
RACOD: Algorithm/Hardware Co-design for
Mobile Robot Path Planning

Mohammad Bakhshalipour
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
bakhshalipour@cmu.edu

Seyed Borna Ehsani
University of Washington
Seattle, Washington, USA

behsani@uw.edu

Mohamad Qadri
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
mqadri@andrew.cmu.edu

Dominic Guri
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
dguri@andrew.cmu.edu

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
maxim@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
gibbons@cs.cmu.edu

ABSTRACT

RACOD is an algorithm/hardware co-design for mobile robot path

planning. It consists of two main components: CODAcc, a hard-

ware accelerator for collision detection; and RASExp, an algorithm

extension for runahead path exploration. CODAcc uses a novel

MapReduce-style hardware computational model and massively

parallelizes individual collision checks. RASExp predicts future path

explorations and proactively computes its collision status ahead of

time, thereby overlappingmultiple collision detections. By affording

multiple cheap CODAcc accelerators and overlapping collision de-

tections using RASExp, RACOD significantly accelerates planning

for mobile robots operating in arbitrary environments. Evaluations

of popular benchmarks show up to 41.4× (self-driving cars) and

34.3× (pilotless drones) speedup with less than 0.3% area overhead.

While the performance is maximized when CODAcc and RASExp

are used together, they can also be used individually. To illustrate,

we evaluate CODAcc alone in the context of a stationary robotic

arm and show that it improves performance by 3.4×–3.8×. Also, we

evaluate RASExp alone on commodity many-core CPU and GPU

platforms by implementing it purely in software and show that with

32/128 CPU/GPU threads, it accelerates the end-to-end planning

time by 8.6×/2.9×.

CCS CONCEPTS

•Hardware→Application-specificVLSI designs; •Computer

systems organization → Parallel architectures.

KEYWORDS

hardware acceleration, speculative parallelism, robotics, path plan-

ning, collision detection

ISCA ’22, June 18–22, 2022, New York, NY, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8610-4/22/06.
https://doi.org/10.1145/3470496.3527383

ACM Reference Format:

Mohammad Bakhshalipour, Seyed Borna Ehsani, Mohamad Qadri, Do-

minic Guri, Maxim Likhachev, and Phillip B. Gibbons. 2022. RACOD: Al-

gorithm/Hardware Co-design for Mobile Robot Path Planning. In The 49th

Annual International Symposium on Computer Architecture (ISCA ’22), June

18–22, 2022, New York, NY, USA. ACM, New York, NY, USA, 13 pages.

https://doi.org/10.1145/3470496.3527383

1 INTRODUCTION

Path planning is a core task in nearly any autonomous robot. Path

planning is the process of finding a collision-free path in an envi-

ronment from the current state (location) to a goal state. Collision

detection is the task of checking whether the robot would collide

with obstacles in the environment if it were in a particular state.

“Path planning can be so compute- and memory-intensive that it

is typically off-loaded to the cloud,” according to a recent quote by

Intel engineers [33]. However, such offloading often cannot meet

real-time requirements because the latency of communicating with

the cloud is too high and unpredictable [33]. Thus, real-time appli-

cations, e.g., an aerial vehicle performing complex maneuvers [7],

require path planning to be performed by the robot itself, as fast

as possible. Not only does the high cost of planning present per-

formance challenges, it can also make the robot unsafe: safety is

greatly dependent on how quickly the robot can react to emergen-

cies [49]. In fact, the inability to generate plans in real-time is the

major barrier that hinders the widespread deployment of robots in

the wild [36].

In this paper, we study path planning at the architectural level.

We first architect COllision Detection Accelerator (CODAcc), a hard-

ware accelerator for collision detection. Collision detection is ex-

tremely time-consuming, taking up to 99% of the entire planning

time [11, 30, 31, 34]. CODAcc accelerates collision detection by mas-

sively parallelizing individual collision checks: different parts of

the robot’s body are tested for collision in parallel with each other.

CODAcc achieves a high level of parallelism by employing a novel

MapReduce-style collision computation: the memory addresses,

corresponding to different locations of the environment that the

robot’s body would intersect, are generated in parallel using multi-

ple function units; the addresses that are mapped to the same cache

blocks are tested for collision together.

597

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3470496.3527383&domain=pdf&date_stamp=2022-06-11

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

While individual collision checks are perfectly parallelized by

CODAcc, the end-to-end speedup of hardware acceleration is lim-

ited due to the obstructive serialization in the process of exploring

the environment (i.e., path search). Search algorithms like Dijkstra,

A★, and their variants and extensions exhibit little to no parallelism

for path planning [37]. The reason is the inherent serialization in

the process of searching for an optimal (or efficient) path. At every

step, search algorithms explore a certain location in the environ-

ment and determine the movement with the highest prospect of

reaching the destination (e.g., move left), then assuming that the

movement is taken, they explore the new location. In other words,

parallelizing the path search algorithms is not straightforward be-

cause until the current location is explored, the next to-be-explored

location is not known. This serialization barrier becomes the single

major performance bottleneck of path planning after CODAcc has

been used to speed up individual collision checks.

We overcome this serialization barrier using a technique named

Run-Ahead State Exploration (RASExp). The key idea is to predict

future states (locations) that will likely be explored, perform their

collision checks speculatively ahead of time, and memoize the colli-

sion status for later usage. The key observation is that although the

search patterns are too complicated for state-of-the-art hardware

predictors [40], they can be semantically predicted using domain

knowledge. Specifically, as we show in §2.2.2, path planning ex-

hibits “cone-like” patterns: the footprint of explored areas mostly

comprises narrow cones with few turns in direction. We leverage

this observation to predict future states and overlap their collision

checks with current collision checks. We equip the system with

multiple (up to 32) CODAcc accelerators; at every step, we perform

collision checks of current (demand) and future (speculative) states

in parallel, thereby achieving additional speedups. We call the com-

bined algorithm/accelerator system Run-Ahead COllision Detection

(RACOD).

In summary, our work makes the following contributions:

(A) We architect CODAcc, an efficient collision detection hardware

accelerator. CODAcc is applicable to a wide range of robots oper-

ating in arbitrary environments. As we will discuss in §7.1, prior

work on hardware acceleration of collision detection [31, 35] makes

restrictive assumptions about the environment (e.g., (most) obsta-

cles never move), which greatly limits their application.

(B) We propose RASExp, a novel algorithm extension for paralleliz-

ing path search algorithms. RASExp is the first semantic speculation

technique in path search and beyond.

(C) We evaluate CODAcc and RASExp both separately and syner-

gistically:

• CODAcc accelerates mobile planning by 1.24×–1.49×.
• RASExp, with no hardware change, accelerates mobile robot

planning by 8.6× (2.9×) on a commodity CPU (GPU).

• RACOD, i.e., the synergistic implementation of CODAcc and

RASExp, accelerates mobile robot planning by up to 34.3×
(pilotless drone) and 41.4× (self-driving car), with less than

0.3% hardware overhead.

• To show our design’s applicability beyond mobile robots, we

also evaluate CODAcc in the context of a stationary robotic

armwith a state-of-the-art sampling-based planner.We show

that it improves end-to-end planning time by 3.4×–3.8×.

2 BACKGROUND AND MOTIVATION

2.1 Path Planning & Bounding Volumes

Our focus is mobile robots, like self-driving cars and pilotless drones,

whose ability to operate in real time is challenged by the lengthy

planning time [7]. An example is given in Figure 1 (left). A circle-

shaped robot, with radius 𝑟 , moves from a start point, (𝑥𝑠 , 𝑦𝑠), to a

goal point, (𝑥𝑔, 𝑦𝑔). The path planner’s task is to find an optimal (or

efficient) collision-free path from the start point to the goal point:

a series of (𝑥𝑖 , 𝑦𝑖)s such that if the robot is located at any (𝑥𝑖 , 𝑦𝑖), it
will not collide with the obstacles (gray cells) in the environment.

Figure 1: 2D mobile robot path planning (left), oriented

bounded box (middle), and path graph search (right).

An occupancy grid, produced by the robot’s perception unit, is

provided to the path planner. The occupancy grid indicates which

cells in the environment are free (‘0’), and which cells are occu-

pied with obstacles (‘1’). The perception unit constantly updates

the occupancy grid to reflect the most recent understanding of the

environment. Note that perception is a separate stage in the ro-

bot’s software pipeline: the occupancy grid does not change during

planning.

To ensure the final path is collision-free, the planner performs

collision detection for the points that are considered for inclusion in

the final path. To find out whether a point satisfies this condition,

the planner first should calculate which cells will be involved if the

robot is placed at that point. This operation is known as forward

kinematics (FK). Then, the planner checks all the cells determined

by FK, and if none of them is an obstacle, the point is identified as

collision-free.

In the example, if 𝑟 is around one resolution unit, as the figure

suggests, then for every point, collision detection entails checking

9 cells: the point’s cell and the 8 cells surrounding it. Collision

detection can be quite intensive: e.g., with a radius 𝑟 = 10𝑐𝑚 and

a resolution unit of 1𝑐𝑚 , collision detection for any point entails

checking 384 cells.

In practice, the robot’s shape can be more complex than a circle.

For example, a rough shape of the Arduino Ant Hexapod Robot [3]

is shown inside the rectangles in Figure 1 (middle). In such cases,

precise computation of FK can itself be too complex and costly, let

alone the post-FK collision detection.

Oriented Bounded Box (OBB) [17] is a method used to handle

robots with arbitrary shapes and orientations. OBB bounds the

shape with an oriented rectangle (in 2D; cube in 3D), as exemplified

by the blue rectangles in Figure 1 (middle). By bounding the robot’s

body, collision detection reduces to checking whether the robot’s

598

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

OBB falls into a collision-free cell or not.

Observation I: Collision detection can be massively parallelized;

however, the parallelism is extremely fine-grained.

Checking the collision status of every part of the robot’s body

is independent of other parts; the operations can be completely

parallelized. E.g., in the example of Figure 1 (left), the 9 cells the

robot’s body may occupy at a time can all be checked in paral-

lel. Importantly, the parallelism is extremely fine-grained: every

operation is simply checking a cell value.

The fine-grained parallelism makes hardware acceleration a per-

fect fit for collision detection; simply ORing the cells in hardware

(inherently parallel) will provide the collision status. Vectorization

and multithreading may seem like promising alternatives for such

computation, but each has its own problems. Vectorization can

accelerate the collision detection of axis-aligned OBBs, but other

orientations would not have a regular, array-like layout in memory,

rendering vector instructions useless. Multithreading, in CPU or

GPU, is a poor match for this kind of computation: creating, prepar-

ing, and joining a thread is much costlier than simply checking a

cell value.

Observation II: Collision detection computation exhibits a high

level of spatial locality.

Because a robot is one integrated body, collision detection compu-

tation is fundamentally spatially-located. The occupancy grid cells

that are checked during a collision detection are nearby each other,

clustered around the physical robot. In the Figure 1 (left) example,

a 256-byte cache dedicated for collision detection memory accesses

results in a 99+% hit ratio.

2.2 Path Search

2.2.1 Search Algorithm. Mobile robot path planning is ultimately

reduced to a graph search problem: nodes are states (locations) and

edges are robot motions. For example, with a robot that can move

in four cardinal directions (N, E, S, and W) in a 2D environment,

every non-terminal node is connected to 4 surrounding nodes (4-

connected grid). With a robot that can further move in four inter-

cardinal directions (NE, SE, SW, and NW), the graph will be an

8-connected grid.

The graph can be searched using practically any graph search

algorithm to extract an optimal or efficient path. A★ [20], along

with its variants and extensions (§5.9), is the seminal algorithm

widely used in various robot path planning applications. The key

novelty of A★ over other graph search algorithms like Dijkstra is

employing a heuristic that results in significant speedup, e.g., an

estimate of a point’s distance from the goal. In what follows, we

briefly overview the algorithm (pseudo-code in §3.2.1).

Consider the graph depicted in Figure 1 (right). The algorithm

should find a path from the start point (𝑠) to the goal point (𝑔). For
every node 𝑣 in the graph, A★ defines 𝑓 (𝑣) = 𝑔(𝑣) + ℎ(𝑣), where
𝑔(𝑣) is the actual movement cost (distance) from 𝑠 to 𝑣 , and ℎ(𝑣) is
the heuristic cost from 𝑣 to 𝑔 (an underestimate of the actual cost).

In this paper, the default heuristic is Euclidean distance.

A★ maintains an OPEN list, which initially contains only 𝑠 . At
every iteration, the node with the lowest 𝑓 value is expanded: it

is removed from the OPEN list, is marked as visited, and its “eli-

gible neighbors” are added to the OPEN list. Whenever the goal

is expanded, the algorithm is done, and the path leading to the

expansion of 𝑔 is returned as the final output path.

In path planning, eligible neighbors of a node are its unvisited,

collision-free neighbors. That is, the costly collision detection op-

erations are performed for the unvisited neighbors of an expanded

node at every iteration. A★ has only one parallelization source: the

eligible neighbors of an expanded node can be tested for collision in

parallel. For example, with an 8-connected grid, up to eight collision

detections can be parallelized (and typically far fewer). Other than

this, A★ path planning is serial, as are most of its extensions and

variants [37, 41]. The reason is the fact that the optimality of the al-

gorithm depends on the expansion order, and (naive) parallelization

can potentially disturb the order, sacrificing the optimality. This is

a severe performance bottleneck given that modern mainstream

computing systems support much more parallelism.

2.2.2 Patterns Exposed During Path Search. The green arrows in

Figure 1 (left) show how the robot moves following the optimal

path returned by A★. It first moves north (N), then keeps moving N

for another two steps, then moves NE, then E, then keeps moving

in the same direction for another six steps, and so on.

Observation III: The footprint of path exploration exhibits

“cone-like” patterns.

Paths extracted in planning, exhibit regular, predictable patterns

in state space: connected straight-line segments rather than frequent,

irregular direction changes (green arrows in Figure 1 (left)). And,

exploration of those pathsmanifests cone-like patterns: the footprint

of traversing the graph mostly comprises cones, with few turns

in direction, around each segment of the explored paths (purple

cone in Figure 1 (left)). Figure 4 in §5.3 depicts the cones for a 2D

benchmark.

The patterns arise partly because of the geometric features of path

planning and partly because of regular organization and structure

of real-world environments. Consider a collision-free 2D space in

which a mobile robot tries to reach a destination from a start point.

The shortest path between the two points is a straight line that

connects them (a basic geometry principle). In such an environment,

the robot will start to move in the direction of the goal and will keep

moving in the same direction until it reaches the goal. Inmore general

environments, the robot changes direction due to obstacles, but

again otherwise keeps moving in the same direction. Moreover, the

structure of many real-world environments encourages continuing

in a given direction. Picture a self-driving car moving in a certain

direction in a street bounded by buildings from the sides. Even

in the presence of lane changes and overtaking, the vehicle will

mostly move in a regular, straight direction (same as manual cars).

As a result, the extracted paths in real-world environments mostly

comprise connected straight-line segments, and the exploration

of such paths (i.e., the graph search algorithm) exhibits cone-like

patterns: each explored path is embraced by a cone.

599

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

Our argument is that relying on the history of directions that

have been taken so far, we can speculate on the path going forward.

Even in the short scenario of Figure 1 (left), two-thirds of the taken

directions in the final path are the same as the preceding direction.

Although the set of explored nodes in path planning is a superset of

the final path, we show that the history of directions can be effectively

used to speculate on what nodes will be explored.

Importantly, the cone-like patterns are spatial. That is, the con-

secutive expansions (in time order) do not necessarily exhibit any

patterns. Search algorithms may explore more than one growing

tree (GT) inside the graph (dashed lines in Figure 1 (right)), and

their exploration can be temporally interleaved. There is not neces-

sarily any pattern among the multiple GTs whose explorations are

interleaved during path planning; the pattern is exhibited only in

each GT independently.

Finally, the cone-like patterns are “conceptual” and are exhibited

at the algorithm-level (i.e., semantic), and not necessarily at the

underlying memory layout. Therefore, we argue that path planning

exhibits semantic spatial locality and implement a spatial predic-

tor in software, not in hardware where semantic information is

unavailable (§5.7.2).

3 RUNAHEAD COLLISION DETECTION
(RACOD)

This section presents the two main components of RACOD.

3.1 Collision Detection Accelerator (CODAcc)

CODAcc’s task is computing the collision status of an OBB. There

are two major challenges for a hardware design: (i) OBB size (in

number of cells) is dependent on the robot’s body shape and the

planner’s resolution unit, and hence, could be different from one

robot to the next. (ii) Checking a large OBB entails checking many

occupancy grid cells; given a narrow memory interface, naively

loading memory addresses of the cells would result in serialization,

possibly offsetting much of the benefits of hardware acceleration.

We address the first challenge by designing a Hardware OBB

(HOBB) coupled with a greedy scheduler. HOBB is a fixed-size hard-

ware unit (set of registers) on which the actual OBB, determined

by the software, is loaded. HOBB uses 𝐿 = 10,𝑊 = 3, and 𝐻 = 3

registers to represent length, width, and height, respectively. When

an OBB is larger than the HOBB, a greedy scheduler partitions the

OBB on the HOBB, in multiple steps.

We address the second problem using a MapReduce-style hard-

ware computation model: all memory addresses are generated in

parallel (map), then they go through circuitry that coalesces requests

to the same cache blocks (reduce). Ultimately, a few unique cache

blocks are requested from memory. Below, we explain the details

of these techniques, along with CODAcc’s other building blocks.

3.1.1 Processor-Accelerator Communication. Collision status is de-

termined based on the occupancy grid information; thus, the ac-

celerator should have access to it. A pointer to the beginning of

the occupancy grid in memory and its size in different dimensions

are sent to the accelerator via a queue-based configuration inter-

face [18]. These parameters are used for generating occupancy grid

memory addresses, and do not change during the planning stage.

All other communications with the accelerator are performed via a

single added instruction:

check_coll <dim> <cfg> <res>

dim is a 1-bit immediate value (can be a part of an opcode), indi-

cating whether OBB is a rectangle (2D) or a cube (3D). cfg is a

pointer to the OBB that should be tested for collision, and res is

the memory location to which the collision status is written. As a

communication convention, the OBB configuration, to which <cfg>

points, is coded in a cacheline-aligned structure as shown in Table 1.

Table 1: OBB configuration encoding.

origin size orientation

2D (𝑥𝑜 , 𝑦𝑜) (𝑙, 𝑤) sin𝜃, cos𝜃

3D (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) (𝑙, 𝑤,ℎ) sin𝛼, cos𝛼, sin 𝛽, cos 𝛽, sin𝛾, cos𝛾

origin is the coordinates of OBB’s origin. size is OBB’s size in

different dimensions. orientation is OBB’s orientation. In 2D, it is

simply described by 𝜃 , the angle between the rectangle and 𝑥-axis.
In 3D, it is defined by 𝛼 , 𝛽 , and 𝛾 , three angles each representing ro-

tation around one axis (roll-pitch-yaw). Also, instead of sending the

angles themselves, their sine and cosine are sent to the accelerator;

this simplifies the accelerator design since it gets rid of including

circuitry to implement trigonometric functions. All the arguments

are 32-bit floating point numbers.

When the instruction is decoded, the core forwards it to the

accelerator. The accelerator computes the collision result, as de-

scribed below, and writes it to the memory location specified in the

operand. Finally, the instruction is committed.

3.1.2 Data Path. Before explaining the data path, we explain one

simple optimization we make to the occupancy grid’s memory

layout. Namely, we optimize for spatial locality by implementing the

occupancy grid using uint32_t such that every grid cell occupies

only one bit. This way, more nearby cells are captured in a single

cache block, at a cost of having to do bit masks to extract the desired

occupancy bit.

Figure 2 shows an overview of CODAcc. 1 shows CODAcc’s

address generation unit (AGU). AGU generates all to-be-checked

cells’ locations and then their memory addresses, storing them in

2 HOBB. The cells’ locations are generated using the configuration

information (origin, size, and orientation). For example, for a 2D

OBB (see Table 1), the location of its origin is (𝑥𝑜 , 𝑦𝑜), and the

location of its top-right corner is (𝑥𝑜 + 𝑙 cos𝜃 −𝑤 sin𝜃,𝑦𝑜 + 𝑙 sin𝜃 +
𝑤 cos𝜃). After generating locations, the corresponding memory

addresses are obtained according to memory layout semantics (row-

major layout), using the occupancy grid memory address and its

sizes in different dimensions (§3.1.1).

HOBB consists of a set of registers, each corresponding to a

specific cell in the OBB. Every register keeps a key-value pair: the

memory address of the location it corresponds to, and its occupancy

status (collision or free; 1 bit). The figure is drawn to resemble the

registers-OBB correspondences. Assuming zero angles, on the front

pane, the bottom-left corner register represents (𝑥𝑜 , 𝑦𝑜 , 𝑧𝑜) cell,
and the top-right corner register represents (𝑥𝑜 +𝐿,𝑦𝑜 +𝑊,𝑧𝑜) cell.
Every register holds the corresponding cell’s memory address and

its occupancy status. Also, as we will describe shortly, the same

HOBB is used for both 2D and 3D OBBs but with different circuitry.

600

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

Figure 2: Hardware realization of CODAcc.

The generated addresses pass through a 3 reduction unit (RU),

and then the requests for distinct cache blocks enter a 4 load queue

(LQ). When the LQ is empty, the cache block request of the first1

non-empty register enters the LQ. Then, RU performs an associative

search (i.e., parallel) to find which registers need addresses that fall

into the cache block at the head of the LQ, marks them as pending,

and enqueues the cache block request of the first non-empty, non-

pending register into the LQ. This repetitive process is stalled if

the LQ becomes full, and finishes when no non-pending register

remains.2

Noteworthy, due to the high spatial locality (§2.1), this process

repeats only a few times. One cache block alone incorporates 512

bits (cells), while all registers together request 90 bits. As such, a

few cache blocks serve all requests, and an 8-entry LQ is rarely

filled up in practice.

LQ entries are constantly 5 dequeued and sent to the memory

hierarchy. Upon a cache block arrival 6 , registers whose addresses

fall into that cache block take their value. The 1-bit values are

placed into the registers, and are 7 ORed to produce the collision

detection output. This process continues until either (i) the outcome

of the OR gate rises anytime during the check, or (ii) the entire OBB

has been checked.

Note that the entire load-to-OR path (4 - 5 - 6 - 7) works in a

pipelined manner. I.e., the accelerator does not wait for all the loads

before ORing them; a cell can raise the output of the OR gate as

soon as its value is received from memory. This massive parallelism

provided by pipelining/ORing in hardware, rather than checking

one-by-one in software, is the major contributor to CODAcc’s per-

formance improvement.

A corner case arises when an OBB extends outside the environ-

ment boundaries—it is an invalid configuration. When any of the

memory addresses falls outside the occupancy grid’s address range,

the output is 8 short-circuited. Finally, when the collision result is

computed, the registers are cleared.

1The order among registers is hardwired; e.g., reg0 precedes reg1.
2The RU’s reduction mechanism is different from that of caches’ miss status
holding registers (MSHRs). MSHRs handle requests one-by-one: the first
request triggers a cache miss, the block address is stored in MSHR, and
subsequent accesses to the outstanding cache block are served one-by-one.
The RU uses a different approach: all requests are reduced at the source and in
parallel. Also, the RU is different from recent GPUs’ address coalescers [15];
the RU supports bit-granular, irregular (oriented) address coalescing while
most GPUs coalesce regular addresses at a word granularity.

When an OBB is smaller than the HOBB, some of its registers

are left unused. To avoid having separate valid bits in registers

and setting/resetting them, the unused registers in every dimen-

sion take the address of the last register in that dimension. This

way, in fact, we include some states multiple times in our collision

computation, but note that doing so does not affect the outcome of

computation (bitwise OR). When an OBB is larger than the HOBB,

9 the scheduler partitions it, performing its collision detection in

multiple serial steps.

To design a simple yet efficient scheduler, we deem the partition-

ing as an optimization problem whose goal is to maximize cache

hits across multiple steps. We use this greedy algorithm: first, fully

evaluate the 𝑥 dimension, which will be done in � 𝑙𝐿 � steps, 𝑙 being
the length of the OBB; then complete the 𝑦 dimension; and finally,

complete the 𝑧 dimension (if 3D). We prioritize 𝑥 over 𝑦 (and 𝑦 over

𝑧) to leverage the row-major layout of multi-dimensional arrays in

memory, for cases when the OBB is axis-aligned or nearly so. This

is also in part a reason why we chose a large 𝐿 for the HOBB.

Finally, although the location of cells in a 2D OBB can be com-

puted by the same circuit used for 3D (by zeroing the third dimen-

sion), we dedicate separate circuits to the AGU and scheduler of

2D and 3D computations. This has two benefits: (i) a 2D OBB can

be computed faster, and (ii) when a 2D OBB is large, the scheduler

can dispatch parts of it on idle 𝑧 registers, computing the collision

status in fewer steps.

3.1.3 𝐿0 Cache. We provision the accelerator with a 256-byte

(2048-bit) 𝐿0 cache. This 𝐿0 caches the data requested by the AGU.

The 𝐿0 efficiently filters the majority of requests not only by exploit-

ing spatial locality, but also temporal locality: subsequent collision

checks have a large amount of overlap.

3.1.4 System Integration. A processor can be integrated with mul-

tiple instances of the accelerator. When so, like other functional

units (adders, multipliers), the core’s scheduler is responsible for

dispatching different check_coll instructions to CODAcc units.

Also, every CODAcc unit has its own 𝐿0 cache; all 𝐿0 caches are
backed by the core’s 𝐿1 cache and forward misses to its interface

(a 16-entry queue).

To keep the entire system coherent, blocks cached in 𝐿0 are

marked in the processor’s 𝐿1 cache (1-bit extension); whenever a
marked block is evicted from 𝐿1 or invalidated or written, the block
is invalidated in 𝐿0. The cache extension overhead is 128 bytes per

core (not per accelerator). Also, 𝐿0 is virtually indexed, physically

tagged. A TLB with a couple of entries is sufficient to translate

nearly all accesses.

3.2 Run-Ahead State Exploration (RASExp)

3.2.1 Baseline Algorithm and Extension. As we show later, CODAcc

is so low overhead that we can afford many instances of it. How-

ever, the limited parallelism of the search algorithm (§2.2.1) limits

the benefits of having many CODAccs. RASExp is a technique to

increase parallelism: at every step, it predicts likely-to-be-explored

next states, speculatively performs their collision checks in parallel

with those of the current state, andmemoizes the collision status for

potential later usage. The key insight of RASExp is that expansions

with the search algorithm exhibit cone-like patterns (§2.2.2).

601

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

Algorithm 1: Baseline A★ and RASExp’s extension.

RASExp’s prediction mechanism is very simple: the path will

grow in the same direction as it grew in the last step. Therefore,

whenever a node is expanded, RASExp finds out the direction that

led to the expansion, and predicts that the path will grow in the

same direction.

Algorithm 1 shows the main iteration of both the baseline A★

and RASExp’s extension. The pseudo-code depicts a multithreaded

baseline A★, as well as a multithreaded RASExp. With a CODAcc-

rich processor, each thread call gets replaced by a check_coll

instruction.

In line 01, the node with the minimum 𝑓 is expanded (§2.2.1).

Then some basic operations of A★ are performed (e.g., mark visited).

Starting at line 03, the planner looks for eligible neighbors. For

every unvisited neighbor, if its collision status is unknown, a thread

computes its collision status.

In the absence of RASExp, A★ waits for threads to join (line 18). It

then evaluates unvisited, collision-free neighbors and (potentially)

adds them to the OPEN list (lines 19–21).

RASExp (lines 07–17) tries to speculatively overlap future nodes’

collision operations with outstanding collision checks. First off, it

is done only if there are outstanding collision checks (line 07); i.e.,

RASExp does not stall the main execution thread for speculative

operations.

RASExp extracts the direction that led to current expansion (line

09), and predicts the path will grow in the same direction (lines 10

and 12). Then, as long as a free context (thread or CODAcc) exists,

RASExp runs ahead and offloads a collision detection to it (lines

11–17). The computation of these collision checks (speculative) is

overlapped with the computation of outstanding ones (demand).

Finally, to avoid livelock, RASExp uses an ll_counter, initialized

with MAX_DEPTH (line 08), and decrements it after every run-ahead,

and halts the process if it expires (line 17). In this paper, the default

MAX_DEPTH is 8. Hence, RASExp can run up to eight vertices ahead,

and perform the collision checks for each of their neighbors.

3.2.2 Discussion & Optimizations. RASExp is a radically different

parallelization approach. Hence, it opens up new opportunities and

poses different design questions.

Sophisticated Predictors: RASExp’s prediction mechanism is sim-

ple: the last direction in the GT (§2.2.2) will repeat. This can be

replaced by a sophisticated predictor to capture more complex pat-

terns (e.g., zigzag patterns). Our current workloads do not justify

such sophisticated predictors (§5.7.1); however, we believe that

complex predictors could be effective in other applications of A★

(e.g., Protein design [51], natural language processing [27]) or in

other graph search algorithms.

Hardware Prediction: One might wonder why the prediction is

not made in hardware. The answer is: while the patterns are regular

semantically, they are not so in hardware. First, as discussed in

§2.2.2, the expansion of GTs inside the graph can be interleaved; a

hardware predictor could be bewildered by this issue alone. Second,

the spatial patterns are conceptual, and the trees do not necessarily

exhibit those patterns in the memory layout. For example, consider

a tree growing in a diagonal direction: while conceptually the tree

is growing in a straight direction, the memory addresses can be

mapped to distant locations in the memory layout.

4 METHODOLOGY

We evaluate our hardware accelerator alone and in conjunctionwith

our algorithm extension, using simulation, in §5. We also evaluate

a software-only implementation of our algorithm extension on

commodity hardware (CPU and GPU) in §6.

We write CPU applications in C++17 and compile them using

GCC 11. We develop GPU applications using CUDA 11 and com-

pile them with NVCC. We compile the codes with the maximum

optimization level (-O3).

We synthesize the accelerator in TSMC’s 45-nm ASIC flow, us-

ing the Synopsys Design Compiler. We perform simulations using

ZSim [39], and model a processor after the Intel Core i3-8109U [5]—

a state-of-the-art robotic processor deployed in LoCoBot [2]. We

simulate all programs to completion.

We conduct our software-only evaluations using a 32-core Intel

E5-2670 CPU [1] and an NVidia GeForce GTX 1060 GPU [4]. We

use Ubuntu 18.04 with Linux Kernel 4.15 as our operating system.

5 EVALUATION

5.1 Accelerator’s Specifications

Table 2 shows the design parameters of CODAcc in 45-nm technol-

ogy. The ‘Power’ represents the total power at maximum activity

estimated by the synthesis tool.

Table 2: Design parameters of CODAcc.

Cycles Area Power
Component

(@3𝐺𝐻𝑧) (𝑚𝑚2) (𝑚𝑊)

Logic+Registers 5 0.019 12.1

𝐿 0 Cache 1 0.004 0.17

Total - 0.023 12.27

CODAcc has a simple, small structure: 10 × 3 × 3 registers plus

simple logic to implement operations like addition, multiplication,

602

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

and comparison. The accelerator takes 0.023𝑚𝑚2 and consumes

12.27𝑚𝑊 . As a point of comparison, in 40 nm technology, a com-

parable Intel processor’s die-size is 276𝑚𝑚2, and its power con-

sumption is 94𝑊 ; a single core of the processor alone occupies

25𝑚𝑚2 of silicon area and consumes 11𝑊 power [32]. Even tiny

ARM Cortex-A15 cores in 40 nm technology occupy 4.5𝑚𝑚2 and

consume 1𝑊 [32].

Due to its low overhead, we can integrate tens of CODAccs with

the processor. The area overhead of thirty-two CODAccs altogether

plus the cache extension (§3.1.4) is less than 0.73𝑚𝑚2 (3% of a core’s

area and 0.3% of the die-size). Also, thirty-two accelerators consume

less than 393𝑚𝑊 at full load (3.5% of a core’s power and 0.5% of

chip power).

5.2 Mobile Robot Navigating in 2D

First, we evaluate a mobile robot navigating in 2D environments.

The program resembles a self-driving car navigating in a city. We

use snapshots of four cities available in Moving AI [42]. Figure 3

(top) shows snapshots of the environments, and Figure 3 (bottom)

shows RACOD’s speedup on them, varying the number of accelera-

tors.

0

10

20

30

40

1 2 4 8
1
6

3
2

0

10

20

30

40

1 2 4 8
1
6

3
2

0

10

20

30

40

1 2 4 8
1
6

3
2

0

10

20

30

40

1 2 4 8
1
6

3
2

Sp
ee
du

p

Accelerators Accelerators Accelerators Accelerators

Bo
st
on

Lo
nd

on

M
os
co
w

Sh
an

gh
ai

Sp
ee
du

p

Sp
ee
du

p

Sp
ee
du

p

Figure 3: 2D navigation in the wild.

For every map, we choose 100 random start/goal points. The

graph is 8-connected, and a multithreaded A★ is the baseline al-

gorithm. In the baseline implementation, 67.3% of the entire path

planning time is spent in collision detection.

One CODAcc alone improves performance by 1.49×. This is the
speedup of pure hardware acceleration (no RASExp), obtained from

parallelizing individual collision checks. RASExp further enhances

performance by parallelizing different collision checks. RASExp

greatly scales up the parallelism, achieving 41.4× speedup with 32

CODAccs.

Interestingly, we observe similar normalized speedups with dif-

ferent maps. This mainly emanates from the high prediction cov-

erage/accuracy of RASExp (see §5.7.1), which results in predicting

enough correct nodes in all the environments and thereby effectively

keeping all the accelerators utilized (see §5.8). As a result, RACOD

brings linear speedup proportionate to speculation runahead across

all the maps.

5.3 Exploration Footprint

Figure 4 shows an approximation of all the nodes explored during

the search (not just the final path) in one planning scenario, where

we have zoomed-in on part of the full map. As shown, the majority

of speculations are accurate (green), with only a few misspecula-

tions (red) typically happening on the fringe of heavily-explored

areas.

Demand

Fatt Cones

Narroww Cones

Correct Spec. Wrong Spec.

Figure 4: Cone-like patterns in a Boston snapshot, with a

runahead of 32.

The figure also visualizes cone-like patterns: fat cones (when the

planner struggles to find an efficient path through a cluttered area),

and narrow cones (when the planner keeps exploring an uncluttered,

straight-line path towards the goal).

By running ahead of a path and proactively evaluating neighbors

of prospective nodes, RASExp effectively captures the exploration

patterns (quantitative results in §5.7).

5.4 Mobile Robot Navigating in 3D

Next, we evaluate a mobile robot navigating in a 3D environment.

The program resembles an unmanned aerial vehicle (UAV), a.k.a.

drone, navigating in an outdoor environment. We use the ‘Freiburg

campus’ map available in the OctoMap 3D scan dataset [47] as our

environment. The resolution of the map is 0.2𝑚 . Figure 5 shows the

environment (left) and RACOD’s performance improvement with

different numbers of accelerators (right).

0

10

20

30

40

1 2 4 8 16 32

Sp
ee
du

p

Accelerators

Figure 5: A map of the environment and the performance

improvement.

We choose 10 random start/goal points. The UAV can move

back and forth in all three dimensions. On average, the baseline

spends 54% of the entire path planning time performing collision

detections.

One CODAcc alone accelerates planning by 1.24×. With RASExp,

RACOD substantially scales up the parallelism, providing 34.3×
speedup with 32 CODAccs.

603

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

5.5 Robotic Arm Operating in 3D

As a proof of concept for our accelerator’s applicability to a wider

domain, we further study a robotic arm planning application: a

stationary robotic arm with multiple degrees-of-freedom (DoF) op-

erating in a 3D environment.

Robotic arm planning has as many dimensions as its DoF. High-

dimensional planning is performed by sampling the configuration

space. Rapidly-exploring Random Trees (RRT) [29] is a widely-used

robotic arm planning algorithm. The main advantage of RRT over

former methods like PRM [25] is the ability to work in arbitrary

environments, which is also a major design consideration of our

accelerator.

RRT extends a tree (not a more general graph, as in mobile robots)

from the start point by drawing random samples; the tree is ex-

tended towards collision-free samples until reaching the goal.

Wemodel a robotic arm based on an in-house 5-DoF LoCoBot [2],

operating in the environment shown in Figure 6 (left), planned

by a state-of-the-art parallel RRT [28]. The arm moves from 𝑠 =
(−80◦, 0◦, 0◦, 0◦, 0◦) to 𝑔 = (0◦, 60◦,−75◦,−75◦, 0◦). With this (𝑠, 𝑔)
pair, the arm traverses a long trajectory with different types of

movement (translation and rotation), forming various configura-

tions for collision detection. On average, the baseline spends 80.5%
of the planning time in collision detection. The robot is bounded

by the OBBs shown in Figure 6 (middle). Figure 6 (right) plots the

speedup with 1–4 accelerators.

3.0
3.2
3.4
3.6
3.8
4.0

1 2 3 4

Sp
ee
du

p

Accelerators

Figure 6: The modeled robot and environment (left), Lo-

CoBot’s OBBs (middle), and the performance improvement

of hardware acceleration (right).

Note that RASExp is not applicable nor needed in RRT . Since RRT

creates a tree, not a graph, there is no need to search the structure

to find a path. The path is simply extracted by traversing each

node’s parent pointers from the goal to the start. Nevertheless,

multiple CODAccs can enable parallel collision status computation

of different links of the arm.

One CODAcc improves the execution time by 3.4×. With in-

creasing the number of CODAccs up to the number of OBBs, the

performance increases slightly, up to 3.8×.

5.6 CPU-Accelerator Communication Latency

When an accelerator is not tightly integrated with the CPU, the com-

munication latency can go up and hurt the performance, sometimes

rendering the accelerator harmful [18].

In this section, we evaluate three communication latency num-

bers: 1 cycle (tightly integrated, default), 10 cycles (co-processor,

system-on-chip), and 100 cycles (off-chip). In the two latter cases,

we assume the communications are explicitly established by the

programmer: the programmer copies all the configurations that

should be tested for collision into a buffer, triggers the accelerator,

and gathers all the results at once when they are ready.3 Also, the

communications have blocking semantics, meaning the processor

waits for the operation to finish before proceeding. Figure 7 shows

the results. With ‘1 CODAcc,’ all robots have only one accelerator,

and in ‘32/4 CODAccs,’ the mobile robot has 32 accelerators and the

arm has 4.

-1
1
3
5
7
9

Mobile
2D

Mobile
3D

Arm
3D

Mobile
2D

Mobile
3D

Arm
3D

1 CODAcc 32/4 CODAccs

N
or

m
al

iz
ed

Pe

rf
or

m
an

ce

1 Cycle 10 Cycles 100 Cycles

1
8

.7
4

1
.4

1
5

.9
3

4
.3

0

Figure 7: Speedup sensitivity to CPU-accelerator communi-

cation latency.

When the system has only one accelerator, the performance

is very sensitive to communication latency. When the number of

accelerators (runahead/parallelism) increases, the communication

overhead gets amortized, especially in mobile robots in which 32

CODAccs are deployed.

5.7 Prediction Coverage and Accuracy

5.7.1 Semantic Predictor. Recall that RASExp uses semantic infor-

mation and is implemented in software (§3.2). Figure 8 (top) shows

its prediction accuracy (bars) and coverage (dots) with different

runaheads (𝑅). Prediction accuracy is the percentage of predictions

whose computation result is eventually used by the planning algo-

rithm. Prediction coverage is the percentage of speculated collision

checks that must otherwise (i.e., without RASExp) be done non-

speculatively.

Semantic Prediction

Hardware Prediction

Figure 8: Prediction accuracy/coverage (bars/dots) with dif-

ferent runaheads.

With a runahead of two, 95.1% of predictions are accurate, sub-

stantiating our observation on conceptual, semantic spatial locality

in node expansions. Also, the prediction coverage is 43.4%. With in-

creasing the runahead, RASExp becomes more aggressive, offering

higher coverage and slightly lower accuracy. With a runahead of

thirty-two, RASExp’s coverage reaches 90.9%, while offering more

than 85.1% accuracy.

3Copying latency is assumed to be captured in communication latency.

604

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

Incorrect predictions result in energy wastage, as the collision

status is computed but never used. Nonetheless, because the pre-

diction accuracy is so high, and the CODAccs, on which misspec-

ulations run, are so low power, the energy wastage of RASExp is

quite negligible (�0.01% of chip power).

5.7.2 Hardware Predictor. Next, we study the effectiveness of RASExp

implemented in hardware. Since child-parent relations are lost,

RASExp’s simple prediction method cannot be used in hardware. In

Figure 8 (bottom), we study RASExp with a state-of-the-art hard-

ware predictor.

We repurpose VLDP [40], a state-of-the-art pattern prefetcher,

to predict future states in planning. We make several changes to

VLDP’s design: (i) We use infinite-size metadata tables. (ii) We

trigger the predictor only upon collision detection accesses; this

lets the predictor observe one clear-cut access stream, rather than

many interleaved streams. (iii) The predictor operates on virtual

addresses. (iv) The predictions are stored in infinite storage (prefetch

buffer in prefetching terminology). All four changes are in favor of

the prediction accuracy and coverage of hardware prediction.

The coverage and accuracy of semantic prediction are signif-

icantly higher than those of hardware prediction: 2.1× coverage

and 2× accuracy on average. This is particularly true in the drone

application where the addition of a third dimension completely

bewilders the hardware predictor. The results reinforce the impor-

tance of exploiting semantic information that is difficult to extract

in hardware.

Noteworthy, footprint-based spatial pattern predictors [23] could

not be repurposed for this experiment. Those predictors collect

patterns when the tracked region is evicted from the cache, while

the notion of cache does not exist in this problem. Also, temporal

prediction [13] would be meaningless in this context since collision

detection sequences never repeat: there is at most one collision

check per state.

5.8 Division of Labor

The bars in Figure 9 show the average number of useful collision

checks per node expansion. Demand represents the collision checks

performed by the baseline algorithm, and speculative represents

those issued by RASExp.With increasing runahead, the contribution

of the speculative computations goes up: more on-the-critical-path

collision checks are performed speculatively ahead of time, and as

a result, the planning is less stalled on every expansion.

Figure 9: Division-of-labor, varying the number of accelera-

tors.

The solid dots in Figure 9 show the utilization ratio of the accel-

erators (threads) in non-idle expansions, i.e., expansions in which

at least one collision detection is performed. With a handful of

accelerators (2–8), the utilization ratio is nearly 100%, showing

that the amount of parallelism with the baseline algorithm plus

the additional parallelism provided by RASExp is high enough to

always keep the accelerators busy. With more accelerators, the uti-

lization ratio decreases, mainly because of the livelock-avoidance

mechanism (§3.2.1).

5.9 Weighted A★ & Different Heuristics

A★ is guaranteed to find the shortest path (optimal), with the min-

imum number of expansions (optimally efficient [16]). However,

not all applications require finding the shortest path: some appli-

cations favor a suboptimal path to an optimal path, if finding the

suboptimal path is significantly faster.

Weighted A★ (WA★) [38] is the most popular satisfying algo-

rithm for heuristic search in various domains [46]. WA★ inflates

the heuristic by a factor of 𝜀 > 1. That is, WA★ expands nodes in

the order of 𝑓 (𝑣) = 𝑔(𝑣) + 𝜀 × ℎ(𝑣). This way, the search is biased

towards the nodes that are closer to the goal, resulting in faster

expansion of the goal. On the flip side, the final path cost could

become 𝜀 times higher than the shortest path cost.

Moreover, prior work proposes various heuristics ℎ(𝑣). So far,

we used Euclidean distance as our heuristic. In this section, we re-

evaluate the experiments of §5.2 with two other popular 2D heuris-

tics: Manhattan distance and non-uniform diagonal distance [10].

We also evaluate the Dijkstra search algorithm, which does not use

any heuristics.

Figure 10 shows speedup (bars) and prediction coverage (dots)

with different heuristics and weights, averaged across all workloads.

The speedup is the performance of every method with RACOD

normalized to that without RACOD. All evaluations are done with

32 threads/accelerators.

0%

25%

50%

75%

100%

0

10

20

30

40

50

ε=1 ε=2 ε=4 ε=1 ε=2 ε=4 ε=1 ε=2 ε=4

Dijkstra Manhattan Diagonal Euclidean

Pr
ed

ic
tio

n
C
ov

er
ag

e

R
A

C
O

D
's

 S
pe

ed
up

Figure 10: RACOD’s effectiveness with WA★ and different

heuristics.

RACOD consistently brings significant speedup for all methods,

showing its applicability to a wide range of algorithms and heuris-

tics. With increasing the weight (𝜀), the improvement (slightly)

drops, particularly because of the reduced prediction coverage,

which itself is caused by the fact that fewer nodes are expanded

with larger 𝜀 values.
Not shown in the figure, inflating the heuristic by a factor of

2/4 accelerates planning by 1.6×–2.2×/2×–3.8×. Also, Dijkstra is
on average 25× slower than A★, and the performance of different

heuristics is within 1.2×–5.3× of each other.

5.10 L0 Cache Configuration

Figure 11 shows 𝐿0 hit ratios with different sizes. As shown, a 256 B

cache is sufficient to filter the majority of requests.

605

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

0%

25%

50%

75%

100%

64B 128B 256B 512B 1KB

H
it

R
at

io

L0 Cache Size

Mobile 2D Mobile 3D Arm 3D

Figure 11: 𝐿0 cache hit ratio with varying 𝐿0 size.

Note that the major benefit of 𝐿0 is lifting bandwidth pressure

from the core’s 𝐿1 cache. Latency is of less concern because: (i)

all the requests are generated in parallel and their latency, in case

missed in 𝐿0, gets well overlapped, and (ii) 𝐿0 misses are often

served by the 𝐿1, whose latency is not high.

5.11 Controlling Prediction Aggressiveness

RASExp’s predictionmechanism is aggressive: it is always triggered—

this gives the highest coverage/performance in the evaluated bench-

mark environments. But in some rocky environments with frequent,

irregular direction changes, or with platforms with severe power

constraints, it might be beneficial to throttle the predictor in or-

der to avoid making numerous wrong predictions. To reduce the

aggressiveness, RASExp employs this algorithm: the predictor is

triggered only if the path leading to the expanded node was stable

for at least 𝑠 steps. E.g., with 𝑠 = 3, the predictor is triggered only if

a node’s expansion direction is the same as the expansion direction

of its parent and its parent’s parent.

We create synthetic city-resembling maps (§5.2), in which, with

a probability of 10%–70%, we inject random obstacles to an initially

free space. Figure 12 shows how the prediction accuracy (left) and

coverage (right) of RASExp vary. In this experiment, the runahead

is 32.

Figure 12: Prediction throttling impact with different obsta-

cles densities, varying the predictor trigger threshold 𝑠.

RASExp’s throttling mechanism is quite effective: with 𝑠 = 4, it

successfully harnesses the predictor’s aggressiveness such that even

in an environment with 70% random obstacles, the accuracy is still

above 50%. On the flip side, the coverage drops as a result of reduced

prediction opportunities.

Another important takeaway of this experiment is the signifi-

cant difference in prediction accuracy/coverage numbers between

synthetic and realistic environments (e.g., with 𝑠 = 1, 39%/68% ac-

curacy/coverage for the 70%-random environment versus 85%/90%

for the benchmarks). As discussed in §2.2.2, the organization of real

environments is not so irregular that it would destroy patterns that

emanate from geometric features of path planning.

6 RUNAHEAD MULTITHREADING

Parallelizing path search algorithms like Dijkstra, A★, and WA★

is not straightforward, because the optimality (or 𝜀-optimality) of

the algorithm depends on the expansion order. Naively parallelizing

different expansions can potentially disturb the correct expansion

order and greatly sacrifice the optimality. Prior work [12, 19, 22, 26,

37, 43, 44] proposes methods for safe parallelization of expansions.

For example, PA★SE [37] parallelizes the expansion of independent

states: if the expansion of 𝑠 cannot lead to a shorter path to 𝑠 ′,
and vice-versa, they are independent and their expansions can be

reordered (safely parallelized).

RASExp is a fundamentally different approach. It does not change

the expansion order and is faithful to the underlying algorithm’s

execution flow. It predicts future expansions, pre-computes their

collision status, and memoizes them for when the actual expan-

sion takes place: no expansion order is changed. In fact, RASExp

is a speculation technique, necessarily done at the algorithm level.

Speculation never changes a program’s behavior but accelerates it.

Figure 13-(a, b) show the speedup of (i) A★ with Baseline Mul-

tithreading (BM) (on expansion, all the node’s eligible neighbors

are evaluated in parallel), (ii) PA★SE [37], and (iii) A★ with RASExp,

over the corresponding single-threaded implementation on CPU

and GPU platforms. In this experiment, we consider the average of

the mobile robot workloads.

0
2
4
6
8

10

1 2 4 8 16 32

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Number of CPU Threads

0

5

10

15

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0
1
2
3
4
5

1 2 4 8 16 32 64 128 256 512N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

Number of GPU Threads

BM PA*SE RASExp

39.9

(a)

(b)

(c)

Figure 13: Performance comparison of different platforms

and configurations. All but RACOD are commodity hard-

ware.

On the Xeon CPU, BM has limited speedup: 9% speedup with

32 threads. The reason is the severely limited parallelism of the

baseline path search algorithm (§2.2.1). PA★SE fails to significantly

improve performance: 45% speedup with 32 threads. PA★SE suffers

from two fundamental issues: (i) There are not enough independent

states when running the planning algorithm to fully utilize all

available cores (the evaluations in [37] were only up to 8 cores). (ii)

The overhead of finding independent states is high; this issue is

acknowledged in [37], but because the authors’ evaluations were

on a large PR2 robot [14] with too high resolution, the cost was

amortized to an extent.

By accurately predicting future expansions, RASExp significantly

improves performance, decisively outperforming the other two.

606

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

With 32 threads, RASExp improves performance by 9.44×/8.59×/6.5×
over single-threaded/BM/PA★SE.

On the GeForce GPU, more threads are available. As such, we

relax the livelock-avoidance mechanism, and set MAX_DEPTH=64,

which results in discovering (theoretically) up to 64 × 8 = 512 nodes

during speculation.

As the GPU results show, BM exhibits a similar behavior for the

reasons outlined above. The performance improvement of RASExp

is not as significant as on the CPU. There are two major reasons: (i)

A larger portion of the execution time is spent in the serial part of

the algorithm, because it is significantly GPU-averse (e.g., giga-scale

data structures, pointer chasing during insertions). (ii) Collision

detection on multiple GPU threads generates a large number of

branch divergences, since threads check different parts of the en-

vironment whose occupancy status could be different. Also, we

observe performance degradation after 128 threads; the prediction

accuracy significantly drops (17.3% with a runahead of 256) and the

speculation overhead (lines 11–17 in Algorithm 1) grows.

PA★SE is totally inefficient on the GPU; its execution time is an

order of magnitude longer than the single-threaded baseline. The

main reasons are: (i) Checking independence conditions, which is

done serially for a large number of nodes, take a huge amount of

time. (ii) PA★SE’s need for larger and more numerous data struc-

tures (e.g., set to track being-expanded nodes) makes the method

more GPU-averse than the baseline.

Figure 13-(c) compares the performance of the CPU and GPU

platforms with that of RACOD. The CPU and GPU software enjoy

RASExp with runaheads of 32 and 128, respectively; these config-

urations offer the maximum performance that we can achieve on

high-end CPUs and GPUs, without hardware modifications. Our

proposal, RACOD, offloads the collision detection operations on

32 CODAccs and runs the rest of the planning on a low-end Intel

Core i3-8109U Processor [5], a typical processor used in modern

robotic systems like the modeled LoCoBot [2]. The performance

metric is the wall clock time of the execution, and is normalized to a

software-only baseline (no CODAcc, multithreaded but no RASExp),

executed on an Intel Core i3-8109U [5].

The GPU platform is clearly unfit for mobile robot path planning,

because the software is significantly GPU-averse. The CPU plat-

form with high-performance cores is able to considerably improve

the performance over the Intel Core i3-8109 baseline (13.2× on av-

erage), given that the algorithm is equipped with RASExp. However,

this performance comes at the cost of powering four processors

with 115𝑊 TDP, operating within NUMA/sockets. RACOD, using

a low-end processor with 28𝑊 TDP and 32 CODAccs that in total

consume < 0.5𝑊 , improves performance by 39.9×, outperforming

the other platforms and underscoring the importance of hardware

acceleration.

7 RELATED WORK

7.1 Hardware Acceleration for Path Planning

In the context of path planning, a few proposals design accelerators

for some narrow domains. Particularly, Murray et al. [35] devise an

FPGA-based PRM planner for a stationary robotic arm functioning

in their laboratory. They test various planning scenarios offline

and find that with only 1024 movements (called edges), > 98% of

planning scenarios in their environment can be accomplished. Then

they find the environment points from which those movements

cross and store the entire information on an FPGA. During oper-

ations, they perform collision checking for every movement by

simply checking the occupancy of the stored points in the environ-

ment. The main limitation of this approach is its tight integration

with the environment: if objects in the environment change, the

offline process, which could take hours, needs to be repeated from

scratch.

Dadu-P [31] uses a similar approach but admits some obstacle

movement rather than assuming a fixed environment. Dadu-P uses

more edges, some of which may cross obstacles in the environment

that are likely to move (e.g., a wall is not supposed to move, but a

chair is). During planning, the edges are tested for collision, based

on their latest organization.

While both approaches accelerate the planning, neither are scal-

able. Storing a large number of edges, in the evaluated 3.5𝑐𝑚−7.5𝑐𝑚

resolutions, occupies an entire Stratix V FPGA in [35] or costs

768 Kb SRAM storage in [31]. In larger environments, or in en-

vironments at the same scale but with finer-resolution planning,

much more movements would be required to cover the majority of

planning scenarios, demanding significantly larger storage.

More importantly, both approaches make restrictive assumptions

about the environment (the reachability of certain points through

certain paths, (most) obstacles never move) that do not necessarily

hold in many applications, especially in mobile robots where the

environment changes constantly and unpredictably.

7.2 Path Planning & Parallelism

A myriad of proposals in the robotics community aim at tuning

efficient algorithms and heuristics to accelerate path planning. Still,

state-of-the-art CPU and GPU proposals are not fast enough to

be considered real-time in many applications [45]. We believe our

design is applicable to a wide range of prior proposals, because it

relies on fundamental characteristics of path planning like spatial

locality in collision detection and patterns in path search.

Outside of the context of path planning, several pieces of prior

work have proposed to exploit ordered parallelism [50] by specu-

latively executing different (atomic) tasks of task-based programs:

codes with myriads of short tasks that should be executed based on

the timestamps specified by the programmer. Thread-Level Spec-

ulation (TLS) and Hardware Transactional Memory (HTM) [6, 8,

21, 24, 48] execute different tasks speculatively, committing suc-

cessful speculations and aborting wrong ones. Wrong speculations

(i.e., parallel execution of dependent tasks) are usually detected by

relying on the cache coherence protocol, and the conflicting tasks

are re-executed from scratch.

RASExp is a fundamentally different approach: it exploits ap-

plication semantics to predict future paths, rather than executing

and then monitoring shared-data accesses. Also, RASExp paral-

lelizes computationally-intensive collision detections, while TLS

andHTMparallelize short, atomic tasks. Further, RASExp does accel-

erate dependent tasks, in TLS/HTM terminology, as it proactively

evaluates an expanded node’s (grand)children, while TLS/HTM

methods avoid doing so. Finally, most TLS and HTM approaches ap-

ply heavy microarchitectural modifications to detect conflicts and

607

ISCA ’22, June 18–22, 2022, New York, NY, USA Mohammad Bakhshalipour et al.

queue/manage/recover tasks, while RASExp is a semantic technique

and does not cause conflicts.

8 CONCLUSION

Deploying robots in the wild requires the development of real-

time computational solutions. In this work, we study path plan-

ning, a core module in autonomous robots, and propose an algo-

rithm/hardware co-design to substantially improve mobile robot

path planning performance.

We exploit architectural-level computation characteristics of mo-

bile robot path planning, as well as its high-level semantic features,

to massively parallelize the kernel. Specifically, (i) we architect

cheap hardware accelerators to exploit fine-grained parallelism and

spatial locality in costly collision detection operations, and (ii) we

enable proactive exploration by semantically predicting directions

along the search path. Our future work is focusing on other applica-

tion kernels in real-time robotics [9], exploring similar architectural

and semantic acceleration techniques.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foundation

grant CCF-2028949, by a VMware University Research Fund Award,

and by the Parallel Data Lab (PDL) Consortium (Alibaba, Amazon,

Datrium, Facebook, Google, Hewlett-Packard Enterprise, Hitachi,

IBM, Intel, Microsoft, NetApp, Oracle, Salesforce, Samsung, Seagate,

and TwoSigma). Mohammad Bakhshalipour was supported by the

Apple CMU ECE PhD Fellowship in Integrated Systems. We would

like to thank the anonymous reviewers for their valuable comments.

REFERENCES
[1] 2012. Intel Xeon Processor E5-2670. https://ark.intel.com/content/

www/us/en/ark/products/64595/.
[2] 2012. LoCoBot: An Open Source Low Cost Robot. http://www.locobot.

org/.
[3] 2015. Arduino Ant Hexapod Robot. https://antdroid.grigri.cloud/.
[4] 2016. GeForce GTX 1060. https://www.nvidia.com/en-in/geforce/

products/10series/geforce-gtx-1060/.
[5] 2018. Intel Core I3-8109U Processor. https://ark.intel.com/content/

www/us/en/ark/products/135936/.
[6] Maleen Abeydeera and Daniel Sanchez. 2020. Chronos: Efficient Spec-

ulative Parallelism for Accelerators. In International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS).

[7] Ron Alterovitz, Sven Koenig, and Maxim Likhachev. 2016. Robot
Planning in the Real World: Research Challenges and Opportunities.
AI Magazine (2016).

[8] Sotiris Apostolakis, Ziyang Xu, Greg Chan, Simone Campanoni, and
David I August. 2020. Perspective: A Sensible Approach to Speculative
Automatic Parallelization. In International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS).

[9] Mohammad Bakhshalipour, Maxim Likhachev, and Phillip B. Gibbons.
2022. RTRBench: A Benchmark Suite for Real-Time Robotics. In IEEE
International Symposium on Performance Analysis of Systems and Soft-
ware (ISPASS). https://cmu-roboarch.github.io/rtrbench.

[10] Sven Behnke. 2003. Local Multiresolution Path Planning. In Robot
Soccer World Cup.

[11] Joshua Bialkowski, Sertac Karaman, and Emilio Frazzoli. 2011. Mas-
sively Parallelizing the RRT and the RRT∗. In International Conference
on Intelligent Robots and Systems (IROS).

[12] Ethan Burns, Seth Lemons, Wheeler Ruml, and Rong Zhou. 2010. Best-
First Heuristic Search for Multicore Machines. Journal of Artificial
Intelligence Research (2010).

[13] Trishul M. Chilimbi and Martin Hirzel. 2002. Dynamic Hot Data
Stream Prefetching for General-Purpose Programs. In Proceedings of

the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation.

[14] Steve Cousins. 2010. ROS on the PR2 [ROS Topics]. IEEE Robotics &
Automation Magazine (2010).

[15] Sina Darabi, Negin Mahani, Hazhir Baxishi, Ehsan Yousefzadeh-Asl-
Miandoab, Mohammad Sadrosadati, and Hamid Sarbazi-Azad. 2022.
NURA: A Framework for Supporting Non-Uniform Resource Accesses
in GPUs. Proceedings of the ACM on Measurement and Analysis of
Computing Systems (2022).

[16] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search
Strategies and the Optimality of A. Journal of the ACM (JACM) (1985).

[17] Christer Ericson. 2004. Real-Time Collision Detection.
[18] Hadi Esmaeilzadeh, Adrian Sampson, Luis Ceze, andDoug Burger. 2012.

Neural Acceleration for General-Purpose Approximate Programs. In
International Symposium on Microarchitecture (MICRO).

[19] Matthew Evett, James Hendler, Ambuj Mahanti, and Dana Nau. 1995.
PRA*: Massively Parallel Heuristic Search. J. Parallel and Distrib.
Comput. (1995).

[20] Peter E Hart, Nils J Nilsson, and Bertram Raphael. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost Paths. IEEE
Transactions on Systems Science and Cybernetics (1968).

[21] Maurice Herlihy and J Eliot B Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In International
Symposium on Computer Architecture (ISCA).

[22] Kekib Irani and Yi-Fon Shih. 1986. Parallel A∗ and AO∗ Algorithms-
An Optimality Criterion and Performance Evaluation. In International
Conference on Parallel Processing.

[23] Hakbeom Jang, Yongjun Lee, Jongwon Kim, Youngsok Kim, Jangwoo
Kim, Jinkyu Jeong, and JaeW Lee. 2016. Efficient Footprint Caching for
Tagless Dram Caches. In International Symposium on High-Performance
Computer Architecture (HPCA).

[24] Mark C. Jeffrey, Suvinay Subramanian, Cong Yan, Joel Emer, and Daniel
Sanchez. 2015. A Scalable Architecture for Ordered Parallelism. In
International Symposium on Microarchitecture (MICRO).

[25] Lydia E Kavraki, Petr Svestka, J-C Latombe, and Mark H Overmars.
1996. Probabilistic Roadmaps for Path Planning in High-Dimensional
Configuration Spaces. IEEE Transactions on Robotics and Automation
(1996).

[26] Akihiro Kishimoto, Alex Fukunaga, and Adi Botea. 2009. Scalable, Par-
allel Best-First Search for Optimal Sequential Planning. In International
Conference on Automated Planning and Scheduling.

[27] Dan Klein and Christopher D Manning. 2003. A∗ Parsing: Fast Exact
Viterbi Parse Selection. In Human Language Technology Conference
of the North American Chapter of the Association for Computational
Linguistics.

[28] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio
Frazzoli, and Jonathan P How. 2009. Real-Time Motion Planning with
Applications to Autonomous Urban Driving. IEEE Transactions on
control systems technology (2009).

[29] Steven M LaValle et al. 1998. Rapidly-Exploring Random Trees: A New
Tool for Path Planning. (1998).

[30] Jiaoyang Li, Zhe Chen, Daniel Harabor, P Stuckey, and Sven Koenig.
2021. Anytime Multi-Agent Path Finding Via Large Neighborhood
Search. In International Joint Conference on Artificial Intelligence (IJ-
CAI).

[31] Shiqi Lian, Yinhe Han, Xiaoming Chen, Ying Wang, and Hang Xiao.
2018. Dadu-P: A Scalable Accelerator for Robot Motion Planning in a
Dynamic Environment. In Design Automation Conference (DAC).

[32] Pejman Lotfi-Kamran, Boris Grot, Michael Ferdman, Stavros Volos,
Onur Kocberber, Javier Picorel, Almutaz Adileh, Djordje Jevdjic, Sachin
Idgunji, Emre Ozer, et al. 2012. Scale-Out Processors. (2012).

[33] Samuel Moore. 2019. 3 New Chips to Help Robots Find Their Way
Around. IEEE Spectrum (2019).

[34] Sean Murray, Will Floyd-Jones, George Konidaris, and Daniel J Sorin.
2019. A Programmable Architecture for Robot Motion Planning Ac-
celeration. In International Conference on Application-specific Systems,
Architectures and Processors (ASAP).

[35] Sean Murray, William Floyd-Jones, Ying Qi, George Konidaris, and
Daniel J Sorin. 2016. The Microarchitecture of a Real-Time Robot
Motion Planning Accelerator. In International Symposium on Microar-
chitecture (MICRO).

[36] Sean Murray, Will Floyd-Jones, Ying Qi, Daniel J Sorin, and
George Dimitri Konidaris. 2016. Robot Motion Planning on a Chip. In
Robotics: Science and Systems.

608

RACOD: Algorithm/Hardware Co-design for Mobile Robot Path Planning ISCA ’22, June 18–22, 2022, New York, NY, USA

[37] Mike Phillips, Maxim Likhachev, and Sven Koenig. 2014. PA∗SE: Par-
allel A∗ for Slow Expansions. In Proceedings of the International Con-
ference on Automated Planning and Scheduling.

[38] Ira Pohl. 1970. Heuristic Search Viewed As Path Finding in a Graph.
Artificial intelligence (1970).

[39] Daniel Sanchez and Christos Kozyrakis. 2013. ZSim: Fast and Ac-
curate Microarchitectural Simulation of Thousand-Core Systems. In
International Symposium in Computer Architecture (ISCA).

[40] Manjunath Shevgoor, Sahil Koladiya, Rajeev Balasubramonian, Chris
Wilkerson, Seth H Pugsley, and Zeshan Chishti. 2015. Efficiently
Prefetching Complex Address Patterns. In International Symposium on
Microarchitecture (MICRO).

[41] Egor Shipovalov and Valentin Pryanichnikov. 2020. Scalable State
Space Search on the GPU with Multi-Level Parallelism. In 2020 19th In-
ternational Symposium on Parallel and Distributed Computing (ISPDC).

[42] Nathan R Sturtevant. 2012. Benchmarks for Grid-Based Pathfinding.
IEEE Transactions on Computational Intelligence and AI in Games (TCI-
AIG) (2012).

[43] Richard Anthony Valenzano, Nathan Sturtevant, Jonathan Schaeffer,
Karen Buro, and Akihiro Kishimoto. 2010. Simultaneously Searching
with Multiple Settings: An Alternative to Parameter Tuning for Sub-
optimal Single-Agent Search Algorithms. In International Conference
on Automated Planning and Scheduling.

[44] Vincent Vidal, Lucas Bordeaux, and Youssef Hamadi. 2010. Adap-
tive K-Parallel Best-First Search: A Simple but Efficient Algorithm for
Multi-Core Domain-Independent Planning. In Annual Symposium on

Combinatorial Search.
[45] Zishen Wan, Bo Yu, Thomas Yuang Li, Jie Tang, Yuhao Zhu, Yu Wang,

Arijit Raychowdhury, and Shaoshan Liu. 2020. A Survey of FPGA-
Based Robotic Computing. arXiv preprint arXiv:2009.06034 (2020).

[46] Christopher Makoto Wilt and Wheeler Ruml. 2012. When Does
Weighted A* Fail?. In SOCS.

[47] Kai M Wurm, Armin Hornung, Maren Bennewitz, Cyrill Stachniss,
and Wolfram Burgard. 2010. OctoMap: A Probabilistic, Flexible, and
Compact 3D Map Representation for Robotic Systems. In Proc. of the
ICRA 2010 workshop on best practice in 3D perception and modeling for
mobile manipulation.

[48] Victor A Ying, Mark C Jeffrey, and Daniel Sanchez. 2020. T4: Compiling
Sequential Code for Effective Speculative Parallelization in Hardware.
In International Symposium on Computer Architecture (ISCA).

[49] Bo Yu, Wei Hu, Leimeng Xu, Jie Tang, Shaoshan Liu, and Yuhao Zhu.
2020. Building the Computing System for Autonomous Micromobil-
ity Vehicles: Design Constraints and Architectural Optimizations. In
International Symposium on Microarchitecture (MICRO).

[50] Zhijia Zhao, Bo Wu, and Xipeng Shen. 2014. Challenging the "Embar-
rassingly Sequential": Parallelizing Finite State Machine-Based Com-
putations Through Principled Speculation. In International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS).

[51] Yichao Zhou, Wei Xu, Bruce R Donald, and Jianyang Zeng. 2014. An
Efficient Parallel Algorithm for Accelerating Computational Protein
Design. Bioinformatics (2014).

609

