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Getting Permission’

By PEICONG HU AND JOEL SOBEL

A manager has access to expert advisers. The manager selects at
most one project and can implement it only if one expert provides
support. The game in which the manager consults experts simulta-
neously typically has multiple equilibria, including one in which at
least one expert supports the manager’s favorite project. Only one
outcome, the experts’ most preferred equilibrium outcome, survives
iterated deletion of weakly dominated strategies. We show that no
sequential procedure can perform better for the manager than the
experts’ most preferred equilibrium and exhibit a sequential protocol
that does as well. (JEL C72, D23, D82)

We study situations in which an individual cannot carry out a task without expert
assistance. We focus on applications in which a conflict of interest may interfere
with the ability of the individual to achieve his most preferred outcome but in which
he can leverage competition between experts to improve his outcome.

The elements of the model are a finite set of projects, a finite set of experts, and
a manager. The experts and manager have preferences defined over projects. The
manager wishes to carry out a project but can do so only if an expert supports it.
We are interested in the relationship between how the manager requests support
and the project selected. If no expert supports any project, then the outcome is the
status quo. Otherwise, the manager implements the best project consistent with the
experts’ approvals. Consider two alternative organizations. In the first organization,
the manager asks experts to report simultaneously which of the projects they will
support. In the second organization, the manager consults experts sequentially. In
the first case, provided that there are at least two experts, there is always an equilib-
rium in which the manager receives the support needed to carry out his favorite proj-
ect. If one expert supports this project, then the manager will ignore the behavior of
the other experts. So it is a best reply for all of the other experts to support the man-
ager’s favorite. Sequential consultation may not work as well for the manager. In
particular, if there is a project that all experts prefer to the manager’s favorite, then
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sequential consultation will never provide the manager with permission to carry out
his favorite project.

We want to know how the manager should organize consultation to maximize his
payoft. Naively, the result that the simultaneous-move game includes an equilibrium
that supports the manager’s favorite outcome provides an answer to this question:
the manager achieves his best possible outcome by consulting simultaneously. We
believe that the manager-preferred equilibrium is an implausible prediction in many
cases, however. We prove that experts have common preferences over equilibria
(even if they have conflicting preferences over projects). The experts’ preferences
over equilibria are completely opposed to the preferences of the manager; that is, if
the manager prefers equilibrium project x to x’, then all experts prefer x to x. (If an
expert preferred project x to project x’, then x’ could not be an equilibrium outcome
because the expert who preferred x could deviate and support x.) An equilibrium
refinement (iterated deletion of weakly dominated strategies) selects the experts’
preferred equilibrium.! Hence, the refinement rejects the manager’s preferred out-
come whenever another equilibrium exists. Section III presents the results. On the
basis of the weak-dominance refinement (and intuition), we view the experts’ pre-
ferred equilibrium as the most plausible outcome of the simultaneous-move game.
This raises two questions. First, what is the value of having an additional expert? If
we selected the manager-preferred equilibrium, the answer to the question is sim-
ple. Going from one expert to two experts is valuable (unless the manager’s favorite
task is also the initial expert’s favorite task). Adding a third expert, however, has
no value. When we focus on the expert-preferred equilibrium, adding experts may
lead to a more attractive outcome for the manager. Our characterization implies that
the manager gains by adding an additional expert if doing so makes the experts’
preferred equilibrium more attractive to the manager. If x is the prediction of the
simultaneous-move game with a fixed set of experts, adding an additional expert
benefits the manager if there exists a project x’ that both the manager and the new
expert prefer to x.

The second question we study is whether an alternative organization could do
better for the manager than the simultaneous game. Because our prediction for the
simultaneous-move game is typically less than the manager’s most preferred option,
there is a chance that other procedures would work better. Furthermore, sequential
consultations are the norm in some applications (e.g., obtaining a second opinion on
medical procedures), so we were interested to know if there is a justification for this
behavior in our setting. We identify an optimal sequential procedure (within a class
of procedures that, like the simultaneous game, do not allow the decision-maker to
limit the set of projects that experts can support) that does as well for the manager
as the simultaneous game. No other sequential procedure can do better than it; that
is, a properly designed sequential organization does at least as well as, but no better
than, simultaneous consultation. We show that the following procedure performs as
well as simultaneous consultation. Suppose there are K projects and the manager
has strict preferences. In round r of the procedure, the manager approaches the first
expert and stops if she supports one of the manager’s r favorite projects. If she does

!'The result requires an assumption that holds for generic preferences that we assume throughout the paper.
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not, he consults the experts in order, stopping if one of them supports one of the r
best projects. If, after round r, the manager has not received support for one of his
r best projects, round r + 1 begins. The procedure stops after (at most) K rounds.

A special case provides intuition for the results. Suppose the projects are ordered
so that the manager prefers the greatest project and experts have single-peaked
preferences over projects; that is, expert i is characterized by an optimal project
x;. Her preferences increase for x < x; and decrease thereafter. In this setting,
projects greater than x; are weakly dominated and the salient prediction for the
simultaneous-move game is that the manager will implement the maximum of the
x;. Even if preferences are not single peaked, the equilibrium cannot result in a proj-
ect less than the maximum x; because otherwise an expert would have a profitable
deviation. Will the manager actually do better? The answer is plainly “yes” if the
maximum x; is not an equilibrium task. It will fail to be an equilibrium if there exists
an expert j who prefers some project x; > max;x; to max;x;.

Both the simultaneous and sequential procedures that we consider limit the abil-
ity of the manager to restrict the projects that the experts can approve. Specifically,
an expert can support any project when consulted. The manager would benefit from
the ability to restrict recommendations. For example, suppose there are three proj-
ects: a status quo project, an intermediate project that is the favorite of all experts,
and the manager’s favorite project that exactly one expert prefers to the status quo.
The intermediate project will be the equilibrium outcome that survives our refine-
ment in the simultaneous-move game and also under the sequential protocol that
we described. If experts could approve only the status quo or the manager’s favorite
outcome, however, then the manager would obtain his favorite. In Hu and Sobel
(forthcoming), we permit the manager to prevent experts from approving certain
projects. We show that limiting the options of the experts is strictly beneficial for
the manager in both sequential and simultaneous consultations. We show that there
is a sequential procedure with commitment that leads to the same project as the
simultaneous-move game with commitment.

We organize the remainder of the paper as follows. Section I describes the basic
model. Section II describes different interpretations of the model. Section III con-
tains the analysis of the simultaneous-move game. Section IV contains the analysis
of the sequential game. Section V describes related literature.

I. Underlying Strategic Environment

There is a finite set of players, who we call experts. I denotes the finite player
set.” We assume that there is a finite set X C R available to each player. We call
elements of X projects. We assume that X is ordered by the usual > relation on R.

Forx = (xi,...,x),7 x; € Xlet M(x) = max{x,, ...,x;}. Each expert i has a
payoff function i; : X! — R.J For each i, we assume that there exists u; : X — R
such that i, : X! — R is defined as ﬂi(x) = u,-(M(x)). Throughout the paper, we

2In an abuse of notation, we also let I denote the cardinality of the player set.

3We use boldface to denote profiles that consist of actions or strategies of multiple players.

4Formally, the payoff function should be defined on strategy profiles. For the simultaneous game we study in
Section IIT, X’ is the set of strategy profiles. When we study sequential games in Section IV, the strategy sets are
more general, but we still denote payoff functions by ;.
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assume that the u; are one-to-one. Because X is finite, u; will be one-to-one for a
generic set of preferences. (We say that a property is generic if it holds for an open
set of Lebesgue measure one and the property is nongeneric otherwise. In this paper,
genericity always refers to the property that utility functions are one-to-one. Hu and
Sobel (forthcoming) analyze the model for more general X and nongeneric games.)
We denote the minimum element of X by x and the maximum element by Xx.

II. Interpretation of the Model

We study strategic interactions between the experts in the strategic environment
described in Section I. The environment is abstract. We discuss several ways to
interpret the environment in this section.

A. Project Approval

Assume that (in addition to the experts) there is a manager who strictly prefers
larger projects. We interpret x as the status quo project. The manager prefers any
other project to x. The manager cannot implement a project different from the status
quo without the assistance of at least one expert. We will study strategic environ-
ments in which experts announce which project they support. When offered a vari-
ety of projects, the manager will select the maximum (his most preferred project
from the set). For this reason, we assume that experts report only a single project
and that preferences over profiles x € X’ depend only on the maximum component
of x. That is, we study a reduced form of a game in which the manager is a strate-
gic player who selects his favorite project among those offered by experts. In this
environment, there are no natural restrictions on the experts’ preferences over X. For
example, let / = 2 and X = {0,0.1, ...,0.9, 1}, where x describes a project that
generates total surplus x. If the manager cares about total surplus, then he prefers
x to x"if and only if x > x' But different projects may distribute the share of the
surplus across experts differently. This example suggests how transfers could be
compatible with our framework as long as they are included in the description of
elements of X.

There are settings in which the manager tries to get approval of projects simulta-
neously and others in which sequential consultation appears to be the rule.

B. Asking for Permission

One can interpret an expert’s strategy as permission to undertake certain activi-
ties.? (If expert i supports a project, then the manager—who we think of as a deci-
sion-maker in this application—can pursue any project no better for the manager than
this project.) Imagine that the decision-maker is a teenager and the experts are par-
ents. The teenager requires a parent to give permission for an activity (the permission
could be in the form of signing a waiver that allows the teenager to go on a school trip
or permission to use a family car or stay out late). Alternatively, a manager may need

5We thank Inés Moreno de Barreda for this suggestion.
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to secure necessary inputs from one of many divisions. The different divisions may
be semiautonomous and have different preferences. In these settings, it is natural to
assume that direct transfers are not feasible.

Our analysis identifies an equilibrium in which the decision-maker receives per-
mission to do anything he wishes but also points out that this prediction is often
implausible and identifies the equilibrium preferred by the experts as a more robust
prediction. We think the sequential protocol introduced in Section IV provides an
accurate description of what happens in settings like this.

C. Agenda Manipulation

There is a large literature on voting in committees (see, for example, Banks 1985
or Miller 1980).F In this literature, there are a finite set of projects (bills) and an
odd number of committee members (experts). Experts have strict preferences over
projects. An agenda is an ordering of the projects. An agenda induces a voting game
in which the experts first choose via majority vote between the first and second ele-
ments in the agenda and continue so that in stage n, they choose between the winner
of stage n — 1 vote and the n + 1 project. A project is a sophisticated outcome if it is
the (refined) equilibrium associated with some agenda. The literature characterizes
the set of sophisticated outcomes. The literature focuses on sequential procedures
for a technical reason and a practical reason. The technical reason is that (when
there is an odd number of voters) majority rule selects a unique winner of each pair-
wise contest but does not identify an outcome of simultaneous voting. This means
that the simultaneous game is not well defined. The practical reason is that agendas
are used in real legislatures.

One can view our problem as a version of the problem of voting on committees
when it takes only one vote to advance an alternative. This change clearly makes it
easier to obtain approval. It also provides an environment in which we can compare
outcomes from simultaneous procedures to those from sequential procedures.

D. Bayesian Persuasion

We can interpret the model as a description of persuasion with many Senders.
Assume that there is an underlying state of the world and experts provide the deci-
sion-maker with “experiments”—procedures that produce for each state of the world
a probability distribution over a set of signals observable by the decision-maker. The
decision-maker then makes a decision based on the signals he observes (and knowl-
edge of the experiments and the prior distribution on the state of the world). This
interpretation is consistent with the model of competition in persuasion in Gentzkow
and Kamenica (2017b).

Let us describe the connection in somewhat more detail. We restrict attention to
finite environments. In any Bayesian Persuasion problem, there is a given state space,
©. We create a new state space O = © x T where (6,71) € O, 1 is uniformly
distributed on a finite set 7, independent of #. A partition of ©* is an experiment

©We thank referees for this suggestion.
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(in the sense that observing an element of the partition generates a posterior distri-
bution on ©). Provided that we allow only finitely many experiments, the Bayesian
Persuasion model is described by our model, although we must extend the analysis
to partially ordered X. In models of competition in persuasion, the decision-maker
observes the realization of all experiments. In our one-dimensional model, observ-
ing the maximal experiment is equivalent to observing all experiments. In the
multidimensional extension, when experiments need not be ordered, the common
refinement of two partitions (the maximum) depends nontrivially on both partitions.
Consequently, the ability to observe all experiments is necessary.

Gentzkow and Kamenica (2017a, 2017b) study a model in which experts simul-
taneously choose how much to communicate to a decision-maker in a Bayesian
Persuasion framework. In these models, the decision-maker wants to know the value
of the state of the world, and the strategies of experts are arbitrary signals (joint
probability distributions on the state and message received by the decision-maker).
Gentzkow and Kamenica (2017b) show that adding an agent may decrease the
amount of information revelation but provide a condition under which increasing
the number of experts increases the amount of information revealed. In our envi-
ronment, additional experts are always valuable because Gentzkow and Kamenica’s
condition holds when experiments are completely ordered and all experts have
access to the same set of experiments. Gentzkow and Kamenica do not focus on
equilibrium selection, but they note the existence of multiple equilibria and the ten-
dency of experts to prefer less disclosure. Li and Norman (2021) study a sequential
version of the Gentzkow and Kamenica model. The paper provides an existence and
partial characterization result. They show that sequential persuasion results in no
more informative equilibria than simultaneous persuasion. Li and Norman (2018)
also note that the order of disclosure matters, providing an example where inserting
an additional expert into some (but not all) locations in a sequence may decrease the
amount of information disclosure.

Ravindran and Cui (2022) study a Bayesian Persuasion problem in which
Senders simultaneously select experiments. They show that if the preferences of
game between the Senders is zero sum, then generically full disclosure is the unique
equilibrium outcome. Ravindran and Cui note that the zero-sum property implies
that all Senders are indifferent between any equilibrium payoff and the full dis-
closure payoff. Using Proposition 1, it is straightforward to show that this condi-
tion guarantees that the manager’s favorite outcome is the unique outcome of the
simultaneous-move game that survives IDWDS.

III. Simultaneous Moves

In this section, we study the game in which each expert simultaneously selects
an element in X. If x = (xy, ...,x;) is the profile of projects, then expert i’s payoff

7Hu and Sobel (forthcoming) study a model with a more general X. Assuming that experts’ preferences are
quasi supermodular, many of the basic insights from this paper continue to hold. It is straightforward to give con-
ditions that guarantee quasi supermodularity in simple Bayesian Persuasion problems, but in general the condition
is restrictive.
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is ﬂi(x) = ui<M (x)) We interpret the minimum element of X, x, as a status quo. So
when expert i wishes to support no project, she uses the strategy x; = x.

Section IIIA points out basic properties of the Nash equilibria of this game.
Section IIIB describes the equilibrium refinement. Section IIIC states the charac-
terization result.

A. Basic Properties

A profile x* = (xf, ...,x]) with the property that u,(M(x")) > u;(M(x;,x"))
for all x; and all i is a Nash equilibrium profile. If x* is a Nash equilibrium, we
refer to M(x*) as an equilibrium outcome. For any equilibrium profile x*, a strategy
profile x that satisfies x; < x; and at least two x; = M(X*) is a Nash equilibrium.
The manager obtains his most preferred outcome when M(X*) is equal to the max-
imum element in X, X. Project X is always an equilibrium outcome. A strategy pro-
file in which at least two experts play X supports it. Typically, there are other Nash
equilibria.

We claim that the pure-strategy Nash equilibria are Pareto ranked from the per-
spective of the experts. In fact, if x* and x™* are equilibrium outcomes and x** >
x*, then all experts prefer x* to x™*. To see this, observe that if any expert preferred
the outcome x™* to x*, then she could deviate by using the strategy x** instead of the
strategy she uses in the equilibrium that leads to the outcome x*. Consequently, the
equilibria are Pareto ranked. Furthermore, the manager’s preferences are completely
opposed to the (common) preferences of the experts.

B. Weak Dominance

The possibility of multiple equilibria leads us to consider a more restrictive solu-
tion concept.

DEFINITION 1: Given subsets X; C X, with X' = [[ic/Xi, expert i’s strategy
x; € X/ is a best response to x_; € X', relative to X; if i(x;,x_;) > ﬂi(xi,x_i)
for all x; € X;. Expert i’s strategy x; € X| is weakly dominated relative to X' if
there exists x{ € X such that ii(x;,x_;) < d@(x/,x_;) forallx_; € X', with strict
inequality for at least one x_; € X',

DEFINITION 2: The set S = Sy X --- x 8, C X survives iterated deletion
of weakly dominated strategies (IDWDS) if for m = 0,1,2, ..., there are sets
S = 8" x - x ST, suchthatS® = X,8™ C S’”_lform > 0; 87 is obtained by
(possibly) removing strategies in S™"" that are weakly dominated relative to "',
S§™ = S™Vifand only if for each i no strategy in S™~ ! is weakly dominated relative
to SV and S; = (5, ST for each i’

For finite games, it must be the case that there exists an m such that " = S #
for all » > m. There are typically many different procedures that are consistent

8 Our notation follows these rules: superscripts denote steps in an iterated process; subscripts denote players.
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with Definition 2. These procedures may lead to different sets that survive the
process, but Proposition 1 shows under our assumptions all sets that survive lead to
the same maximum project.

We analyze the implications of applying iterated deletion of weakly dominated
strategies. Sobel (2019) introduces a class of games called WID-supermodular
games and describes general properties of strategies that survive the process of
iteratively deleting weakly dominated strategies in these games. He shows that the
simultaneous-move game is a WID-supermodular game and provides the character-
ization result that we describe next.

C. Characterization

This section characterizes the unique outcome that survives IDWDS in the
generic simultaneous-move game. We begin with some general properties of the
equilibrium set.

We have observed that the maximal project is an equilibrium outcome. There
must be a minimum equilibrium outcome because X is completely ordered and
finite. We next show that the manager prefers every project that survives iterated
deletion of weakly dominated strategies, whether it is an equilibrium outcome or
not, to the minimum equilibrium outcome. Before we describe the result, we let

*

T = min{ﬂ € X :u(m) > u;(x) forallx > 7 and all i}.

The outcome 7* is Pareto efficient (from the perspective of the experts) in the set
of Nash equilibrium payoffs.

We note several consequences of this definition. It is immediate that if 7 is an
equilibrium outcome, then = > x*. Furthermore, if X > 7, then there will be
equilibrium outcomes greater than 7*. In fact, if 7 is an outcome such that for all 7,
u (') < wuw) forall @' > m, then any strategy profile x that satisfies x; < 7 and
at least two x; = 7 is a Nash equilibrium. In particular, X is always an equilibrium

J
outcome. The next result asserts that outcomes = > 7* fail to satisfy a refinement.

PROPOSITION 1: If x is a strategy profile that survives IDWDS in the

simultaneous-move game, then M(X) = 7"

The proposition identifies a unique outcome that survives iterated deletion of
weakly dominated strategies. Sobel (2019) contains a proof of the proposition. Hu
and Sobel (forthcoming) extend the result to nongeneric preferences and incom-
pletely ordered X.

IV. Sequential Protocols

The manager’s preferred outcome does not always survive iterated deletion of
weakly dominated strategies when experts move simultaneously. This leaves open
the question of whether the manager could do better by consulting the experts in a
different way. This section discusses the issue. We introduce a family of sequential
protocols and describe a simple member of the family that performs at least as well
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as any other sequential protocol (from the standpoint of the manager). This protocol
generates the same outcome as the simultaneous-move game.

The online Appendix contains an example that illustrates that simple sequential
procedures may not lead to good outcomes for the manager. Section IVA describes
general sequential procedures and introduces the canonical procedure. Section IVB
shows that from the perspective of the manager, the canonical procedure performs at
least as well as any other sequential procedure and as well as simultaneous consulta-
tion. Section IVC discusses some comparative-statics properties.

A. Definition of Sequential Protocols

In a sequential protocol, the manager selects an expert; the expert can then decide
to approve any project in X; the manager then decides whether to implement a proj-
ect that has been approved or to move to another expert. We assume that protocols
are deterministic; that they must end after a finite number of consultations; and that
when the consultation procedure ends, the manager implements the largest proj-
ect that has been approved. The restriction to deterministic protocols simplifies the
exposition. In our model, no stochastic protocol can do strictly better than the deter-
ministic protocol we describe. We do not know if potentially infinite protocols can
benefit the manager. The restriction that the manager implements the largest proj-
ect that has been approved parallels the assumption we made for the simultaneous
game. We focus on a particular protocol, which we call the canonical protocol (CP).

Suppose the projects can be ranked in the order of the manager’s preferences:
X = Tg = Mg | = -+ = T = X

DEFINITION 3: The canonical sequential protocol has at most K rounds, starting
with round r = 1. In round r, the manager consults experts in order. If any expert
in round r chooses a project 1 = Tg_,.1, the process stops and the manager imple-
ments the largest project supported. Otherwise, round r + 1 begins.

We describe protocols and CP formally in the online Appendix.’

The ability to create a protocol assumes that the manager has commitment power,
but the commitment power is limited. A protocol specifies rules for consultation.
The rules specify who the manager consults and when he terminates consultation.
This commitment power may be valuable to the manager. For example, suppose
K =3, ul(wz) > M1(771) > u1<7r3), and uz(m) > u2(773) > uz(wz). In the sec-
ond round, expert 1 knows that if she approves 7,, then the manager would like to
consult expert 2 again because expert 2 prefers w3 to m,. But if expert 1 refuses to
approve T,, the protocol specifies that the manager move to expert 2, who would
prefer to wait until round 3 than support 7,. Hence, if the manager lacked commit-
ment power, expert 2 would not support 73 in the first round. We believe that it is
realistic to assume that managers have the power to discontinue consultations but
not the power to demand approval of a particular project.'”

9We are grateful to Christopher Turansick for suggesting this procedure.
197t is common to have rules governing consultation procedures. Robert’s Rules of Order (De Vries 1998),
which establishes rules governing who can speak and what can be discussed in a meeting, is a leading example.
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We limit commitment in two ways. First, the project the manager takes must be
the best available given the strategy of the experts. By making this assumption, we
implicitly assume that the manager cannot commit to implementing a project that he
likes less than a project he could implement. Second, we assume that the manager
cannot restrict the set of projects that an expert can support. An extreme way to do
this would be to exclude some elements of X from every choice set. The manager
cannot restrict the experts’ strategies and must take the best available project in
the simultaneous game, where experts can support any project and the manager’s
action is the maximum project supported. Hence, the limits to commitment make
the sequential game comparable to the simultaneous game. These restrictions on
commitment ability are in the spirit of restrictions that sequential rationality would
impose if we model the manager as a strategic player.' | Hu and Sobel (forthcoming)
show that the ability to make commitments is valuable.

B. Performance of Sequential Protocols

In this section, we show that the CP generates 7, which is the outcome that sur-
vives IDWDS in the simultaneous-move game and that no sequential protocol does
better. Hence, simultaneous consultation performs as well as, but no better than, a
well-designed sequential protocol.

PROPOSITION 2: If 7 is a project that survives IDWDS in the game determined by
CP, thenm™ = 7"

Proposition 2 identifies the manager’s outcome for the canonical sequential pro-
tocol. For every m < 7", there will be an expert who strictly prefers a higher proj-
ect. From this observation, it is straightforward to show that a project 7 such that
m < m* cannot be generated by CP. By the definition of 7*, no higher outcome is
possible.

PROOF:

Let 7 be a project that survives IDWDS. Suppose it is generated by the strategy
profile S. Suppose m < 7*. We will show that there exists an expert i such that
§; is weakly dominated.

By the definition of 7, it must be the case that for some i,

(1) there exists x; with x; > 7 such that u,(x;) > u;(7).

Find a history h consistent with § such that the manager consults expert i at his-
tory h and if i’s play at his §i<fz), then there is no undominated strategy profile that
consults i again. It is possible to find such a history because 7 < 7* implies that
the manager must consult every expert at least once and because the protocol never
consults an expert more than K times.

"I'The manager is not a strategic player, so we do not have a formal result that justifies our (lack of) commitment
assumption as a reduced-form equilibrium of a model with a strategic manager.
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Consider an alternative strategy of expert i in which

oy _ Jxi ifh =h
si(h) = {fv,l(h) otherwise’

where x; solves maxu( ,~) subject to x; > m. We know that x; exists and satisfies
ui(x)) > u(m) by (1). By the definition of /, if expert i supports x; after /, the pro-
tocol must stop. (We know that the protocol would stop in the next round with the
outcome T, so it must stop immediately when expert i supports something strictly
better for the manager than 7.) It follows that s; weakly dominates §;. The strategy s;
does exactly as well as §; for any strategy profile that does not induce the history h.
We know that some strategy profile does induce hand, by construction, expert i does
strictly better in any such case. Consequently, any outcome 7 < 7* must be gener-
ated by a strategy profile in which one player uses a weakly dominated strategy. This
establishes that CP generates an outcome 7 that satisfies 7 > 7*. The proposition
follows from Proposition 3. B
The next result states that 7" is an upper bound for all sequential protocols
because the unique subgame-perfect equilibrium determines the unique outcome
that survives IDWDS in perfect-information games.

PROPOSITION 3: If 1 > =¥, then there exists no sequential protocol that gener-
ates the project T in a pure-strategy, subgame-perfect equilibrium.

PROOF:

Proposition 3 follows from backward induction. After each history that supports
no more than 7*, it is never a best response to approve more than 7*. So if the first
expert anticipates that the final project supported will be more than 7", then she can
do strictly better by approving 7 and no one else will add more to 77*. Consequently,
there will never be projects greater than 7* in equilibrium. B

C. Comparative Statics

In this section, we make a few observations about the value of adding experts.

Adding an expert cannot harm the manager in the sense that if 7 is a project that
survives IDWDS for the original set of experts in the simultaneous-move game, a
project at least as good as 7 for the manager will survive if additional players are
added; the new player need not be consulted in a sequential protocol. In a model of
Bayesian Persuasion closely related to our model (see Section IID for a compari-
son), Li and Norman (2018) show that adding an expert may hurt the decision-maker
if the expert must be inserted in a particular place.

Adding an additional expert is beneficial if and only if doing so increases 7"
An expert who does not increase this quantity is redundant. If preferences are
single peaked, all experts except the one with the greatest peak is redundant. More
generally, if there is a pair of experts i and j such that for all x' > x, u;(x)) >

u,-(x) whenever uj(x’) > uj(x), then expert j is redundant.
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V. Related Literature

We know of several papers that compare simultaneous to sequential interactions
in different contexts. Dekel and Piccione (2000) compare simultaneous to sequen-
tial voting institutions. There are two options and a finite number of voters. Voters
can either vote for or against the status quo. Voters do not know their valuations but
receive private signals. The authors compare the equilibria of games in which voters
cast votes simultaneously to those in which votes are sequential. They show that
a symmetric informative equilibrium of the simultaneous game is an equilibrium
to any sequential game. Weaker results hold for asymmetric equilibria.'? Although
that paper reaches a conclusion that is similar to ours, we do not see a formal con-
nection between the analyses. The model of Dekel and Piccione (2000) focuses
on the possibility of learning something about the state from the behavior of other
voters. Our experts lack private information. Our equivalence result requires an
equilibrium refinement and commitment power in the design of sequential mecha-
nisms. Schummer and Velez (2021) identify conditions under which social choice
functions that can be implemented in truthful strategies when players move simul-
taneously cannot be truthfully implemented when players move sequentially. The
context is quite different from our paper, but it suggests environments in which
sequential procedures will perform less well than simultaneous ones.

Doval and Ely (2020) and Salcedo (2017) characterize all equilibria that can arise
from some information structure and some extensive form (for a fixed set of play-
ers and preferences over final outcomes). Their construction involves a “canonical
extensive form” that is sufficient to generate any equilibrium. In a canonical exten-
sive form, each player moves at most once. Our construction requires that an indi-
vidual player may move more than once. The reason for this difference is that Doval
and Ely’s construction requires a partial commitment assumption that requires that
once a player has made an action choice, that player can have no other payoff rele-
vant moves. This assumption does not hold in our model.

Armstrong and Vickers (2010) study a delegation problem with a single agent.
They assume that there is a set of potential projects. The principal selects a set of
permitted projects. Nature then determines that set of potential projects that are
actually feasible. The agent then selects a project from the set of projects that are
both permitted and feasible (or does not select any project). In the basic model, the
principal learns the characteristics of the selected project but does not learn which
projects are feasible. Armstrong and Vickers describe the solution to this problem,
which typically involves restrictions on the set of permitted projects. Our focus is
on how the decision-maker can leverage differences in preferences between experts
to improve his outcome, while Armstrong and Vickers assume that there is a single
agent. A common feature of their approach and our analysis, especially in the case
where commitment is feasible, is that the principal gains from having the option to
limit the choice of the agent or experts.

Goel and Hann-Caruthers (2020); Guo and Shmaya (2021); and Kartik, Kleiner,
and Van Weelden (2021) study mechanism design problems without transfers under

12Dekel and Piccione (2014) study a voting model in which the timing of votes is a strategic choice.
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incomplete information in which a decision-maker must get the approval of a single
agent to carry out a project. These papers differ from ours because they give a player
much greater commitment power, assume incomplete information, and do not dis-
cuss the impact of having multiple experts.
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