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ABSTRACT

A neural network-assisted molecular dynamics method is developed to reduce the computational cost of open boundary simula-
tions. Particle influxes and neural network-derived forces are applied at the boundaries of an open domain consisting of explicitly
modeled Lennard-Jones atoms in order to represent the effects of the unmodeled surrounding fluid. Canonical ensemble simula-
tions with periodic boundaries are used to train the neural network and to sample boundary fluxes. The method, as implemented
in the LAMMPS, vyields temperature, kinetic energy, potential energy, and pressure values within 2.5% of those calculated using
periodic molecular dynamics and runs two orders of magnitude faster than a comparable grand canonical molecular dynamics

system.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0083198

I. INTRODUCTION

Bulk fluids have traditionally been modeled in molecular
dynamics (MD) simulations by employing periodic boundary con-
ditions in which atoms leaving one side of the computational
domain enter the opposite side.'" While appropriate for homoge-
neous systems at equilibrium, periodic boundary conditions do not
allow treatment of nonequilibrium systems in which the number of
atoms in the domain increases or decreases with time, long range
interactions are present, or bridging between regions modeled at
differing length scales occurs. These include systems in which mass
flows across the boundary are driven by phase change or molecular
adsorption,” ionic liquid systems, which are dominated by electro-
static interactions,” and systems that permit particle fluxes between
regions modeled atomistically and those modeled at mesoscopic and
continuum scales.”

One possible approach to treat these systems is the use of
open boundaries, which re-imagines the simulation domain as a
core domain and a buffer region where the exterior world can
“communicate” with the system.” The buffer region allows atoms
to flow into (and out of) the computational domain from (to)
its surroundings and permits accumulation (depletion) of atoms
in the domain. Schemes based on adaptive resolution molecu-
lar dynamics (AdResS)’ * are commonly used to implement open

boundaries. In these schemes, multiple different resolutions are
combined by adapting the degrees of freedom on the fly. Atoms
within the center region are simulated in full detail, while coarse-
grained models are used to reduce the complexity of molecules in
regions distant from the center. Recent developments of AdResS
have improved the modeling of particle and energy exchange
with the bulk/reservoir region,” connected systems to nonequilib-
rium conditions,'”'" and significantly reduced the cost of modeling
the reservoir by replacing coarse grained particles with point-
like, non-interacting particles.]l " These improvements, along with
other improvements related to insertions'* and the use of solvent
scaling,”” have increased the overall computational performance
of the method. However, further work is needed to incorporate
nonlinear coupling between the system and its boundaries (e.g.,
Ref. 9) into nonequilibrium open boundary implementations of
AdResS."! Grand canonical molecular dynamics (GCMD)'*" is
another method that permits transfer of atoms into and out of a
computational domain. GCMD is a hybrid modeling approach that
uses MD to advance atomic trajectories and Monte Carlo (MC) to
implement atomic insertions and deletions. Grand canonical MD
has been used to model the behavior of a variety of systems in which
mass is accumulated or depleted, including gas adsorption-induced
stress in flexible nanoporous materials'® and diffusion-induced
reactions."”
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One drawback of GCMD is that particle insertions and dele-
tions can be costly. In dense phases, the probability of finding a
cavity for an energetically favorable insertion and the probabil-
ity of performing an energetically favorable deletion can become
extremely small.”’ For this reason, many Monte Carlo steps are often
required to attain suitable configurations, leading to significant com-
putational expense. The perturbation caused by insertions and/or
deletions can also require additional simulation time for the sys-
tem to relax.”’ Additionally, the Monte Carlo code developed for
hybrid simulations with molecular dynamics can be extremely diffi-
cult to parallelize and may not be able to take advantage of multicore
performance.”’

Machine learning with neural networks allows new possibil-
ities for computationally efficient open system MD simulations.
It has been used to develop interatomic potentials’ ** to coarse
grain simulations™ *’ and to enhance long timescale molecular
dynamics.”® In addition, it has been used to classify trajectory data”
and to use such data to analyze the water droplet contact angle and
the hydrogen bond network.’’ The increasing prevalence of machine
learning-enabled molecular dynamics has led to the development of
packages designed to generate easily implementable machine learn-
ing code (JAX MD).”" Additionally, neural networks have been used
to recreate the force imposed on each atom in a simulation domain
by atoms outside the domain.”” This force, termed the boundary
force because it acts on atoms just inside (within the cutoff radius
of) the domain boundary, must be included in open boundary MD
simulations in order to account for the pressure exerted by the
surroundings on the atoms in the domain. Boundary forces have
previously been accounted for in MD simulations using various
methods including stochastic boundary conditions,™ an empirical
formula fit to MD data that depends on temperature, density, and
the atom’s distance from the boundary,” and AdResS.°

Stochastic boundary conditions and empirical formulas derived
assuming static lattice positions provide open boundary force
descriptions that do not incorporate the full configurational com-
plexity of atoms outside the domain. The reduced complexity inher-
ent in such methods may lead to reduced physical realism in simu-
lations employing these boundary force descriptions. The AdResS
method circumvents this by explicitly and efficiently modeling a
coarse-grained exterior region that directly produces forces on the
central region of interest but requires analytically tractable boundary
descriptions. Neural networks have no such requirement and, thus,
offer the potential to treat a broader range of situations than AdResS,
for example, local nonlinear fluctuations of temperature, density, or
pressure, ionic surfaces, or porous media.

For this reason, the use of neural networks to apply boundary
forces™ is a promising approach for open boundary MD simula-
tions. To take advantage of the flexibility of neural networks and
the computational efficiency of AdResS, it is envisioned that the
two could ultimately be combined in a hybrid code that switches
the neural network “on” under nonlinear or other complex bound-
ary configurations and switches AdResS “on” under equilibrium or
analytically tractable conditions. However, care must be taken to
incorporate all important physical processes in the neural network
simulations. In Ref. 32, reflecting boundaries are used to prevent
particles from leaving the domain, meaning that the boundaries are
not open and also that an artificial impulse force is imparted on
the reflected particles. Additionally, the neural network in Ref. 32
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is trained solely on the distance of particles from one boundary,
which does not appropriately account for situations where multi-
ple boundaries are within the vicinity of an atom. Finally, it does not
incorporate the effects of particle configuration outside the domain
on the forces applied to atoms inside the domain, which as dis-
cussed above may be needed to provide more physically meaningful
simulations.

In this paper, we implement open boundaries and incorpo-
rate the pressure exerted by the external fluid by applying neural
network-predicted forces to atoms just inside the boundary of the
simulation domain. The neural networks are trained on both dis-
tance from the boundary and the net force exerted on each atom by
other atoms within the domain. Inclusion of the net force is impor-
tant because this feeds configurational information from particles in
the system back to the neural network used to compute boundary
forces. As such, our method provides a complementary nonlinear
coupling approach to that described in Ref. 9. The training data
are obtained from equilibrium bulk fluid simulations with periodic
boundary conditions. Section II provides an overview of the method
used in this paper. Section 111 details the data sampling and flux cal-
culation process, and Sec. I'V discusses the construction of the neural
network. Section V details how the modeling framework is inte-
grated in the MD software package LAMMPS.” Section VI reports
the accuracy and computational efficiency of the framework as com-
pared to existing methods, and Sec. VII presents concluding remarks
and directions for future work.

Il. OVERVIEW OF THE METHOD

The goal of this work is to develop a computationally efficient
method to model an open boundary MD system that is surrounded
by a bulk fluid. This is done by replacing the explicitly modeled
image atoms in a periodic simulation [Fig. 1(a)] with a featureless
bulk whose effect on the atoms in the simulation domain is rep-
resented by boundary forces and fluxes [Fig. 1(b)]. The boundary
fluxes in Fig. 1(b) represent atoms that flow into and out of the
simulation domain through the open boundaries. Unlike periodic
boundaries, which require the same atom that leaves the domain to
re-enter on the other side [Fig. 1(a)], distinct particles flow into and
out of the domain by being inserted near the boundary and by being
deleted after they cross it. The boundary force in Fig. 1(b) repre-
sents the combined force from all image atoms on an atom within
the central simulation box.

While forces can be analytically calculated for situations in
which external particle positions are fixed,”” doing so does not
capture the variations in particle position over time nor the time-
dependent forces resulting from these variations. A neural network
can easily handle these variations and has been adopted in the
present work.

lll. DATA SAMPLING

The first step in constructing the neural network is to create a
representative bulk system to form a dataset to learn from. To do
this, we use a Lennard-Jones system with periodic boundary con-
ditions to emulate bulk fluids at dimensionless temperatures and
densities ranging from 1 to 1.1 and 0.05 to 0.8, respectively.
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It is important to sample the system in many different config-
urations so that the training dataset provides a reasonably realistic
representation of the NVT ensemble. This was done by recording
various atomic quantities, including atom position, velocity, and
force. Among these quantities, only the distance from the atom to a
boundary and the force exerted on the atom from other atoms inside
the domain (Fi,) had any clear effect on the mean squared error of
neural network predictions. Accordingly, these two quantities were
employed to construct the neural networks used to produce all data
reported in this paper.

In addition to the force from other atoms inside the domain,
each atom also experiences a force from the bulk fluid outside the
domain. In simulations with periodic boundary conditions, this lat-
ter force is imparted by the periodic images of atoms within the
cutoff radius of the boundary. Boundaries have no physical mean-
ing in periodic simulations, so the division between “inside” and
“outside” need not be limited to the specific numerical coordinates
used for bookkeeping purposes to determine whether an atomic
position must be wrapped back into the simulation domain. Accord-
ingly, imaginary boundaries can be defined anywhere in the domain.
To sample the “inside” and “boundary” forces, we choose a single
random atom (atom i) and then define three artificial orthogonal
“boundary” planes at randomly chosen positions where at least one
boundary is within the cutoff distance of the atom. These planes
divide space into octants that are useful for classifying the forces and
are chosen for convenience to be normal to the x, y, and z coordi-
nate directions. Forces from atoms that are in the same octant as
atom i are summed to compute the “inside” force, and forces that
are in any of the other seven octants are summed to compute the
“boundary” force. Figure 2 illustrates this concept in two dimen-
sions with the yellow shaded region indicating the inside quadrant
(octant).

NVT ensemble simulations were performed on cubic domains
with 512 000 atoms and side lengths varying from 86 to 468 Lennard-
Jones units to achieve the desired densities. Atom positions were
initialized in simple cubic lattice structures corresponding to the
density of interest. The Nose-Hoover thermostat with a damping
parameter of 1.0 was applied to control the system temperature.
Each simulation was run for 100000 time steps until the system

(b)

equilibrated, with a time step of 0.005 Lennard-Jones time units.
Once equilibrated, the simulations were run with sampling occur-
ring every 5 time steps. In order to ensure proper sampling, 200
different random seeds were used to initialize the atomic velocities
for each density and temperature combination. The size of the sys-
tem was selected to mitigate size effects. This was done by increasing
the volume at each density until the standard deviation of time traces
of system energy, temperature, average system velocity, and pressure
displayed little change with system size.

In addition to sampling forces and distances from the bound-
ary, our method samples other data related to boundary fluxes.

Imaginary,
@un@]@ry ‘

@

“imaginary
Boundary| @ ® ‘g

‘Inside’
Region

o ®eo o

O
.

FIG. 2. Visualization of the sampling method used to determine boundary forces.
Imaginary “boundaries” are placed at random near atom i to define an “inside”
region that is distinct from the main simulation box. Forces on atom i from other
atoms within the cutoff radius are summed separately to compute F;, (red arrows)
and the “outside” force Fy (purple arrows).
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Three sets of values are collected: the velocities of atoms that cross
the boundary, the distances that these atoms travel beyond the
boundary in one time step, and the frequency with which atoms
cross the boundary. During the simulations described above, every
instance of an atom crossing an arbitrarily selected plane in the
simulation domain is tracked. While any choice of plane would
yield the same results in our homogeneous, equilibrium system,
we chose the plane x = 1 for convenience. The velocity and pene-
tration depth of the atom are recorded at the first time step after
crossing the boundary. This information is compiled for each sim-
ulation set to form velocity and penetration depth distributions.
Gaussian estimates of these distributions are created, and an average
number of atoms crossing per time step is calculated. While these
distributions can also be predicted using the Maxwell-Boltzmann
velocity distribution and were found to agree with such predic-
tions, it is convenient to sample them directly since sampling is
already being performed to build the training dataset for the neural
network. The computational cost to collect the flux information
while running simulations for the neural network data collection is
insignificant.

IV. NEURAL NETWORK CREATION

The data extracted from the simulations are incorporated into
the machine learning software Pytorch®” in order to construct the
neural networks. The objective is to build a set of three fully con-
nected neural networks for each thermodynamic state point of the
fluid that predict the force exerted by periodic image atoms outside
the simulation domain (Fyy) on atoms inside the domain. The deci-
sion to create one network set per state point was made to improve
accuracy and performance. Specializing the network allowed for a
smaller overall network and focused the network on predicting in a
more narrowly defined space.

Depending on where they are located in the computational
domain, atoms may interact with zero, one, two, or three bound-
aries. No neural networks are constructed for atoms far from the
three boundaries because the boundary forces are identically zero
in this case. For atoms within a cutoff distance of at least one
boundary, three different kinds of networks are constructed (Fig. 3).
These include a “side” network for atoms that interact with only one
boundary, an “edge” network for atoms that interact with two, and
a “corner” network for atoms that interact with three. The reason
for constructing three separate networks is to reduce the complexity
and computational cost of the network by only including variables

Side Network Edge Network

) S R

a T -

o Corner Network
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necessary for the force predictions. In addition, these aim to reduce
any artifacts imposed by the edges and corners of the domain. For
example, for atoms in the side region, only one boundary contributes
to the boundary force, and thus, the only parameter with predic-
tive value is the distance from that boundary (Ax). Ay and Az, being
larger than the cutoff, are unnecessary for force predictions, and,
thus, there is no need to include them in the network.

Each network is a fully connected network built with four
layers, each with 30 nodes (Fig. 4). Two sets of MD data were estab-
lished to create the network: the training set, which is actively used
to build the network, and the test set, which is used to evaluate the
network after it has been built. The size of the network was deter-
mined by testing different sizes and observing the error of both test
and training sets to ensure accuracy and to make sure no over fitting
occurs. Each node in the network represents a matrix of weights that
govern how the node converts an input matrix into an output matrix.
Each row of the matrix corresponds to data sampled for a single
atom at a single time step for a single initialization seed. The number
of rows in the matrix represents the total number of different sam-
ples (different atoms, time steps, and seeds) fed into the network.
This is done in conjunction with a ReLU activation function that
describes the output as the following:

output = max(0, (Ni; * input)). (1)

Here, N;; is the matrix of weights corresponding to the jth
node of the ith layer, whose weights are initialized using standard
PyTorch implementation. The input data, composed of the com-
ponents of Fi,, the distance of the atom from the first boundary
(Ax), and, if applicable, the distance of the atom from the sec-
ond and third boundaries (Ay and Az), are forward propagated
through the network, and the outputs (predicted boundary forces
Fnn) are compared to the known boundary forces that have been
directly computed from MD training data. The mean squared error,
computed from the difference between the predicted and known
boundary force values, is calculated, and the error is backpropagated
through the network using autograd implementation in PyTorch.”
As this backpropagation occurs, node values are updated by an
incremental amount to train the network. This process is repeated
until the error levels out, and a minimum is reached.

These combined networks give the total force (F), in three
Cartesian coordinates, on an atom in neural network-assisted MD,

F = Fi, + Fnn, (2)

FIG. 3. Regions represented by side,
edge, and corner networks. In total,
there are 26 regions where a network is
applied. The center region is not affected
by atoms outside the simulation box, so
Fnw is always zero and no network is
needed. The zoomed-in view shows how
Ax, Ay, and Az are mapped from an
atom to the corresponding boundary.
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Fny = F:ide(Fx,in, F,v,ina Fin, Ax)

ifthe atom is in a side region, (3)
ENN = Fedge(Fxins Fy,ins Foin, AX, Ay)

ifthe atom is in an edge region, (4)
FNN- = Feorner(Fxjins Eyins Fzin, Ax, Ay, Az)

if the atom is in a corner region. (5)

Like Fnn, potential energy also has contributions from particles
outside the boundary. While not needed to advance particle posi-
tions, potential energy is often of interest in MD calculations. To
implement potential energy calculations in neural network-assisted
MD, a set of networks was constructed with the same structure as
those in the Fyn calculations but with the output being potential
energy instead of three force components. These neural networks
are isolated so that they are only called when the user requests the
system’s potential energy.

V. IMPLEMENTATION IN LAMMPS
A. Boundary force

LAMMPS” was modified to incorporate the neural net bound-
ary force calculation and the open boundary condition. Fj, is com-
puted using the standard pairwise force calculation procedure in
LAMMPS. To compute Fny, a new code has been implemented in
which each individual processor checks each of its atoms to deter-
mine whether that atom falls into one of the 26 regions where a
neural network applies. This is performed via a series of nested logic
statements. If an atom is not in one of these regions, the atom’s force
value is unmodified as the resultant force added from the boundary
would be zero.

ARTICLE scitation.org/journalljcp

FIG. 4. General structure of the neural
networks incorporated into  open
boundary molecular dynamics sim-
ulations. Each network is built for a
specific temperature and density. *Ay
is included in the edge and corner
networks only. **Az is included in the
corner network only.

OO O

If the atom is located in a region where a neural network force
should be applied, a transformation of the data is made via rotation,
reflection, and translation as needed to align with the neural net-
work coordinate system. The original network is referenced from
the point (0,0,0) with vectors pointing in the positive directions of
each coordinate. Then, the atom information is passed to the code
for the neural networks, which are custom coded into LAMMPS
as a series of addition, multiplication, and if statements involving
the elements of all nodal matrices in the network. This code repli-
cates the structure and nodal values of the Python neural network,
which was separately trained as discussed in Sec. I'V. This structure
can be run on individual processors without affecting the ability
of the code to be multithreaded. Once the neural network code is
run, the force components are transformed to ensure that they are
applied in the correct direction. These forces are applied to each
atom and this total force is used in the next step of the velocity Verlet
method.

B. Open boundary

The open boundaries are implemented by removing the peri-
odic boundary conditions, which allows atoms to exit the simu-
lation box permanently instead of forcing them to wrap around
and re-enter it and by incorporating a new particle insertion pro-
cess at the boundary that mimics the cross-plane atomic fluxes
that naturally occur in fluids. This approach removes the artifi-
cial constraint that the number of atoms in the simulation box
remains perfectly constant at each time step while also maintain-
ing a stable time-averaged number density. Particles that leave
the domain of the simulation box are simply removed in the fol-
lowing time step. The particle insertion was coded by modifying
the “fix deposit” code currently in LAMMPS. In this code, parti-
cles are inserted at random locations in a region with velocities
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sampled from a Gaussian distribution. The modified code uses
positions, velocities, and insertion rates sampled from the training
data.

The atom insertion rate is chosen based on the output of the
flux sampling procedure described in Sec. 111, instead of the stan-
dard “fix deposit” procedure in which m atoms are inserted every n
time steps (m and n are set by the user). In the present approach, the
sampled number of atoms crossing a boundary in a given time step
is inverted to obtain the number of time steps between insertions. As
this number is, in general, not an integer, a counter is used at each of
the six boundaries of the simulation domain to track when an atom
should be inserted. This counter increments by one each time step
until it surpasses the determined number of time steps per insertion.
Then, an atom insertion is attempted. If successful, the counter is
decreased by the number of time steps per insertion. If unsuccessful,
a new insertion is attempted until success is achieved, up to a user-
defined number of trials. If the trial limit is reached, the system is
advanced by one time step in an attempt to obtain a more favorable
configuration, and the insertion is attempted again. The user must
be careful to set a trial limit large enough to permit successful inser-
tions at the appropriate time step, but small enough to prevent the
system from getting “stuck” due to an unfavorable atomic configu-
ration. In this work, the trial limit was set to 2000. In higher density
fluids, there will be situations in which multiple atoms are inserted
per time step. In this case, multiple insertions take place until the
counter is less than the value for time steps per atom insertion. An
insert is deemed successful if the inserted atom is farther than a spec-
ified set distance from neighboring atoms. Inspired by the radial
distribution function, we set this distance to 1.0 Lennard-Jones
units.

For each face, the y and z coordinates of the inserted atom are
selected from a uniform distribution across the entire face because
bulk systems should display no bias toward any specific position par-
allel to the face. The x coordinate, which represents the distance of
the particle from the boundary, is selected from a Gaussian distribu-
tion fit to the training data above. This distance is typically extremely
small such that particles always insert close to the boundary. This
Gaussian is centered at zero because it is based on the positions of
atoms immediately after they cross a plane in either direction. To
ensure that the atom is placed inside the simulation domain, the
absolute value of the selected x value is chosen. For velocity, the
y and z components are both chosen from a Gaussian distribution
centered around zero that was fit to the corresponding components
from the training data. The same Gaussian is used for both compo-
nents because the distribution is the same in y and z directions. The
x component of velocity is selected from a Gaussian fit to the rele-
vant training data. As with the x-position, the absolute value of the
sampled x-velocity is taken because inserted atoms can only cross
the boundary if they travel in the positive x-direction. It should be
noted that the present method, like other open boundary molecular
dynamics methods and in contrast to many Monte Carlo methods,
is not set up to enforce detailed balance during particle insertion and
deletion processes.

The insertions and deletions occur in a different part of the
code from the force calculation. Because the neural network inputs
are updated every time step, the network can appropriately change
its prediction if an atom is removed from one of the boundary
regions.

ARTICLE scitation.org/journalljcp

VI. RESULTS AND DISCUSSION

In order to show that the neural network-assisted open bound-
ary method is able to reproduce the behavior of bulk fluid sys-
tems, we computed various system metrics with our method and
compared them to those computed using conventional molecu-
lar dynamics simulations with periodic boundary conditions. The
metrics being compared include radial distribution function, atom
count, kinetic and potential energy, pressure, and excess chemi-
cal potential. Excess chemical potential was calculated using the
Widom insertion method found within LAMMPS.* Using the con-
figuration in Fig. 1(b) for our method and in Fig. 1(a) for periodic
boundaries, we performed simulations with a time step of 0.005
dimensionless Lennard-Jones time units on domains initialized with
the same box size, number of atoms, atomic lattice positions, and
initial velocity distributions. Atomic velocities were initialized and
maintained throughout the simulations using a Nose-Hoover ther-
mostat with a damping parameter of 1.0 for the periodic simulations
and a Langevin thermostat for the open boundary simulations. The
Langevin thermostat damping parameter varied depending on the
state point but typically ranged from 0.01 to 0.1. The Langevin
thermostat was used for the open boundary system instead of the
Nose-Hoover thermostat from the periodic as it handled the change
in N with significantly greater success. At each of the eight tempera-
ture/density state points studied in this work, 25 different seeds were
chosen and the results were averaged.

Each simulation was equilibrated for 50000 time steps, and
then, the metrics above were computed for 100 000 time steps and
averaged. The average quantities for the open boundary and peri-
odic simulations are given in the Appendix, and the error in the open
boundary simulations, computed as 100 x (Mppc — Mopen ) /Mpsc,
where M represents the metric of interest, is given in Table I.

Overall, the neural network-assisted open boundary method
performs very well, showing good agreement with periodic simu-
lations across multiple performance metrics. Temperature, number
of atoms in the simulation box, kinetic energy, and pressure from
the open boundary simulations are very close to those from the peri-
odic simulations with differences well below 1% for all state points.
The open boundary potential energy values also agree well, dis-
playing errors within 2.6%. They are, however, consistently higher
than the periodic values, leading to negative error percentages in
Table I. It is important to note that the potential energy computed
in the open boundary simulations was directly output from a neural
network specifically trained and tested on potential energy. As dis-
cussed in Sec. IV, this additional network is necessary to account
for the direct contributions to potential energy from atoms out-
side the simulation box. The other physical properties in Table I
do not require additional networks because their values do not
directly depend on the configurations of atoms outside the box.
They only require the correct system pressure, which the force net-
work that produces Fyy provides already. For this reason, we believe
that the small negative errors in potential energy arise from the
potential network itself, and not from the force network, which
does not cause systematic errors in any other properties. The errors
in potential energy are more pronounced for the higher density
(liquid) simulations than the lower density (gas) simulations. This
likely occurs because a larger fraction of the total liquid atoms is
located in the boundary region in the present simulations. Thus,
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TABLE . Percent error of system metrics for the open boundary simulation.
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System parameters

Error of system metrics (in %)

Set temperature  Set density =~ Temperature ~Atom count Kinetic energy  Potential energy = Pressure  Excess chemical potential
1 0.005 -0.0023 -0.0989 0.0144 —-0.6473 -0.1015 1.0462
1 0.01 -0.0590 -0.3903 0.0262 -0.5254 -0.3917 0.3046
1.05 0.01 0.0353 0.0697 0.0028 -0.9514 0.0281 -0.5450
1.1 0.01 -0.0023 -0.0608 0.0024 —-0.8267 -0.0964 —-1.1594
1 75 0.0337 0.0523 0.0087 —-2.4913 -0.8171 —-4.1856
1 0.8 0.0248 -0.0514 0.0044 -2.4785 0.1243 —2.7487
1.05 0.8 0.0059 -0.0920 0.0053 -2.4375 0.0410 -78.5185
1.1 0.8 0.0256 0.0204 -0.0028 -2.5291 0.9431 6.2322

more liquid atoms than gas atoms are affected by the potential
energy network.

Excess chemical potential also shows good agreement, except
for the data point at T* = 1.05, p* = 0.8. Our explanation of the spike
in percent error at this point is as follows: We believe that the train-
ing error of the neural network sets a lower bound on the magnitude
of the difference between properties computed using open and peri-
odic simulations (including the excess chemical potential difference
Hexcess, PBC ~ Hexcess, open)- When this difference is comparable to the
periodic reference value p1,, . . pge, Which is almost zero at this state
point (Table 1I), the error becomes large.

Additionally, the open boundary simulation should produce
the same fluid structure as that produced by the periodic simulation.
Using OVITO,® the radial distribution function was plotted from a
snapshot taken at a single time step for periodic and open bound-
ary systems. Figure 5 shows that these sampled radial distribution
functions are nearly identical for the two systems.

Local densities were also computed by slicing the simulation
box into subvolumes and computing the number of atoms per sub-
volume. Figure 6 shows the local density vs position, averaged across
each of the three coordinate directions. It can be seen that the open
boundary simulations produce local densities that agree very well
with those from the periodic simulations along the length of the

TABLE Il. Excess chemical potential data.

box, with almost imperceptible increases in density very near the
boundaries of the box.

The probability distribution of the number of particles in iden-
tical system volumes was also compared for open and periodic
boundary systems, following a similar procedure to that in Ref. 39.
The periodic data were obtained by placing a box with the same vol-
ume as that used in the open system into a larger (1,000 000 atom)
periodic system. The particle count in the box was tabulated at each
time step and a Gaussian was fit to the data. Since the mean atom
count had previously been compared, it was subtracted from the
distributions to elucidate the spread in N. Figure 7 shows that dis-
tributions for each of the test cases compare favorably, with minor
differences in distribution width that are in all cases less than 0.05%
of the average particle number. These differences do not result in
any significant error in observable metrics as seen in Table 1.

The computational efficiency of the two systems was also com-
pared. As discussed above, grand canonical molecular dynamics can
be used with open boundaries but can be computationally taxing.
When open boundaries exist, atoms are constantly leaving the sys-
tem and this puts strain on the Monte Carlo method to continually
insert particles.

Table III compares the simulation time of our method to
that of the grand canonical molecular dynamics approach (GCMD)

System parameters

Excess chemical potential

Set temperature Set density Periodic boundaries Open boundaries Difference Percent error (in %)
1 0.005 0.393 0.389 0.004 11 1.046
1 0.01 0.549 0.547 0.001 67 0.304
1.05 0.01 0.371 0.373 —-0.002 02 —-0.545
1.1 0.01 0.394 0.398 —-0.004 57 -1.159
1 0.75 -1.418 -1.359 -0.0593 -4.185
1 0.8 -0.470 —-0.457 -0.0129 —2.748
1.05 0.8 —-0.0681 -0.0146 -0.0535 —-78.518
1.1 0.8 0.376 0.353 0.0234 6.232
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FIG. 5. Radial distribution functions for various state points in periodic and neural network-assisted open boundary simulations. Figures were produced using OVITO.%¢ For
all state points, the two boundary conditions produce distributions with no noticeable differences.

available in LAMMPS. Open boundaries and identical system sizes and the same initial configurations were used for each seed. Each sys-
(50653 atoms) were used in both cases for eight different state tem was run for 10000 time steps in periodic boundary conditions
points. Ten different random number seeds for each system type to allow the system to come to equilibrium. This state was saved and

were used to initialize the velocity distribution at each state point used as the starting point for the open boundary simulation time
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FIG. 6. Local density vs position in the simulation box. Each graph averages the density in each of the three coordinate directions.
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FIG. 7. The probability of the number of particles for equal volume boxes in both periodic and open boundary conditions. Each graph shows Gaussian estimates of the
distribution with the mean subtracted.

trials. The systems were then run for 10 000 time steps using the two
open boundary methods. The runtime to complete 10 000 time steps
was averaged over the ten seeds at each state point and reported in
Table I1I for both methods.

The key difference between the methods is the location and
method of particle insertion. GCMD inserts particles throughout the
entire box, using an insertion probability drawn from a chemical
potential set to maintain the atom count at its initial value. The set
value of chemical potential was found by trial and error. In contrast,
our method inserts particles near the boundary at a rate sampled
from periodic simulations as previously described.

The data show that our method performs over two orders
of magnitude faster than GCMD. There are several potential rea-
sons for this. First, the code that evaluates whether an insertion is

accepted or rejected is much more efficient in our method than
in GCMD. This is because our modified “fix deposit” code only
requires an evaluation of the inserted particle’s position relative
to its nearest neighbor, while GCMD requires calculation of the
energy of the entire system’s atomic configuration to evaluate the
probability of insertion. The use of the cutoff in the present Lennard-
Jones GCMD simulations reduces this calculation to only neighbors
within a cutoff distance; however, this is still a more intensive cal-
culation than the evaluation of distance to the nearest neighbor.
In addition, our method’s use of prior information about where an
atom insert gives rise to more frequent success, which dramatically
cuts down on the time it takes to insert the needed number of atoms.
Finally, the Monte Carlo method must check for deletions as well,
therefore, half of all attempts are not leading to the desired insertion.

Jpdauluo” L 7L L¥81/SS0Z7S91L/861€800°G/E90 L 0 L/10p/pd-ajone/dol/die/Bio die sqnd//:dly wouy papeojumoq

TABLE lIl. Open boundary simulation times for neural network-assisted and grand canonical molecular dynamics methods.

System parameters System metrics

Set temperature Set density NN time (min) GCMD time (min) Time ratio
1 0.005 0.233 26.525 113.678
1 0.01 0.266 34.098 127.868
1.05 0.01 0.253 32.233 127.236
1.1 0.01 0.26 58.920 226.615
1 .75 1.903 279.408 146.799
1 0.8 2.296 254.238 110.698
1.05 0.8 2.315 351.68 151.913
1.1 0.8 2.308 336.508 145.779
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VII. CONCLUSIONS AND OUTLOOK

This work introduces a neural network-assisted method to per-
form open boundary simulations. The method samples position,
velocity, and force data from periodic boundary condition NVT
simulations in order to (1) train neural networks that predict the
“missing” forces exerted by bulk fluid atoms outside the simula-
tion domain and (2) calculate the position and velocity distributions
of particles that are inserted at the boundaries to maintain the
proper mass influx. LAMMPS code was modified to implement
the method using neural networks generated by PyTorch from
LAMMPS training data. The method yields physical observables
that are almost identical to those generated from standard peri-
odic boundary condition molecular simulations, and its efficiency
in handling particle insertions leads to a two order of magnitude
speedup. The method embeds a molecular dynamics simulation
domain within an unmodeled bulk fluid reservoir, enabling explicit
atomistic simulation of transport processes in local regions of inter-
est. While applied here to Lennard-Jones systems in equilibrium
with their surroundings, the method could be extended to model
fluids with long-range interactions to handle mass flows from the
domain to its surroundings and to treat complex situations involving
nonlinearities.
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APPENDIX: ADDITIONAL DATA

Tables IV-VIII contain raw numerical values for different
properties used in Table I. The entries in each table are aver-
aged from 25 different seeds. All units are in dimensionless
Lennard-Jones units, unless otherwise described.

System parameters Temperature
Set temperature Set density Periodic boundaries Open boundaries Difference Error (in %)
1 0.005 1.000 02 1.000 04 —0.000 0228 -0.0023
1 0.01 1.000 0007 1.000 5 —0.000 590 -0.0590
1.05 0.01 1.0499 1.0496 0.000 370 0.0353
1.1 0.01 1.0999 1.100 003 —0.000 0256 -0.0023
1 0.75 1.000 04 0.9997 0.000337 0.0337
1 0.8 0.999 0.9997 0.000 248 0.0248
1.05 0.8 1.050 02 1.04995 0.000 0629 0.0059
1.1 0.8 1.0999 1.0997 0.000 281 0.0256
TABLE V. Atom count.

System parameters Atom count
Set temperature Set density Periodic boundaries Open boundaries Difference Percent error (in %)
1 0.005 512000 512 506.304 —-506.304 -0.0989
1 0.01 512000 513998.337 -1998.337 -0.3903
1.05 0.01 512000 511642.871 357.128 0.0697
1.1 0.01 512000 512 311.560 —-311.560 —-0.0608
1 0.75 512000 511732.112 267.887 0.0523
1 0.8 512000 512263.148 —263.148 —-0.0514
1.05 0.8 512000 512471.176 -471.176 -0.0920
1.1 0.8 512000 511895.154 104.845 0.0204
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TABLE VI. Kinetic energy data.

ARTICLE scitation.org/journalljcp

System parameters

Kinetic energy

Set temperature Set density Periodic boundaries Open boundaries Difference Percent error (in %)
1 0.005 1.500 1.499 0.000216 0.0144
1 0.01 1.499 1.499 0.000 393 0.0262
1.05 0.01 1.574 1.574 0.000 0448 0.0028
1.1 0.01 1.649 1.649 0.000 0397 0.0024
1 0.75 1.5000 1.499 0.000130 0.0087
1 0.8 1.499 1.499 0.000 0657 0.0044
1.05 0.8 1.575 1.574 0.000 0847 0.0053
1.1 0.8 1.649 1.650 —0.000 0477 —0.0028

TABLE VII. Potential energy data.

System parameters

Potential energy

Set temperature Set density Periodic boundaries Open boundaries Difference Percent error (in %)
1 0.005 —-0.0430 —-0.0427 -0.000278 —-0.647

1 0.01 —-0.0861 —-0.0856 —-0.000452 -0.525

1.05 0.01 —-0.0834 -0.0826 —0.000 794 -0.951

1.1 0.01 -0.0811 -0.0805 —-0.000 671 -0.826

1 0.75 —4.825 -4.705 -0.120 -2.491

1 0.8 =5.112 —4.986 -0.126 —2.478

1.05 0.8 —-5.068 —4.945 -0.123 —2.437

1.1 0.8 -5.025 —4.898 -0.127 -2.529

TABLE VIII. Pressure data.

System parameters Pressure

Set temperature Set density Periodic boundaries Open boundaries Difference Percent error (in %)
1 0.005 0.004 89 0.004 90 —0.000 004 97 -0.101

1 0.01 0.009 58 0.009 62 -0.000037 5 -0.391

1.05 0.01 0.0101 0.0101 0.000 002 84 0.028

1.1 0.01 0.0106 0.0106 -0.0000102 -0.096

1 0.75 0.991 1.000 -0.008 10 -0.817

1 0.8 1.692 1.690 0.00210 0.124

1.05 0.8 1.934 1.933 0.000793 0.041

1.1 0.8 2.171 2.151 0.020 4 0.943
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