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Exact solutions for the wrinkle patterns of
confined elastic shells

lan Tobasco®'%, Yousra Timounay ®23, Desislava Todorova*, Graham C. Leggat©?,
Joseph D. Paulsen®23™ and Eleni Katifori®42

Complex textured surfaces occur in nature and industry, from fingerprints to lithography-based micropatterns. Wrinkling by
confinement to an incompatible substrate is an attractive way of generating reconfigurable patterned topographies, but con-
trolling the often asymmetric and apparently stochastic wrinkles that result remains an elusive goal. Here, we describe a new
approach to understanding the wrinkles of confined elastic shells, using a Lagrange multiplier in place of stress. Our theory
reveals a simple set of geometric rules predicting the emergence and layout of orderly wrinkles, and explaining a surprisingly
generic co-existence of ordered and disordered wrinkle domains. The results agree with numerous test cases across simulation

and experiment and represent an elementary geometric toolkit for designing complex wrinkle patterns.

ers do, namely mechanical instabilities arising from a mis-

match in lengths'”. A similar mismatch manifests when a
thin elastic shell adheres to a substrate of a different shape®'>. Can
such incompatibilities be used to design and control complex wrin-
kled surfaces at will? Wrinkles have been in the limelight for their
theoretical importance in understanding geometric nonlinearities
in elasticity’**** and also for their practical significance in emerg-
ing engineering applications such as lithography-free micropat-
terning®' . Yet, despite decades of study, a general predictive
theory of confinement-induced wrinkling remains elusive. Such
a theory would enable the creation of targeted yet reconfigurable
wrinkle patterns and could identify the broadest possible class of
wrinkle morphologies that can be obtained through geometrically
incompatible confinement.

Predicting the wrinkling of confined elastic shells is a difficult
problem of nonlinear mechanics. Basic theoretical issues stem
from a lack of applied tensile forces that would act to organize the
response. In problems dominated by tension, the guiding princi-
ple is known as tension field theory*~¥, and solving it is the first
step in the far-from-threshold expansion that has explained many
tension-driven patterns”**~*?. Organized wrinkles nevertheless man-
ifest in confined shells subject to weak or even zero tensile loads®',
raising the question of what sets their features. Although theoreti-
cal methods beyond tension field theory have been devised”, their
use requires advance knowledge of the wrinkled topography. Here,
we show using theory, experiment and simulation that the wrinkles
of confined shells are in fact predicted by a compact set of simple,
geometric rules. We derive our rules using a stress-like Lagrange
multiplier that arises from a maximum coverage problem for the
macroscopic displacement of the shell (equation (3)).

These rules imply a string of predictions about the nature of
confinement-driven wrinkling, which we confirm using experi-
ments and simulations over a broad range of parameters and shell
shapes. As we prove, a typical shell exhibits finitely many, ordered
wrinkle domains where the wrinkle layout is robust. The theory also
anticipates the existence of disordered wrinkle domains, whose local

D ried fruits wrinkle for the same reason that leaves and flow-

features behave stochastically but whose location is well defined (Fig.
la,b). Second, the arrangement of these domains, and their division
into ordered versus disordered, is fundamentally tied to the shell’s
medial axis, a distinguished locus of points from geometry. Third,
although the wrinkle amplitude depends on the details of the shell’s
natural Gaussian curvature, within an ordered domain, the wrinkle
topography actually depends only on its sign. Finally and perhaps
most surprisingly, the wrinkle domains of oppositely curved shells
are reciprocally related, so that the response of a given shell can be
deduced from another. Although our study focuses on the model
problem of a shallow shell confined to a plane, we imagine that a
similar approach can be taken to understand confinement-driven
patterns more generally, including ones arising from differential
growth or in response to external stimuli'>****. We turn to introduce
the setup of our study and to state our rules.

Confined shells. A prototypical setup for confinement-driven
wrinkling is shown in Fig. 1la,b, where square domains are cut
out from a thin saddle shell or spherical cap and are confined to
an initially planar liquid bath. By Gauss’s theorema egregium, no
length-preserving map exists from a curved surface to the plane.
Here, this geometric incompatibility manifests as a mechanical
instability producing a wrinkle pattern. Figure 3 shows similar
wrinkles obtained by altering the cutout shape from a square to a
triangle, rectangle, ellipse or some other shape altogether. The lay-
out of the resulting patterns depends strongly on the chosen cutout
shape, as well as on the sign of the shell’s initial Gaussian curvature «,
which is negative for saddle cutouts and positive for spherical ones.
Complicating things further, the typical spherical shell exhibits a
mixed ‘ordered-disordered’ response. In disordered regions, such as
the central diamonds in Fig. 1b, the response is sensitive to pertur-
bations and changes between trials. In ordered regions, the wrinkles
are robust and repeatable.

To decipher this zoo of patterns, look first at the wrinkles of the
saddle cutouts in Figs. 1-3 (x<0). Apparently, their wrinkles fall
along paths of quickest exit from the cut-out shape. Such paths are
line segments that meet the boundary perpendicularly and meet
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Fig. 1| Wrinkling of confined shells. Wrinkle patterns result when initially curved shells are confined nearby a plane. a,b, Simulations and experiments
of square cutouts from a saddle (a) and a sphere (b) show domains of robustly ordered wrinkles, alongside a more disorderly response in the spherical
case (central diamonds in b). We present a coarse-grained theory to predict the type and layout of such wrinkle domains. ¢, Coarse-graining wrinkles.
A point (x, p(x)) in the initial shell is displaced along the plane by u and out of the plane to a height w. The coarse-grained fields u.; and w,;=0 express
a theoretical limit in which the shell is infinitesimally wrinkled and perfectly confined.

each other at the medial axis or skeleton of the shell, that is, the
locus of points equidistant by closest approach to multiple bound-
ary points (shown in white). Now look at the spherical cutouts
(k>0). Their wrinkles are also set by the medial axis, although
this fact is not immediately clear. The key is Fig. 2, which reveals
that the wrinkles of saddle and spherical shells come in recipro-
cal pairs. Most points p on the medial axis have exactly two closest
boundary points, called q and r in Fig. 2b. While saddle cutouts
wrinkle along the segments pq and pr, spherical cutouts wrin-
kle along the segment qr. Taken together, the ordered wrinkles
of saddle and spherical shells form the legs of a special family of
isosceles triangles whose layout is determined by the medial axis
as shown.

Notably, the legs of these isosceles triangles do not always cover
the entire shell. There can exist ‘leftover’ regions linked to excep-
tional points p on the medial axis with three or more closest bound-
ary points. Figure 2e shows one such p and its four closest boundary
points q, r, s and t. While pq, pr, ps and pt are along the ordered
wrinkles of the saddle cutout, the polygon qrst supports disorder
for its spherical twin. In general, the convex hull of three or more
closest boundary points can support disorder in a spherical cutout.
The possibility of infinitely many closest boundary points occurs
for a spherical disc. It is totally disordered in our simulations and
experiments, save for a small flattened rim".

These simple rules successfully capture wrinkle patterns across
111 experiments and several hundred more simulations. In the
experiment, polystyrene films (Youngs modulus E=3.4GPa,
Poisson’s ratio v=0.34) of thickness 120nm<t<430nm are
spin-coated on curved glass substrates. The spherical or saddle
shape of the substrate imparts a finite rest curvature on the shell,
with principal radii of curvature R ranging from 13 to 39 mm.
Cutouts of width 2.5mm < W < 16 mm are released onto a flat water
bath with surface tension y,,=0.072Nm™" and gravitational stiff-
ness K=pg. The experiments reside in the limit of weak tension
7 R << YW?, moderately stiff substrate KW?2 ¥, and small bend-
ing stiffness BKR* < Y?W*, where Y=Et and B=E#*/[12(1 —1?)] are
the stretching and bending moduli. Being shallow yet much larger
than the characteristic substrate-dominated wrinkle wavelength,
(B/K)"*<«< W<R, the cutouts adopt approximately planar shapes
and wrinkle as they float on the water bath (Figs. 1-3).

To probe the role of surface tension in setting the patterns, we
perform ABAQUS simulations of shells on a liquid substrate in a
similar parameter regime, but with the surface tension set to zero
so that no forces are applied at the lateral shell boundary. The result
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Fig. 2 | Simple rules for wrinkles. a-c, Ordered wrinkles in initially
saddle and spherical shells (right halves of elliptical cutouts shown).
Ordered wrinkles pair between shells to form a family of isosceles
triangles (b) determined by the theory. For saddle shells (a), wrinkles
follow the blue segments pq and pr. For spherical shells (c), they follow
the green segment qr. The point p is on the medial axis, and q and r are
its closest boundary points. d-f, Finding a disordered domain. In the given
cutout shape, the point p has more than two closest boundary points
(q,r, sand t) (e). For the saddle shell (d), ordered wrinkles follow the
blue segments pq, pr, ps and pt. For the spherical shell (f), the green
polygon grst is disordered.

is a ‘softly stamped’ version of the well-known example of a plate
pressed into a hard spherical mould®”. Similar patterns arise in
the simulation and the experiment, with the layout of the ordered
domains and the location of the disordered domains being the same
(Fig. 1a,b). The conclusion, which should be compared against the
paradigm of tension as an organizing force determining wrinkle
patterns®”, is that well-defined and spatially complex patterns per-
sist even without applied tensile forces. Simulations of shells with
nonconstant initial Gaussian curvatures x(x) reveal the even more
curious fact that, as long as the initial Gaussian curvature of a shell
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Fig. 3 | Floating shells. Solid cyan lines show the directions of the field T determined by solving the coarse-grained theory, overlaid on floating shells
arranged by the sign of their initial Gaussian curvature (saddle-shaped on the left, spherical on the right). Regions covered by these lines are predicted to
be ordered (4> 0 in the theory). Any disorder is predicted to occur in regions absent these lines (where 2=0). For saddle shells, wrinkles decay towards
the medial axis in white. For spherical shells, wrinkles decay towards the boundary. Dotted cyan curves show ideal shapes used in the predictions.
Flattened regions are treated in the theory as infinitesimally fine. Experimental parameters are presented in Supplementary Tables S1and S2.

is of one sign (either positive or negative everywhere), the patterns
are the same as for shells with approximately constant curvature
(compare Figs. 3 and 4).

Minimizing energy by maximizing coverage. We turn to explain
these remarkably robust features of confinement-driven wrin-
kling and to derive our simple rules. We do so by analysing a novel
coarse-grained model for incompatibly confined shallow shells
from ref. **, which we summarize now. Consider the setup in Fig. 1c,
where a material point (x,p(x)) in the initial shell displaces to
(x+u(x), w(x)) on the bath. The reference point x=(x,,x,) is in the
shell’s initial planform Q C R for example, a square in Fig. 1a,b.
The displacements u=(u,,u,) and w—p are respectively parallel
and perpendicular to the initial bath. Patterns manifest through
minimization of the system energy, U= Uy + Uy, Where Uy, is
the energy of bending and stretching the shell and U, is the gravi-
tational potential energy of the bath plus its liquid surface energy
(the latter being set to zero in the simulations)>*.

Energy minimizations of this type are usually solved via tension
field theory*®”, which involves an expansion about a uniaxially or
biaxially tensile effective displacement (u. —p). This effective state
is obtained by coarse-graining away the wrinkles from the shell’s
physical displacement (u, w — p), in a limit where the wrinkle wave-
length and amplitude go to zero (Fig. 1c). The typical explanation
is that the direction of the wrinkles is set by tensile boundary loads,
which stabilize their peaks and troughs. Yet, our patterns occur
in confined shells subject to small or even zero boundary loads,
suggesting an alternate expansion about a uniaxially or biaxially
compressive state, that is, one that is tension free. To motivate this
further, note that, in such a situation, one may expect the stretch-
ing energy of the shell to be subdominant to its bending and sub-
strate energies”. Under a simplifying hypothesis guaranteeing
this hierarchy, ref. ** obtained an expansion of the system energy
about a general tension-free state. As obtained, this expansion is
outside the parameter range of the experiments and simulations.
Nevertheless, for each u,g, the energy was found to be proportional
t0 7o 1= 71y + 2VBK with Uy = [, 3|V w|* dx at leading order,
up to a constant not depending on the effective state.
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Fig. 4 | Variable-curvature shells. a,b, Simulations show initially negatively
(a) or positively curved (b) shells confined nearby a plane. Colour maps
show the inverse of the initial Gaussian curvature x(x). The patterns are
independent of its precise values but depend strongly on its sign. The
wrinkle amplitude reflects the curvature. Simulation parameters are

presented in Supplementary Table S3.

To bring this into a more useful form, note that the strain
&;(u, w)=(0u;+ ou;+ owow—0,pdp)/2, i,jE€{1,2} tends to zero in
the expansion, so that the shell’s total area is asymptotically conserved:

AAtot=/1|Vp|2dX—/V-u+ LiowPax >0

Taking u— u,; gives the following expression for the leading-order
energy of a confined shallow shell**:

U, [ Yvppax— / - Ads = AA{ug),  (2)
Veff 02 0Q

where fi is the outwards-pointing unit normal to the bound-
ary, 0Q2. This way of writing the energy emphasizes the role of
the difference AA=A,,— A, between the shell’s initial area
Ainit = [,14 3|Vp*dx and the area covered by its infinitesi-
mally wrinkled, perfectly planar limit, A = fgl + V - ug dx.
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This difference accounts for the area that is ‘lost’ asymptotically
to wrinkles. It sets the energy of confinement per equation (2).
Notably, this energy is not proportional to the stretching modulus Y
because significant tension is not involved. Indeed, equation (2) was
found to hold even in situations lacking boundary loads (y,,=0), in
stark contrast to tension field theory. As we will show, the analysis of
equation (2) leads to the patterns observed in our experiments and
simulations, raising the question of whether it can be justified in a
wider parameter range.

Optimizing the result of equation (2) determines the effective
displacement of the shell. To help visualize this, imagine first pro-
jecting the shell directly into the plane, such that it is in a state of
total compression. While this compression can be relieved by wrin-
kling, it can also be reduced by lateral displacements within the
plane. These displacements take advantage of the liquid nature of
the bath, which allows the shell to ‘get out of its own way’. Their
typical magnitude is ~W?/R?, making them much larger than the
wrinkles, whose lateral oscillations are ~(B/K)"4(W/R)?. The bulk
lateral displacements are called u; in the coarse-grained theory and
are selected to minimize the cost of their accompanying wrinkles,
captured by AA.

Importantly, this minimization is done under the constraint
that (u—p) is tension free, to prevent the shell from stretch-
ing at a higher energy cost. To enforce this, we use the effective
strain (Seff)ij(ueff) = (a,’(ueff)j + aj(ueff)i — a,pa]p)/z obtained
by setting u=u, and w=0 into the previous formula for the
strain of a shallow shell. While the physical strain € tends to zero,
the effective strain &, is nonzero due to wrinkling. Its eigenval-
ues are constrained to be nonpositive, a situation we denote by
£4<0. As in tension field theory, a strictly negative eigenvalue
indicates a length lost to wrinkles in the limit. A zero eigenvalue
means that length is preserved. Thus, we arrive at the maximum
coverage problem™

min AA{ueff} 8eff(ueff) <o. (3)

subject to
By minimizing the area lost to infinitesimal wrinkles, the
coarse-grained shell covers a maximal area in the plane. Using this
attractive geometric variational principle, we shall deduce the phe-
nomenology of wrinkle domains.

The locking stress Lagrange multiplier. To uncover the patterns
predicted by the maximum coverage problem, we now intro-
duce a notion of ‘effective stress’ to pair with the effective strain.
Recognizing the nonholonomic nature of the constraint £;<0,
we replace it with a symmetric matrix-valued Lagrange multiplier
field o, (x) that we call the locking stress (see Discussion for nomen-
clature). We require that o, >0, meaning that its eigenvalues are
non-negative. We define the Lagrangian

L{ueg oL} = AA{ug} + / OL : Eeff(Uefr) (4)
Q

for all u, and 6;,>0 and seek a saddle point. Note that
oL : €t = Zij(oL) ij(geff)ij. Enforcing stationarity of u,g, we find that
V-0,=0 in the shell Q and o10 = 1 at its boundary dQ. As dis-
cussed in Methods, a relaxation of the boundary conditions ensures
the existence of a saddle point: we enforce them from the outside
of the shell, but not necessarily from its inside. There, we also derive
the orthogonality relation

OL : Eeff =0 )
relating the locking stress to the effective strain. At this point, we
have everything we need to solve for the wrinkle domains. Indeed,

while o, is not the true stress in the shell (and neither is €, the true
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c Rules for patterns
k<0 /1=(VP09)TJ-TJ- T.-VPyo=0
k>0 A= (VPy)si41 T.-VPy=0

Fig. 5 | Deducing the simple rules. a,b, Two geometric operations take a
point x in the shell's planform Q to its closest boundary point P,,(x) as
ina, or take a point y in Q to a point Pgy (y) on the medial axis whose
closest boundary points have y in their convex hull (the green segment
in a or the green polygon in b). Blue segments show paths of quickest
exit from the medial axis 91 to the boundary 0Q in dotted black. ¢, The
fields Aand T governing wrinkle patterns depend on the shell through
these operations and the sign of its initial Gaussian curvature «.

strain), knowledge of it reveals constraints on the patterns to the
point that it is an order parameter for wrinkle domains.

To explain this last remark further, note first that ¢, cannot van-
ish identically in a region where the initial Gaussian curvature x(x)
is nonzero. It follows from equation (5) that the rank of o is at most
one, that is,

GL:/l’i‘@T (6)

for some scalar and unit vector fields A(x)>0 and T(x), where
(T ®T); = TiT;. These fields contain information about the pat-
terns. In particular, by equations (5) and (6),

/I(geff)rf.f =0. (7)

In regions where 4> 0, the T component of ,; must vanish, indi-
cating an ordered domain with wrinkle peaks and troughs along T.
Conversely, where 1=0, the wrinkle direction is unconstrained,
permitting a disordered response. The type and layout of a given
shell’s wrinkle domains are predicted by its locking stress.

Remarkably, it is possible to find the locking stress of a shell
without first determining its effective strain, an observation that
leads to a complete derivation of our simple rules. Eliminating
u,; from the Lagrangian in equation (4) by minimization yields a
separate, ‘dual’ variational principle for o, (equation (10)). We solve
it exactly in the Supplementary Information, using convex Airy
potentials and an inspired application of the Legendre transform.
The resulting solution formulas determine A and T by one of two
basic geometric operations (Fig. 5). These formulas apply whenever
the shell has no holes and if its initial Gaussian curvature x(x) is of
one sign. They are the basis of our simple rules (compare Figs. 2
and 5). For instance, the fact that T - VP =0 if k <0 explains why
the wrinkles of negatively curved shells lie along directions of quick-
est exit to the shell boundary. The remaining rules are derived in
the Supplementary Information.

Coming back to our experiments and simulations, we now
derive their patterns. In Fig. 3, cyan lines are drawn along the
solved-for T in the predicted ordered regions (where A>0). Each
negatively curved shell is found to be completely ordered. Regions
consistent with disorder (where 1=0) exist for generic positively
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Fig. 6 | Open questions. a,b, While the locking stress can be defined for
shells with mixed curvature (x < 0 on the left and right, x> O in the middle)
(a) and shells with holes (x> 0 here) (b), we lack solution formulas for it
in such cases. ¢, Another question regards the presence of order in regions
consistent with disorder (cf. Fig. 1b).

curved shells, and are shown as polygons bordered in white. The
wrinkle domains are set by the shells’ medial axes following our
simple rules.

Discussion. Given the success of our rules in capturing the wrin-
kles of confined shells, it is natural to consider other instances of
reciprocity as well as graphical methods in mechanics more broadly.
A well-known method is due to Maxwell’” and also Taylor, whose
reciprocal diagrams of forces and frames encode an elegant test of
equilibrium for planar structures®. Our relations connecting the
wrinkles of positively and negatively curved shells reveal a new
class of reciprocal rules governing incompatible confinement. We
wonder how far they generalize. Examples of shells for which we
presently lack rules are shown in Fig. 6a,b. Finally, Fig. 6¢ highlights
the fact that ordered wrinkles sometimes occur in regions the the-
ory predicts to be consistent with disorder. Empirically, the pres-
ence of order versus disorder looks to depend on the finite wrinkle
wavelength. Related to this is the question of the greatest parameter
regime in which the maximum coverage problem in equation (3)
can be derived. Although it predicts the patterns in our simulations
and experiments well, it has yet to be established for the parameter
range they explore. We imagine that a full proof of equation (3) will
come from combining the ‘inverted tension field theory’ of ref. ¥
with the ansatz-free arguments in ref. **.

We have shown how to predict the wrinkles of confined shal-
low shells, using a compact set of geometric rules obtained by solv-
ing the coarse-grained theory of ref. **. Our results point towards a
general, diagrammatic method for benchmarking elastic patterns,
which could prove useful for their rapid design. We highlight a
promising connection with the theory of ideal locking materials,
that is, bulk materials whose microstructures facilitate extension
with negligible elastic stress below a threshold strain®. This limit is
apparently approached in biology, by the mesentery membrane of
rabbits'**' and the capture silk of some spiders, the latter of which
has recently inspired ultra-stretchable wicked membranes>*’. We
view the wrinkles of confined shells as an emergent yet sacrificial
microstructure enabling shape change. This underlies our terming
the Lagrange multiplier 6, from our solutions as the locking stress. It
plays the role of an order parameter for predicting wrinkle domains.
The extension of our rules beyond shallow shells and to patterns
involving elements others than wrinkles, including crumples®** and
folds**, remains to be seen.
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Methods

Experiment. Dilute solutions of polystyrene (M, =99kDa, M, =105.5kDa;
Polymer Source) in toluene (99.9%; Fisher Scientific) were spin-coated onto glass
substrates of various positive and negative Gaussian curvatures. The positively
curved substrates were spherical optical lenses (Thorlabs, Inc.). Negatively curved
shells were formed on a single negative-curvature substrate that is less controlled
by comparison. Its principal radii of curvature were measured from side-view
images and are reported in Supplementary Table S1.

The film thickness was varied by changing the polymer concentration and
spinning speed. Different shapes were cut out using a metal scribe. After preparing
the glass substrates with a thin layer of poly(acrylic acid), the films were released
by dissolving this sacrificial layer in water. The films were finally transferred to a
pure water—air interface. Following the experiments, each film was captured and its
thickness measured using a white-light interferometer (Filmetrics F3).

The shells were shallow with 0.01 < (W/R)?< 0.2 and have nondimensional
bending modulus b=BR* YW* in the range 4 X 107! <b<2x 10~*. The
nondimensional substrate stiffness k=KR?/Y and nondimensional surface
tension y =y,,R*/ YW? obey 0.003 < k <0.03 and 4 X 10~* <y < 10-2. Additionally,
102 <y/k<0.7,107% < 2v/bk < 3 x 10~ *and 1073 < (b/k) < 1071
These ranges are in line with all but one of the assumptions used in ref. ** to
derive equation (2) (not obeying (b/k)"® < y 4 2v/bk). Specific parameters
for the experiments shown in the main text are presented in Supplementary
Tables S1 and S2.

Simulation. Shells bonded to a planar liquid substrate without surface tension were
simulated in the finite element package ABAQUS/Explicit. Four-node thin shell
elements with reduced integration (element type S4R) were used. The confining
force was specified as a nonuniform distributed pressure load over the surface of
the shell, via a VDLOAD subroutine. Otherwise, free boundary conditions were
used. Comparative nonlinear geometric finite element analysis using linearly
elastic and neo-Hookean hyperelastic materials showed that the results are largely
independent of the model. Colour coding in the images corresponds to vertical
deflection from the plane.

In the same nondimensional groups as before, the simulations have
0.01 <(W/R)*<0.04,7x107°<b<2X107%, 6 <k <40 and y=0. Additionally,
2% 107% < 2vbk <2 x 10~ %and 5.6 x 1073 < (b/k)* < 1072 As with the
experiments, these ranges are in line with all but one of the assumptions of
ref. ** (not obeying (b/k)"!® <« 2v/bk). Specific parameters for the simulations
shown in the main text are presented in Supplementary Table S3.

Theory. Here we connect the Lagrangian £ in equation (4) to our coarse-grained
fields. We assert the existence of a saddle point (u., 6,) satisfying

L{Ucf; + Suef, 01} > L{Uef, 61} > L{Uefy, 01 + doL} (8)

for all du.and do; with 6} + 8oy > 0 (see ref. **). The key linking saddle points to the
maximum coverage problem (equation (3)) is that such points yield its solutions.
To study saddles in detail, we evaluate the min-max and max-min procedures
min, max,, £and max, min,, L.

First, consider the min-max. We claim that

minmax £ = min AA, 9)
Ueff O Ueff

where on the right the tension-free constraint e, < 0 is used. Equation (9) states
that solving the maximum coverage problem is equivalent to finding the min-max
of £ and explains why its saddle points contain our effective displacements. To
prove this, note that the inner maximization over o, > 0 enforces the tension-free
constraint. Indeed, if a component of ¢ is positive, then by sending the same
component of o to infinity, we obtain max £ = oo, while conversely, if u,g is
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tension free, then leTL : &f < 0and max £ = AA. Evidently, minimizing the
maximum prefers tension-free states. It follows that saddle points achieve £ = AA
or, equivalently, that [, o1, : e = 0. Since the integrand is nonpositive, it must
vanish, proving the orthogonality relation in equation (5).

Next, consider the max-min. A computation in the Supplementary
Information using the divergence theorem gives

1
max min £ = max —7/ Vp@Vp: (or — 1),
L R2

oL Ueff 0) 2 (10)
where in the resulting maximization o, is constrained to be a nonnegative
symmetric matrix-valued field equalling the identity I exterior to Q and that is
weakly divergence free on R% This is the dual problem mentioned in the main text,
and solving it gives the locking stress associated with Q and p. The choice to extend
o, beyond the shell relaxes its boundary conditions so that a maximizer always
exists®. The original boundary condition o1 fi = i can be thought of as happening
outside of an infinitesimally thin boundary layer at Q. The inner boundary values
of 6, can then be optimized. This relaxation is crucial to capturing the patterns of
positively curved shells (Fig. 3). The dual problem for o, is discussed further in
the Supplementary Information, where we solve it using convex Airy potentials to
derive our simple rules.

Data availability

The parameters for the shells in Figs. 1-4 are presented in Supplementary Tables
S1-S3. Dimensionless parameter ranges for the experiments and simulations are
given in Methods. Individual parameters for all experiments are also provided as a
Supplementary Datafile. All other data that support the findings of this study are
available from the corresponding authors upon reasonable request.
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