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A B S T R A C T

This paper aims to relate the energy dissipated at a shock wave in a nonlinearly elastic bar to the energy
in the oscillations in two related dissipationless, dispersive systems. Three, one-dimensional, dynamic impact
problems are studied: Problem 1 concerns a nonlinearly elastic bar, Problem 2 a discrete chain of particles,
and Problem 3 a continuum with a strain gradient term in the constitutive relation. In the impact problem
considered, the free boundary of each initially quiescent body is subjected to a sudden velocity, that is then
held constant for all subsequent time. There is energy dissipation at the shock in Problem 1, but Problems 2
and 3 are conservative. Problem 1 is solved analytically, Problem 2 numerically, and an approximate solution
to Problem 3 is constructed analytically. The rate of increase of the oscillatory energy in Problems 2 and 3
are calculated and compared with the dissipation rate at the shock in Problem 1. The results indicate that the
former is a good qualitative measure of the latter. The quantitative agreement is satisfactory at larger impact
speeds but less so at smaller speeds, some possible reasons for which are discussed.
1. Introduction

Dissipation in an elastic body sounds like a contradiction, since we
often think of ‘‘elastic’’ as being synonymous with ‘‘dissipationless’’.
However, if an elastic body, even a hyperelastic body, involves a
moving singularity such as a shock wave,1 there is a loss of energy at
the singularity. This is usually attributed to a deficiency in the elastic
model, at least when it comes to modeling such a feature. This leads
to ‘‘regularization’’ of the theory, which entails accounting for other
physical effects.

For example a dissipative regularization involves adding, say, a
viscous term to the elastic constitutive relation, and this causes the
sharp elastic shock fronts to turn into narrow zones in which the fields
vary continuously (but rapidly). However, if one wants to examine the
dissipation in the elastic body, as we do, one should not augment the
model with additional sources of dissipation. Therefore we shall not
pursue dissipative regularizations of the elasticity problem.

On the other hand a dissipationless, dispersive regularization would
involve adding, say, a conservative strain-gradient term to the elastic
constitutive equation. The shock wave in the elastic body is now
replaced by a dispersive wave packet. It is usually claimed that the
energy in the oscillations of the wave packet correspond to the energy
dissipated at the shock wave in the elastic body. While this is certainly
plausible, and even likely, we have not found an investigation of this
in the literature, and that is the focus of this paper.

∗ Corresponding author.
E-mail addresses: purohit@seas.upenn.edu (P.K. Purohit), rohan@mit.edu (R. Abeyaratne).

1 other examples include a propagating crack or dislocation,

We consider three closely related problems. Problem 1 concerns a
semi-infinite nonlinearly elastic bar. The bar is initially stress free and
at rest. At time 𝑡 = 0+ its free boundary is given a speed 𝑉 which is held
constant from then on. A shock wave emerges from the loading surface
𝑥 = 0, and propagates into the quiescent material at a constant speed.
The strain 𝛾− and particle speed 𝑣− = −𝑉 behind the shock are constant.
The problem can be readily solved analytically, and in particular, the
dissipation rate calculated explicitly.

Problem 2 is a discrete counterpart of Problem 1. It involves a semi-
infinite row of identical particles, with each particle interacting with
its nearest neighbors through identical nonlinearly elastic springs. The
force–displacement relation of a spring is related to the stress–strain
relation of the continuum. This system is dissipationless. The spacing
between the particles introduces a length scale into the problem, and
the sudden loading causes a dispersive wave packet to propagate into
the quiescent material. The strain and particle speed have different con-
stant values on either side of this wave packet, just as in a shock wave,
but the waves within it, are dispersive and the fields vary smoothly.
This is a dispersive non-dissipative counterpart of a shock wave, a
‘‘dispersive shock wave’’ (DSW). We solve this problem numerically
and calculate, in particular, the energy stored in the oscillations.

Finally, Problem 3 again concerns a continuum. It is like Problem 1,
except that the constitutive relation is augmented with a linear strain-
gradient term. This higher gradient term introduces a length scale. This
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too is a dispersive conservative system. We determine an approximate
solution to this problem analytically, using a calculation motivated
by Whitham’s theory of modulated waves, (Whitham, 1965b,a, 1970).
Here too, we calculate the energy stored in the oscillations.

The main concern of this paper is the comparison of the rates of
increase of oscillatory energy in Problems 2 and 3 with the dissipation
rate in Problem 1. The interested reader can find the main results in
Figs. 6 and 10.

It is important to emphasize that since we want the shock wave to
be the only source of dissipation in Problem 1, the nonlinear stress–
strain relation characterizing the material is taken to be monotonic and
convex. This prevents the occurrence, for example, of phase transitions
which have their own dissipation. Having other sources of dissipation
would only muddy the central question we want to study.

Similarly, we emphasize that we are concerned entirely with the
three aforementioned mechanical problems. In understanding the re-
ation between their energetics, i.e. their ‘‘energy budgets’’, we do
ot wish to bring in either temperature/thermodynamics or statistical
echanics. We want to answer our question within the framework of
lassical mechanics.
It is also worth remarking that each of Problems 2 and 3 is meant

o be a model for Problem 1. We did not undertake Problem 2 because
e wanted to numerically simulate Problem 3, or vice versa. In fact we
ade no attempt to numerically study Problem 3. Numerical simulation
f systems involving dispersive shock waves is a rich and important
ubject, and there is a substantial literature on it, e.g. Fornberg and
hitham (1978), Grava and Klein (2007), Hermann (2012).
When a conservative dispersive system involves a propagating ‘‘de-

ect’’ such as a dislocation or phase boundary, the energy radiated by
he waves traveling away from the defect can be identified with a
inetic relation, and therefore with effective dissipation. This has been
oted and explored in, for example, a Frenkel–Kontorova dislocation
y Atkinson and Cabrera (1965); a propagating kink by Abeyaratne and
Vedantam (1999); phase transformations by Kresse and Truskinovsky
(2003) and Truskinovsky and Vainchtein (2005); dynamic fracture
by Hauch and Marder (1998); and for a Peierls dislocation in two-
dimensions by Sharma (2005). In our context, there is no kinetic
relation associated with the motion of a shock wave, and indeed our
choice of problem was dictated by this.

There is a rich literature on the dynamics of one-dimensional lat-
tices. A few of these papers include: the celebrated Fermi–Pasta–Ulam–
Tsingou (FPUT) problem where the authors investigated the transfer of
energy between modes in a one-dimensional chain of particles, (Fermi
et al., 1955); the closed form solution to a dynamic problem for a har-
monic chain, Synge (1973) and Chin (1975); the motion of a Frenkel–
Kontorova dislocation, e.g. Atkinson and Cabrera (1965); the dynamics
of phase transitions, e.g. Slepyan et al. (2005), Kresse and Truskinovsky
(2003), Truskinovsky and Vainchtein (2005), Puglisi and Truskinovsky
(2000), Purohit and Bhattacharya (2003), Zhao and Purohit (2016);
the dispersive evolution of pulses in a lattice, e.g. Giannoulis and
Mielke (2006); the derivation by Aubry and Proville (2009) of Rankine–
Hugoniot type jump conditions for a discrete damped nonlinear lattice;
and so on.

The rigorous transition from a discrete model to a continuous one
is subtle, e.g. see Giannoulis et al. (2006). Depending on the specific
class of ‘‘microscopic motions’’ considered, the same discrete model will
yield different continuum models, e.g. the KdV equation (Friesecke and
Pego, 1999), the Schrödinger equation (Giannoulis and Mielke, 2004),
and of course the equations of classical elasticity.

There is likewise a vast literature on the dynamics of dispersive
continuous systems. A subset of these are concerned with the motion
of dispersive shock waves (DSWs) according to modulation theory. This
body of work stemmed from the seminal ideas of Whitham (1965b,a,
1970) that have since been advanced by other researchers and used to
study DSWs in compressible fluids, Bose–Einstein condensates, shallow
2

water etc.; e.g. see the review article by El and Hoefer (2016), the d
dissertation by Nguyen (1987), the book by Kamchatnov (2000) and
the references therein. Rigorous analyses include the work of Lax and
Levermore (1983a,b,c), Gurevich and Pitaevskii (1973, 1974) and Ve-
nakides (1985). In a recent paper Gavrilyuk et al. (2020) explore
shock-like fronts in dispersive systems. The simpler DSW fitting method
is described in a recent paper by Nguyen and Smyth (2021). The motion
of DSWs in discrete particle chains has been explored by, e.g., Dreyer
and Hermann (2008); and the equations of continuum thermomechan-
ics (except the entropy inequality) have been derived from a discrete
particle chain using modulation theory by Dreyer et al. (2005).

The analytical approximation that we carry out in Problem 3 was
motivated by the aforementioned literature on modulation theory.
However, our analysis is not an exact application of this theory and in-
volves a, physically motivated but mathematically ad hoc, assumption
as we shall make clear in Section 4.2.1.

The organization of this paper is straightforward. Section 2 is de-
voted to Problem 1 (the elastic bar), Section 3 to Problem 2 (the
discrete particle chain), and Section 4 to Problem 3 (the dispersive
continuum model with strain-gradient effects). We derive an explicit
relation (66) between the states 𝛾−, 𝑣− behind the DSW and the state
𝛾+, 𝑣+ ahead of it. It is the counterpart of a Rankine–Hugoniot jump
condition at a shock and the similar integral relation at a fan; see
also Gavrilyuk et al. (2020). For both Problems 2 and 3 we calculate
the rate of increase of the oscillatory energy, and compare them with
the dissipation rate at the shock in Problem 1. The results are discussed
in Section 5.

2. Impact problem for a one-dimensional elastic continuum

In this section we consider the motion of a semi-infinite, one-
dimensional, elastic bar. A generic particle is identified by its location
𝑥 ≥ 0 in a stress-free reference configuration. It is located at 𝑦(𝑥, 𝑡) at
time 𝑡. The strain 𝛾(𝑥, 𝑡), particle speed 𝑣(𝑥, 𝑡) and stress 𝜎(𝑥, 𝑡) satisfy
the equations

𝛾 = 𝑦𝑥 − 1, 𝑣 = 𝑦𝑡, 𝜎𝑥 = 𝜌𝑣𝑡, 𝑥 ≥ 0, 𝑡 ≥ 0, (1)

where the subscripts 𝑥 and 𝑡 denote partial differentiation and 𝜌 is the
constant mass density per unit reference length. In addition, 𝜎 and 𝛾
are related by the constitutive relation

𝜎 = 𝑊 ′(𝛾), (2)

where 𝑊 is the strain energy per unit reference length.2
Suppose that the motion involves a shock wave (whose image in

the reference configuration is) at 𝑥 = 𝑠(𝑡). The displacement field is
continuous at the shock but the stress, strain and particle speed are
permitted to be discontinuous, with their limiting values satisfying the
jump conditions

𝜎+ − 𝜎− + 𝜌𝑠̇(𝑣+ − 𝑣−) = 0, 𝑣+ − 𝑣− + 𝑠̇(𝛾+ − 𝛾−) = 0. (3)

Here 𝑠̇ ∶= 𝑑𝑠∕𝑑𝑡 is the shock speed and ℎ+ and ℎ− denote the limiting
values of a generic field ℎ(𝑥, 𝑡) from 𝑥 = 𝑠(𝑡)+ and 𝑥 = 𝑠(𝑡)− respectively.
The limiting values must also obey the dissipation inequality3

D ∶= 𝑓 𝑠̇ ≥ 0, (4)

where the driving force 𝑓 is

𝑓 ∶= 𝑊 (𝛾+) −𝑊 (𝛾−) − 𝜎+ + 𝜎−

2
(𝛾+ − 𝛾−); (5)

e.g., see Abeyaratne and Knowles (2006) and Truskinovsky (1982).
Some background on the derivation and interpretation of (4) and (5)

2 Therefore 𝜎 has the dimension of force.
3 Eq. (15) shows, within the context of a particular problem, why D is the
issipation rate.
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can be found in Section S1 of the electronic supplemental material. It
follows from (3) that the shock speed can be expressed as

̇ = ±
√

1
𝜌
𝜎+ − 𝜎−
𝛾+ − 𝛾−

. (6)

Dissipation in an elastic material is only possible in the presence of a
changing reference configuration due, for example, to the motion of a
singularity such as a shock wave, phase boundary or crack tip.

The three problems to be studied in this paper will be described
in the next and subsequent sections. In order to compare the exact
solution to Problem 1 with the numerical solution to Problem 2 and
the approximate solution to Problem 3, we now introduce the particular
elastic material characterized by

𝑊 (𝛾) = 1
2
𝜇𝛾2 + 1

6
𝛼2𝛾3, 𝜎 = 𝑊 ′(𝛾) = 𝜇𝛾 + 1

2
𝛼2𝛾2, 𝜇 > 0, 𝛼 ≠ 0,

(7)

where we shall only be concerned with positive strains 𝛾 > 0. The
tress–strain curve corresponding to (7)2 rises monotonically and is
onvex. We take it to be monotonic so as to avoid phase transition
ronts and convex so that the shocks are admissible according to the
leinik criterion (Oleinik, 1959) as well as the dissipation inequality
4). For this material, the driving force (5) takes the explicit form

= 𝛼2

12
(𝛾− − 𝛾+)3, (8)

and the shock speed (6) can be written as

𝑠̇
𝑐0

= ±
√

1 +
𝛾+ + 𝛾−

2𝛽20
, (9)

here we have set

0 ∶=
√

𝜇∕𝛼2, 𝑐0 ∶=
√

𝜇∕𝜌 ; (10)

𝑐0 is the acoustic speed in the reference configuration and 𝛽0 measures
the relative strength of the nonlinearity. The dissipation inequality (4)
ith (8) implies that we should take the positive square root in (9) if
− > 𝛾+ and the negative square root in the opposite case.

.1. Problem 1

Problem 1 concerns the aforementioned elastic bar. The bar is
nstressed and at rest at the initial instant 𝑡 = 0 and its free-boundary
= 0 is subjected to a constant ‘‘pulling’’ speed 𝑉 for all time 𝑡 > 0.
hus we are concerned with the initial and boundary conditions

(𝑥, 0) = 0, 𝑣(𝑥, 0) = 0, 𝑥 > 0 and 𝑣(0, 𝑡) = −𝑉 , 𝑡 > 0. (11)

We shall refer to 𝑉 > 0 as the ‘‘impact speed’’.
For a material whose stress–strain relation increases monotonically

nd is convex,4 the solution to this problem has the piecewise constant
form

𝛾(𝑥, 𝑡), 𝑣(𝑥, 𝑡) =
{

𝛾−, −𝑉 , 0 < 𝑥 < 𝑠̇𝑡,
0, 0, 𝑥 > 𝑠̇𝑡,

(12)

nvolving a shock wave at 𝑥 = 𝑠̇𝑡 that moves into the undisturbed mate-
ial at a constant speed 𝑠̇. Thus the particle 𝑥 remains unstrained and at
est for times 0 < 𝑡 < 𝑥∕𝑠̇; its strain and speed jump instantaneously to
he values 𝛾− and −𝑉 as the shock passes through this point; and they
emain at those values for 𝑡 > 𝑥∕𝑠̇. The shock speed, 𝑠̇, and the strain
ehind the shock, 𝛾−, are to be determined.
The parameters 𝑠̇ and 𝛾− can be determined from the jump condi-

ions (3) with 𝛾+ = 0, 𝑣+ = 0. For the constitutive relation (7), they

4 If the stress–strain relation is monotonic and concave, the strain and
article speed vary continuously and the solution involves a fan, 𝛾 = 𝛾(𝑥∕𝑡), 𝑣 =
(𝑥∕𝑡), connecting two constant states.
3

tell us that the shock speed 𝑠̇(𝑉 ) is the real positive root of the cubic
equation
(

𝑠̇
𝑐0

)3
− 𝑠̇

𝑐0
− 1

2
𝑉

𝑐0𝛽20
= 0, (13)

and that the strain 𝛾−(𝑉 ) behind the shock is related to the impact speed
𝑉 through either of the equivalent expressions

𝛾−(𝑉 ) = 𝑉
𝑠̇(𝑉 )

, 𝑉
𝑐0𝛽20

=
𝛾−(𝑉 )
𝛽20

√

1 + 1
2
𝛾−(𝑉 )
𝛽20

. (14)

The relation (14)2 between 𝛾−(𝑉 ) and 𝑉 is monotonic and so there is
a one-to-one relation between the impact speed and the strain behind
the shock.

As pointed out to us by the reviewers, the ‘‘wave curve’’, the
relation between 𝑉 and 𝛾− when the states (𝛾, 𝑣) = (0, 0) and (𝛾, 𝑣) =
(𝛾−,−𝑉 ) are connected by a fan, agrees closely with the ‘‘shock curve’’
described by (14) over a wide range of the shock strength 𝛾−∕𝛽20 . This
is generally true for weak shocks as described in Section 72 of Courant
and Friedrichs (1978). More details, including a figure, can be found in
Section S2 of the electronic supplemental material.

Let 𝑋 be an arbitrary fixed point in the bar and limit attention to
times 𝑡 < 𝑋∕𝑠̇ so that this point lies ahead of the shock wave. Then it
can be readily shown from (1), (2), (3) and (11)3 that

𝜎(0, 𝑡)𝑉 = 𝑑
𝑑𝑡 ∫

𝑋

0
𝐸(𝑥, 𝑡) 𝑑𝑥 + D, 𝐸(𝑥, 𝑡) ∶= 1

2
𝜌𝑣2(𝑥, 𝑡) +𝑊 (𝛾(𝑥, 𝑡)),

(15)

where D is given by (4), (5). The left-hand side of (15)1 represents the
rate of external working on the segment [0, 𝑋] of the bar and the first
term on its right-hand side is the rate of increase of the kinetic plus
potential energy of this segment. Therefore D represents the rate of
dissipation. The fact that D ≠ 0 is due to the presence of the shock
wave within the interval [0, 𝑋]. From (4), (8), (9) with 𝛾+ = 0, the
issipation rate D = 𝑓 𝑠̇ in Problem 1 can be written as

D
𝜇𝑐0𝛽40

= 1
12

(

𝛾−

𝛽20

)3 √

1 + 1
2
𝛾−

𝛽20
. (16)

. Impact problem for a discrete system of particles

We now consider a semi-infinite chain of identical particles num-
ered 𝑗 = 0, 1, 2,…, each of mass 𝑚. The 𝑗th particle is located at
𝑗 = ℎ𝑗 in a reference configuration and at 𝑦𝑗 (𝑡) at time 𝑡. Each particle
nteracts with its nearest neighbors (only) through identical nonlinear
lastic springs. We shall refer to the spring connecting the 𝑗th and 𝑗+1th
articles as the 𝑗th spring. The particle speed, 𝑣𝑗 , and the elongation of
he 𝑗th spring, 𝛿𝑗 , are

𝑗 = 𝑦̇𝑗 , 𝛿𝑗 = 𝑦𝑗+1 − 𝑦𝑗 − ℎ. (17)

f 𝑈 (𝛿𝑗 ) denotes the potential energy of the 𝑗th spring, the force in that
pring is

𝑗 = 𝑈 ′(𝛿𝑗 ), (18)

nd a motion of the particle chain is described by the system of
quations

𝑣̇𝑗 = 𝑈 ′(𝛿𝑗 ) − 𝑈 ′(𝛿𝑗−1), 𝛿̇𝑗 = 𝑣𝑗+1 − 𝑣𝑗 . (19)

In order to compare the solutions of the discrete and continuous
ystems, we let

𝑗 (𝑡) ∶= 𝛿𝑗 (𝑡)∕ℎ, (20)

be the strain in the 𝑗th spring and introduce the energy per unit
reference length, 𝑊 , expressed as a function of strain:

𝑊 (𝛾 ) ∶= 𝑈 (ℎ𝛾 )∕ℎ. (21)
𝑗 𝑗
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Fig. 1. (𝑎) Strain 𝛾𝑗 (𝑡)∕𝛽20 versus spring number 𝑗 at time 𝑡𝑐0∕ℎ = 360. (𝑏) Strain 𝛾80(𝑡)∕𝛽20 versus time 𝑡𝑐0∕ℎ at spring 𝑗 = 80. The value of the strain in a spring remains at zero
for a certain initial period of time, undergoes a rapid increase when the disturbance wave reaches it, and then undergoes rapid oscillations with slowly decaying amplitude. The
amplitude of oscillation decreases linearly in (𝑎) and ‘‘curvilinearly’’ in (𝑏). For these plots 𝑉 ∕(𝑐0𝛽20 ) = 4.48, 𝑁 = 800. The associated 𝑥, 𝑡-plane is shown schematically in Fig. 2.
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It follows that the force in the 𝑗th spring is 𝜎𝑗 = 𝑈 ′(𝛿𝑗 ) = 𝑊 ′(𝛾𝑗 ) where
the prime denotes differentiation with respect to the argument. We also
let

𝜌 = 𝑚∕ℎ. (22)

Let 𝐸𝑗 denote the total energy of the 𝑗th spring–particle pair, i.e. the
kinetic energy of the 𝑗th particle plus the potential energy of the 𝑗th
spring:

𝐸𝑗 ∶=
1
2
𝑚𝑣2𝑗 + 𝑈 (𝛿𝑗 ). (23)

The following balance equation can be derived from (19):

𝑈 ′(𝛿𝑗 )𝑣𝑗+1 − 𝑈 ′(𝛿𝑗−1)𝑣𝑗 =
𝑑𝐸𝑗

𝑑𝑡
, 𝑗 = 1, 2,… . (24)

Considering the 𝑗th spring–particle pair as a system, Eq. (24) states that
the rate-of-working of the external forces on this system equals the rate
of increase of its energy.

3.1. Problem 2

Problem 2 is the discrete counterpart of Problem 1 and concerns the
aforementioned chain of particles. At the initial instant the particles are
at rest and the springs are unstretched. For all time 𝑡 > 0 the zeroth
particle is subjected to a constant ‘‘pulling’’ speed 𝑉 > 0 (and we again
refer to it as the ‘‘impact speed’’). Thus we are concerned with the
initial and boundary conditions

𝑣𝑗 (0) = 0, 𝑗 = 1, 2,…; 𝛿𝑗 (0) = 0, 𝑗 = 0, 1, 2,…; 𝑣0(𝑡) = −𝑉 , 𝑡 > 0.

(25)

The initial boundary-value problem (19), (25) was solved numerically
or a chain with 𝑁 particles for the material characterized by

(𝛿) = ℎ
[

1
2
𝜇
( 𝛿
ℎ

)2
+ 1

6
𝛼2

( 𝛿
ℎ

)3]

, 𝜇 > 0, 𝛼 ≠ 0; (26)

f. (26) with (7)1, (21); the associated acoustic speed is

0 ∶=
√

𝜇ℎ∕𝑚
(22)
=

√

𝜇∕𝜌. (27)

We used the ode45 integrator in MATLAB, which is based on the
Runge–Kutta method (Dormand and Prince, 1980; Shampine and Re-
ichelt, 1997), to compute the solution, and stopped calculations before
any waves reached the remote end of the chain. To confirm the results,
we repeated these calculations using a leap frog integrator, Frenkel and
Smit (2002). The relative difference in the results, e.g. for the energy,
was less than 0.35%.
4

Fig. 2. The schematic 𝑥, 𝑡-plane for Problem 2. The dispersive wave packet is contained
between the leading and trailing edges. The dashed ray 𝑥 = 𝑠̇𝑡 corresponds the shock
wave in Problem 1.

Fig. 1 shows how the strain of the 𝑗th spring varies with the spring
number 𝑗 (at a fixed time 𝑡) and with time 𝑡 (at a fixed spring 𝑗) in
one (arbitrarily chosen) calculation. The strain in a spring remains at
the value zero for a certain initial period of time, undergoes a rapid
increase when the disturbance wave reaches it, and then undergoes
rapid oscillations with slowly decaying amplitude. The 𝑥, 𝑡-plane as-
sociated with this dispersive shock wave is shown schematically in
Fig. 2. The dispersive wave packet is contained between the two rays
corresponding to its leading and trailing edges. The dashed ray 𝑥 = 𝑠̇𝑡
orresponds to the shock wave in Problem 1.
Note from Fig. 1(b) that there are two time-scales involved: the

low time on which the amplitude decreases and the fast time on which
he oscillations occur. Observe also that the amplitude of oscillation as
function of 𝑗 decreases linearly (Fig. 1(𝑎)), whereas as a function of 𝑡
t decreases ‘‘curvilinearly’’ (Fig. 1(𝑏)). We shall revisit this observation
n Section S9.
Fig. 3 shows the results of a few such calculations. Observe that

he solution involves a dispersive wave packet propagating into the
uiescent material. The amplitude of oscillation at the leading edge
emains constant as the wave packet propagates, but its width increases
ith time since the leading edge travels faster than the trailing edge.
Several such calculations were carried out, and from them, we

bserved that for each spring 𝑗,

𝛾𝑗 (𝑡)
⟩

→ 𝛾 as 𝑡 → ∞; (28)

i.e. the strain 𝛾𝑗 (𝑡) in every spring 𝑗 approaches a value 𝛾 (independent
of 𝑗) in the sense of a weak limit, meaning that the strain approaches



International Journal of Solids and Structures 257 (2022) 111371P.K. Purohit and R. Abeyaratne

t
v
s

s
e
F
o
t
b
v
p
s

Fig. 3. Strain profiles: (𝑎) strain 𝛾𝑗 (𝑡)∕𝛽20 versus spring number 𝑗 at two times 𝑡𝑐0∕ℎ = 100 (left), 𝑡𝑐0∕ℎ = 360 (right). (𝑏) Strain 𝛾𝑗 (𝑡)∕𝛽20 versus time 𝑡𝑐0∕ℎ for two springs, 𝑗 = 80
(left) and 𝑗 = 360 (right). For these plots, 𝑉 ∕(𝑐0𝛽20 ) = 4.48, 𝑁 = 800. The associated 𝑥, 𝑡-plane is shown schematically in Fig. 2.
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Fig. 4. The circles correspond to the limiting strain 𝛾∕𝛽20 in Problem 2 as determined
numerically while the solid curve corresponds to the strain 𝛾−∕𝛽20 behind the shock in
Problem 1 according to (14)2.

an average value 𝛾 upon which are superposed periodic oscillations. In
his paper, whenever we say that some quantity approaches a certain
alue, it will always be in this sense of a weak limit unless explicitly
tated otherwise. The particle speed 𝑣𝑗 (𝑡) similarly approaches the value
𝑣0 = −𝑉 at each 𝑗 where 𝑉 is the impact speed.

The limiting strain value 𝛾 is independent of spring number and time
but depends on the impact speed. Since 𝛾 is found by solving a different
et of equations to those in Problem 1, it is not a priori necessary that it
qual the strain 𝛾− behind the shock wave in Problem 1. The circles in
ig. 4 show how 𝛾 varies with 𝑉 according to our numerical solution
f Problem 2. The variation of the strain 𝛾− in Problem 1 according
o (14)2 corresponds to the solid curve. It is difficult to distinguish
etween the two from the figure, the relative difference between the
alues of strain being less than 0.5%. This is consistent with the former
roblem being the discrete counterpart of the latter. From hereon we
hall write 𝛾− for 𝛾.

We next determine the speed of the leading edge of the propagating
wave packet, 𝑐leading, or equivalently the spring number, 𝑛(𝑡), of the
spring at the leading edge. This will be needed in the next section. We
identify the spring at the leading edge using the criterion that it is the
first spring in the chain whose strain has risen from 0 and exceeded
the (ad hoc) threshold value 1.0 × 10−8. The speed of the leading edge
5

Fig. 5. The speed 𝑐leading of the leading edge of the wave packet in Problem 2
determined numerically.

is then given by 𝑐leading = 𝑛̇ℎ. We estimated 𝑐leading for various values
of the impact speed 𝑉 (or equivalently the strain 𝛾−). The results are
displayed in Fig. 5.

The chain of particles connected by nonlinear elastic springs is a
conservative system. In fact, upon summing (24), one is led to

𝜎0𝑉 = 𝑑𝐸
𝑑𝑡

, 𝐸(𝑡) ∶=
∞
∑

𝑗=0
𝐸𝑗 (𝑡), (29)

here 𝜎0(𝑡) = 𝑈 ′(𝛿0(𝑡)) is the externally applied force on the zeroth
article5; 𝑣0(𝑡) = −𝑉 is its speed; 𝐸̇0 = 𝑈 ′(𝛿0)𝛿̇0 which follows from
23) with 𝑣̇0 = 0; and 𝐸 is the total energy in the system.6 Eq. (29) is
imply a statement of the usual elastic power identity (‘‘conservation
f energy’’) and should be compared with the corresponding Eq. (15)
or the elastic bar which involves an additional dissipative term.

5 Since the zeroth particle travels at constant speed, the resultant force on
t vanishes and therefore the externally applied force on it equals the force in
he zeroth spring.
6 We assume that the infinite sum in (29)2 converges for the particular

motions involved in Problem 2.
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While the theory implies that (29) must necessarily hold, not all
umerical schemes conserve energy. In fact, the decaying strain ampli-
udes in Figs. 1 and 3 are reminiscent of the oscillations of a damped
ystem. For our purposes, where the calculation of energy underlies
he central question being investigated, it is important that the dis-
reteness of the particle chain not introduce any numerical dissipation.
s described in Section S3 of the electronic supplemental material,
e confirmed that the numerical scheme used conserved energy and
beyed (29). The relative difference between the rate of change of
nergy and the rate of working shown in Figure S2 was less than 0.3%.

.2. Oscillatory energy. Apparent dissipation

Energy is not conserved in Problem 1 because of the propagating
hock wave, while energy is conserved in its discrete counterpart Prob-
em 2. One way to heuristically understand the dissipation in Problem 1
n terms of the energy in Problem 2 is as follows: the strain and speed of
ll particles in the chain eventually settle at the values 𝛾− and 𝑣− = −𝑉 .
his motivates us to introduce
osc
𝑗 (𝑡) ∶= 𝑣𝑗 (𝑡) − 𝑣−, 𝛾osc𝑗 (𝑡) ∶= 𝛾𝑗 (𝑡) − 𝛾− for 0 ≤ 𝑗 ≤ 𝑛(𝑡), (30)

here 𝑛(𝑡) is the particle at the leading edge of the propagating wave
acket at time 𝑡. We define the energy associated with the oscillatory
art of the motion by

osc(𝑡) ∶=
𝑛(𝑡)
∑

𝑗=0

( 1
2
𝑚
(

𝑣osc𝑗 (𝑡)
)2 + ℎ𝑊 (𝛾osc𝑗 (𝑡))

)

, (31)

nd refer to it as the oscillatory energy in the system. Then the rate of
ncrease of the oscillatory energy is

(𝑡) = 𝑑
𝑑𝑡

𝐸osc(𝑡). (32)

We calculated 𝐷 using (32) as follows: for each impact speed 𝑉 , we
alculated the oscillatory energy 𝐸osc(𝑡) using the numerical solution to
he problem together with (30) and (31); the particle 𝑛(𝑡) at the leading
edge was determined by finding the first spring whose strain has risen
above the threshold value of 1 × 10−8 as described in Section 3.1. We
then plotted 𝐸osc(𝑡) versus 𝑡 and observed that the relationship was
linear (with small superposed jagged oscillations). We identified 𝐷 with
the slope of this line which is effectively an averaging over the rapid
oscillations.7 Several such calculations were carried out for different
values of the impact speed 𝑉 .

The circles in Fig. 6 show the variation of 𝐷 with the impact speed
𝑉 in Problem 2. The solid curve corresponds to the dissipation-rate D in
Problem 1 as given by (16). These results will be discussed in Section 5.

. Impact problem for a dissipationless dispersive continuum

Since the solution to the impact problem for the discrete chain
Problem 2) displays dispersion but no dissipation, we now turn to a
ontinuum model that has these same two characteristics. Specifically,
e add a strain-gradient term to the stress–strain relation (7)2 of Prob-
em 1, and thus take the constitutive relation of the one-dimensional
emi-infinite continuum to be

= 𝑊 ′(𝛾) + 𝜂ℎ2𝛾𝑥𝑥, 𝑊 (𝛾) = 1
2
𝜇𝛾2 + 1

6
𝛼2𝛾3; (33)

ere 𝜂 > 0 and ℎ > 0 are constant parameters.
Taking 𝜂 > 0 in (33) is motivated by Taylor expanding the discrete

quations of Problem 2 for small ℎ; e.g. 𝜂∕𝜇 = 1∕12 according to Rose-
au (1986). However, 𝜂 > 0 leads to instability at perturbations whose
ave lengths are smaller than some critical value. As noted by Sharma

(2005), despite this deficiency, interesting results can be derived in

7 Figure S3 in Section S4 of the electronic supplemental material shows a
raph of 𝐸 (𝑡) versus 𝑡.
6

osc
Fig. 6. The circles correspond to the oscillatory energy 𝐷∕(𝜇𝑐0𝛽40 ) in Problem 2 while
the solid curve corresponds to the dissipation-rate D∕(𝜇𝑐0𝛽40 ) in Problem 1 according
to (16), (14)2.

this case, Kresse and Truskinovsky (2003), Abeyaratne and Vedantam
(1999, 2003). In the context of the present problem, we show in the
appendix that if we limit attention to perturbations whose wave lengths
remains close to the wave lengths of the solutions encountered here,
then stability is maintained.

Consider a motion 𝑦(𝑥, 𝑡) = 𝑥+𝑢(𝑥, 𝑡) where 𝑢(𝑥, 𝑡) is the displacement
of particle 𝑥 at time 𝑡. We do not assume 𝑢 or its derivatives to be
small. The strain and particle speed associated with this motion are
𝛾 = 𝑦𝑥 − 1 = 𝑢𝑥, 𝑣 = 𝑦𝑡 = 𝑢𝑡. Substituting (33)1 into the equation
of motion 𝜎𝑥 = 𝜌𝑣𝑡, and from the definitions of strain and particle
speed, one obtains the following pair of partial differential equations
for 𝛾(𝑥.𝑡), 𝑣(𝑥, 𝑡):

𝜂0ℎ
2𝛾𝑥𝑥𝑥 + 𝛾𝑥 + 𝛽−20 𝛾𝛾𝑥 = 𝑐−20 𝑣𝑡, 𝑣𝑥 = 𝛾𝑡. (34)

Here we have set

𝜂0 = 𝜂∕𝜇,

and 𝑐0 =
√

𝜇∕𝜌 and 𝛽0 =
√

𝜇∕𝛼2 as before.
The system of Eqs. (34) is closely related to the Boussinesq equation

studied, for example, by Ratliff and Bridges (2016) and Nguyen and
myth (2021); see also Section 13.11 of Whitham (1974). Based on
he analyses of those equations, as well as the numerical solution
o Problem 2, we expect the impact problem for the dissipationless,
ispersive system (34) to involve a modulated traveling wave packet
n which the amplitude of oscillation decays slowly, much more slowly
han the time-scale associated with the frequency of oscillation.
The mathematical theory for constructing such solutions was put

orward by Whitham (1965b, 1970) and has since been further devel-
oped and used by many authors, e.g. see the review article by El and
Hoefer (2016), the dissertation by Nguyen (1987), the book by Kam-
chatnov (2000) and the references therein. The first step in this pro-
cedure is to construct an exact periodic traveling wave solution, and
in the second step, to allow the parameters in that solution to vary
slowly in an appropriate manner according to the so-called modulation
equations. For example, the periodic traveling wave may have the form
((𝑘𝑥 − 𝜔𝑡)∕𝜀, 𝑝) where 𝑘, 𝜔 and 𝑝 are constant parameters, with the
modulated wave having the form 𝛾̂(𝜃(𝑥, 𝑡)∕𝜀, 𝑝(𝑥, 𝑡)) where 𝜃(𝑥, 𝑡) and
𝑝(𝑥, 𝑡) are slowly varying functions and 𝜀 ≪ 1. Such waves involve two
slow scales 𝑥 and 𝑡 and two fast scales 𝑥∕𝜀 and 𝑡∕𝜀. When 𝜀 = 0, the
underlying system of partial differential equations is hyperbolic and its
solution can involve a shock wave (as in Problem 1). The term 𝜀 > 0
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introduces dispersion into the problem (but not dissipation) and the
solution corresponding to a shock wave is a dispersive shock wave.

4.1. Steady periodic traveling wave

Motivated by this, we first seek a steady periodic traveling wave
solution of (34) of the form

𝛾(𝑥, 𝑡) = 𝑔(𝛷), 𝑣(𝑥, 𝑡) = 𝑤(𝛷), 𝛷 = 𝑘𝑥 − 𝜔𝑡
ℎ

, 𝑐 = 𝜔∕𝑘, (35)

where the wave number 𝑘, frequency 𝜔 and phase speed 𝑐 are constants
(for the moment). From (34) and (35) we obtain

0𝑘
2𝑔′′′ + 𝑔′ + 𝛽−20 𝑔𝑔′ = −(𝑐∕𝑐20 )𝑤

′, 𝑤′ = −𝑐𝑔′. (36)

ntegrating (36)2 gives 𝑤(𝛷) = −𝑐𝑔(𝛷) + 𝑣∗, where 𝑣∗ is a constant (for
he moment). Thus, and by substituting (36)2 into (36)1, we can rewrite
36) as the following pair of equations for 𝑔(𝛷) and 𝑤(𝛷):

𝜂0𝑘
2𝑔′′′ − (𝑐2∕𝑐20 − 1)𝑔′ + 𝛽−20 𝑔𝑔′ = 0, 𝑤(𝛷) = 𝑣∗ − 𝑐 𝑔(𝛷). (37)

The strain and particle speed in the traveling wave can now be ex-
pressed as

𝛾(𝑥, 𝑡) = 𝑔(𝛷), 𝑣(𝑥, 𝑡) = 𝑣∗ − 𝑐 𝑔(𝛷), 𝛷 = 𝑘𝑥 − 𝜔𝑡
ℎ

. (38)

nce a traveling wave solution for the strain is determined from
37)1, the associated traveling wave for the particle speed is given
mmediately by (37)2 to within the arbitrary constant 𝑣∗.
Integrating (37)1 twice leads to

𝑔′
)2 = 1

3𝜅2

[

𝑑1 + 𝑑2 𝑔 + 3𝛽20 (𝑐
2∕𝑐20 − 1)𝑔2 − 𝑔3

]

, (39)

where 𝑑1 and 𝑑2 are constants of integration and

𝜅 ∶= 𝑘𝛽0
√

𝜂0. (40)

With the exception of the coefficient in front of the term 𝑔2, Eq. (39) is
the same equation that is arrived at when studying periodic traveling
waves in the Korteweg–de Vries (KdV) equation. We shall therefore
simply write down the relevant solution of (39) and list its key features
without derivation and refer the reader to the literature on DSWs in the
KdV equation for details, e.g. Section IV-B of Hoefer et al. (2006).

A three-parameter family of 2𝜋-periodic solutions of (39) is

𝑔(𝛷) = 𝑔− − 𝑚2(𝑔− − 𝑔+) + 2𝑚2(𝑔− − 𝑔+)cn2
(

𝐾(𝑚)
𝜋

𝛷;𝑚
)

, (41)

where cn(𝑧, 𝑚) is a Jacobi elliptic function,8 𝐾(𝑚) is the complete elliptic
integral of the first kind, and the three constant parameters 𝑔−, 𝑔+ and
are arbitrary except for the requirements

− > 𝑔+, 0 ≤ 𝑚 ≤ 1.

he associated phase speed 𝑐, wave number 𝑘 and group speed 𝑉𝑔 are

𝑐
𝑐0

=

√

√

√

√1 +

[

2𝑔+ + 𝑔− + 𝑚2 (𝑔− − 𝑔+)
3𝛽20

]

, (42)

𝑘 = 𝜋
𝐾(𝑚)

√

𝑔− − 𝑔+

6𝜂0𝛽20
, (43)

𝑉𝑔
𝑐0

=
𝑐0
𝑐

[

𝑐2

𝑐20
−

𝑚𝐾(𝑚)
𝐾 ′(𝑚)

𝑔− − 𝑔+

3𝛽20

]

, (44)

here 𝐾 ′(𝑚) is the derivative of 𝐾(𝑚) with respect to 𝑚. The function
n2[⋅, 𝑚] oscillates between the values 0 and 1 and so the (peak to valley)
amplitude of oscillation in (41) is

= 2𝑚2(𝑔− − 𝑔+). (45)

8 Definitions and properties of this and the other elliptic functions encoun-
ered in this paper can be found, for example, in Byrd and Friedman (1972),
lver et al. (2021). It should be noted that the parameter we call 𝑚2 is taken
y some authors, including MATHEMATICA, to be 𝑚.
7

s

he three parameters 𝑔+, 𝑔− and 𝑚 can of course be replaced by
he three ‘‘physical parameters’’, phase speed 𝑐, wave number 𝑘 and
mplitude 𝑎. Note that the amplitude, phase speed and group speed do
ot depend on the strain-gradient parameter 𝜂 but the wave number
oes.
It will be useful for future purposes to note that the average of 𝑔(𝛷)

ver the oscillations, defined by

𝑔
⟩

∶= 1
2𝜋 ∫

2𝜋

0
𝑔(𝛷) 𝑑𝛷, (46)

is
⟨

𝑔
⟩

= 2𝑔+ − 𝑔− + 𝑚2(𝑔− − 𝑔+) + 2(𝑔− − 𝑔+)
𝐸(𝑚)
𝐾(𝑚)

, (47)

where 𝐸(𝑚) is the complete elliptic integral of the second kind.
Turning next to the particle speed, the periodic traveling wave

solution is obtained immediately by substituting (41) into (37)2 which
gives

𝑤 = 𝑤− − 𝑚2(𝑤− −𝑤+) + 2𝑚2(𝑤− −𝑤+)cn2
(

𝐾(𝑚)
𝜋

𝛷;𝑚
)

, (48)

where

𝑤− = 𝑣∗ − 𝑐𝑔−, 𝑤+ = 𝑣∗ − 𝑐𝑔+. (49)

This involves four constant parameters, three of which (𝑔−, 𝑔+ and 𝑚)
are the same as in the solution for the strain. The fourth parameter 𝑣∗
is an additional arbitrary constant. The phase speed 𝑐 appearing in (49)
is known in terms of 𝑔−, 𝑔+ and 𝑚; see (42). The average value of 𝑤(𝛷)
is
⟨

𝑤
⟩

= 𝑣∗ − 𝑐
⟨

𝑔
⟩

= 2𝑤+ −𝑤− + 𝑚2(𝑤− −𝑤+) + 2(𝑤− −𝑤+)
𝐸(𝑚)
𝐾(𝑚)

. (50)

.2. Slow modulation of the periodic traveling wave solution. Dispersive
hock wave (DSW)

.2.1. Strain field 𝛾(𝑥, 𝑡)
The next step according to modulation theory, would be to construct

slow modulation of the preceding periodic traveling wave solution for
he strain field, by allowing the three parameters 𝑔−, 𝑔+ and 𝑚 in (41) to
e slowly varying functions of 𝑥 and 𝑡, and to determine them from the
odulation equations. These equations are to be obtained by either the
ingular perturbation method of two-timing, variational methods, or
veraging three supplementary conservation laws, (Whitham, 1965b,a,
967, 1970).
We, however, we will not implement this second step exactly.

ather than allowing all three of 𝑔± and 𝑚 to be slowly varying fields,
we shall only permit 𝑚 to be slowly varying and assume 𝑔± to be
constant. Consider the parameter 𝑚 that is required to be in the range
0 ≤ 𝑚 ≤ 1. If 𝑚(𝑥, 𝑡) varies from 0 to 1 as one moves from the trailing
edge to the leading edge of the wave packet, according to (45) the
amplitude of oscillation would increase from 0 to 2(𝑔− − 𝑔+) > 0
(qualitatively as in Fig. 3). Next, from (47) and the properties of the
complete elliptic integrals 𝐸(𝑚) and 𝐾(𝑚),
⟨

𝑔
⟩

→ 𝑔− as 𝑚 → 0,
⟨

𝑔
⟩

→ 𝑔+ as 𝑚 → 1, (51)

nd so the average value of 𝑔 varies from 𝑔− to 𝑔+ when 𝑚 varies from
to 1. In view of these observations, and since we will eventually be
nterested in a solution that connects two constant states, we make the
d hoc assumption that the two parameters 𝑔− and 𝑔+ remain constant
nd only 𝑚 = 𝑚(𝑥, 𝑡) is slowly varying. This assumption is not based
n modulation theory. Observe from the relevant formulae in the
receding sub-section that the amplitude, wave number, group speed
tc. are all functions of 𝑚 (but not 𝛷) and so they will vary slowly.
We make one more set of observations before turning to finding

(𝑥, 𝑡). Since 𝑚 ranges over the interval [0, 1], it is useful to look at the
olution (41) in the two limiting cases 𝑚 → 0 and 𝑚 → 1. When 𝑚 → 1
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one can show from (43) that 𝑘 → 0 (so that the wave length → ∞) and
hat 𝑔(𝛷) is described by the soliton

(𝛷) = 𝑔+ + 2(𝑔− − 𝑔+)sech2
(

𝐾(𝑚)
𝜋

𝛷
)

.

ccording to (42) with 𝑚 = 1, the soliton propagates at the particular
hase speed

𝑐soliton
𝑐0

∶=
√

1 +
𝑔+ + 2𝑔−

3𝛽20
. (52)

In the limit 𝑚 → 0 one sees that 𝑔(𝛷) is described by the constant
solution

𝑔(𝛷) = 𝑔−. (53)

For small 𝑚 one has

𝑔(𝛷) ∼ 𝑔− + 𝑎
2
cos𝛷, 𝑎 = 2𝑚2(𝑔− − 𝑔+),

hich is a harmonic wave propagating, according to (42), at the phase
peed

𝑐harmonic
𝑐0

∶=
√

1 +
2𝑔+ + 𝑔−

3𝛽20
. (54)

t is worth noting from (43) and (51)1 that near the trailing edge of the
SW where 𝑚 is small, one has

0𝑘
2 ∼ 2

3
𝑔− − 𝑔+

𝛽20
,

⟨

𝑔
⟩

∼ 𝑔−.

Consequently

𝑐2harmonic

𝑐20
∼ 1 +

⟨

𝑔
⟩

𝛽20
− 𝜂0𝑘

2,

which is precisely the dispersion relation of the system (34) linearized
about the uniform state 𝛾 =

⟨

𝑔
⟩

, 𝑣 =
⟨

𝑣
⟩

.
A curious factoid is that if one sets 𝑔+ = 𝛾+ and 𝑔− = 𝛾− in (52)

nd (54), one finds that the speed 𝑠̇ of the shock wave in the elastic
ontinuum (as given in (9)) is related to the phase speeds 𝑐soliton and
harmonic by

̇ 2 = 1
2
(𝑐2soliton + 𝑐2harmonic).

We now turn to determining the function 𝑚(𝑥, 𝑡), and for this we
eed another equation. This equation is obtained by one of the meth-
ds mentioned in the first paragraph of this sub-section. One of the
quations that typically arises from all such derivations is the so called
onservation of waves equation,
𝜕𝜔
𝜕𝑥

+ 𝜕𝑘
𝜕𝑡

= 0, (55)

elating the frequency and wave number, 𝜔(𝑥, 𝑡) and 𝑘(𝑥, 𝑡), of the mod-
lated wave. We take for granted that (55) is the requisite additional
equation. Since 𝑉𝑔 = 𝑑𝜔∕𝑑𝑘, this can alternatively be written as 𝜕𝑘∕𝜕𝑡+
𝑉𝑔 𝜕𝑘∕𝜕𝑥 = 0 which is the usual statement that wave numbers propagate
at the group speed. Since 𝑘(𝑥, 𝑡) varies only due to the variation of
𝑚(𝑥, 𝑡), i.e. 𝑘 is a function of 𝑚, this in turn leads to
𝜕𝑚
𝜕𝑡

+ 𝑉𝑔(𝑚)
𝜕𝑚
𝜕𝑥

= 0, (56)

here 𝑉𝑔(𝑚) is the group speed given by (44); terms involving 𝜕𝑔+∕𝜕𝑥
nd 𝜕𝑔−∕𝜕𝑥 will appear in (56) had we not made the assumption that
+ and 𝑔− are constants. Once (56) (with initial/boundary conditions
as needed) has been solved for 𝑚(𝑥, 𝑡), the solution 𝑔(𝑥, 𝑡) is given by
(41).

Finally, in light of the particular problem we want to study, we
restrict attention to the case where 𝑚 is scale-invariant so that 𝑚(𝑥, 𝑡) =
𝑚(𝑥∕𝑡). Then (56) reduces to the algebraic equation
𝑥 = 𝑉 (𝑚). (57)
8

𝑡 𝑔 𝑔
Upon using (44) this can be written explicitly as

𝑥
𝑡
=

𝑐20
𝑐(𝑚)

[

𝑐2(𝑚)
𝑐20

− 1
𝛽20

𝑚𝐾(𝑚)
𝐾 ′(𝑚)

𝑔− − 𝑔+

3

]

, (58)

where the phase speed 𝑐(𝑚) is given by (42). Eq. (58) gives 𝑥∕𝑡 as a
unction of 𝑚, whose inverse yields 𝑚 = 𝑚(𝑥∕𝑡).
Thus in summary, the strain field 𝛾(𝑥, 𝑡) in the DSW is given by

𝛾(𝑥, 𝑡) = 𝑔− − 𝑚2(𝑔− − 𝑔+) + 2𝑚2(𝑔− − 𝑔+)cn2
(

𝐾(𝑚)
𝜋

𝛷;𝑚
)

, (59)

where 𝑚 = 𝑚(𝑥∕𝑡) is determined by inverting (58). The parameters 𝑔+
nd 𝑔− are constants and 𝛷 = 𝑘(𝑚)(𝑥−𝑐(𝑚)𝑡)∕ℎ with 𝑐(𝑚) and 𝑘(𝑚) given
by (42) and (43).

4.2.2. Particle speed 𝑣(𝑥, 𝑡)
In order to construct the slowly modulated wave for the particle

speed we turn to (48) with 𝑤±(𝑥, 𝑡) = 𝑣∗(𝑥, 𝑡) − 𝑐(𝑚(𝑥, 𝑡))𝑔±. Since the
modification to 𝑚(𝑥, 𝑡) has already been dealt with in the preceding sub-
section, it remains to determine the slowly varying function 𝑣∗(𝑥, 𝑡). We
again restrict attention to the special case where 𝑣∗(𝑥, 𝑡) is scale invari-
ant: 𝑣∗ = 𝑣∗(𝑥∕𝑡). However, since 𝑥∕𝑡 = 𝑉𝑔(𝑚), we may equivalently say
that 𝑣∗ = 𝑣∗(𝑚) whence we can write the particle speed field as

𝑣(𝑥, 𝑡) = 𝑤−(𝑚) − 𝑚2(𝑤−(𝑚) −𝑤+(𝑚))

+ 2𝑚2(𝑤−(𝑚) −𝑤+(𝑚))cn2
(

𝐾(𝑚)
𝜋

𝛷;𝑚
)

, (60)

where

𝑤±(𝑚) = 𝑣∗(𝑚) − 𝑐(𝑚)𝑔±, (61)

ith 𝑚(𝑥∕𝑡) given by (58) and 𝑣∗(𝑚) to be determined. Observe that
n the particular solution we have constructed, in contrast to 𝑔±, the
uantities 𝑤±(𝑚) are not constants.
In order to find 𝑣∗(𝑥, 𝑡) = 𝑣∗(𝑚) we average the conservation law9

𝑥 = 𝛾𝑡 over the fast oscillations (i.e. with respect to 𝛷) to get
𝜕
𝜕𝑥

⟨

𝑤
⟩

= 𝜕
𝜕𝑡
⟨

𝑔
⟩

;

ee (46) for the definition of the average and note that, since the period,
2𝜋, of oscillation is constant, the averaging integral can be moved inside
the derivatives. Since

⟨

𝑤
⟩

and
⟨

𝑔
⟩

depend on 𝑥, 𝑡 only through 𝑚(𝑥∕𝑡),
this yields

⟨

𝑤
⟩′= −𝑉𝑔

⟨

𝑔
⟩′ where a prime denotes differentiation

with respect to 𝑚 and we have used (56). On using
⟨

𝑤
⟩

= 𝑣∗ − 𝑐
⟨

𝑔
⟩

,
(42) and (44) this leads to

𝑣′∗(𝑚) =
𝑔− − 𝑔+

3𝛽20

𝑐20
𝑐(𝑚)

𝑚
𝐾 ′(𝑚)

𝑑
𝑑𝑚

(

⟨

𝑔
⟩

𝐾(𝑚)
)

,

hich can be further simplified using (47) to

𝑣′∗(𝑚) =
𝑔− − 𝑔+

3𝛽20

𝑐20
𝑐(𝑚)

𝑚
[

𝑔− − (𝑔− − 𝑔+)𝑚2].

inally, this can be integrated (by changing the variable of integration
rom 𝑚 to 𝑐) to obtain

𝑣∗(𝑚) = 𝑣∗(1) + (2𝑔− + 2𝑔+ + 3𝛽20 )(𝑐 − 𝑐soliton) + (𝛽20∕𝑐
2
0 )(𝑐

3
soliton − 𝑐3), (62)

having used the fact that 𝑐 = 𝑐soliton when 𝑚 = 1.
Thus in summary, the particle speed field 𝑣(𝑥, 𝑡) in the DSW is given

by (60), (61), (62) where 𝑔+, 𝑔− and 𝑣∗(1) are constants; 𝛷 = 𝑘(𝑚)(𝑥 −
(𝑚)𝑡)∕ℎ with 𝑐(𝑚) and 𝑘(𝑚) given by (42) and (43); and 𝑚 = 𝑚(𝑥∕𝑡) is
etermined by inverting (58).

9 Section S7 of the electronic supplemental material gives a set of four
agrangian conservation laws we could use had we allowed all four parameters
+, 𝑔−, 𝑚 and 𝑣 to be slowly varying.
∗
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Fig. 7. The schematic 𝑥, 𝑡-plane associated with the approximate solution (Problem 3).

4.3. Problem 3

We now use the preceding modulated traveling wave to construct
an approximate solution to the impact problem for the dispersive
continuum under consideration. We refer to this problem as Problem
3.

Recall that the strain and particle speed can be identified with

𝛾(𝑥, 𝑡) = 𝑔(𝑥, 𝑡), 𝑣(𝑥, 𝑡) = 𝑤(𝑥, 𝑡) = 𝑣∗(𝑚) − 𝑐(𝑚)𝑔(𝑥, 𝑡), 𝑚 = 𝑚(𝑥∕𝑡).

(63)

e take for granted that the 𝑥, 𝑡-plane is as shown schematically in
ig. 7 where the strain and particle speeds ahead of and behind the
SW are constant and have the values, say, 𝛾+, 𝑣+ and 𝛾−, 𝑣− respec-
ively. (It is instructive not to take 𝛾+ = 0, 𝑣+ = 0 initially though we
hall do so later.)
First consider the leading edge of the DSW. Since 𝑚 = 1 here, it

follows from (57) that the leading edge is described by 𝑥 = 𝑉𝑔(1)𝑡, and
from (51) and (52) that

⟨

𝛾
⟩

= 𝑔+ and 𝑐 = 𝑐soliton there. Thus by this
and (63), the average strain and particle speed just behind the leading
edge are 𝑔+ and

⟨

𝑣
⟩

= 𝑤+(1) = 𝑣∗(1) − 𝑐soliton𝑔+. Matching them to the
strain and particle speed ahead of the leading edge thus gives

𝑔+ = 𝛾+, 𝑤+(1) = 𝑣∗(1) − 𝑐soliton𝛾
+ = 𝑣+. (64)

Similarly, since 𝑚 = 0 at the trailing edge, one has 𝑥 = 𝑉𝑔(0)𝑡,
⟨

𝛾
⟩

= 𝑔− and 𝑐 = 𝑐harmonic there. It therefore follows that the average
strain and particle speed just inside of the trailing edge are 𝑔− and
⟨

𝑣
⟩

= 𝑤−(0) = 𝑣∗(0) − 𝑐harmonic𝑔−, and so, matching across the trailing
edge leads to

𝑔− = 𝛾−, 𝑤−(0) = 𝑣∗(0) − 𝑐harmonic𝛾
− = 𝑣−. (65)

From (64), (65), (62), (52) and (54) one obtains the following
elation between 𝛾± and 𝑣±:

𝑣+ − 𝑣− = 2(𝛽20∕𝑐
2
0 )
[

𝑐3soliton − 𝑐3harmonic
]

; (66)

here 𝑐soliton and 𝑐harmonic are given by (52) and (54) respectively. Eq. (66)
is an explicit relation between the states 𝛾−, 𝑣− behind the DSW and
9

Fig. 8. The impact speed 𝑉 ∕(𝑐0𝛽20 ) versus the strain 𝛾−∕𝛽20 for Problem 3 (dashed, Eq.
(67)) and for Problem 1 (solid, Eq. (14)2). The two curves fall on top of each other
and for clarity we have shifted the curve corresponding to the shock (solid) by 0.1
units vertically. The relative difference between the predicted impact speeds, in the
range considered, is less than 0.15%. The figure has been drawn for impact speeds
conforming to (72) below.

the state 𝛾+, 𝑣+ ahead of it. It is the counterpart of a Rankine–Hugoniot
jump condition at a shock and the corresponding integral relation at a
fan.

In the specific problem at hand, the system is quiescent initially and
so 𝛾+ = 𝑣+ = 0. Behind the wave packet we have 𝑣− = −𝑉 where 𝑉 is
the impact speed. On using this, (66) simplifies to

𝑉
𝑐0

= 2𝛽20

[

(

𝑐soliton
𝑐0

)3
−
(

𝑐harmonic
𝑐0

)3
]

, (67)

where 𝑐soliton and 𝑐harmonic specialize to

𝑐soliton
𝑐0

∶=
√

1 +
2𝛾−

3𝛽20
,

𝑐harmonic
𝑐0

∶=
√

1 +
𝛾−

3𝛽20
. (68)

his is an implicit algebraic equation for determining the strain 𝛾−

ehind the DSW corresponding to the given impact speed. Fig. 8 shows
a plot of 𝑉 versus 𝛾− according to (67). For comparison we have also
plotted the 𝑉 − 𝛾− relation (14)2 for the shock wave in Problem 1. The
two curves fall on top of each other, (the maximum relative difference
between them in the range considered being approximately 0.15%),
and therefore for clarity, we have shifted the curve corresponding to
the shock (solid) by 0.1 units vertically. It follows that the strain and
particle speed behind the DSW in Problem 3 is essentially identical to
the strain and particle speed behind the shock in Problem 1. Recall from
the discussion surrounding Fig. 4 that we previously made a similar
observation between Problems 2 and 1.

In view of 𝛾+ = 0, 𝑣+ = 0 and (64)2, Eq. (62) reduces to

𝑣∗(𝑥, 𝑡) = 𝑣∗(𝑚) = −(𝛽20∕𝑐
2
0 ) (𝑐soliton − 𝑐)2(2𝑐soliton + 𝑐). (69)

where

𝑐(𝑚)
𝑐0

=

√

1 +
(1 + 𝑚2) 𝛾−

3𝛽20
. (70)

Thus in summary, given the impact speed 𝑉 , we find 𝛾− from (67),
𝑚(𝑥∕𝑡) from (58) and 𝑣∗(𝑥∕𝑡) from (69). The strain and particle speed
fields within the DSW are then given by (59), (60) and (61) with
𝑔+ = 0, 𝑔− = 𝛾−. The fields are constant on either side of the DSW.

Fig. 9 shows a typical strain profile according to (58) and (59); the
figure on the left plots 𝛾(𝑥, 𝑡) versus 𝑡 at fixed 𝑥, and that on the right
shows the variation of 𝛾(𝑥, 𝑡) with 𝑥 at fixed 𝑡. Observe from (38)3 and
(43) that the first argument of the Jacobi Elliptic function in (59) can
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Fig. 9. Strain 𝛾(𝑥, 𝑡) versus 𝑡 at fixed 𝑥 (left) and versus 𝑥 at fixed 𝑡 (right) according to (58) and (59). The leading and trailing edges travel at the respective speeds 𝑉𝑔 (1) and
𝑉𝑔 (0). The strain in front of the leading edge is 𝛾+, that behind the trailing edge is 𝛾−. The average strain given by (47), (58) are the dashed curves. In Problem 3 we have 𝛾+ = 0.
While the figures have been drawn for 𝜂0 = 4∕5 and ℎ = 0.001, see the comments surrounding (71).
N

e

f

a



be written as

𝐾(𝑚)
𝜋

𝛷 =
√

𝑔−

6𝛽20

𝑥 − 𝑐𝑡
ℎ
√

𝜂0
. (71)

herefore if we nondimensionalize 𝑥 by ℎ
√

𝜂0 and 𝑡 by ℎ
√

𝜂0∕𝑐0 in
Fig. 9, the DSW strain profile will not depend on the parameters ℎ
and 𝜂0. Note from (59) that the amplitude is independent of these
arameters.
The approximate solution we have constructed is not appropriate

t large values of the impact speed. The trailing edge of the DSW,
= 𝑉𝑔(0)𝑡, must lie in the first quadrant of the 𝑥, 𝑡-plane. According

to (44), this requires 𝛾− < 3𝛽20 , which in turn by (67), demands that

𝑉
𝑐0𝛽20

< 2
[

3
√

3 − 2
√

2
]

≈ 4.735. (72)

.4. Oscillatory energy. Apparent dissipation

From 𝜎𝑥 = 𝜌𝑣𝑡, (33)1 and (34)2 one can derive the local conservation
aw
𝜕
𝜕𝑥

= 𝜕
𝜕𝑡

, (73)

where

 = 𝜎𝑣 − 𝜂ℎ2𝛾𝑥𝛾𝑡,  = 𝑊 − 1
2
𝜂ℎ2𝛾2𝑥 + 1

2
𝜌𝑣2. (74)

Here  represents the power density (rate of working per unit length)
and  is the energy density and so (73) is simply a statement of the
elastic power identity (‘‘conservation of energy’’). In particular, the
second term10 in  can be identified with the energy associated with
the strain-gradient term and the second term in  as the corresponding
working of the associated ‘‘couple-stress’’.

According to the solution described schematically in Fig. 7, the
strain and particle speed at each particle eventually settle down at the
respective values 𝛾− and 𝑣− = −𝑉 . Therefore at any point within or
behind the DSW we set

𝛾osc(𝑥, 𝑡) ∶= 𝛾(𝑥, 𝑡) − 𝛾−, 𝑣osc(𝑥, 𝑡) ∶= 𝑣(𝑥, 𝑡) − 𝑣−. (75)

10 For energetic reasons one might therefore be inclined to let 𝜂 have a
egative value. However as noted previously since our goal is to mimic the
iscrete particle chain, we have taken 𝜂 to be positive; see first paragraph of
ection 4.
10
ote that 𝛾osc and 𝑣osc vanish behind the DSW, while within it, they
represent the oscillatory parts of the strain and particle speed. We
define the energy density associated with the oscillatory part of the
motion to be11

osc ∶= 𝑊 (𝛾osc) −
1
2
𝜂𝑘2

(

𝛾 ′osc
)2 + 1

2
𝜌𝑣2osc, (76)

where 𝛾 ′osc is the derivative of 𝛾osc with respect to 𝛷. This is the
oscillatory part of the energy density. The particles behind the DSW
have zero oscillatory energy.

An alternative definition of the oscillatory strain and particle speed
is

𝛾osc(𝑥, 𝑡) ∶= 𝛾(𝑥, 𝑡) −
⟨

𝛾
⟩

, 𝑣osc(𝑥, 𝑡) ∶= 𝑣(𝑥, 𝑡) −
⟨

𝑣
⟩

, (77)

where, in the DSW, the average strain
⟨

𝛾
⟩

and average particle speed
⟨

𝑣
⟩

are given by (47) and (50) specialized to Problem 3. The associated
nergy density is again given by (76).
Observe that the right-hand side of (76) can be expressed as a

unction of 𝑚 and 𝛷 and so we can write osc(𝑥, 𝑡) = ̂osc(𝛷(𝑥, 𝑡), 𝑚(𝑥, 𝑡)).
We now average this energy density over the fast oscillations to get

⟨

osc
⟩

(𝑚) = 1
2𝜋 ∫

2𝜋

0
̂osc(𝛷,𝑚) 𝑑𝛷. (78)

Finally, integrating
⟨

osc
⟩

(𝑚) over the DSW tells us that the total
oscillatory energy at time 𝑡

= ∫

𝑉𝑔 (1)𝑡

𝑉𝑔 (0)𝑡

⟨

osc
⟩

(𝑚(𝑥, 𝑡)) 𝑑𝑥 = 𝑡∫

1

0

⟨

osc
⟩

(𝑚)𝑉 ′
𝑔 (𝑚) 𝑑𝑚, (79)

where we have used 𝑥 = 𝑉𝑔(𝑚)𝑡 in getting the second expression. The
time rate of increase of the total oscillatory energy is therefore12

 ∶= ∫

1

0

⟨

osc
⟩

(𝑚)𝑉 ′
𝑔 (𝑚) 𝑑𝑚. (80)

11 Even though 𝛷(𝑥, 𝑡) = (𝑘(𝑥, 𝑡)𝑥−𝜔(𝑥, 𝑡)𝑡)∕ℎ it still follows that 𝜕𝛷∕𝜕𝑥 = 𝑘∕ℎ
nd 𝜕𝛷∕𝜕𝑡 = −𝜔∕ℎ; see Section S5 of the electronic supplemental material.
12 We also calculated this without averaging. In this case we integrated
osc ∶= 𝑊 (𝛾osc) −

1
2
𝜂ℎ2𝛾2𝑥 + 1

2
𝜌𝑣2osc across the DSW to determine the total

oscillatory energy 𝐸osc(𝑡). We plotted 𝐸osc(𝑡) versus 𝑡 where the typical graph
involved oscillations about a mean straight line. The slope of this straight line
provided an estimate of the rate of increase of the total oscillatory energy, .
The two methods of calculation gave essentially the same results.
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Fig. 10. Rate of increase of the total oscillatory energy 𝐷∕(𝜇𝑐0𝛽40 ) in Problem 3 versus
mpact speed 𝑉 ∕(𝑐0𝛽20 ): the dots and squares in the figure correspond to the respective
efinitions (75) and (77) of the oscillatory strain and speed. When only one dot/square
is visible, the other is right behind it. The dissipation rate D∕(𝜇𝑐0𝛽40 ) in Problem 1 is
the solid curve.

At each impact speed 𝑉 , we first determined 𝛾−, 𝛾(𝑥, 𝑡) and 𝑣(𝑥, 𝑡)
as described in the preceding sub-section. Then, for each definition
(75) and (77) of the oscillatory strain and particle speed, we calculated
osc using (76); averaged it using (78); and finally calculated the rate
of increase of the oscillatory energy, , using (80). Such calculations
were carried out for several impact speeds (consistent with (72)) and
the results are shown in Fig. 10. The dots and squares in the figure
orrespond to the respective definitions (75) and (77) of the oscillatory
train and speed. The solid curve is the dissipation rate in Problem 1
ccording to (16). These results will be discussed in Section 5.
Observe from (43) that 𝑘2, the square of the wave number, is

roportional to 1∕𝜂. It therefore follows from (76) that the oscillatory
nergy density osc does not depend on the value of the parameter 𝜂.
The average strain

⟨

𝛾
⟩

is smaller than 𝛾− in the interior of the
SW since

⟨

𝛾
⟩

decreases monotonically from 𝛾− at the trailing edge
o zero at the leading edge. This presumably is why the associated rate
f change of the oscillatory energy is slightly larger for (77) compared
o (75) – the squares are above the dots.

. Results and discussion

The aim of this paper was to understand the energy dissipated at
shock wave in a nonlinearly elastic bar (Problem 1) in terms of

he energy in the oscillations in two related dissipationless, dispersive
ystems (Problems 2 and 3). The dissipation rate D in Problem 1
as calculated analytically, while the rate of change of the oscillatory
nergy  in Problem 2 was calculated numerically. An approximate
nalytical solution to Problem 3 was constructed using a calculation
otivated by Whitham’s modulation theory, and the rate of change
f the oscillatory energy, , was calculated by averaging over the fast
scillations of the modulated wave.
Our main result, the comparison of these quantities, is described

raphically in Fig. 6 (Problems 1 and 2) and Fig. 10 (Problems 1 and
).
The figures show that  is a good qualitative measure of D. While

he figures appear to suggest good quantitative agreement as well, this
s only true for sufficiently large impact speeds. In Fig. 6, the relative
ifference (−D)∕D is less than 10% for impact speeds 𝑉 ∕(𝑐0𝛽20 ) ⪆ 1.75,
ut the difference increases as the impact speed decreases, and exceeds
5% for 𝑉 ∕(𝑐0𝛽20 ) ⪅ 1.0. Similarly in Fig. 10, the relative difference
 − D)∕D is less than 10% for impact speeds 𝑉 ∕(𝑐0𝛽20 ) ⪆ 2.75, but the
ifference increases monotonically as the impact speed decreases, and
xceeds 40% for 𝑉 ∕(𝑐 𝛽2) ⪅ 1.0.
11

0 0
We will discuss some possible reasons for this below. However, in
ddition to those reasons, as can be seen from the figures, the numerical
alues of  and D are very small at low impact speeds, and so small
rrors can have large quantitative effects in this range. In contrast,
he values of  and D are larger for larger impact speeds where
he agreement is better. Moreover, in determining the dissipation in
roblem 2 we calculate the difference between two very small numbers
the work done at the boundary and the energy corresponding to

he average strain and particle velocity behind the shock. This leads to
naccuracies.
In this paper we defined the oscillatory part of the strain 𝛾𝑜𝑠𝑐 to

e the difference between the strain and some base value of strain,
here for the base strain we considered two alternatives,

⟨

𝛾
⟩

and 𝛾−.
he oscillatory part of the particle speed, 𝑣𝑜𝑠𝑐 , was defined similarly.
hese seem to be fairly natural definitions. On the other hand it is less
bvious as to how to quantify the ‘‘oscillatory energy’’ (the ‘‘energy in
he oscillations’’). While in this paper we describe the results for 𝐸𝑜𝑠𝑐 ∶=
(𝛾𝑜𝑠𝑐 ) +

1
2𝜌𝑣

2
𝑜𝑠𝑐 , we considered several alternatives: in particular, we

onsidered the difference between various energies including the total
nergy in the DSW, the average of the total energy in the DSW, the
nergy associated with the average strain and speed in the DSW,
he energy behind the DSW and so on. For example one alternative
andidate we looked at was

𝑊 (𝛾) + 1
2
𝜌𝑣2

⟩

−
(

𝑊
(⟨

𝛾
⟩)

+ 1
2
𝜌
⟨

𝑣
⟩2

)

.

While the rate of change of oscillatory energy based on the alternatives
we considered did not come anywhere near the dissipation rate of
Problem 1 (e.g. see Figure S4 in Section S8), we were certainly not
exhaustive in the alternatives we considered. More careful analysis of
this is needed.

In our analysis of Problem 3, the steady periodic traveling wave for
the strain involved 3 parameters 𝑔+, 𝑔− and 𝑚. However, in constructing
he slowly modulated version of this solution we only allowed 𝑚(𝑥, 𝑡)
o vary and took 𝑔+ and 𝑔− to be constants. Our motivation for this
as based on the fact that in the impact problem of interest, the states
n either side of the DSW had constant strains 𝑔+ and 𝑔−. But that
does not necessitate 𝑔+ and 𝑔− to be constant within the DSW, and our
ssumption that 𝑔+ and 𝑔− are constant is not mathematically based.
he natural next step would be to allow all of the parameters to vary
nd to determine them from a rigorous application of modulation the-
ry by averaging the conservation laws in Section S7 of the electronic
upplemental material. (While this may improve the comparison of the
nergetics of Problems 3 and 1, it will, of course, have no effect on that
etween Problems 2 and 1.)
Ultimately, no matter how good the comparison between the results,

ne would want to establish the relation between  and D mathemat-
cally, most probably in the dispersionless limits of Problems 2 and
.
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Appendix A

In Problem 3, the constitutive equation for stress, 𝜎 = 𝜇𝛾 + 1
2𝛼

2𝛾2 +
ℎ2𝛾𝑥𝑥, had 𝜂 > 0. This was motivated by the form of the contin-
um equation arrived at by Taylor expanding the discrete equations,
.g. Rosenau (1986). However this leads to instability if the wave length
f a perturbation is too small (i.e. the wave number is too large). In this
ection we find the condition for linear stability, and confirm that the
ave numbers within the DSW conform to it. Thus, if we limit attention
o perturbations whose wave numbers are close to those in the DSW,
inear stability is maintained.
Consider a point within the DSW where the strain and particle

peed are 𝛾 and 𝑣. To examine the stability of a steady uniform motion
corresponding to this strain and particle speed, we substitute 𝛾 =
𝛾 + 𝑢𝑥, 𝑣 = 𝑣 + 𝑢𝑡 into the constitutive relation, and the result into the
equation of motion. After linearization this leads to

𝜇𝑢𝑥𝑥 + 𝛼2𝛾𝑢𝑥𝑥 + 𝜂ℎ2𝑢𝑥𝑥𝑥𝑥 = 𝜌𝑢𝑡𝑡. (81)

A steady periodic traveling wave solution of this linear equation has
the form

𝑢(𝑥, 𝑡) = exp 𝑖
(𝑘𝑥 − 𝜔𝑡

ℎ

)

, (82)

here 𝑘 and 𝜔 are constants. Keep in mind that 𝑢 is the perturbation
nd 𝑘 is the wave number of the perturbation. Eqs. (81) and (82) lead
o the dispersion relation
2∕𝑐20 = (1 + 𝛾∕𝛽20 )𝑘

2 − 𝜂0𝑘
4.

he right-hand side of this is negative when 𝑘 is large, and this leads
o imaginary values for 𝜔, and the corresponding perturbation (82)
becomes unbounded as 𝑡 → ∞. Thus linear stability requires the right-
hand side of the dispersion relation to be nonnegative and so the wave
number 𝑘 must obey

1 + 𝛾∕𝛽20 ≥ 𝜂0𝑘
2. (83)

The inequality (83) is always violated if the wave number of the
erturbation is sufficiently large. However, we now show that the wave
umbers within the DSW satisfy (83). Locally, at each point within
he DSW, the strain has the mean value

⟨

𝛾
⟩

and wave number 𝑘(𝑚)
given by (43) and (46) respectively. Replacing 𝛾 and 𝑘 in (83) by these
expressions leads to

1 ≥
[

𝜋2∕6
𝐾2(𝑚)

+ 1 − 𝑚2 − 2
𝐸(𝑚)
𝐾(𝑚)

]

𝛾−

𝛽20
.

he term within the square brackets is negative and so this inequality
olds automatically for all 𝛾− > 0.
Instead, if we replace 𝛾 by the smallest value of the strain, 𝛾lower ,

given by (S21) (and 𝑘 by (43)), Eq. (83) yields

1 ≥
[

𝜋2∕6
𝐾2(𝑚)

− 1 + 𝑚2
]

𝛾−

𝛽20
.

he term in square brackets is positive and its maximum value is
0.148 and so this inequality holds provided 𝛾−∕𝛽20 ⪅ 1∕(0.148) = 6.75.
ecall from the line of text just above (72) that we restrict attention to
trains 𝛾− < 3𝛽20 .
Thus the wave numbers in the DSW lie within the range of linear

tability given by (83). Therefore if the wave number of a perturbation
s close the wave numbers within the DSW, we have stability against
uch a perturbation.

ppendix B. Supplementary data

Supplementary material related to this article can be found online
t https://doi.org/10.1016/j.ijsolstr.2021.111371.
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