introduce Gaussian Process
Regression (GPR) and its variation — sparse Gaussian Process
Regression (sGPR). Furthermore, we will formulate the

sparse GPR for estimation of electrical parameters as a
function of (&,T).

GPR is a powerful tool for non-parametric regression
in high-dimensional spaces. One of the appealing features
of GPR is that it provides uncertainty bounds around the
estimates. A GPR is fully described by its mean and co-
variance, where the outputs of the modeled function are
jointly distributed [22]. In essence, a GPR a priori describes
the behavior of the function values using the following
assumptions

yi=f(x)+e (22)

where y; and x; are the scalar output and vector input x; € RP,
and ¢ is drawn from N(0,62). Then the joint distribution is
given by

p(y1X) = N(0,K(X,X) +0°I)

where covariance matrix K is called the Kernel matrix. The
joint posterior [23], given the Bayesian inference, can be
defined as

(23)

P F ) = pOINP(f,f7) (24)
()
win [ POLOP )
P = | P as 25)

By marginalizing the latent variables, the joint prior distri-
bution and independent likelihood probability are given by

Ko Kpe
f=n1o, S AN 26
P Ky g Kpe g (20)
pyIf) =N(f,0°]) 27)

Here, f and f* are variables for the covariance calculation
and / is the identity matrix. Finally, we can get a closed form
for the GP predictive distribution by evaluating the integral
in (25) to get

p(f'ly) =N(u,X)

Here p is the predicted output mean and X is the variance.
In order to reduce the computational burden and large data
demand of GPR, we adopted sparse GPR with the inducing
variables approach from Titsias et. al [24]. Using this ap-
proach we can choose m inducing variables which are latent
functions evaluated at some X,, inputs. These inputs X, can
then be identified as variational parameters by minimizing

(28)
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Fig. 5. Heterogeneity induced by uniformly perturbing the nominal R

parameter shown in dashed red line (from experimental data) of the ECM
model as a f(&) at 30°C for 6 cells in series (Ground truth values for
validation). The process is repeated for all temperatures in operating range.

the distance between the exact posterior GP given by (28)
and a variational approximation [24]. For this work, we use
3 inducing points (§) for a fixed I'. More details of the
approach are omitted here. Interested readers can refer to
[24] for more details.

V. SIMULATION STUDY

In this section, the SoH pipeline is validated using numer-
ical experiments on a pack of 6 Li-NMC cells connected in
series, modeled using (1)-(3). The state-dependent electrical
parameters used are obtained using experimental data on a
beginning-of-life Li-NMC cell, as seen in Fig. 2. The steps
outlined in Algorithml are used to estimate bounds on the
electrical parameters of representative cells, as a function of
SoC and temperature given a fixed charge-discharge pulse
diagnostic cycle applied to the battery pack.

First, we consider a battery pack of 6 cells connected
in series where electrical parameters, Ry, Ry, C and Q,
are uniformly perturbed between 5-7% from the fresh cell
to induce heterogeneity in the battery pack. The output
voltage measurement at 9 distinct operating points ({£ €
{30%,50%,80% } x {F € {20°C, 30°C,40°C}}) is then used
to intelligently poll the index of representative cells w.r.t.
each electrical parameter as given in Algorithm 1, for the
respective operating point, using the framework in Section
IV-B. The electrical parameters of the representative cells are
estimated using the RLS algorithm in Section IV-C. Finally,
the estimated parameters are used to predict the parametric
space as a function of SoC and temperature using sparse GPR
as outlined in Section I'V-D, for all the operating points.

For the purposes of demonstration, this section considers
the parameter R; which is a function of (&,I). Figure 5
shows the uniformly perturbed values of R; in a pack of 6
cells. It should be noted that Fig. 5 also illustrates the lack
of correlation between spatial proximity of the cells in a

30% SOC
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Fig. 6. Intelligent polling validation: Identified feature AVy;; used to poll
representative cells from a heterogeneous pack of 6 cells in series. Here,
the index of cells are on the x-axis and feature AV is on y-axis.

pack and parameter values of the cells in the pack. As can
be seen in Fig. 6, cell index 1 and 2 have the lowest and
highest feature (AVy;s = Vyp ot — Vap.ena) values, respectively,
and hence are identified as representative cells for the entire
pack for parameter R;. Since features from Section IV-B are
invariant w.r.t. £, the representative cells w.r.t. to R; for other
operating points remains fixed. Figure 7 shows the estimation
of R; for representative cell index 1 and 2 converging to
the true value with high accuracy (RMSE = 0.002€2). More
importantly, this also verifies that the estimated upper bound
and lower bound encloses all the unmeasured parameter
values for all other cells in the pack. Finally, Fig. 8 shows
the a cross-section of estimated parametric surface of R| =
f(&,T) for T = 20°C, using sGPR. The solid blue curve
represents the mean prediction of Ry at I' = 20°C, whereas
the shaded blue region shows the £95% confidence interval
around the estimates. This results confirms that the estimates
of the parameter at selected operating points, in this case
& € {30°C,50°C,80°C}, can be used to predict values at
other operating points & € [20°C,90°C], with uncertainty
bounds around the estimates.
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Fig. 7. Recursive least squares estimates of R; for the representative cells,
indexed 1 and 2. The estimates of R; for these cells enclose all values of
Ry in the pack, thus verifying the polling approach using voltage feature
correlation.
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VI. CONCLUSION

A State-of-Health (SoH) framework based on an
equivalent-circuit model for heterogeneous cells in a lithium-
ion battery pack is presented in this paper. The electrical
parameters of the cells are considered as a function of SoC
and temperature. A novel feature-based polling approach is
developed to identify the index of bounding representative
cells of the pack. Given a fixed operating point, i.e. SoC and
temperature, the output of a charge-discharge pulse cycle
is used to estimate electrical parameters via recursive least
squares (RLS). The estimates from RLS are used to estimate
the parameters as a function of SoC and temperature using
sparse Gaussian Process Regression. The SoH framework
is validated using numerical experiments based on electri-
cal parameters obtained through experimental data acquired
from a Li-NMC cell. An important feature of the proposed
architecture is scalability, both in terms of the number of
cells and operating points, since the number of representative
cells are independent of the total number of cells in the
battery pack and estimates at three operating points are
used to estimate the entire parametric space. Furthermore,
the efficacy of the pipeline design is validated numerically.
Future work includes validation using experimental data for
an aged battery pack of heterogeneous cells.
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