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Abstract: In this work, we present a multifidelity Bayesian optimization framework for designing architected materials with optimal energy
absorption during compression. Data from both physical experiments (high fidelity) and numerical simulations (low fidelity) are fed in
parallel to train the surrogate model, which iteratively decides the next sets of experiments and simulations to run in order to find the optimal
structural parameters. We show that having multifidelity data sources allows the optimization framework to find the optimum after fewer
iterations relative to using a single high-fidelity source. This saves both material costs and time in the optimization process. Finally, we also
apply constraints (on relative density and stress variations) to the optimization process, finding optimal structures within the bounds of
the constraints. This framework can be translated to other problems that require complex, high-fidelity, labor-intensive experiments while
automating low-fidelity simulations. DOI: 10.1061/JENMDT.EMENG-7033. © 2023 American Society of Civil Engineers.

Introduction

Advanced manufacturing has enabled the design and fabrication of
architected materials with ever-increasing structural complexity, en-
abling research aimed at understanding new structures with high spe-
cific stiffness/strength (Zheng et al. 2014; Meza et al. 2014; Jiang
and Pikul 2021), energy absorption (Portela et al. 2021; Yin et al.
2019), or fracture resistance (Mirkhalaf et al. 2014; Pham et al. 2019;
Torres et al. 2019). For layer-by-layer manufacturing methods, it is
often pointed out that complexity comes for free. Yet, most work on
architected materials has remained focused on periodic and uniform
structures (Zheng et al. 2014). This is partly due to the large number
of design parameters that are introduced when periodicity is no lon-
ger required. There is a lack of systematic methods for designing
such structures. Instead, the design process for architected solids with
nonuniformity has mostly relied upon intuition, leading to simple
design motifs such as density gradients (Montgomery et al. 2021;
Chen et al. 2022), or motifs inspired by nature [e.g., bamboo (Dixon
and Gibson 2014)] or metallurgy [e.g., polycrystalline metals in-
spired by grain boundaries and precipitates (Pham et al. 2019;
Liu et al. 2021)].

To build structures that take advantage of the design freedom
afforded by advanced manufacturing, a systematic and algorithmic
design method is needed. With the improved computing power and
design algorithms available in recent years, machine learning (ML)
and artificial intelligence (AI) have been increasingly used to
identify relationships between parameter space and property space.
Deep learning has been used to design multiphase composites with

improved fracture resistance (Gu et al. 2018; Yang et al. 2020; Yu
et al. 2019), graphene kirigami with improved ductility (Hanakata
et al. 2018), and composite designs with elastic properties approach-
ing the Hashin-Strikman bound (Mao et al. 2020).

However, for deep learning methods, the quality of the optimi-
zation is highly dependent on the quality of the data provided to train
the algorithm. Moreover, due to the large amount of data required, it
is often not practical to use deep learning methods with experimental
data, which is typically laborious or expensive to obtain. Topology
optimization is another technique that has been implemented for
problems of large size in compliance (Santer and Pellegrino 2009),
stiffness (Buhl et al. 2000; Da et al. 2022), and fracture of lattice
structures (Da and Qian 2020; Song et al. 2019). Typically, topology
optimization is performed using numerical simulations that can be
difficult to translate to experiments.

Unlike deep learning methods, active learning or autonomous
experimentation (AE) allow iterative evaluation of properties guided
by machine learning algorithms, a process that can be automated
(Stach et al. 2021). A surrogate model is trained using existing data
to identify trends and to learn the representation of the entire space.
For a given iteration, a planning algorithm chooses what experiment
to conduct next by minimizing a certain function based on its current
understanding of the entire space. Lastly, the existing data are up-
dated with the new evaluation. This iterative loop continues until an
objective is achieved.

One of the most commonly used active learning frameworks is
Bayesian optimization (BO), which is built upon Bayesian statistics,
using a Gaussian process as the surrogate model providing predic-
tion for the entire space (Snoek et al. 2012). BO has proved to be
successful in a variety of contexts, including chemistry (Santos et al.
2019; Zhong et al. 2020; Burger et al. 2020), material discovery (Li
et al. 2020; Yuan et al. 2018; Xue et al. 2016; Meredig et al. 2018;
Balachandran et al. 2018), design of inks for three-dimensional (3D)
printing (Erps et al. 2021), and, most recently, design of architected
materials (Gongora et al. 2020; Vangelatos et al. 2021). Aside from
engineering applications, BO is also widely used as a tool for hyper-
parameter tuning for other machine learning models. BO has numer-
ous advantages compared with other AE methods (Frazier 2018):
(1) only a small number of initial data points are required (one is
sufficient); (2) uncertainty is inherently built into the Gaussian pro-
cess (GP); and (3) it offers relative ease of implementation for a
variety of problems.
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Previous endeavors have proven the efficiency of using BO to ex-
plore the design space of architected materials with complex geom-
etry. It has been shown that this can be much faster than conventional
approaches (Gongora et al. 2020; Vangelatos et al. 2021). However,
these previous works only made use of either numerical simulations
exclusively or experiments exclusively to perform the optimization
process. Optimization solely via experimental data is typically very
laborious or requires specialty robotic systems. On the other hand,
optimization solely via numerical simulations inherently assumes
that the simulations accurately capture the full complexity of experi-
ments, something that is rarely accomplished without significant ex-
pertise and computational resources. Hence, the optimum obtained
from BO that relies only on numerical simulations does not guar-
antee that the true experimental optimum has been reached. One re-
cent effort to incorporate both experiments and simulations has
shown promise as a follow up to previous BO efforts in architected
materials, although it is limited to a discrepancy model with elastic
properties (Gongora et al. 2021).

In this work, we propose a multifidelity Bayesian optimization
(MFBO) framework for designing architected materials with opti-
mal failure properties via nonuniform distribution of strut thickness.
Multifidelity Bayesian optimization has been used to optimize prop-
erties through numerical simulation with different computational
costs (Solomou et al. 2018; Couperthwaite et al. 2020; Chen et al.
2021). Here, we will use multifidelity data that incorporate low-
fidelity numerical simulations and high-fidelity experiments in par-
allel, both providing predictions for the same property.

Problem Setup

In this work, we aim to optimize the compressive failure properties
of nonuniform 2D cellular structures, as illustrated in Fig. 1(a). Ap-
plying a mirror symmetry as shown in Fig. 1(a) results in a lattice
with 16 parameters. Each of these corresponds to the width of the
three half struts belonging to a particular triangle (with the center-
lines of the original uniform lattice defining the boundaries between
half widths in adjacent triangles). These parameters are bounded
from 0.5 to 1 mm. This selection of parameters and parameters
bounds maintains a number of variables that is currently feasible
for optimization with BO (Frazier 2018).

The properties of interest are the energy absorption Eab, plateau
stress variation varðσplÞ, and the relative density. The energy absorp-
tion Eab is calculated as the area under the stress–strain curve that is
bounded by the densification slope, linearly interpolated with the
densification portion of the stress–strain curve (Gibson and Ashby
1997) [shaded area in Fig. 1(b)]. By extrapolating the densification
slope, we identify the densification strain εd (Gibson and Ashby
1997). The variation of plateau stress is the variance of the stress
along the plateau of the stress–strain curve [Fig. 1(b)], i.e., for the
plateau region (εy < ε < εd) we calculate

varðσplÞ ¼ SDðσplÞ=σ�
pl ð1Þ

where σ�
pl = average value of plateau stress σpl. The variance of

plateau stress quantifies how flat the plateau stress is (fully flat being
zero). This property is important because it quantifies the stability of
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Fig. 1. (a) Input consisting of 16 parameters, each representing the half strut width corresponding to one of the numbered triangles; (b) experiments
and simulations are conducted to measure the stress–strain properties of the structures when subjected to in-plane compression, and mechanical
properties of interest are extracted from this data; (c) flowchart of the Bayesian optimization algorithm, including (1) training of the Gaussian process;
(2) the next set of parameters are selected by the acquisition function; and (3) evaluation via experiment or simulation, according to loop; and
(d) optimized architectures reveal two different patterns of deformation: layer-by-layer crushing is observed when the optimization algorithm targets
maximal energy absorption; however, if the constraint to minimize stress variation is enforced, a V-shape deformation pattern is observed.
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the structure during compression. Low values of plateau stress
variance are desirable for protective materials because they are less
likely to allow spikes in stress that cause damage. These properties
are quantified using both high-fidelity experiments and low-fidelity
simulations. Both methods provide the full stress–strain curve dur-
ing compression up to densification, from which the properties of
interest are extracted. Lastly, we are also interested in the relative
density of the lattice structures (i.e., the total mass of the lattice
structure divided by the mass of solid material of the same volume),
which can be computed from the input parameters.

The workflow is shown in Fig. 1(c) and is as follows:
1. Train the multifidelity Gaussian process, which incorporates two

types of data: high-fidelity experiments and low-fidelity numeri-
cal simulations.

2. Use the trained Gaussian process model. The next point of
evaluation is determined by minimizing the acquisition function
with a numerical minimizer with random starting points in the
entire space. In addition to random start points, the evaluated
variables of low-fidelity sources are also used as starting points
of the minimization, maximizing the use of low-fidelity data
sources.

3. Perform the next experiment or simulation, feeding the result of
this evaluation back to the Gaussian process model for the next
iteration.
After a number of iterations of data acquisition and surrogate

model updates, we observed evidence of convergence via close clus-
tering of predicted optimal geometries. Our workflow allows paral-
lel integration of both data streams, which are fed into the surrogate
model simultaneously. Examples of geometries that reach optimized
properties are illustrated in Fig. 1(d). (Layer-by-layer crushing is
observed when the objective is maximum energy absorption; a
V-shaped buckling pattern is more common when the objective is
to minimize plateau stress variation.)

In-Plane Compressive Behavior of Nonuniform
Triangular Lattices

Throughout the study, we have conducted over 3,000 numerical
simulations and 120 experiments in which we extracted the stress–
strain behavior of the nonuniform triangular lattice during compres-
sion. Fig. 2 shows the corresponding results of all simulations and
experiments. We plot the energy absorption versus the variance of
plateau stress and versus the relative density in Figs. 2(a and b),
respectively, for all simulations. We observed positive linear corre-
lation between the energy absorption and relative density, although
it is less strong with variance of plateau stress. However, the best-
performing structure in terms of energy absorption was not the
structure with the highest relative density (i.e., a uniform lattice
with all strut widths maximized).

The experimental stress–strain plots are shown in Fig. 2(c). The
yield, plateau stress, and densification strain varied significantly
among the experiments. For each lattice that was tested experimen-
tally, we also conducted a numerical simulation. One of the key pre-
requisites for MFBO to work well is that there is a strong correlation
between high- and low-fidelity data. Specifically, we assumed a lin-
ear relationship in the formulation of MFBO. Fig. 2(d) plots the en-
ergy absorption measured experimentally for each test (high-fidelity)
versus the energy absorption for the corresponding lattice measured
via simulation (low-fidelity), confirming the linear correlation.

Results

Prior works have quantified the advantage of single-fidelity
Bayesian optimization compared with conventional experimental
design (Gongora et al. 2020) and alternative optimization algo-
rithms (Vangelatos et al. 2021). As shown in Fig. S1, BO was more
efficient than gradient descent at optimizing for energy absorption

Fig. 2. (a) Energy absorption versus variation of plateau stress for all numerical simulations; (b) energy absorption versus relative density for all
numerical simulations; (c) all stress–strain curves of the experiments; and (d) energy absorption extracted from experiments (high-fidelity) versus
simulations (low-fidelity).
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of the lattice during compression. This is largely due to the fact that
the properties of interest in this work have a nonlinear dependence
on the parameters (making gradient computations less efficient).
The cost of running the optimization solely via high-fidelity experi-
ments (no low-fidelity numerical simulations) would be extremely
high (more than 100 experiments). This shows that the design pro-
cess is greatly accelerated through the application of MFBO to the
lattice optimization problem.

We ran two parallel schemes to evaluate the benefit of using
multiple data sources in BO. The first used only high-fidelity experi-
ments as the data input in BO; the second used both high-fidelity
experiments and low-fidelity simulations as parallel multifidelity
data for BO. Fig. 3(a) shows the energy absorption of tested struc-
tures versus the number of iterations of experiments.We also plot the
accumulated maximum properties [dashed lines in Fig. 3(a)], show-
ing the evolution of optimization. Prior to performing multifidelity
BO, a low-fidelity-only BO was allowed to run for 150 iterations to
generate the starting set of parameters for the multifidelity BO.

First, we observed that after just a few iterations of MFBO, a
lattice with better energy absorption was found compared with the
initial lattice, which is the best candidate provided by low-fidelity
BO. Moreover, multifidelity BO was able to find structures with
energy absorption up to 35% higher than the best-performing struc-
tures in high-fidelity only BO (actual numbers are summarized in
Table 1). On top of that, 5 out of 20 experiments exhibited better
energy absorption from the multifidelity campaign. Hence, not only
did multifidelity BO find a better optimum (35% improvement),
it also produced several candidates with higher energy absorption
than high-fidelity BO.

To track the convergence status of the algorithm, we probed the
surrogate model (Gaussian process) of each campaign at the end of
20 high-fidelity experiments. This was done by restarting the train-
ing of the Gaussian process a total of 50 times with the same inputs.
For each restart, the 50 best candidates were predicted by the sur-
rogate model using the same acquisition function. We character-
ized the state of the predicted candidates using intercluster distance.

Mean distance

Optimum distance

1 2 3 4

1 2 3 4

1
2

3 4

1
2 3 4

optimal

(a) (b)

(c)

(d)

Fig. 3. Optimization for maximal energy absorption: (a) evolution of experimental evaluations for both multifidelity and high-fidelity-only
campaigns; (b) state of the surrogate model after 20 iterations of experiments for multifidelity and high-fidelity-only campaigns, based on 50 struc-
tures predicted to be optimal by the model; two cluster distances are computed for each campaign, one relative to the mean of the predicted optimal
structures, and one relative to the structure with the most optimal performance; (c) measured stress–strain behavior and optical images of the deformed
lattice at various stages of compression (Video S1); data correspond to the best-performing lattice (maximal energy absorption); and (d) stress–strain
behavior and optical images of the deformed lattice at various stages of compression (Video S2); data correspond to a uniform lattice with the struts of
maximum allowed width.
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This quantifies how close the candidates are to each other (mean
distance) and to the optimal geometry (optimum distance). The in-
tercluster distance was calculated as follows:

S ¼
�
1

N
Σkxi − x�k2

�
1=2

ð2Þ

where xi = new candidates. For the mean distance, x� is the mean of
all new candidates. For the optimal distance, x� is the location of
the maximum energy absorption, as shown in Fig. 3(a).

Fig. 3(b) shows the mean distance and the optimal distance for
both multifidelity and high-fidelity-only BO. The bars indicate the
95% confidence bound for all 50 restarts. The diamonds and lines
represent the mean and range, respectively. For multifidelity BO,
the distance between new candidates was very small. This indicates
that the BO process has converged, yielding predictions of optimal
parameter sets within a narrow region. On the other hand, the pre-
dictions from BOwith only high-fidelity had a mean distance almost
three times larger than that of the multifidelity BO. The predictions
from multifidelity BO were also much closer to the optimal geom-
etry obtained in the experiments. This shows that even by only run-
ning 20 experiments, multifidelity BO can reach convergence and
lead to better properties.

Fig. 3(c) shows the stress–strain behavior of an optimal lattice,
as well as images of the deformed lattice at different applied strains.
At Position 2, corresponding to the yield point, the triangle with the
thinnest struts buckles first. This causes a postyield drop in stress.
Subsequently (Position 3), the top two layers of the structure undergo
densification. Additional peaks in the result from sequential buckling
of the next two layers (i.e., Layers 3 and 4). The optimal geometry
was similar to a uniform lattice with struts of maximum-allowed
thickness.

The stress–strain behavior and images of the deformation are
shown in Fig. 3(d) for this uniform lattice. Unlike the optimal
structure, the uniform lattice had a yield stress of 4 MPa, whereas
the optimal structure yielded at 2.5 MPa. This result was expected
because all struts are uniform with maximum thickness. How-
ever, because a larger number of struts yielded at the same times
[Position 2 in Fig. 3(d)], there is a steeper postyield drop, leading
to a plateau stress of 0.9 MPa during subsequent loading (Positions
3 and 4) compared with 1.2 MPa for the plateau stress of the op-
timal structure. As a result, despite having a significantly higher
yield stress, the uniform lattice absorbs only 95% the energy of the
optimal lattice.

Moreover, the large stress variations of the uniform lattice make
it less suitable in many applications, where uniform stresses are
paramount in order to protect adjacent objects. Some degree of sto-
chasticity can increase the energy absoprtion, as has been shown
for natural materials, although often at the cost of reduced strength
[e.g., bamboo (Habibi and Lu 2014) and honeycomb (Smith et al.
2021)].

Optimization for Total Energy Absorption with
Constraints

Bayesian optimization is also compatible with the implementation of
constraints. Here, we present two example problems for constrained
optimization: onewith a deterministic constraint, namely, the relative
density, as determined from input parameter x; the other constraint is
related to separate properties, namely, the variation in plateau stress,
which is estimated via an independent Gaussian process. The con-
straints are enforced via the acquisition function as follows (“Mate-
rials and Methods” section):

min
x

LCBðxÞPðycðxÞ ≤ 0Þ ð3Þ

where cðxÞ = constraint function. The probability that the lattice sat-
isfies a constraint on relative density is deterministic, as represented
by a Heaviside function

PðycðxÞ ≤ 0Þ ¼ ρðxÞ ≤ ρc ð4Þ

For constraints on the variation of plateau stress, we introduce
an independent Gaussian process that estimates the constraint.
The probability of constraint satisfaction can be estimated from the
output of the Gaussian process as follows:

PðycðxÞ ≤ 0Þ ¼ 1

2

�
1 − erf

�
μcðxÞ

σcðxÞ
ffiffiffi
2

p
��

ð5Þ

where μcðxÞ and σcðxÞ = outputs from the Gaussian process for
constraint estimation GPc.

Because the constraint is enforced within the acquisition func-
tion, it does not generate discontinuity in the property space, lead-
ing to better performance of the Gaussian process for estimating the
property that we are optimizing. We first conducted campaigns us-
ing only low-fidelity simulations for constraining the relative den-
sity below 0.28. As shown in Fig. S2, by applying a constraint on
relative density, our BO algorithm was able to only probe structures
that satisfy the relative density constraint. In fact, the majority of
evaluations had the maximum relative density allowed, leading to
optimal structures that satisfy the constraint in under 100 iterations.

Multifidelity BO exhibited similar results, as shown in
Figs. 4(a and b). Through 20 iterations, all experimental evaluations
were performed with geometries that satisfy the constraint, as illus-
trated by the dashed line in Fig. 4(b). Numerous evaluations were
conducted with a relative density of 0.28. The structure with maxi-
mum energy absorption was not found on the constraint line. The
best-performing geometry and its corresponding stress–strain curve
is shown in Fig. 4(c) (with actual measured properties given in
Table 1). The deformation pattern of the lattice during compression
is similar to the optimal lattice shown in Fig. 3(c), where each layer
is sequentially crushed.

Next, we optimized energy absorption of the lattice while limit-
ing the variance of plateau stress. This constraint was more difficult
to satisfy than a constraint on relative density because it was esti-
mated by an independent Gaussian process. We first conducted
campaigns with only low-fidelity simulations. As shown in Fig. S3,
not all evaluations satisfied the constraint. Hence, it required more
iterations to reach convergence. A portion of iterations was used to
learn the constraint space, in addition to the iterations used to learn
the property space.

We also conducted a multifidelity campaign with a constraint on
the variance of the plateau stress. We conducted 40 experiments,
leading to improvement of energy absorption without the variance
of plateau stress exceeding 0.5. Fig. 5(a) shows the property evalu-
ation for each experiment. Whether or not the constraint was satis-
fied is indicated. Fig. 5(b) plot the energy absorption versus variance

Table 1. Summary of properties for the best-performing lattice from each
BO iteration conducted in this study

Lattice type ρc
Eab

(MPa) VarðσplÞ

Total
number of
experiments

Total
number of
simulations

Uniform lattice 0.3464 1.369 0.4790 N/A N/A
High-fidelity BO 0.2995 1.2487 0.5637 20 0
Multifidelity BO 0.3228 1.5685 0.5186 20 200
VF constrained 0.2782 1.4610 0.7139 20 200
VarðσplÞ constrained 0.2996 1.5417 0.4925 40 400

© ASCE 04023032-5 J. Eng. Mech.

 J. Eng. Mech., 2023, 149(6): 04023032 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Jo
rd

an
 R

an
ey

 o
n 

03
/3

0/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

http://ascelibrary.org/doi/10.1061/JENMDT.EMENG-7033#supplMaterial
http://ascelibrary.org/doi/10.1061/JENMDT.EMENG-7033#supplMaterial


of plateau stress. Out of 40 experiments, 17 experiments satisfied
the constraint. The penalty for exceeding the constraint was applied
in the acquisition function, requiring that the optimization process
balances the search for optimal values with constraint satisfaction.
An alternative approach would be to require a separate optimization
loop to learn the constraint space separately. However, this would
require additional experiments.

The sequence of deformation of the best-performing lattice is
shown, along with its stress–strain response, in Fig. 5(c) (with ac-
tual measured properties given in Table 1). The stress plateau was
much flatter than the stress plateau for the best-performing lattice
optimized without constraints. Also, the deformation pattern was
different than it was in the prior two examples. Initial buckling oc-
curred at different nodes, leading to a V-shape pattern, rather than
sequential, row-by-row buckling. This initial buckling pattern pre-
serves the top and bottom layers while crushing the diagonal struts,
ultimately resulting in a much smoother stress–strain response.

Discussion

In this work, multifidelity Bayesian optimization was found to ac-
celerate the convergence process of optimization with 16 indepen-
dent continuous variables. We were able to find optimal nonuniform
triangular lattices with maximal energy absorption during compres-
sion with just 15 iterations (one experiments and 10 simulations in

each iteration, executed in parallel). This improvement was aided by
the correlation between high-fidelity experiments and low-fidelity
simulations, allowing more low-fidelity data to be acquired in par-
allel to speed up the convergence. BO with only experimental data
(high-fidelity) did not show signs of convergence after 20 iterations.
Because the convergence rate of Bayesian optimization was ex-
pected to deteriorate in high-dimensional input spaces, we antici-
pated that more than 100 iterations of high-fidelity experiments may
be required [we can deduce that via our low-fidelity-only campaigns
shown in Fig. S1 as well as prior work with 17D categorical param-
eters (Vangelatos et al. 2021)]. The use of multifidelity data sources
provided enormous savings, both of material cost and of time.

Moreover, optimizing with MFBO does not require that numer-
ical simulations capture every detail of the experiments, relaxing
the need for specialized, application-specific knowledge and for
laborious parameter tuning. For comparison, a previous study with
one-fourth the number of continuous variables required twice the
number of experiments to reach convergence with single-fidelity
BO (Gongora et al. 2020). Another work with a similar number of
parameters (17 categorical parameters) reached convergence after
250 iterations with single-fidelity BO, using numerical simulations
(Vangelatos et al. 2021). In contrast, our BO method, incorporat-
ing multifidelity data sources, yielded optimal structures with only
15 high-fidelity experiments for a problem with 16 continuous
variables. This shows the possibility that by utilizing multifidelity

ρ < 0.28

1

2 3 4 5

6

1
2

3
4 5 6

optimal

(a) (b)

(c)

Fig. 4.Multifidelity BO with constrained relative density: (a) energy absorption of each experimental iteration with accumulated maxima; (b) energy
absorption versus relative density, showing all iterations that satisfy the constraint; and (c) stress–strain behavior and optical images of the lattice at
various stages of compression (indicated by the numbers) for the best-performing lattice with maximized energy absorption that satisfies the relative
density constraint (Video S3).

© ASCE 04023032-6 J. Eng. Mech.

 J. Eng. Mech., 2023, 149(6): 04023032 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Jo
rd

an
 R

an
ey

 o
n 

03
/3

0/
23

. C
op

yr
ig

ht
 A

SC
E.

 F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
rig

ht
s r

es
er

ve
d.

http://ascelibrary.org/doi/10.1061/JENMDT.EMENG-7033#supplMaterial
http://ascelibrary.org/doi/10.1061/JENMDT.EMENG-7033#supplMaterial


sources, one can tackle problems with much larger numbers of
parameters. However, one should still keep in mind that compu-
tation of conventional BO is limited to problems of relatively low
dimension (fewer than 25 dimensions). This is an active area of
research, with multiple recent works aimed at addressing the di-
mensional limitation of BO (Maddox et al. 2021; Kirschner et al.
2019; Wang et al. 2016).

Our proposed framework can be easily transferred to other sys-
tems, with limited complex experiments performed by humans
combined with automated numerical simulations to accelerate the
convergence process. There are further improvements that could be
made to the framework, leading to overall performance of the op-
timization. The acquisition function can be modified to incorporate
the respective costs of high- and low-fidelity data sources, similar
to previous multiple simulation frameworks (Couperthwaite et al.
2020). Furthermore, a multifidelity multiobjective BO could unlock
complexity while optimizing for multiple properties.

Materials and Methods

3D Printing and Materials

The materials in this work were printed with an EnvisionTEC
(Detroit) desktop digital light projection resin 3D printer (Vida
HD). The printer has a build volume of 96 × 54 × 100 mm3 with
XY resolution = 50 μm and a z step size of 50 μm. The printer

takes grayscale images (1,920 × 1,080) as inputs which, which
are projected into the resin. The material used in this work was a
proprietary photopolymer named E-rigid PU black. Mechanical
properties of the E-rigid PU black were measured by conducting
uniaxial tensile tests at a strain rate of 0.002=s using an Instron
65SC (Norwood, Massachusetts).

Numerical Simulations

Numerical simulations of lattice compression were conducted us-
ing ABAQUS version 2020 Explicit analysis. The structures were
compressed 80% in 100 s. The total simulation time was deter-
mined such that the total kinetic energy would not exceed 5%
of total internal energy throughout the simulation. Contact be-
tween all surfaces was defined with zero friction and hard contact.
The material was assumed to be perfectly plastic, with Young’s
modulus of 1,200 MPa and yield stress of 30 MPa, as measured
via uniaxial tensile tests of the material.

Lattice Compression

The triangular cellular structure has a unit cell length of 10 mm and
an out-of-plane thickness of 6 mm. Compression of cellular struc-
tures was conducted with an Instron 68SC using compression plates
of 50-mm diameter, at a strain rate of 0.002=s. The compression was
stopped at either 60% strain or when the force exceeded the limit
of 5,000 N.

yc(x)>0 yc(x)<0

1

2 3 4 5

6

1 2 3
4 5 6 7

optimal

(a) (b)

(c)

Fig. 5. Multifidelity BO with a constraint on the variance of plateau stress: (a) energy absorption of each experimental iteration, with accumulated
maxima and satisfaction of the constraints; (b) energy absorption versus variance of the plateau stress, showing the distribution of iterations, indicating
whether the constraint is satisfied; and (c) stress–strain relationship and optical images of the deformed lattice at various stages of compression for the
lattice with maximal energy absorption that also satisfies the constraint on the variance of the plateau stress (Video S4).
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Gaussian Process

The Gaussian process used in this work was implemented with ra-
dial basis function (RBF) kernel in covariance matrix and uniform
Gaussian prior. For an input with dimension d, the RBF kernel can
be computed as follows:

kðx; x 0Þ ¼ σ2 exp

 
− 1

2

Xd
i¼1

ðxi − x 0
i Þ2

l2i

!
ð6Þ

where σ and l ¼ ½l1; l2; : : : ; ld� together constitute the training
parameter θ. Training is done by maximizing the marginal
likelihood

logpðyjx; θÞ ¼ − 1

2
log jKþ σ2

ϵIj− 1

2
yTðKþ σ2

ϵIÞ−1y −N
2
log2π

ð7Þ

where K ¼ kðx; x 0; θÞ is the covariance matrix computed from
all dimensions of input x using the kernel definition in Eq. (6)
with additional training parameter σε. After training the Gaussian
process model, a prediction in terms of mean and standard devia-
tion can be computed on x� as follows:

μðx�Þ ¼ kðx�;x; θÞðKþ σ2
ϵIÞ−1y ð8Þ

σðx�Þ ¼ kðx�;x�; θÞ − kðx�;x; θÞðKþ σ2
ϵIÞkðx;x�; θÞ ð9Þ

Multifidelity Gaussian Process

We define observations in both high and low fidelity as follows:

yH ¼ fHðxHÞ þ ϵH

yL ¼ fLðxLÞ þ ϵL ð10Þ
We assumed the observations have a Gaussian distribution with

independent kernels and uncertainties as follows:

yH ∼ GPð0;kHðxH;x 0
HÞ; σHÞÞ

yL ∼ GPð0;kLðxL;x 0
LÞ; σLÞÞ ð11Þ

The inputs and output are combined y ¼ ½yL; yH�,X¼ ½xL;xH�.
In addition, we assumed a linear relation between the low-

fidelity observations and high-fidelity observations, with the fol-
lowing parameters:

yHðxÞ ¼ ρyLðxÞ þ δðxÞ ð12Þ

For the multifidelity Gaussian process, the training parameter
now includes θL; θH; ρ. To train the model, the marginal likelihood
is again maximized

logpðyjx; θL; θH;ρÞ ¼ − 1

2
log jKj− 1

2
yTK−1y −NL þNH

2
log2π

ð13Þ

Here, the covariance matrix includes both low-fidelity and high-
fidelity observations and can be constructed as follows:

K ¼
"
kðxL; x 0

L; θLÞ þ σ2
LI ρkLðxL; x 0

H; θLÞ
ρkLðxH;x 0

L; θLÞ ρ2kLðxH;x 0
H; θLÞ þ kHðxH; x 0

H; θHÞ þ σ2
HIÞ

#
ð14Þ

Predictions can be made with trained parameters in the predic-
tion space x�

μðx�Þ ¼ kðx�;XÞK−1y ð15Þ

σðx�Þ ¼ kðx�;x�Þ − kðx�;XÞK−1kðX;x�Þ ð16Þ

Bayesian Optimization Algorithm

The BO algorithm in this work was built using JAX library
(Perdikaris 2020), enabling high-efficiency automatic differentia-
tion accelerated with processing units. Our algorithm used both a
single-fidelity Gaussian process and a multifidelity Gaussian pro-
cess to provide predictions for the entire space. Next, we computed
the next point of evaluation by minimizing the acquisition function.
The acquisition used in this work was the lower confidence bound
(LCB), which can be computed with parameter κ and prediction of
the Gaussian process

LCBðxÞ ¼ μðxÞ − κσðxÞ ð17Þ
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