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Getting Permission†

By Peicong Hu and Joel Sobel*

A manager has access to expert advisers. The manager selects at 
most one project and can implement it only if one expert provides 
support. The game in which the manager consults experts simulta-
neously typically has multiple equilibria, including one in which at 
least one expert supports the manager’s favorite project. Only one 
outcome, the experts’ most preferred equilibrium outcome, survives 
iterated deletion of weakly dominated strategies. We show that no 
sequential procedure can perform better for the manager than the 
experts’ most preferred equilibrium and exhibit a sequential protocol 
that does as well. (JEL C72, D23, D82)

We study situations in which an individual cannot carry out a task without expert 
assistance. We focus on applications in which a conflict of interest may interfere 
with the ability of the individual to achieve his most preferred outcome but in which 
he can leverage competition between experts to improve his outcome.

The elements of the model are a finite set of projects, a finite set of experts, and 
a manager. The experts and manager have preferences defined over projects. The 
manager wishes to carry out a project but can do so only if an expert supports it. 
We are interested in the relationship between how the manager requests support 
and the project selected. If no expert supports any project, then the outcome is the 
status quo. Otherwise, the manager implements the best project consistent with the 
experts’ approvals. Consider two alternative organizations. In the first organization, 
the manager asks experts to report simultaneously which of the projects they will 
support. In the second organization, the manager consults experts sequentially. In 
the first case, provided that there are at least two experts, there is always an equilib-
rium in which the manager receives the support needed to carry out his favorite proj-
ect. If one expert supports this project, then the manager will ignore the behavior of 
the other experts. So it is a best reply for all of the other experts to support the man-
ager’s favorite. Sequential consultation may not work as well for the manager. In 
particular, if there is a project that all experts prefer to the manager’s favorite, then 
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sequential consultation will never provide the manager with permission to carry out 
his favorite project.

We want to know how the manager should organize consultation to maximize his 
payoff. Naïvely, the result that the simultaneous-move game includes an equilibrium 
that supports the manager’s favorite outcome provides an answer to this question: 
the manager achieves his best possible outcome by consulting simultaneously. We 
believe that the manager-preferred equilibrium is an implausible prediction in many 
cases, however. We prove that experts have common preferences over equilibria 
(even if they have conflicting preferences over projects). The experts’ preferences 
over equilibria are completely opposed to the preferences of the manager; that is, if 
the manager prefers equilibrium project ​x​ to ​x​′, then all experts prefer ​x​′ to ​x​. (If an 
expert preferred project ​x​ to project ​x​′, then ​x′​ could not be an equilibrium outcome 
because the expert who preferred ​x​ could deviate and support ​x​.) An equilibrium 
refinement (iterated deletion of weakly dominated strategies) selects the experts’ 
preferred equilibrium.1 Hence, the refinement rejects the manager’s preferred out-
come whenever another equilibrium exists. Section III presents the results. On the 
basis of the weak-dominance refinement (and intuition), we view the experts’ pre-
ferred equilibrium as the most plausible outcome of the simultaneous-move game. 
This raises two questions. First, what is the value of having an additional expert? If 
we selected the manager-preferred equilibrium, the answer to the question is sim-
ple. Going from one expert to two experts is valuable (unless the manager’s favorite 
task is also the initial expert’s favorite task). Adding a third expert, however, has 
no value. When we focus on the expert-preferred equilibrium, adding experts may 
lead to a more attractive outcome for the manager. Our characterization implies that 
the manager gains by adding an additional expert if doing so makes the experts’ 
preferred equilibrium more attractive to the manager. If ​x​ is the prediction of the 
simultaneous-move game with a fixed set of experts, adding an additional expert 
benefits the manager if there exists a project ​x′​ that both the manager and the new 
expert prefer to ​x​.

The second question we study is whether an alternative organization could do 
better for the manager than the simultaneous game. Because our prediction for the 
simultaneous-move game is typically less than the manager’s most preferred option, 
there is a chance that other procedures would work better. Furthermore, sequential 
consultations are the norm in some applications (e.g., obtaining a second opinion on 
medical procedures), so we were interested to know if there is a justification for this 
behavior in our setting. We identify an optimal sequential procedure (within a class 
of procedures that, like the simultaneous game, do not allow the decision-maker to 
limit the set of projects that experts can support) that does as well for the manager 
as the simultaneous game. No other sequential procedure can do better than it; that 
is, a properly designed sequential organization does at least as well as, but no better 
than, simultaneous consultation. We show that the following procedure performs as 
well as simultaneous consultation. Suppose there are ​K​ projects and the manager 
has strict preferences. In round ​r​ of the procedure, the manager approaches the first 
expert and stops if she supports one of the manager’s ​r​ favorite projects. If she does 

1 The result requires an assumption that holds for generic preferences that we assume throughout the paper.
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not, he consults the experts in order, stopping if one of them supports one of the ​r​ 
best projects. If, after round ​r​, the manager has not received support for one of his ​
r​ best projects, round ​r + 1​ begins. The procedure stops after (at most) ​K​ rounds.

A special case provides intuition for the results. Suppose the projects are ordered 
so that the manager prefers the greatest project and experts have single-peaked 
preferences over projects; that is, expert ​i​ is characterized by an optimal project ​​
x​ i​ ∗​​. Her preferences increase for ​x  < ​ x​ i​ ∗​​ and decrease thereafter. In this setting, 
projects greater than ​​x​ i​ ∗​​ are weakly dominated and the salient prediction for the 
simultaneous-move game is that the manager will implement the maximum of the ​​
x​ i​ ∗​​. Even if preferences are not single peaked, the equilibrium cannot result in a proj-
ect less than the maximum ​​x​ i​ ∗​​ because otherwise an expert would have a profitable 
deviation. Will the manager actually do better? The answer is plainly “yes” if the 
maximum ​​x​ i​ ∗​​ is not an equilibrium task. It will fail to be an equilibrium if there exists 
an expert ​j​ who prefers some project ​​x​j​​  > ​ max​i​​ ​x​ i​ ∗​​ to ​​max​i​​ ​x​ i​ ∗​​.

Both the simultaneous and sequential procedures that we consider limit the abil-
ity of the manager to restrict the projects that the experts can approve. Specifically, 
an expert can support any project when consulted. The manager would benefit from 
the ability to restrict recommendations. For example, suppose there are three proj-
ects: a status quo project, an intermediate project that is the favorite of all experts, 
and the manager’s favorite project that exactly one expert prefers to the status quo. 
The intermediate project will be the equilibrium outcome that survives our refine-
ment in the simultaneous-move game and also under the sequential protocol that 
we described. If experts could approve only the status quo or the manager’s favorite 
outcome, however, then the manager would obtain his favorite. In Hu and Sobel 
(forthcoming), we permit the manager to prevent experts from approving certain 
projects. We show that limiting the options of the experts is strictly beneficial for 
the manager in both sequential and simultaneous consultations. We show that there 
is a sequential procedure with commitment that leads to the same project as the 
simultaneous-move game with commitment.

We organize the remainder of the paper as follows. Section I describes the basic 
model. Section II describes different interpretations of the model. Section III con-
tains the analysis of the simultaneous-move game. Section IV contains the analysis 
of the sequential game. Section V describes related literature.

I.  Underlying Strategic Environment

There is a finite set of players, who we call experts. ​I​ denotes the finite player 
set.2 We assume that there is a finite set ​X  ⊂  ℝ​ available to each player. We call 
elements of ​X​ projects. We assume that ​X​ is ordered by the usual ​≥​ relation on ​ℝ​.

For ​𝐱  = ​ (​x​1​​,  …, ​x​I​​)​​,3 ​​x​i​​  ∈  X​ let ​M​(𝐱)​  =  max​{​x​1​​,  …, ​x​I​​}​​. Each expert ​i​ has a 
payoff function ​​​u ̃ ​​i​​ : ​X​​ I​  →  ℝ​.4 For each ​i​, we assume that there exists ​​u​i​​ : X  →  ℝ​ 
such that ​​​u ̃ ​​i​​ : ​X​​ I​  →  ℝ​ is defined as ​​​u ̃ ​​i​​​(𝐱)​  ≡ ​ u​i​​​(M​(𝐱)​)​​. Throughout the paper, we 

2 In an abuse of notation, we also let ​I​ denote the cardinality of the player set.
3 We use boldface to denote profiles that consist of actions or strategies of multiple players.
4 Formally, the payoff function should be defined on strategy profiles. For the simultaneous game we study in 

Section III, ​​X​​ I​​ is the set of strategy profiles. When we study sequential games in Section IV, the strategy sets are 
more general, but we still denote payoff functions by ​​​u ̃ ​​i​​​.
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assume that the ​​u​i​​​ are one-to-one. Because ​X​ is finite, ​​u​i​​​ will be one-to-one for a 
generic set of preferences. (We say that a property is generic if it holds for an open 
set of Lebesgue measure one and the property is nongeneric otherwise. In this paper, 
genericity always refers to the property that utility functions are one-to-one. Hu and 
Sobel (forthcoming) analyze the model for more general ​X​ and nongeneric games.) 
We denote the minimum element of ​X​ by ​​ x ¯ ​​ and the maximum element by ​​x –​​.

II.  Interpretation of the Model

We study strategic interactions between the experts in the strategic environment 
described in Section  I. The environment is abstract. We discuss several ways to 
interpret the environment in this section.

A. Project Approval

Assume that (in addition to the experts) there is a manager who strictly prefers 
larger projects. We interpret ​​ x ¯ ​​ as the status quo project. The manager prefers any 
other project to ​​ x ¯ ​​. The manager cannot implement a project different from the status 
quo without the assistance of at least one expert. We will study strategic environ-
ments in which experts announce which project they support. When offered a vari-
ety of projects, the manager will select the maximum (his most preferred project 
from the set). For this reason, we assume that experts report only a single project 
and that preferences over profiles ​𝐱  ∈ ​ X​​ I​​ depend only on the maximum component 
of ​𝐱​. That is, we study a reduced form of a game in which the manager is a strate-
gic player who selects his favorite project among those offered by experts. In this 
environment, there are no natural restrictions on the experts’ preferences over ​X​. For 
example, let ​I  =  2​ and ​X  = ​ {0, 0.1,  …, 0.9, 1}​​, where ​x​ describes a project that 
generates total surplus ​x​. If the manager cares about total surplus, then he prefers ​
x​ to ​x′​ if and only if ​x  >  x​′. But different projects may distribute the share of the 
surplus across experts differently. This example suggests how transfers could be 
compatible with our framework as long as they are included in the description of 
elements of ​X​.

There are settings in which the manager tries to get approval of projects simulta-
neously and others in which sequential consultation appears to be the rule.

B. Asking for Permission

One can interpret an expert’s strategy as permission to undertake certain activi-
ties.5 (If expert ​i​ supports a project, then the manager—who we think of as a deci-
sion-maker in this application—can pursue any project no better for the manager than 
this project.) Imagine that the decision-maker is a teenager and the experts are par-
ents. The teenager requires a parent to give permission for an activity (the permission 
could be in the form of signing a waiver that allows the teenager to go on a school trip 
or permission to use a family car or stay out late). Alternatively, a manager may need 

5 We thank Inés Moreno de Barreda for this suggestion.
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to secure necessary inputs from one of many divisions. The different divisions may 
be semiautonomous and have different preferences. In these settings, it is natural to 
assume that direct transfers are not feasible.

Our analysis identifies an equilibrium in which the decision-maker receives per-
mission to do anything he wishes but also points out that this prediction is often 
implausible and identifies the equilibrium preferred by the experts as a more robust 
prediction. We think the sequential protocol introduced in Section IV provides an 
accurate description of what happens in settings like this.

C. Agenda Manipulation

There is a large literature on voting in committees (see, for example, Banks 1985 
or Miller 1980).6 In this literature, there are a finite set of projects (bills) and an 
odd number of committee members (experts). Experts have strict preferences over 
projects. An agenda is an ordering of the projects. An agenda induces a voting game 
in which the experts first choose via majority vote between the first and second ele-
ments in the agenda and continue so that in stage ​n​, they choose between the winner 
of stage ​n − 1​ vote and the ​n + 1​ project. A project is a sophisticated outcome if it is 
the (refined) equilibrium associated with some agenda. The literature characterizes 
the set of sophisticated outcomes. The literature focuses on sequential procedures 
for a technical reason and a practical reason. The technical reason is that (when 
there is an odd number of voters) majority rule selects a unique winner of each pair-
wise contest but does not identify an outcome of simultaneous voting. This means 
that the simultaneous game is not well defined. The practical reason is that agendas 
are used in real legislatures.

One can view our problem as a version of the problem of voting on committees 
when it takes only one vote to advance an alternative. This change clearly makes it 
easier to obtain approval. It also provides an environment in which we can compare 
outcomes from simultaneous procedures to those from sequential procedures.

D. Bayesian Persuasion

We can interpret the model as a description of persuasion with many Senders. 
Assume that there is an underlying state of the world and experts provide the deci-
sion-maker with “experiments”—procedures that produce for each state of the world 
a probability distribution over a set of signals observable by the decision-maker. The 
decision-maker then makes a decision based on the signals he observes (and knowl-
edge of the experiments and the prior distribution on the state of the world). This 
interpretation is consistent with the model of competition in persuasion in Gentzkow 
and Kamenica (2017b).

Let us describe the connection in somewhat more detail. We restrict attention to 
finite environments. In any Bayesian Persuasion problem, there is a given state space, ​
Θ​. We create a new state space ​​Θ​​ ∗​  ≡  Θ × T​ where ​​(θ, t)​  ∈ ​ Θ​​ ∗​​, ​t​ is uniformly 
distributed on a finite set ​T​, independent of ​θ​. A partition of ​​Θ​​ ∗​​ is an experiment 

6 We thank referees for this suggestion.
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(in the sense that observing an element of the partition generates a posterior distri-
bution on ​Θ​). Provided that we allow only finitely many experiments, the Bayesian 
Persuasion model is described by our model, although we must extend the analysis 
to partially ordered ​X​.7 In models of competition in persuasion, the decision-maker 
observes the realization of all experiments. In our one-dimensional model, observ-
ing the maximal experiment is equivalent to observing all experiments. In the 
multidimensional extension, when experiments need not be ordered, the common 
refinement of two partitions (the maximum) depends nontrivially on both partitions. 
Consequently, the ability to observe all experiments is necessary.

Gentzkow and Kamenica (2017a, 2017b) study a model in which experts simul-
taneously choose how much to communicate to a decision-maker in a Bayesian 
Persuasion framework. In these models, the decision-maker wants to know the value 
of the state of the world, and the strategies of experts are arbitrary signals (joint 
probability distributions on the state and message received by the decision-maker). 
Gentzkow and Kamenica (2017b) show that adding an agent may decrease the 
amount of information revelation but provide a condition under which increasing 
the number of experts increases the amount of information revealed. In our envi-
ronment, additional experts are always valuable because Gentzkow and Kamenica’s 
condition holds when experiments are completely ordered and all experts have 
access to the same set of experiments. Gentzkow and Kamenica do not focus on 
equilibrium selection, but they note the existence of multiple equilibria and the ten-
dency of experts to prefer less disclosure. Li and Norman (2021) study a sequential 
version of the Gentzkow and Kamenica model. The paper provides an existence and 
partial characterization result. They show that sequential persuasion results in no 
more informative equilibria than simultaneous persuasion. Li and Norman (2018) 
also note that the order of disclosure matters, providing an example where inserting 
an additional expert into some (but not all) locations in a sequence may decrease the 
amount of information disclosure.

Ravindran and Cui (2022) study a Bayesian Persuasion problem in which 
Senders simultaneously select experiments. They show that if the preferences of 
game between the Senders is zero sum, then generically full disclosure is the unique 
equilibrium outcome. Ravindran and Cui note that the zero-sum property implies 
that all Senders are indifferent between any equilibrium payoff and the full dis-
closure payoff. Using Proposition 1, it is straightforward to show that this condi-
tion guarantees that the manager’s favorite outcome is the unique outcome of the 
simultaneous-move game that survives IDWDS.

III.  Simultaneous Moves

In this section, we study the game in which each expert simultaneously selects 
an element in ​X​. If ​𝐱  = ​ (​x​1​​,  …, ​x​I​​)​​ is the profile of projects, then expert ​i​’s payoff 

7 Hu and Sobel (forthcoming) study a model with a more general ​X​. Assuming that experts’ preferences are 
quasi supermodular, many of the basic insights from this paper continue to hold. It is straightforward to give con-
ditions that guarantee quasi supermodularity in simple Bayesian Persuasion problems, but in general the condition 
is restrictive.
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is ​​​u ̃ ​​i​​​(𝐱)​  = ​ u​i​​​(M​(𝐱)​)​​. We interpret the minimum element of ​X​, ​​ x ¯ ​​, as a status quo. So 
when expert ​i​ wishes to support no project, she uses the strategy ​​x​i​​  = ​  x ¯ ​​.

Section  IIIA points out basic properties of the Nash equilibria of this game. 
Section IIIB describes the equilibrium refinement. Section IIIC states the charac-
terization result.

A. Basic Properties

A profile ​​𝐱​​ ∗​  = ​ (​x​ 1​ ∗​,  …, ​x​ I​ ∗​)​​ with the property that ​​u​i​​​(M​(​𝐱​​ ∗​)​)​  ≥ ​ u​i​​​(M​(​x​i​​, ​𝐱​ −i​ ∗ ​)​)​​ 
for all ​​x​i​​​ and all ​i​ is a Nash equilibrium profile. If ​​𝐱​​ ∗​​ is a Nash equilibrium, we 
refer to ​M​(​𝐱​​ ∗​)​​ as an equilibrium outcome. For any equilibrium profile ​​𝐱​​ ∗​​, a strategy 
profile ​𝐱​ that satisfies ​​x​i​​  ≤ ​ x​ i​ ∗​​ and at least two ​​x​j​​  =  M​(​𝐱​​ ∗​)​​ is a Nash equilibrium. 
The manager obtains his most preferred outcome when ​M​(​𝐱​​ ∗​)​​ is equal to the max-
imum element in ​X​, ​​x –​​. Project ​​x –​​ is always an equilibrium outcome. A strategy pro-
file in which at least two experts play ​​x –​​ supports it. Typically, there are other Nash 
equilibria.

We claim that the pure-strategy Nash equilibria are Pareto ranked from the per-
spective of the experts. In fact, if ​​x​​ ∗​​ and ​​x​​ ∗∗​​ are equilibrium outcomes and ​​x​​ ∗∗​  ≥ ​
x​​ ∗​​, then all experts prefer ​​x​​ ∗​​ to ​​x​​ ∗∗​​. To see this, observe that if any expert preferred 
the outcome ​​x​​ ∗∗​​ to ​​x​​ ∗​​, then she could deviate by using the strategy ​​x​​ ∗∗​​ instead of the 
strategy she uses in the equilibrium that leads to the outcome ​​x​​ ∗​​. Consequently, the 
equilibria are Pareto ranked. Furthermore, the manager’s preferences are completely 
opposed to the (common) preferences of the experts.

B. Weak Dominance

The possibility of multiple equilibria leads us to consider a more restrictive solu-
tion concept.

DEFINITION 1: Given subsets ​​X​ i​ ′​  ⊂  X​, with ​X′  = ​ ∏ i∈I​​ ​X​ i​ ′​​​, expert ​i​’s strategy ​​
x​ i​ ∗​  ∈ ​ X​ i​ ′​​ is a best response to ​​x​−i​​  ∈ ​ X​ −i​ ′ ​ ​ relative to ​​X​i​​​ if ​​​u ̃ ​​i​​​(​x​ i​ ∗​, ​x​−i​​)​  ≥ ​​ u ̃ ​​i​​​(​x​i​​, ​x​−i​​)​​  
for all ​​x​i​​  ∈ ​ X​i​​​. Expert ​i​’s strategy ​​x​i​​  ∈ ​ X​ i​ ′​​ is weakly dominated relative to ​X′​ if 
there exists ​​x​ i​ ′​  ∈ ​ X​ i​ ′​​ such that ​​​u ̃ ​​i​​​(​x​i​​, ​x​−i​​)​  ≤ ​​ u ̃ ​​i​​​(​x​ i​ ′​, ​x​−i​​)​​ for all ​​x​−i​​  ∈ ​ X​ −i​ ′ ​ ​, with strict 
inequality for at least one ​​x​−i​​  ∈ ​ X​ −i​ ′ ​ ​.

DEFINITION 2: The set ​S  = ​ S​1​​ × ⋯ × ​S​I​​  ⊂  X​ survives iterated deletion 
of weakly dominated strategies (IDWDS) if for ​m  =  0, 1, 2,  …​, there are sets  
​​S​​ m​  = ​ S​ 1​ m​ × ⋯ × ​S​ I​ m​​, such that ​​S​​ 0​  =  X​, ​​S​​ m​  ⊂ ​ S​​ m−1​​ for ​m  >  0​; ​​S​ i​ m​​ is obtained by 
(possibly) removing strategies in ​​S​ i​ m−1​​ that are weakly dominated relative to ​​S​​ m−1​​;  
​​S​​ m​  = ​ S​​ m−1​​ if and only if for each ​i​ no strategy in ​​S​ i​ m−1​​ is weakly dominated relative 
to ​​S​​ m−1​​; and ​​S​i​​  = ​ ⋂ m=1​ ∞ ​  ​S​ i​ m​​​ for each ​i​.8

For finite games, it must be the case that there exists an ​m​ such that ​​S​​ r​  = ​ S​​ m​  ≠  ∅​  
for all ​r  >  m​. There are typically many different procedures that are consistent 

8 Our notation follows these rules: superscripts denote steps in an iterated process; subscripts denote players.
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with Definition  2. These procedures may lead to different sets that survive the 
process, but Proposition 1 shows under our assumptions all sets that survive lead to 
the same maximum project.

We analyze the implications of applying iterated deletion of weakly dominated 
strategies. Sobel (2019) introduces a class of games called WID-supermodular 
games and describes general properties of strategies that survive the process of 
iteratively deleting weakly dominated strategies in these games. He shows that the 
simultaneous-move game is a WID-supermodular game and provides the character-
ization result that we describe next.

C. Characterization

This section  characterizes the unique outcome that survives IDWDS in the 
generic simultaneous-move game. We begin with some general properties of the 
equilibrium set.

We have observed that the maximal project is an equilibrium outcome. There 
must be a minimum equilibrium outcome because ​X​ is completely ordered and 
finite. We next show that the manager prefers every project that survives iterated 
deletion of weakly dominated strategies, whether it is an equilibrium outcome or 
not, to the minimum equilibrium outcome. Before we describe the result, we let

	​ ​π​​ ∗​  =  min​{π  ∈  X : ​u​i​​ ​(π)​  ≥ ​ u​i​​ ​(x)​ for all x  >  π and all i}​.​

The outcome ​​π​​ ∗​​ is Pareto efficient (from the perspective of the experts) in the set 
of Nash equilibrium payoffs.

We note several consequences of this definition. It is immediate that if ​π​ is an 
equilibrium outcome, then ​π  ≥ ​ π​​ ∗​​. Furthermore, if ​​x –​  > ​ π​​ ∗​​, then there will be 
equilibrium outcomes greater than ​​π​​ ∗​​. In fact, if ​π​ is an outcome such that for all ​i​, ​​
u​i​​​(π ′ )​  ≤ ​ u​i​​​(π)​​ for all ​π ′  ≥  π​, then any strategy profile ​𝐱​ that satisfies ​​x​i​​  ≤  π​ and 
at least two ​​x​j​​  =  π​ is a Nash equilibrium. In particular, ​​x –​​ is always an equilibrium 
outcome. The next result asserts that outcomes ​π  > ​ π​​ ∗​​ fail to satisfy a refinement.

PROPOSITION 1: If ​𝐱​ is a strategy profile that survives IDWDS in the 
simultaneous-move game, then ​M​(𝐱)​  = ​ π​​ ∗​​.

The proposition identifies a unique outcome that survives iterated deletion of 
weakly dominated strategies. Sobel (2019) contains a proof of the proposition. Hu 
and Sobel (forthcoming) extend the result to nongeneric preferences and incom-
pletely ordered ​X​.

IV.  Sequential Protocols

The manager’s preferred outcome does not always survive iterated deletion of 
weakly dominated strategies when experts move simultaneously. This leaves open 
the question of whether the manager could do better by consulting the experts in a 
different way. This section discusses the issue. We introduce a family of sequential 
protocols and describe a simple member of the family that performs at least as well 
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as any other sequential protocol (from the standpoint of the manager). This protocol 
generates the same outcome as the simultaneous-move game.

The online Appendix contains an example that illustrates that simple sequential 
procedures may not lead to good outcomes for the manager. Section IVA describes 
general sequential procedures and introduces the canonical procedure. Section IVB 
shows that from the perspective of the manager, the canonical procedure performs at 
least as well as any other sequential procedure and as well as simultaneous consulta-
tion. Section IVC discusses some comparative-statics properties.

A. Definition of Sequential Protocols

In a sequential protocol, the manager selects an expert; the expert can then decide 
to approve any project in ​X​; the manager then decides whether to implement a proj-
ect that has been approved or to move to another expert. We assume that protocols 
are deterministic; that they must end after a finite number of consultations; and that 
when the consultation procedure ends, the manager implements the largest proj-
ect that has been approved. The restriction to deterministic protocols simplifies the 
exposition. In our model, no stochastic protocol can do strictly better than the deter-
ministic protocol we describe. We do not know if potentially infinite protocols can 
benefit the manager. The restriction that the manager implements the largest proj-
ect that has been approved parallels the assumption we made for the simultaneous 
game. We focus on a particular protocol, which we call the canonical protocol (CP).

Suppose the projects can be ranked in the order of the manager’s preferences: ​​
x –​  = ​ π​K​​  ≻ ​ π​K−1​​  ≻  ⋯  ≻ ​ π​1​​  = ​  x ¯ ​​.

DEFINITION 3: The canonical sequential protocol has at most ​K​ rounds, starting 
with round ​r  =  1​. In round ​r​, the manager consults experts in order. If any expert 
in round ​r​ chooses a project ​π  ⪰ ​ π​K−r+1​​​, the process stops and the manager imple-
ments the largest project supported. Otherwise, round ​r + 1​ begins.

We describe protocols and CP formally in the online Appendix.9

The ability to create a protocol assumes that the manager has commitment power, 
but the commitment power is limited. A protocol specifies rules for consultation. 
The rules specify who the manager consults and when he terminates consultation. 
This commitment power may be valuable to the manager. For example, suppose ​
K  =  3​, ​​u​1​​​(​π​2​​)​  > ​ u​1​​​(​π​1​​)​  > ​ u​1​​​(​π​3​​)​​, and ​​u​2​​​(​π​1​​)​  > ​ u​2​​​(​π​3​​)​  > ​ u​2​​​(​π​2​​)​​. In the sec-
ond round, expert 1 knows that if she approves ​​π​2​​​, then the manager would like to 
consult expert 2 again because expert 2 prefers ​​π​3​​​ to ​​π​2​​​. But if expert 1 refuses to 
approve ​​π​2​​​, the protocol specifies that the manager move to expert 2, who would 
prefer to wait until round 3 than support ​​π​2​​​. Hence, if the manager lacked commit-
ment power, expert 2 would not support ​​π​3​​​ in the first round. We believe that it is 
realistic to assume that managers have the power to discontinue consultations but 
not the power to demand approval of a particular project.10

9 We are grateful to Christopher Turansick for suggesting this procedure.
10 It is common to have rules governing consultation procedures. Robert’s Rules of Order (De Vries 1998), 

which establishes rules governing who can speak and what can be discussed in a meeting, is a leading example.
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We limit commitment in two ways. First, the project the manager takes must be 
the best available given the strategy of the experts. By making this assumption, we 
implicitly assume that the manager cannot commit to implementing a project that he 
likes less than a project he could implement. Second, we assume that the manager 
cannot restrict the set of projects that an expert can support. An extreme way to do 
this would be to exclude some elements of ​X​ from every choice set. The manager 
cannot restrict the experts’ strategies and must take the best available project in 
the simultaneous game, where experts can support any project and the manager’s 
action is the maximum project supported. Hence, the limits to commitment make 
the sequential game comparable to the simultaneous game. These restrictions on 
commitment ability are in the spirit of restrictions that sequential rationality would 
impose if we model the manager as a strategic player.11 Hu and Sobel (forthcoming) 
show that the ability to make commitments is valuable.

B. Performance of Sequential Protocols

In this section, we show that the CP generates ​​π​​ ∗​​, which is the outcome that sur-
vives IDWDS in the simultaneous-move game and that no sequential protocol does 
better. Hence, simultaneous consultation performs as well as, but no better than, a 
well-designed sequential protocol.

PROPOSITION 2: If ​π​ is a project that survives IDWDS in the game determined by 
CP, then ​π  = ​ π​​ ∗​​.

Proposition 2 identifies the manager’s outcome for the canonical sequential pro-
tocol. For every ​π  < ​ π​​ ∗​​, there will be an expert who strictly prefers a higher proj-
ect. From this observation, it is straightforward to show that a project ​π​ such that ​
π  < ​ π​​ ∗​​ cannot be generated by CP. By the definition of ​​π​​ ∗​​, no higher outcome is 
possible.

PROOF:
Let ​π​ be a project that survives IDWDS. Suppose it is generated by the strategy 

profile ​​𝐬̂  ​​. Suppose ​π  < ​ π​​ ∗​​. We will show that there exists an expert ​i​ such that  
​​​s ˆ ​​i​​​ is weakly dominated.

By the definition of ​​π​​ ∗​​, it must be the case that for some ​i​,

(1)	​ there exists ​x​i​​ with ​x​i​​  >  π such that ​u​i​​​(​x​i​​)​  > ​ u​i​​​(π)​.​

Find a history ​​h ˆ ​​ consistent with ​​𝐬̂  ​​ such that the manager consults expert i at his-
tory ​​h ˆ ​​ and if i’s play at ​​h ˆ ​​ is ​​​s ˆ ​​i​​​(​h ˆ ​)​​, then there is no undominated strategy profile that 
consults ​i​ again. It is possible to find such a history because ​π  < ​ π​​ ∗​​ implies that 
the manager must consult every expert at least once and because the protocol never 
consults an expert more than ​K​ times.

11 The manager is not a strategic player, so we do not have a formal result that justifies our (lack of) commitment 
assumption as a reduced-form equilibrium of a model with a strategic manager.
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Consider an alternative strategy of expert ​i​ in which

	​ ​s​ i​ ′​​(h)​  = ​ {​​x​ i​ ′​​   if h  = ​ h ˆ ​​  ​​s ˆ ​​i​​​(h)​​   otherwise
​​,​

where ​​x​ i​ ′​​ solves ​max ​u​i​​​(​x​i​​)​​ subject to ​​x​i​​  >  π​. We know that ​​x​ i​ ′​​ exists and satisfies  
​​u​i​​​(​x​ i​ ′​)​  > ​ u​i​​​(π)​​ by (1). By the definition of ​​h ˆ ​​, if expert ​i​ supports ​​x​ i​ ′​​ after ​​h ˆ ​​, the pro-
tocol must stop. (We know that the protocol would stop in the next round with the 
outcome ​π​, so it must stop immediately when expert ​i​ supports something strictly 
better for the manager than ​π​.) It follows that ​​s​ i​ ′​​ weakly dominates ​​​s ˆ ​​i​​​. The strategy ​​s​ i​ ′​​ 
does exactly as well as ​​​s ˆ ​​i​​​ for any strategy profile that does not induce the history ​​h ˆ ​​. 
We know that some strategy profile does induce ​​h ˆ ​​ and, by construction, expert ​i​ does 
strictly better in any such case. Consequently, any outcome ​π  < ​ π​​ ∗​​ must be gener-
ated by a strategy profile in which one player uses a weakly dominated strategy. This 
establishes that CP generates an outcome ​π​ that satisfies ​π  ≥ ​ π​​ ∗​​. The proposition 
follows from Proposition 3. ∎

The next result states that ​​π​​ ∗​​ is an upper bound for all sequential protocols 
because the unique subgame-perfect equilibrium determines the unique outcome 
that survives IDWDS in perfect-information games.

PROPOSITION 3: If ​π  > ​ π​​ ∗​​, then there exists no sequential protocol that gener-
ates the project ​π​ in a pure-strategy, subgame-perfect equilibrium.

PROOF:
Proposition 3 follows from backward induction. After each history that supports 

no more than ​​π​​ ∗​​, it is never a best response to approve more than ​​π​​ ∗​​. So if the first 
expert anticipates that the final project supported will be more than ​​π​​ ∗​​, then she can 
do strictly better by approving ​​π​​ ∗​​ and no one else will add more to ​​π​​ ∗​​. Consequently, 
there will never be projects greater than ​​π​​ ∗​​ in equilibrium. ∎

C. Comparative Statics

In this section, we make a few observations about the value of adding experts.
Adding an expert cannot harm the manager in the sense that if ​π​ is a project that 

survives IDWDS for the original set of experts in the simultaneous-move game, a 
project at least as good as ​π​ for the manager will survive if additional players are 
added; the new player need not be consulted in a sequential protocol. In a model of 
Bayesian Persuasion closely related to our model (see Section IID for a compari-
son), Li and Norman (2018) show that adding an expert may hurt the decision-maker 
if the expert must be inserted in a particular place.

Adding an additional expert is beneficial if and only if doing so increases ​​π​​ ∗​​.  
An expert who does not increase this quantity is redundant. If preferences are 
single peaked, all experts except the one with the greatest peak is redundant. More 
generally, if there is a pair of experts ​i​ and ​j​ such that for all ​x′  ≻  x​, ​​u​i​​​(x′)​  >  
​u​i​​​(x)​​ whenever ​​u​j​​​(x′)​  ≥ ​ u​j​​​(x)​​, then expert ​j​ is redundant.
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V.  Related Literature

We know of several papers that compare simultaneous to sequential interactions 
in different contexts. Dekel and Piccione (2000) compare simultaneous to sequen-
tial voting institutions. There are two options and a finite number of voters. Voters 
can either vote for or against the status quo. Voters do not know their valuations but 
receive private signals. The authors compare the equilibria of games in which voters 
cast votes simultaneously to those in which votes are sequential. They show that 
a symmetric informative equilibrium of the simultaneous game is an equilibrium 
to any sequential game. Weaker results hold for asymmetric equilibria.12 Although 
that paper reaches a conclusion that is similar to ours, we do not see a formal con-
nection between the analyses. The model of Dekel and Piccione (2000) focuses 
on the possibility of learning something about the state from the behavior of other 
voters. Our experts lack private information. Our equivalence result requires an 
equilibrium refinement and commitment power in the design of sequential mecha-
nisms. Schummer and Velez (2021) identify conditions under which social choice 
functions that can be implemented in truthful strategies when players move simul-
taneously cannot be truthfully implemented when players move sequentially. The 
context is quite different from our paper, but it suggests environments in which 
sequential procedures will perform less well than simultaneous ones.

Doval and Ely (2020) and Salcedo (2017) characterize all equilibria that can arise 
from some information structure and some extensive form (for a fixed set of play-
ers and preferences over final outcomes). Their construction involves a “canonical 
extensive form” that is sufficient to generate any equilibrium. In a canonical exten-
sive form, each player moves at most once. Our construction requires that an indi-
vidual player may move more than once. The reason for this difference is that Doval 
and Ely’s construction requires a partial commitment assumption that requires that 
once a player has made an action choice, that player can have no other payoff rele-
vant moves. This assumption does not hold in our model.

Armstrong and Vickers (2010) study a delegation problem with a single agent. 
They assume that there is a set of potential projects. The principal selects a set of 
permitted projects. Nature then determines that set of potential projects that are 
actually feasible. The agent then selects a project from the set of projects that are 
both permitted and feasible (or does not select any project). In the basic model, the 
principal learns the characteristics of the selected project but does not learn which 
projects are feasible. Armstrong and Vickers describe the solution to this problem, 
which typically involves restrictions on the set of permitted projects. Our focus is 
on how the decision-maker can leverage differences in preferences between experts 
to improve his outcome, while Armstrong and Vickers assume that there is a single 
agent. A common feature of their approach and our analysis, especially in the case 
where commitment is feasible, is that the principal gains from having the option to 
limit the choice of the agent or experts.

Goel and Hann-Caruthers (2020); Guo and Shmaya (2021); and Kartik, Kleiner, 
and Van Weelden (2021) study mechanism design problems without transfers under 

12 Dekel and Piccione (2014) study a voting model in which the timing of votes is a strategic choice.
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incomplete information in which a decision-maker must get the approval of a single 
agent to carry out a project. These papers differ from ours because they give a player 
much greater commitment power, assume incomplete information, and do not dis-
cuss the impact of having multiple experts.
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