
RTRBench: A Benchmark Suite for Real-Time Robotics

Mohammad Bakhshalipour
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

bakhshalipour@cmu.edu

Maxim Likhachev
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

maxim@cs.cmu.edu

Phillip B. Gibbons
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA

gibbons@cs.cmu.edu

Abstract—The emergence of “robotics in the wild” has trig-
gered a wave of recent research in hardware and software to
boost robots’ compute capabilities. Nevertheless, research in this
area is hindered by the lack of a comprehensive benchmark suite.

In this paper, we present RTRBench , a benchmark suite
for robotic kernels. RTRBench includes 16 kernels, spanning
the entire software pipeline of a wide swath of robots, all
implemented in C++ for fast execution.

Together with the suite, we conduct an evaluation of the
workloads at the architecture level. We pinpoint the sources of
inefficiencies in a modern robotic processor when executing the
robotic kernels, along with the opportunities for improvements.

The source code of the benchmark suite is available in
https://cmu-roboarch.github.io/rtrbench/.

Index Terms—Robotics, Benchmarking, Workload Character-
ization, Computer Architecture, Simulation.

I. INTRODUCTION

Robots are increasingly playing a prominent role in our

technological society. The global robotics market is esti-

mated to reach US $210 billion by 2025, up from $40

billion in 2017 [86]. Accordingly, the global competition

to develop the most sophisticated robots in the world is

already underway [24], [95]. The path towards developing

the most advanced robots in various fields like autonomous

vehicles, search and rescue, organ transplant, home assistance,

unmanned aerial vehicles, and so forth, has given growing

importance to research in this area.

The widespread deployment of “robotics in the wild” ne-

cessitates that robots operate effectively and safely under real-

time constraints. Hence, robots need to have great compute

capabilities to solve various complex artificial intelligence

(AI) problems at speed. This requirement has sparked recent

research in software and hardware techniques to accelerate

various robotic kernels.

Unfortunately, the lack of a comprehensive benchmark suite

significantly hampers the research in this emerging area. Most

recent research proposals include only one [57], [64], [88] or a

few [31], [74] kernels in their evaluations. However, different

robotic tasks have different characteristics and requirements:

when evaluating a system- or architecture-level technique on

only one kernel, its effect on other kernels remains unclear.

In this paper, we present Real-Time Robotics Benchmark

(RTRBench) , a benchmark suite for robotic workloads. We

implement a comprehensive set of kernels that span the whole

software pipeline of most autonomous robots. RTRBench

includes kernels from robot perception, planning, and control.

Unlike most prior proposals that use Python, we write all codes

in C++ for fast execution. Even though Python modules, which

are constituents of prior Python-based suites, have been highly

optimized, their performance is still far from their C++-based

counterparts [56].

Importantly, to evaluate new hardware techniques, kernels

should be easy to simulate on micro-architectural simulators,

ahead of any hardware fabrication. We implement a harness

for kernels to streamline the simulation process. The harness

communicates with the simulator and controls the simulation

process.

Finally, we study the architectural implications of the bench-

marks running on a modern robotic processor. We pinpoint the

sources of inefficiencies in the architecture and discuss the

improvement opportunities.

II. RELATED WORK

Robotic workload characterizations of prior work [74], [94]

are perhaps the closest work to RTRBench . PerceptIn [5],

a self-driving car startup, details the execution statistics of

different kernels internal to their autonomous cars in a recent

report [94]. RoBoX [74], a hardware acceleration research

proposal, evaluates multiple in-house robotic kernels and

reports their execution characteristics. Unfortunately, their

workloads are not publicly available.

Robotic Operating System (ROS) [7] is a middleware for

robot development. It provides a framework for operations like

low-level device control, hardware abstraction, and package

management. It also includes the implementation of some

commonly-used robot kernels. Kernels (ROS processes) can

be combined to model various robots. ROS provides particular

API and communication primitives for enabling such combi-

nations to model a variety of real-world robots. ROS , however,

does not consider performance as the main objective. The main

goal of ROS is to provide easy and fast robot development.

More than three-fourths of the codes are written in Python,

and even those written in C++ are not tuned for performance.

Moreover, its primitives like TCP-based inter-process com-

munication present significant challenges for simulating the

kernels.

Several pieces of prior work have proposed benchmarks for

particular robotic tasks. For example, SBPL [8] provides a

benchmark for search-based robot planning; OMPL [9] targets

sampling-based motion planning algorithms; MAVBench [19]

provides a framework for developing micro aerial vehicles;

175

2022 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-6654-5954-9/22/$31.00 ©2022 IEEE
DOI 10.1109/ISPASS55109.2022.00024

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
Pe

rf
or

m
an

ce
 A

na
ly

si
s o

f S
ys

te
m

s a
nd

 S
of

tw
ar

e
(I

SP
A

SS
) |

 9
78

-1
-6

65
4-

59
54

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IS

PA
SS

55
10

9.
20

22
.0

00
24

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Robots’ computation pipeline.

and RLBench [43] is a suite for robot learning kernels. Each

of these benchmarks covers a limited range of kernels and

does not represent the entire software pipeline of robots.

Noteworthy, the combination of these suites, in order to

have a more comprehensive set of diverse kernels, is not

straightforward, as they use dissimilar set-ups (e.g., Python

versus C++). Moreover, many of these suites, if not all, do

not accomplish RTRBench ’s goals: (i) real-time performance

and (ii) easy to simulate.

Finally, some educational libraries provide open-source

implementations of robotic kernels. For example, the popular

PythonRobotics library [76] provides a Python code collection

of robotic algorithms. These libraries, however, do not con-

sider performance as the main objective, and hence, cannot be

used as benchmarks for evaluating techniques in the context

of real-time robotics.

In a nutshell, RTRBench offers three important features that

prior proposals lack wholly or partially:

1) Comprehensive: RTRBench covers the entire pipeline

of a variety of robots, with kernels implementing percep-

tion, planning, and control tasks. Many prior proposals

(e.g., [8], [9], [43]) include only one stage of the

software pipeline.

2) Real-Time: RTRBench includes kernels implemented

for fast execution. From the chosen algorithms down

to programming and compilation, RTRBench considers

performance as the main objective. Prior benchmarks

(e.g., [1], [76]) sacrifice performance for implementation

ease.

3) Easy-to-simulate: RTRBench implements kernels such

that they are easy to simulate by current micro-

architectural simulators (details in §VI). Most prior

proposals do not offer this feature; for example, the

Python runtime of [7], [43], [76], or the TCP-based com-

munication primitives of [7] pose significant challenges

to current simulators.

III. BACKGROUND: ROBOT SOFTWARE PIPELINE

Fig. 1 shows the software pipeline of a generic robot. The

pipeline consists of Perception, Planning, and Control stages.

A. Perception: The perception unit is responsible for

understanding the state of the environment and the robot

itself. It reads raw data from sensors and infers the robot’s

state (e.g., location, orientation) and the surrounding

environment (e.g., obstacles around the robot). Understanding

the robot state is known as localization and understanding

the environment is known as mapping.

B. Planning: The planning stage is responsible for generating

a path from the current position towards a target position.

The planner uses the perception stage’s output to comprehend

the position of the obstacles and searches the environment to

find an efficient (e.g., short), collision-free path.

C. Control: The control stage is responsible for generating

commands to follow the path generated by the planning stage.

The controller calculates the appropriate dynamics (e.g.,

velocity, acceleration) the robot needs in order to observe to

efficiently follow the path. Once the dynamics are calculated,

the controller sends the proper signals to the robot’s actuators.

Depending on the robot, task, and environment, any of the

stages could be the performance bottleneck. For example, with

a home assistant robot trying to find a soda in a cluttered

refrigerator, the perception (understanding the contents of the

refrigerator) could be the performance bottleneck. With a

pilotless drone trying to find a short path in an environment

with high resolution, the planning could limit the end-to-

end performance. Finally, with a self-driving car needing a

smooth trajectory, the control stage could be the performance

bottleneck.

IV. SIMULATION METHODOLOGY

For simulation experiments, we use the zsim [77] micro-

architectural simulator and model a processor whose specifi-

cations resemble the Intel Core i3-8109U [11]. Intel Core i3-

8109U is a state-of-the-art low-end processor used in robotic

systems like the LoCoBot manipulator [4] that we will study

in this paper.

The processor has two cores, operates at a 3 GHz frequency,

and has a 4 MB on-chip cache. Two LPDDR3-2133 memory

channels establish processor-memory communications, provid-

ing up to 37.5 GB/s bandwidth.

We simulate all kernel programs until they finish and report

the results only for the region of interest (ROI). For every

kernel, we provide a harness that is used to supply inputs to the

kernel, indicate its ROI, and communicate with the simulator.

Finally, we report the evaluation results for every kernel

running it with a typical, realistic configuration, on a repre-

sentative inputset. However, we have implemented all of the

kernels in a flexible way such that they can be easily executed

with other configuration parameters and inputsets.

V. RTRBench KERNELS

Table I summarizes RTRBench ’s kernels along with their

key characteristics. We select kernels such that the suite covers

the entire software pipeline of most autonomous robots. As an

example, in robots operating in low-dimensional spaces (e.g., a

self-driving car operating in a 2D/3D space), best-first graph

search algorithms like A� [40] are used to accomplish path

planning. However, in high-dimensional spaces (e.g., a station-

ary robotic arm with multiple degrees-of-freedom), sampling-

based algorithms like RRT [55] are used for planning. We

176

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

Table I: RTRBench ’s kernels and their key characteristics.

Kernel Stage Bottleneck(s) Kernel Stage Bottleneck(s)
01.pfl Perception Ray-casting 09.rrtstar Planning Collision detection, nearest neighbor search

02.ekfslam Perception Matrix operations 10.rrtpp Planning Collision detection, nearest neighbor search

03.srec Perception Point cloud operations, matrix operations 11.sym-blkw Planning Graph search, string manipulation

04.pp2d Planning Collision detection 12.sym-fext Planning Graph search, string manipulation

05.pp3d Planning Collision detection, graph search 13.dmp Control Fine-grained serialization

06.movtar Planning Input-dependent 14.mpc Control Optimization

07.prm Planning Graph search, L2-norm calculations 15.cem Control Sort

08.rrt Planning Collision detection, nearest neighbor search 16.bo Control Sort

include both kernels in the suite to represent various real-world

robots.
Moreover, we consider algorithms and methods whose

effectiveness is established in the community. For example,

classic yet extensively-used approaches like particle filter lo-

calization [28], whose effectiveness is widely established, are

included in our suite. However, recently proposed methods like

Q-learning–based path planning has an unclear performance

beyond the evaluated scopes, and are not included in our suite.
Following, we provide a description of our kernels, along

with their architecture-level evaluations. Noteworthy, while we

evaluate the kernels in the context of a simulation framework,

they can be employed in scopes beyond simulation, including

in ROS-like middlewares and real-world robots. Finally, the

kernels’ names have two parts: the first part indicates the corre-

sponding pipeline stage and the second part is an abbreviation

of the corresponding algorithm/method.

01.pfl

Description: Particle filter localization [48], [90], [96] is a

method to estimate a robot’s state (location, orientation) as

it moves and senses the environment, given a known map.
Fig. 2 shows an overview of the kernel in an environment

modeling a robot moving in the Wean Hall building of

Carnegie Mellon University. The robot is equipped with an

odometer and a laser rangefinder.
The method maintains many particles, each representing

a particular hypothesis of the robot’s state. All particles are

initially sampled from a uniform random distribution, meaning

the robot could be anywhere in the environment (Fig. 2-

(a)). Throughout the operation, the particles are re-sampled
based on sensory data: particles whose hypothesis matches

the sensed data re-appear with a higher chance. Finally, the

particles converge toward the robot’s actual state (Fig. 2-(b)).
The odometer measures the distance traveled by the robot at

each step (the blue arrow in Fig. 2-(c)). The odometry readings

are used to update particles’ hypothesis of the robot’s state.

The laser rangefinder casts rays in different directions and

measures the closest obstacle in every direction (the red arrows

in Fig. 2-(c)). The laser readings are used to update particles’

hypothesis of the obstacles’ position. We evaluate the kernel

in five different parts of the building.
Evaluation: Our evaluations show that ray-casting is the single

major performance bottleneck: 67% to 78% of the entire

execution time is spent in ray-casting. Ray-casting is the

process of matching laser readings with hypotheses. Every

Particles in
the beginning

(a) Particles after
convergence

(b) Odometry (blue) and laser (red)
measurements in the wild

(c)

Free Obstacle

Fig. 2: Particle filter localization.

particle traverses the map in different directions corresponding

to the actually cast rays, and finds the closest obstacle to

the robot in every direction. Then, it matches up the traverse

distance (hypothesis) with the sensed data from the laser rays,

and updates the hypothesis according to a sensor model.

Ray-casting exhibits significant spatial locality and fine-
grained parallelism. The map traversal entails checking the

map cells that are nearby each other (spatial locality); also,

the cells can be checked in parallel (fine-grained parallelism).

These two features make hardware acceleration a perfect fit

for ray-casting, as realized in Intel’s new design: Intel offers a

ray-casting accelerator in 10 nm CMOS [46] for edge robotics

and augmented reality applications.

02.ekfslam

Description: When the environment map is not known, which

is a common case for applications like self-driving cars and

pilotless drones, the robot should simultaneously infer both the

surrounding environment and its own location. This operation

is known as simultaneous localization and mapping (SLAM).

The environment is typically inferred by identifying several

landmarks (e.g., a tall tower in a city) and keeping track of

the robot’s state relative to them.

Extended Kalman filter (EKF) is a widely-used method

to solve the SLAM problem [52], [91], [97]. EKF uses a

series of measurements (e.g., the robot’s distance from a tower

measured using GPS), and infers the state of the robot and the

environment. An important feature of EKF is its robustness

against measurement noises, which is achieved by accounting

for uncertainties in estimations.

Fig. 3 shows an overview of the kernel in an environment

modeling a robot moving through a synthetic setting with

six landmarks. The robot constantly reads its distance and

177

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

angle with the landmarks from its sensors. We add Gaussian-

distributed noise to each sensor measurement. Fig. 3-(b) shows

the results of EKF . Green points are the estimated locations of

the landmarks (mapping), and the blue points are the estimated

locations of the robot (localization). Red ellipses around the

locations represent the uncertainties the method accounts for

in its estimations.

The modeled environment(a) EKF results for the modeled problem(b)

Robot

Fig. 3: SLAM using Extended Kalman Filter .

Evaluation: Frequent matrix operations (multiplication, in-

version), performed for updating the estimations based on

sensory data, are the major performance bottleneck of the

workload, taking more than 85% of execution time. More

specifically, instruction level parallelism (ILP) is limited by

the number of function units (FU) that conduct the matrix

operations; we observe a decent performance improvement

with increasing the number of FUs. However, increasing FUs

is not an appealing approach for low-end processors, like the

modeled one. As the matrices are not too large1 and fit in the

caches, parallel near-cache computation methods [69] seem a

promising approach for performance improvement.

03.srec

Description: Scene reconstruction [50], [51], [61], [84] is the

process of capturing the shape and appearance of the objects

in an environment. We implement the scene reconstruction

mechanism of [50], a real-time 3D reconstruction mechanism

in dynamic scenes. It uses the iterative closest point (ICP)

algorithm of prior work [66] to reconstruct the scene from

different point clouds.

A point cloud is a set of data points in space that represents

a 3D shape or object. In scene reconstruction [50], the robot’s

cameras generate multiple different scans of the environment

(e.g., with different camera rotations), and then the robot uses

ICP to evaluate their clouds of points. ICP essentially tries to

reconcile two clouds of points to have a unified understanding

of the environment.

We evaluate the kernel using the living_room inputset

from the ICL-NUIM [39] dataset. Fig. 4-(a) shows the envi-

ronment (one photo out of all taken by the robot’s camera),

and Fig. 4-(b) shows the output of ICP .

Evaluation: The memory system is a significant bottleneck of

the workload. Manipulating point clouds generates numerous

irregular accesses, overwhelming the memory system. More

1The size of matrices is proportionate to the number of different measure-
ment types (distance and angle in the modeled application).

The environment(a) The reconstructed scene(b)

Fig. 4: 3D reconstruction in dynamic scenes.

than 68% of the execution time is spent waiting for memory.

Prefetching predicted memory accesses in order to reduce

memory latency stalls does not seem to be a promising

solution because (i) the memory accesses are not easy-to-

predict, and (ii) the bottleneck is memory bandwidth, not

memory latency. Near-data processing approaches [65] seem

more fitting, particularly because of the low compute-to-

communicate ratio [60] of data.

Another important bottleneck is massive matrix operations

(e.g., cross-multiplication, inversion). Though matrix data has

a regular layout that is amenable to high ILP, the operations

would need a large number of FUs to exploit the ILP.

Finally, a GPU, if it could be afforded in the robot, is a

by far better platform for scene reconstruction. GPUs offer

significantly higher memory bandwidth, tolerate memory stalls

to a large extent, and can better exploit the data-parallel nature

of scene reconstruction [27].

04.pp2d

Description: Path planning is the process of finding an effi-
cient, collision-free path from the current state (location) to a

goal state for a robot in complex surroundings.

In path planning, the environment is represented as a graph

(Fig. 5-(a)), and the planner searches it using a graph search

algorithm. A� [40], along with its variants and extensions,

is the seminal algorithm widely used in various robot path

planning applications. The key novelty of A� over other graph

search algorithms like Dijkstra is its heuristic for estimating

the distance from the goal. We use Euclidean distance as the

heuristic function. The search algorithm returns the path that

should be taken by the robot to reach the goal.

To ensure the final path is collision-free, the planner

performs frequent collision detection operations (Fig. 5-(a)).

Collision detection is the task of checking whether the robot

would collide with obstacles in the environment if it were in

a particular state.

We implement a mobile robot navigating in 2D environ-

ments, modeling a self-driving car navigating in a city. We use

Boston_1_1024 of Moving AI [87], which is a snapshot

of Boston, Massachusetts, as the environment (Fig. 5-(b)).

The car’s length×width is 4.8m × 1.8m. We choose the start

and goal points such that the car traverses a long distance,

observing different obstacle patterns.

Evaluation: Collision detection is the major performance

bottleneck. More than 65% of the entire execution time is

spent in collision detection. Similar to ray-casting (§V.1),

178

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

The environment(b)Planning and collision detection(a)

Collision

Fig. 5: 2D path planning.

collision detection exhibits significant fine-grained parallelism
and spatial locality.

Checking the collision status of every part of the robot’s

body is independent of other parts; the operations can be com-

pletely parallelized. Importantly, the parallelism is extremely

fine-grained: every operation is simply checking a cell value.

Also, the parts of the robot that are tested for collision belong

to one integrated body; collision detection computation is

fundamentally spatially-located: the occupancy grid cells that

are checked during a collision detection are nearby each other.

Significant fine-grained parallelism and spatial locality

make hardware acceleration a perfect fit for collision detection,

as realized by recent work [16], [57], [62], [63].

05.pp3d

Description: We implement a mobile robot navigating in a 3D

environment. The kernel is similar to pp2d, but the planning

has one more dimension: the z dimension. We model an

unmanned aerial vehicle (UAV), a.k.a. drone, navigating in an

outdoor environment, fr_campus of [2], which is a snapshot

of Freiburg campus (Fig. 6-(a)). We assume the UAV is small

and fits in one resolution unit. Like pp2d, we choose the start

and goal points such that the UAV traverses a long distance,

observing different obstacle patterns.

S

G

4
1

1

1
2

3
6

2

The modeled environment(a) Path graph search(b)

Fig. 6: 3D path planning.

Evaluation: Other than collision detection, the graph search

is another major performance bottleneck. Fig. 6-(b) shows

an example of the graph search problem. Search algorithms

like Dijkstra and A� try to find the shortest path between

a start point (e.g., ‘S’ in Fig. 6-(b)) and a goal point (e.g.,

‘G’ in Fig. 6-(b)). These algorithms (i) exhibit irregular
traversal, and (ii) are hard to parallelize. As a result, the

execution suffers from tremendous serialization in both intra-

node (limited ILP due to load misses) and inter-node (limited

thread-level parallelism due to data dependency) computations.

Irregular-data prefetchers can reduce the data stalls to some

extent. We evaluated an over-approximated implementation of

VLDP [83] and found that it can eliminate around one-third of

the data misses. Also, speculative parallelism approaches [13],

[16], [45] could be quite effective in parallelizing such hard

to parallelize graph search algorithms. Another appealing

approach is data-centric execution. Particularly because the

computation on every graph node is short (e.g., heuristic

calculation, cost update), data-centric architectures, that of-

fload short tasks to different execution engines located near

the corresponding data [58], could significantly accelerate the

search process.

06.movtar

Description: This kernel represents a complex planning prob-

lem, in which a robot is trying to catch a moving target (Fig. 7).

The assumption is that the robot knows the trajectory of the

target (i.e., the location of the target at any given time). The

environment is 2D but path planning is done in 3D, with time
as the third dimension.

We create our own synthetic environments. Every location

in the environment has a particular cost for the robot. The goal

of the robot is to catch the target with minimum cost.

Without a well-informing heuristic, this problem cannot be

solved in a reasonable amount of time in large environments.

We use backward Dijkstra [17] as our heuristic function:

before starting planning, the backward Dijkstra algorithm is

executed to calculate the heuristic values in an environment-

aware manner (e.g., accounting for obstacles).

After calculating the heuristic values, the search algorithm

runs on a conceptual 3D graph to catch the moving target with

the lowest possible cost. We use Weighted A� (WA�) [72]

instead of A� to accelerate the graph search. WA� inflates
the heuristic by a factor of ε . This way, the search is biased

towards the nodes that are closer to the goal, resulting in a

faster search. On the flip side, the final path cost could become

ε times higher than the shortest path cost.

Lo
ca

tio
n

Co
st

∞
0

5000

2500

Target
Trajectory

Robot
Trajectory

Fig. 7: Catching a moving target.

Evaluation: The performance of the kernel is largely de-

pendent on the inputset. In large environments, the kernel

exhibits virtually the same characteristics as pp3d. In small

environments, however, unlike pp3d, the contribution of the

heuristic calculation latency to the end-to-end latency grows up

to 62%. Approximate hardware acceleration [30], [59] can be

used for improving the performance of heuristic calculations.

179

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

Heuristic values, particularly when tight optimality guarantees
are not required, are amenable for approximation.

07.prm

Description: Motion planning for stationary robotic arm ma-

nipulators with multiple degrees-of-freedom (DoF) is one

of the challenging, time-consuming kernels in robotics. The

problem has been targeted in a variety of levels from algorithm

to, recently, architecture [57], [62], [63], [64].

Fig. 8-(a) shows an example of arm planning. A 3-DoF

robot should move its end-effector (end of the robot’s arm)

from a start point, (xs,ys), to a goal point, (xg,yg). Planning for

a robotic arm is performed in joints’ angle space: the planner

calculates a series of (αi,βi,γi)s to guide the end-effector from

the start point to the goal point.

ܻ

௦ߙܺ

,௦ݔ) (௦ݕ ,௦ߙ) (௦ߛ ,௦ߚ
,௚ߙ) (௚ߛ ,௚ߚ

PRM graph(b)3-DoF robotic arm(a)

Fig. 8: Robotic arm motion planning.

Robotic arm planning has as many dimensions as its DoF.

When the number of dimensions grows, it is not feasible to

include the entire configuration space in the graph. For exam-

ple, for a 5-DoF robotic arm with a minimum angle rotation

of 10◦, the configuration space could include (360◦
10◦)

5 ≈ 60M
different values. Building a graph with that many nodes would

make the problem infeasible to solve in a reasonable time.

High-dimensional planning is performed by sampling the

configuration space. Probabilistic RoadMap (PRM) [14], [25],

[49], [78] is a seminal algorithm for path planning in high-

dimensional configuration spaces. PRM has offline and online

phases. In the offline phase, it takes random samples from the

configuration space of the robot, then tests whether they are

collision-free, and finally connects nearby samples to form a

graph, an example of which is shown in Fig. 8-(b).

In the online phase, PRM adds the start and goal configura-

tions to the graph, and accomplishes the planning by searching

the graph with an algorithm like A� to find a path from the

start to the goal (green path in Fig. 8-(b)). We model a 5-DoF

arm manipulator operating in two synthetic environments, as

shown in Fig. 9. Map-F represents a free environment, and

Map-C shows a cluttered one.

Evaluation: The offline process could be significantly lengthy,

but it is paid only once and is done offline. The online search

process, however, is on the critical path and can limit the

performance. The search suffers from the same problems as in

pp2d, even more so. The samples are literally random, and the

graph traversal is quite irregular. Moreover, the data of every

node is even larger, as every node keeps the entire sample

configuration (n floating point numbers corresponding to n
joint angles; e.g., 40 bytes with a 5-DoF arm). Therefore, the

importance of prefetching is more pronounced in this context.

ହݍସݍ

50 ܿ݉

ହݍସݍ

50ܿ݉
50 ܿ݉

50ܿ݉Obstacle

Map-F Map-C
Fig. 9: Synthetic maps for evaluating the robotic arm.

Also, frequent L2-norm calculations, which are done to

calculate the distance of samples in n-dimension space, is

another bottleneck. Prior work [41], [67] proposes specialized
imprecise hardware for operations like L2-norm and multiply-

accumulate, that can be used to accelerate PRM .

08.rrt

Description: PRM is efficient in static environments (i.e., the

obstacles around the robot do not change). However, since it

relies on an offline-trained graph, it cannot react to changes

in the environment: if the obstacles in the environment are

relocated, the built graph is out of date.

Rapidly-exploring Random Trees (RRT) [22], [29], [55]

is a widely-used algorithm for high-dimensional planning

in dynamic environments. RRT draws random samples and

extends a tree (not a more general graph) from the start

configuration towards the goal configuration. An example of

such a tree is shown in Fig. 10. During extending the tree,

RRT checks the collision status of different configurations

with the obstacles in the environment. We evaluate the kernel

on Map-C and Map-F. Unlike prm, rrt does not have any

apriori knowledge of the maps, and hence builds the entire

data structure online.

,௦ߙ) (௦ߛ ,௦ߚ
,௚ߙ) (௚ߛ ,௚ߚ

Fig. 10: Arm manipulator planning by the RRT algorithm.

Evaluation: Collision detection is a major performance bot-

tleneck of the application, taking up to 62% of the execution

time. Unlike PRM that has an offline phase and performs

collision checks offline, RRT does not have an offline phase,

and hence, collision checks fall into the critical path of the

execution. As discussed for pp2d, hardware acceleration is

able to largely accelerate collision detection, as realized by

recent work [16], [57], [62], [63].

Nearest neighbor search is another performance bottleneck,

taking up to 31% of the execution time. When drawing a

sample, RRT searches the other samples to find the near ones

to connect the new sample to them. This operation exhibits

irregular memory accesses, because the samples whose values

180

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

(angles) are close could be allocated in distant memory loca-

tions. This results in a large L1 data cache miss ratio (12%-

22% in our experiments), significantly hurting the perfor-

mance. The problem is observed in other classic applications

like pattern recognition [89] and computer vision [15], as

well. Prior work proposes in-memory computation [75] and

informed caching [71] for accelerating the nearest neighbor

search operations.

09.rrtstar

Description: RRT is fast but can return an inefficient, costly

path [47]. RRT � [34], [47], [92] is a variant of RRT that

returns an asymptotically optimal path. RRT � improves path

quality by rewiring the tree: when a random sample is added

to the tree, near neighbors are evaluated and the connections

change if the addition of the new node can reduce the path

cost.

Fig. 11 shows an example of rewiring. Fig. 11-(a) shows

the tree before rewiring. First, a random sample, named R
(the red node), is drawn. Then, the nearest neighbor of R
in the tree, named P, is found. R is connected to P and

becomes its child. The RRT algorithm stops at this step.

However, RRT � evaluates the near neighbors of R (the yellow

circle) for rewiring. There is only one node, named N, in the

neighborhood. RRT � evaluates whether removing the previous

connection of N and connecting it to R improves the cost of

path to N or not. If so, N is rewired, as shown in Fig. 11-(b).

We evaluate RRT � on the Map-C and Map-F environments.

Before rewiring(a) After rewiring(b)

Fig. 11: A rewiring example with RRT �.

Evaluation: RRT � is significantly slower (up to 8× in our

experiments) but generates shorter paths (1.6× on average) as

compared to RRT .

RRT �, like RRT , suffers from high collision detection and

nearest neighbor search latency. The contribution of the latter

increases to up to 49% due to frequent rewiring operations.

10.rrtpp

Description: RRT � provides an asymptotically optimal path

but it can significantly increase the execution time of RRT .

Prior work [32], [68], [81], [93] proposes post-processing
the path produced by RRT to improve the path cost,

while avoiding the high execution time of RRT �. The post-

processing involves iterating over the nodes of the path and

shortcutting them to reduce the final cost. Fig. 12 shows

examples of shortcutting.

Fig. 12-(a) shows the path before post-processing. The post-

processing works based on the triangle inequality. Two nodes

along the path are shortcutted if they can be directly connected

Before post-processing(a) After post-processing(b)

Fig. 12: Post-processing the path found by RRT .

to each other; i.e., there are not any obstacles among them.

For example, in Fig. 12-(a), the two node pairs connected by

dashed green lines can be shortcutted, while the node pair

connected by a dashed red line cannot. Fig. 12-(b) shows the

path after post-processing. The post-processing step could run

for several iterations to further reduce the path cost.

We evaluate RRT � on the Map-C and Map-F environments.

Evaluation: RRT with post-processing exhibits computation

characteristics (and path cost) that lie in between RRT � and

the baseline RRT . The overhead of nearest neighbor search

operations decreases as compared to RRT � due to the lack of

rewiring operations; and, the cost of post-processing is added

on top of the baseline RRT .

11.sym-blkw

Description: Symbolic planning [18], [21], [35] is a general

framework to solve a variety of robotic planning problems.

In symbolic planning, the problem is represented using high-

level, human-readable symbols. The inputs of the planner are

the valid symbols, initial state, goal state, and valid actions.

An action is a set of operations done by the robot and results

in changing the state of the robot and/or environment. Every

action has preconditions and effects. Preconditions are the

conditions a state must have for an action to be applicable

to it. Effects are the changes an action makes to a state. The

problem is ultimately represented as a graph search and the

planner computes a sequence of actions to reach the goal state

from the initial state. The strength of symbolic planning is its

generality: one symbolic planner can solve any problem that

can be described in the symbolic language.

We implement a symbolic planner and solve the blocks
world problem [38] in its context. Fig. 13-(a) shows parts of

a symbolic representation of the blocks world problem, and

Fig. 13-(b) shows a sketch of the problem in its initial state.

Even though blocks world is a toy problem, it shares the same

kernel with many realistic NP-hard search problems including

robotic vision, motor control, and probabilistic inference [85].

Symbolic description of a blocks world problem(a)

Symbols: A, B, C, Table
Initial conditions: On(A, B), On(B, Table), On(C, Table), ...
Goal conditions: On(B, C), On(C, A), On(A, Table)
Actions:

Move(b, x, y)
Preconditions: On(b, x), Clear(b), Clear(y), ...
Effects: On(b, y), Clear(x), !On(b, x), !Clear(y)⋮

B C

A

Blocks world(b)

Fig. 13: Blocks world problem.

181

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

Evaluation: The kernel has only dominant operations: search-

ing the graph nodes to find a set of actions, and string
manipulation inside nodes. The former exhibits the same

behavior as other graph search kernels in the context of robot

planning; e.g., pp2d, pp3d, and prm.

The string manipulation has long been targeted in the con-

text of computer architecture [12], [33] for classic applications

like packet routing and web querying. With the growing

popularity of applications like bioinformatics and genome

sequence analysis, and the viability of hardware acceleration,

string manipulation hardware accelerators are revisited by

recent work [20], [37]. Such accelerators can be repurposed

for accelerating symbolic planning, with minimum effort.

12.sym-fext

Description: We model a firefighting problem and solve it in

the context of symbolic planning. The problem is inspired by

the final challenge at MIT’s 1st Summer School on Cognitive

Robotics [10]. There are two robots: a mobile robot and a

quadcopter. By landing on the mobile robot, the quadcopter

pours water on the fire. The quadcopter has a limited battery

level and a limited water tank; in case of low battery or water,

the quadcopter needs to charge its battery or fill its tank before

pouring water on the fire. The ultimate goal of the problem

is to extinguish the fire. Fig. 14 shows parts of the symbolic

representation of the problem.

Symbols: A, B, C, D, E, W, F, Q, R
Initial conditions: Quad(Q), Rob(R), At(Q, B), At(R, A), Loc(A), InAir(Q), ...
Goal conditions: ExtThree(F)
Actions:

MoveToLoc(x,y)
Preconditions: Loc(x), Loc(y), At(R, x), InAir(Q)
Effects: At(R, y), !At(R, x)

FillWater(x)
Preconditions: Quad(x), OnRob(x), EmptyTank(x), At(R, W), At(Q, W)
Effects: !EmptyTank(x), FullTank(Q)⋮

Fig. 14: Firefighter robots.

Evaluation: The kernel uses the same symbolic planner as in

sym-blkw, and hence, it largely exhibits the same (architec-

tural) characteristics. However, sys-fext exhibits a higher

level of parallelism (∼3.2×) since it has more valid actions.

Every action translates into an edge in the graph representation

of the problem, and the neighbors of every node at every step

can be evaluated in parallel.

13.dmp

Description: Dynamic movement primitives (DMP) [53], [79],

[80] is a control kernel to generate a smooth trajectory based

on the path computed by the robot’s path planner. DMP

represents the problem using a virtual spring and damper
system and adapts it to the planned path.

DMP uses Gaussian bias functions and shape parameters

to define the overall trajectory shape. These parameters are

often acquired through imitation learning [42] and linear

regression, typically through a single demonstration. Once

the parameters are acquired, the final trajectory, including the

position, velocity, and acceleration parameters, is computed.

We train the model using data gathered from a demonstra-

tion of an in-house wheeled robot. We evaluate the model for

a reference trajectory depicted by orange in Fig. 15. The black

lines in Fig. 15 show the trajectory (left) and velocity (right)

generated by DMP .

1.51.0

1.5
1.0

ܶ݅݉݁ (ݏ)

݆ܿ݁ܽݎܶ
݉)ݕݎ݋ݐ

)

1.51.0
3.0
0

ܶ݅݉݁ (ݏ)

ݐ݅ܿ݋݈ܸ݁
ݏ/݉)ݕ

)

−1.5Reference
DMP

Fig. 15: Dynamic movement primitives.

Evaluation: The ILP is low (instructions-per-cycle (IPC) < 1)

due to significant data dependency in the algorithm: the trajec-

tory, velocity, and acceleration are all computed incrementally.

Dataflow architectures [36] have been shown to be effective

for this kind of computation.

14.mpc

Description: Model predictive control (MPC) is a mechanism

used to control a process while satisfying a set of constraints.

In robotics, it is used to generate control inputs to the robot’s

actuators to efficiently follow the path absorbed from the

planning stage [23], [26], [54]. For example, with a self-

driving car, the constraints could be the maximum speed, and

the goal could be following a path with minimum fuel usage.

Fig. 16 shows an overview of the kernel in an environment

modeling a self-driving car following a long reference trajec-

tory while not exceeding predefined velocity and acceleration

values. The cost is formulated as a function of the deviation
from the reference trajectory and the state change during the

path.

Reference
M
PC

Fig. 16: Model predictive control.

Evaluation: The major bottleneck of the kernel is solving the

optimization problem, taking more than 80% of the entire ex-

ecution time. RoBoX [74] proposes a full-fledged accelerator

for accelerating this process. It uses specialized logic and near-

data computation to solve the problem significantly faster.

15.cem

Description: We model a ball-throwing robot whose throwing

skills get improved using reinforcement learning. We use

182

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

V-REP [73] to simulate the robot and the environment. Fig. 17

shows the environment. A 2-DoF robotic arm applies a certain

force to throw a ball towards a certain goal. The purpose

of reinforcement learning is to learn the best force and

configuration (joints’ angles). The reward of the learning is

how close the final location of the ball is to the goal.

Robot

Ball

Goal

Force
Sensor

Fig. 17: Ball-throwing robot.

Cross-entropy method (CEM) [70] is a Monte Carlo opti-

mization method. CEM learns the policy (throwing parame-

ters) by repeatedly drawing samples, collecting rewards, and

minimizing the cross-entropy loss to shift the policy towards

samples that result in larger rewards. We execute CEM for five

iterations and draw fifteen samples in every iteration. Fig. 18

shows how reward (higher is better) changes over learning.

-2.0

-1.0

0.0

1.0

2.0

Re
w
ar
d

Sample
Fig. 18: Rewards over time using CEM .

Evaluation: Recent work [82] proposes hardware acceleration

for reinforcement learning that can be well applicable in this

context as well. Also, we find the sort operations (for finding

the largest rewards) as a non-trivial execution bottleneck of

the algorithm, taking around one-third of the entire execution

time, depending on the learning algorithm configuration.

16.bo

Description: In robotics, Bayesian optimization (BO) is used

to optimize control parameters in reinforcement learning [44].

BO is data-efficient and gradient-free, and is increasingly used

to solve a variety of control problems.

We implement BO in the context of the ball-throwing

robot scenario. We use an upper confidence bound (UCB)

acquisition function. Training and testing are done using a

Gaussian process. Fig. 19 shows how the reward changes over

the course of the 45 iterations of the learning process.

Evaluation: The kernel exhibits largely the same characteris-

tics as cem. However, computationally, it is more intensive

(∼15000× more iterations). Hardware acceleration of the

reinforcement learning kernel can be a perfect architectural so-

lution to accelerate the application. Also, since more metadata

-2.0

-1.0

0.0

1.0

2.0

Re
w
ar
d

Sample
Fig. 19: Rewards over time using BO .

is kept with BO , its sort operation is more time-consuming

(∼6× as compared to cem).

VI. IMPLEMENTATION DETAILS

System Requirements: We test RTRBench under Ubuntu
18.04 with Linux Kernel 4.15, and compile with GCC
11.1.0. However, RTRBench can be used with a variety of

other operating systems and compilers. As we use C++17,

the minimum required GCC version is 8.0 (Clang: 5.0;

Visual Studio: 15.8).

Also, we integrate the kernels with zsim [77], and com-

municate the regions of interest (ROIs) using zsim hooks.

Without zsim (either real execution or in the context of other

simulators), the harness instructions will be safely executed: no

effect on correctness and virtually zero effect on performance.

We believe RTRBench can be smoothly integrated/used with

other simulators, as well; however, the ROI communications

should be coded based on the target simulator.

Usage & Flexibility: We provide a Makefile for every kernel.

Also, we provide a usage help message for every kernel.

Running the binary file of a kernel with --help will print

the help message. For example, Fig. 20 shows an example of

a help message.

$./rrt.out --help

USAGE:
./rrt.out [OPTIONS] [FLAGS]

OPTIONS:
--bias <val> Random number generation bias
--config <val> Input config file
--epsilon <val> Epsilon (minimum movement)
--map <val> Input map file
--output <val> Output path file
--radius <val> Neighborhood distance
--samples <val> Maximum samples

FLAGS:
--help, -h Print help message

Fig. 20: An example of a help message.

Also, as the figure shows, we implement the kernels in a

completely flexible manner; all of the configuration/execution

parameters can be set/changed from the command line. Not

shown in the figure, we provide proper default values for the

configuration parameters.

Inputsets: In the paper, we typically report kernel execution

results for one inputset per kernel. However, in the repository,

we provide multiple inputsets for many of the kernels.

183

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

VII. COMPARISON WITH OPEN-SOURCE REPOSITORIES

As we mentioned in §II, there are a few educational

open-source libraries that provide implementations of robotic

kernels. The main problem with these libraries is that they do

not consider performance as the main objective, and hence,

cannot be used as a benchmark for real-time robotics.

In this section, we compare the performance of our

suite against PythonRobotics (P-Rob) [6], [76] and

CppRobotics (C-Rob) [1]. P-Rob is a popular robotic library

with ∼4.8K forks and ∼14.8K stars (as of 04/01/2022).

P-Rob provides a Python code collection of the robotic

kernels operating on small, synthetic inputsets. C-Rob

translates some of the P-Rob kernels to C++.

As a case study, we compare pp2d with the counterpart

kernels in P-Rob (a_star.py) and C-Rob (a_star.cpp).

We removed the code for generating animations from the

competitor libraries, to accelerate their execution. We conduct

this experiment on a real machine, as the competitor libraries

are not easy to simulate (Python runtime, etc.). Our machine

uses Intel Xeon CPU E5-2670 [3] cores operating at 2.60 GHz,

with the operating system and compiler described in §VI.

As inputset, we use the map provided by the competitor

libraries, which is depicted in Fig. 21-(a). Because the map

is small, we also scale it by different factors to evaluate the

implementations in larger (or finer-resolution) environments.

Fig. 21-(b) shows the execution time results.

Scale
Time (s)

P-Rob C-Rob RTRBench

1 1.44E-01 3.00E-02 4.03E-04

2 6.49E-01 2.70E-01 1.37E-03

4 3.53E+00 2.15E+00 5.04E-03

8 2.07E+01 2.92E+01 2.13E-02

16 1.38E+02 4.37E+02 1.03E-01

32 9.93E+02 6.56E+03 4.83E-01

64 7.65E+03 6.56E+03 2.20E+00

The environment(a) Execution time of different methods(b)

Obstacle

Final Path

E
xp

lo
re

d
N

od
es

Fig. 21: Performance comparison of different libraries.

As the results show, the competitor libraries are far from

real-time. Our implementation is 357×–3469× faster than

P-Rob , and 74×–13576× faster than C-Rob . P-Rob , not

surprisingly, suffers from the tremendous overhead of the

Python runtime. For C-Rob , we investigated its source code

for this particular kernel, and found that the main source of

inefficiency is passing large data structures to functions need-

lessly by value instead of by reference. As noted above, and

highlighted by this performance comparison, these libraries

are designed for educational purposes and not for real-time

experiments.

VIII. CONCLUSION

Research on real-time robotics is significantly hindered by

the lack of a comprehensive benchmark suite. In this paper,

we present RTRBench , a benchmark suite for robotic kernels.

RTRBench includes 16 kernels, spanning the entire software

pipeline of a wide swath of robots. Together with the suite, we

conduct an evaluation of the workloads at the architecture level

and suggest opportunities for performance improvements.

ACKNOWLEDGMENT

This work was supported in part by National Science Foun-

dation grant CCF-2028949, by a VMware University Research

Fund Award, and by the Parallel Data Lab (PDL) Consor-

tium (Alibaba, Amazon, Datrium, Facebook, Google, Hewlett-

Packard Enterprise, Hitachi, IBM, Intel, Microsoft, NetApp,

Oracle, Salesforce, Samsung, Seagate, and TwoSigma). Mo-

hammad Bakhshalipour was supported by the Apple CMU

ECE PhD Fellowship in Integrated Systems. We would like to

thank the anonymous reviewers for their valuable comments,

and our shepherd, Jaekyu Lee, for his feedback.

REFERENCES

[1] “CppRobotics,” https://github.com/onlytailei/CppRobotics.
[2] “Freiburg Campus 360 Degree 3D Scans,” http://ais.informatik.uni-fre

iburg.de/projects/datasets/fr360/.
[3] “Intel Xeon Processor E5-2670,” https://ark.intel.com/content/www/us

/en/ark/products/64595.
[4] “LoCoBot: An Open Source Low Cost Robot,” http://www.locobot.org/.
[5] “PerceptIn,” https://www.perceptin.io/.
[6] “PythonRobotics,” https://github.com/AtsushiSakai/PythonRobotics.
[7] “ROS - Robot Operating System,” https://www.ros.org/.
[8] “Search-Based Planning Lab,” http://www.sbpl.net/.
[9] “The Open Motion Planning Library,” http://ompl.kavrakilab.org/.

[10] “1st Summer School on Cognitive Robotics,” http://cognitive-robotics
17.csail.mit.edu/, 2017.

[11] “Intel Core I3-8109U Processor,” https://ark.intel.com/content/www/us
/en/ark/products/135936, 2018.

[12] M. Aldwairi, T. Conte, and P. Franzon, “Configurable String Match-
ing Hardware for Speeding Up Intrusion Detection,” ACM SIGARCH
Computer Architecture News, vol. 33, no. 1, pp. 99–107, 2005.

[13] S. Apostolakis, Z. Xu, G. Chan, S. Campanoni, and D. I. August, “Per-
spective: A Sensible Approach to Speculative Automatic Parallelization,”
in International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS). ACM, 2020, pp. 351–
367.

[14] D. Baek, M. Hwang, H. Kim, and D.-S. Kwon, “Path Planning for
Automation of Surgery Robot Based on Probabilistic Roadmap and
Reinforcement Learning,” in International Conference on Ubiquitous
Robots (UR). IEEE, 2018, pp. 342–347.

[15] F. Bajramovic, F. Mattern, N. Butko, and J. Denzler, “A Comparison of
Nearest Neighbor Search Algorithms for Generic Object Recognition,”
in International Conference on Advanced Concepts for Intelligent Vision
Systems. Springer, 2006, pp. 1186–1197.

[16] M. Bakhshalipour, S. B. Ehsani, M. Qadri, D. Guri, M. Likhachev,
and P. B. Gibbons, “RACOD: Algorithm/Hardware Co-Design for
Mobile Robot Path Planning,” in International Symposium in Computer
Architecture (ISCA). IEEE/ACM, 2022.

[17] G. Bakhtyar, V. Nguyen, M. Cetin, and D. Nguyen, “Backward Dijkstra
Algorithms for Finding the Departure Time Based on the Specified
Arrival Time for Real-Life Time-Dependent Networks,” Journal of
Applied Mathematics and Physics, vol. 4, no. 1, 2016.

[18] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J.
Pappas, “Symbolic Planning and Control of Robot Motion [grand
Challenges of Robotics],” IEEE Robotics & Automation Magazine,
vol. 14, no. 1, pp. 61–70, 2007.

[19] B. Boroujerdian, H. Genc, S. Krishnan, W. Cui, A. Faust, and V. Reddi,
“MAVBench: Micro Aerial Vehicle Benchmarking,” in International
Symposium on Microarchitecture (MICRO). IEEE/ACM, 2018, pp.
894–907.

[20] D. S. Cali, G. S. Kalsi, Z. Bingöl, C. Firtina, L. Subramanian, J. S.
Kim, R. Ausavarungnirun, M. Alser, J. Gomez-Luna, A. Boroumand
et al., “Genasm: A High-Performance, Low-Power Approximate String
Matching Acceleration Framework for Genome Sequence Analysis,” in
International Symposium on Microarchitecture (MICRO). IEEE/ACM,
2020, pp. 951–966.

[21] G. Canal, E. Pignat, G. Alenyà, S. Calinon, and C. Torras, “Joining High-
Level Symbolic Planning with Low-Level Motion Primitives in Adaptive
HRI: Application to Dressing Assistance,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2018, pp. 3273–3278.

[22] X. Cao, X. Zou, C. Jia, M. Chen, and Z. Zeng, “RRT-Based Path
Planning for an Intelligent Litchi-Picking Manipulator,” Computers and
Electronics in Agriculture, vol. 156, pp. 105–118, 2019.

184

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

[23] A. Carron, E. Arcari, M. Wermelinger, L. Hewing, M. Hutter, and
M. N. Zeilinger, “Data-Driven Model Predictive Control for Trajectory
Tracking with a Robotic Arm,” IEEE Robotics and Automation Letters,
vol. 4, no. 4, pp. 3758–3765, 2019.

[24] M. Chan, “China and the U.S Are Fighting a Major Battle Over Killer
Robots and the Future of AI,” TIME, Sep 2019. [Online]. Available:
https://time.com/5673240/china-killer-robots-weapons

[25] G. Chen, N. Luo, D. Liu, Z. Zhao, and C. Liang, “Path Planning for
Manipulators Based on an Improved Probabilistic Roadmap Method,”
Robotics and Computer-Integrated Manufacturing, vol. 72, p. 102196,
2021.

[26] E. Dantec, R. Budhiraja, A. Roig, T. Lembono, G. Saurel, O. Stasse,
P. Fernbach, S. Tonneau, S. Vijayakumar, S. Calinon et al., “Whole Body
Model Predictive Control with a Memory of Motion: Experiments on a
Torque-Controlled Talos,” in International Conference on Robotics and
Automation (ICRA). IEEE, 2021, pp. 8202–8208.

[27] S. Darabi, N. Mahani, H. Baxishi, E. Yousefzadeh-Asl-Miandoab,
M. Sadrosadati, and H. Sarbazi-Azad, “NURA: A Framework for
Supporting Non-Uniform Resource Accesses in GPUs,” Proceedings of
the ACM on Measurement and Analysis of Computing Systems, vol. 6,
no. 1, pp. 1–27, 2022.

[28] F. Dellaert, D. Fox, W. Burgard, and S. Thrun, “Monte Carlo Localiza-
tion for Mobile Robots,” in International Conference on Robotics and
Automation (ICRA). IEEE, 1999, pp. 1322–1328.

[29] J. Denny, R. Sandström, A. Bregger, and N. M. Amato, “Dynamic
Region-Biased Rapidly-Exploring Random Trees,” in Algorithmic Foun-
dations of Robotics XII. Springer, 2020, pp. 640–655.

[30] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural Accel-
eration for General-Purpose Approximate Programs,” in International
Symposium on Microarchitecture (MICRO). IEEE/ACM, 2012, pp.
449–460.

[31] Y. Feng, B. Tian, T. Xu, P. Whatmough, and Y. Zhu, “Mesorasi: Archi-
tecture Support for Point Cloud Analytics Via Delayed-Aggregation,” in
International Symposium on Microarchitecture (MICRO). IEEE/ACM,
2020, pp. 1037–1050.

[32] D. Ferguson, N. Kalra, and A. Stentz, “Replanning with RRTs,” in
International Conference on Robotics and Automation (ICRA). IEEE,
2006, pp. 1243–1248.

[33] E. Fernandez, W. Najjar, and S. Lonardi, “String Matching in Hard-
ware Using the FM-Index,” in International Symposium on Field-
Programmable Custom Computing Machines. IEEE, 2011, pp. 218–
225.

[34] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed RRT*:
Optimal Sampling-Based Path Planning Focused Via Direct Sampling
of an Admissible Ellipsoidal Heuristic,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2014, pp. 2997–3004.

[35] C. R. Garrett, T. Lozano-Perez, and L. P. Kaelbling, “FFRob: Lever-
aging Symbolic Planning for Efficient Task and Motion Planning,” The
International Journal of Robotics Research, vol. 37, no. 1, pp. 104–136,
2018.

[36] G. Gobieski, B. Lucia, and N. Beckmann, “Intelligence Beyond the
Edge: Inference on Intermittent Embedded Systems,” in International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS). ACM, 2019, pp. 199–213.

[37] V. Y. Gudur and A. Acharyya, “Hardware-Software Codesign Based
Accelerated and Reconfigurable Methodology for String Matching in
Computational Bioinformatics Applications,” IEEE/ACM Transactions
on Computational Biology and Bioinformatics, vol. 17, no. 4, pp. 1198–
1210, 2018.

[38] N. Gupta and D. S. Nau, “On the Complexity of Blocks-World Plan-
ning,” Artificial Intelligence, vol. 56, no. 2-3, pp. 223–254, 1992.

[39] A. Handa, T. Whelan, J. McDonald, and A. J. Davison, “A Benchmark
for RGB-D Visual Odometry, 3D Reconstruction and SLAM,” in Inter-
national Conference on Robotics and Automation (ICRA). IEEE, 2014,
pp. 1524–1531.

[40] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the
Heuristic Determination of Minimum Cost Paths,” IEEE Transactions
on Systems Science and Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[41] J. Huang, J. Lach, and G. Robins, “A Methodology for Energy-Quality
Tradeoff Using Imprecise Hardware,” in Design Automation Conference
(DAC). IEEE, 2012, pp. 504–509.

[42] A. Hussein, M. M. Gaber, E. Elyan, and C. Jayne, “Imitation Learning: A
Survey of Learning Methods,” ACM Computing Surveys, vol. 50, no. 2,
pp. 1–35, 2017.

[43] S. James, Z. Ma, D. R. Arrojo, and A. J. Davison, “RLBench: The
Robot Learning Benchmark & Learning Environment,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 3019–3026, 2020.

[44] N. Jaquier, L. Rozo, S. Calinon, and M. Bürger, “Bayesian Optimization
Meets Riemannian Manifolds in Robot Learning,” in Conference on
Robot Learning. PMLR, 2020, pp. 233–246.

[45] M. C. Jeffrey, S. Subramanian, C. Yan, J. Emer, and D. Sanchez,
“A Scalable Architecture for Ordered Parallelism,” in International
Symposium on Microarchitecture (MICRO). IEEE/ACM, 2015, pp.
228–241.

[46] M. Kar, A. Agarwal, S. Hsu, D. Moloney, G. Chen, R. Kumar, H. Sum-
bul, P. Knag, M. Anders, H. Kaul et al., “A Ray-Casting Accelerator in
10nm CMOS for Efficient 3D Scene Reconstruction in Edge Robotics

and Augmented Reality Applications,” in Symposium on VLSI Circuits.
IEEE, 2020, pp. 1–2.

[47] S. Karaman and E. Frazzoli, “Incremental Sampling-Based Algorithms
for Optimal Motion Planning,” Robotics Science and Systems VI, vol.
104, no. 2, 2010.

[48] P. Karkus, D. Hsu, and W. S. Lee, “Particle Filter Networks with
Application to Visual Localization,” in Conference on Robot Learning.
PMLR, 2018, pp. 169–178.

[49] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Configuration
Spaces,” IEEE Transactions on Robotics and Automation, vol. 12, no. 4,
pp. 566–580, 1996.

[50] M. Keller, D. Lefloch, M. Lambers, S. Izadi, T. Weyrich, and A. Kolb,
“Real-Time 3D Reconstruction in Dynamic Scenes Using Point-Based
Fusion,” in International Conference on 3D Vision (3DV). IEEE, 2013,
pp. 1–8.

[51] A. Knapitsch, J. Park, Q.-Y. Zhou, and V. Koltun, “Tanks and Temples:
Benchmarking Large-Scale Scene Reconstruction,” ACM Transactions
on Graphics (ToG), vol. 36, no. 4, pp. 1–13, 2017.

[52] V. Kokovkina, V. Antipov, V. Kirnos, and A. Priorov, “The Algorithm
of EKF-SLAM Using Laser Scanning System and Fisheye Camera,”
in Systems of Signal Synchronization, Generating and Processing in
Telecommunications (SYNCHROINFO). IEEE, 2019, pp. 1–6.

[53] L. Koutras and Z. Doulgeri, “Dynamic Movement Primitives for Moving
Goals with Temporal Scaling Adaptation,” in International Conference
on Robotics and Automation (ICRA). IEEE, 2020, pp. 144–150.

[54] F. Künhe, J. Gomes da Silva, and W. Fetter Lages, “Mobile Robot
Trajectory Tracking Using Model Predictive Control,” in II IEEE Latin-
American Robotics Symposium (LARS), vol. 51. Citeseer, 2005.

[55] S. M. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” Iowa State, Ames, IA, USA, Tech. Rep. TR 98-11, 1998.

[56] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s Plenty of Room at
the Top: What Will Drive Computer Performance After Moore’s Law?”
Science, vol. 368, no. 1079, June 2020.

[57] S. Lian, Y. Han, X. Chen, Y. Wang, and H. Xiao, “Dadu-P: A Scalable
Accelerator for Robot Motion Planning in a Dynamic Environment,” in
Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[58] E. Lockerman, A. Feldmann, M. Bakhshalipour, A. Stanescu, S. Gupta,
D. Sanchez, and N. Beckmann, “Livia: Data-Centric Computing
Throughout the Memory Hierarchy,” in International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems
(ASPLOS). ACM, 2020, pp. 417–433.

[59] D. Mahajan, A. Yazdanbakhsh, J. Park, B. Thwaites, and H. Es-
maeilzadeh, “Towards Statistical Guarantees in Controlling Quality
Tradeoffs for Approximate Acceleration,” in International Symposium
in Computer Architecture (ISCA). ACM/IEEE, 2016, pp. 66–77.

[60] A. Mukkara, N. Beckmann, M. Abeydeera, X. Ma, and D. Sanchez,
“Exploiting Locality in Graph Analytics Through Hardware-Accelerated
Traversal Scheduling,” in International Symposium on Microarchitecture
(MICRO). IEEE/ACM, 2018, pp. 1–14.

[61] Z. Murez, T. van As, J. Bartolozzi, A. Sinha, V. Badrinarayanan, and
A. Rabinovich, “Atlas: End-To-End 3D Scene Reconstruction from
Posed Images,” in Computer Vision–ECCV 2020: 16th European Con-
ference. Springer, 2020, pp. 414–431.

[62] S. Murray, W. Floyd-Jones, G. Konidaris, and D. J. Sorin, “A Pro-
grammable Architecture for Robot Motion Planning Acceleration,” in
International Conference on Application-specific Systems, Architectures
and Processors (ASAP), vol. 2160. IEEE, 2019, pp. 185–188.

[63] S. Murray, W. Floyd-Jones, Y. Qi, D. J. Sorin, and G. D. Konidaris,
“Robot Motion Planning on a Chip,” in Robotics: Science and Systems,
2016.

[64] S. Murray, W. Floyd-Jones, Y. Qi, G. Konidaris, and D. J. Sorin,
“The Microarchitecture of a Real-Time Robot Motion Planning Ac-
celerator,” in International Symposium on Microarchitecture (MICRO).
IEEE/ACM, 2016, pp. 1–12.

[65] O. Mutlu, S. Ghose, J. Gómez-Luna, and R. Ausavarungnirun, “A Mod-
ern Primer on Processing in Memory,” arXiv preprint arXiv:2012.03112,
2020.

[66] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim,
A. J. Davison, P. Kohi, J. Shotton, S. Hodges, and A. Fitzgibbon,
“Kinectfusion: Real-Time Dense Surface Mapping and Tracking,” in
International Symposium on Mixed and Augmented Reality. IEEE,
2011, pp. 127–136.

[67] L. Ni, H. Huang, and H. Yu, “On-Line Machine Learning Accelerator
on Digital RRAM-Crossbar,” in International Symposium on Circuits
and Systems (ISCAS). IEEE, 2016, pp. 113–116.

[68] T. Nishi and T. Sugihara, “Motion Planning of a Humanoid Robot in a
Complex Environment Using RRT and Spatiotemporal Post-Processing
Techniques,” International Journal of Humanoid Robotics, vol. 11,
no. 02, p. 1441003, 2014.

[69] A. V. Nori, R. Bera, S. Balachandran, J. Rakshit, O. J. Omer,
A. Abuhatzera, B. Kuttanna, and S. Subramoney, “REDUCT: Keep It
Close, Keep It Cool!: Efficient Scaling of DNN Inference on Multi-
Core CPUs with Near-Cache Compute,” in International Symposium in
Computer Architecture (ISCA). ACM/IEEE, 2021, pp. 167–180.

185

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

[70] L. Petrović, J. Peršić, M. Seder, and I. Marković, “Cross-Entropy Based
Stochastic Optimization of Robot Trajectories Using Heteroscedastic
Continuous-Time Gaussian Processes,” Robotics and Autonomous Sys-
tems, vol. 133, p. 103618, 2020.

[71] R. Pinkham, S. Zeng, and Z. Zhang, “QuickNN: Memory and Perfor-
mance Optimization of k-d Tree Based Nearest Neighbor Search for
3D Point Clouds,” in International Symposium on High Performance
Computer Architecture (HPCA). IEEE, 2020, pp. 180–192.

[72] I. Pohl, “Heuristic Search Viewed As Path Finding in a Graph,” Artificial
intelligence, vol. 1, no. 3-4, pp. 193–204, 1970.

[73] E. Rohmer, S. P. Singh, and M. Freese, “V-REP: A Versatile and
Scalable Robot Simulation Framework,” in International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2013, pp. 1321–1326.

[74] J. Sacks, D. Mahajan, R. C. Lawson, and H. Esmaeilzadeh, “RoBoX:
An End-To-End Solution to Accelerate Autonomous Control in
Robotics,” in International Symposium in Computer Architecture (ISCA).
ACM/IEEE, 2018, pp. 479–490.

[75] J. Saikia, S. Yin, Z. Jiang, M. Seok, and J.-s. Seo, “K-Nearest Neighbor
Hardware Accelerator Using In-Memory Computing SRAM,” in Inter-
national Symposium on Low Power Electronics and Design (ISLPED).
IEEE, 2019, pp. 1–6.

[76] A. Sakai, D. Ingram, J. Dinius, K. Chawla, A. Raffin, and A. Paques,
“PythonRobotics: A Python Code Collection of Robotics Algorithms,”
arXiv preprint arXiv:1808.10703, 2018.

[77] D. Sanchez and C. Kozyrakis, “ZSim: Fast and Accurate Microar-
chitectural Simulation of Thousand-Core Systems,” in International
Symposium in Computer Architecture (ISCA). ACM/IEEE, June 2013.

[78] R. M. C. Santiago, A. L. De Ocampo, A. T. Ubando, A. A. Bandala,
and E. P. Dadios, “Path Planning for Mobile Robots Using Genetic
Algorithm and Probabilistic Roadmap,” in International Conference on
Humanoid, Nanotechnology, Information Technology, Communication
and Control, Environment and Management (HNICEM). IEEE, 2017,
pp. 1–5.

[79] S. Schaal, “Dynamic Movement Primitives-A Framework for Motor
Control in Humans and Humanoid Robotics,” in Adaptive Motion of
Animals and Machines. Springer, 2006, pp. 261–280.

[80] S. Schaal, J. Peters, J. Nakanishi, and A. Ijspeert, “Control, Plan-
ning, Learning, and Imitation with Dynamic Movement Primitives,”
in Workshop on Bilateral Paradigms on Humans and Humanoids:
IEEE International Conference on Intelligent Robots and Systems (IROS
2003), 2003, pp. 1–21.

[81] J. H. Seo, H. Lee, and K.-D. Kim, “A Parallelization Algorithm for
Real-Time Path Shortening of High-DOFs Manipulator,” IEEE Access,
vol. 9, pp. 123 727–123 741, 2021.

[82] S. Shao, J. Tsai, M. Mysior, W. Luk, T. Chau, A. Warren, and
B. Jeppesen, “Towards Hardware Accelerated Reinforcement Learning
for Application-Specific Robotic Control,” in International Conference
on Application-specific Systems, Architectures and Processors (ASAP).
IEEE, 2018, pp. 1–8.

[83] M. Shevgoor, S. Koladiya, R. Balasubramonian, C. Wilkerson, S. H.

Pugsley, and Z. Chishti, “Efficiently Prefetching Complex Address
Patterns,” in International Symposium on Microarchitecture (MICRO).
IEEE/ACM, 2015, pp. 141–152.

[84] D. Shin, Z. Ren, E. B. Sudderth, and C. C. Fowlkes, “3D Scene
Reconstruction with Multi-Layer Depth and Epipolar Transformers,” in
International Conference on Computer Vision. IEEE, 2019, pp. 2172–
2182.

[85] J. Slaney and S. Thiébaux, “Blocks World Revisited,” Artificial Intelli-
gence, vol. 125, no. 1-2, pp. 119–153, 2001.

[86] Statista Research Department, “Global Robotics Market Revenue 2018–
2025,” https://www.statista.com/statistics/760190/worldwide-robotics-
market-revenue/, 2021.

[87] N. R. Sturtevant, “Benchmarks for Grid-Based Pathfinding,” IEEE
Transactions on Computational Intelligence and AI in Games (TCIAIG),
vol. 4, no. 2, pp. 144–148, 2012.

[88] T. Tan, R. Weller, and G. Zachmann, “SIMDop: SIMD Optimized
Bounding Volume Hierarchies for Collision Detection,” in International
Conference on Intelligent Robots and Systems (IROS). IEEE, 2019, pp.
7256–7263.

[89] B. Tang and H. He, “ENN: Extended Nearest Neighbor Method for Pat-
tern Recognition,” IEEE Computational Intelligence Magazine, vol. 10,
no. 3, pp. 52–60, 2015.

[90] I. Ullah, Y. Shen, X. Su, C. Esposito, and C. Choi, “A Localization
Based on Unscented Kalman Filter and Particle Filter Localization
Algorithms,” IEEE Access, vol. 8, pp. 2233–2246, 2019.

[91] I. Ullah, X. Su, X. Zhang, and D. Choi, “Simultaneous Localization and
Mapping Based on Kalman Filter and Extended Kalman Filter,” Wireless
Communications and Mobile Computing, vol. 2020, pp. 2 138 643:1–
2 138 643:12, 2020.

[92] W. Xinyu, L. Xiaojuan, G. Yong, S. Jiadong, and W. Rui, “Bidirectional
Potential Guided RRT* for Motion Planning,” IEEE Access, vol. 7, pp.
95 046–95 057, 2019.

[93] E. Yoshida, K. Yokoi, and P. Gergondet, “Online Replanning for
Reactive Robot Motion: Practical Aspects,” in International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2010, pp. 5927–5933.

[94] B. Yu, W. Hu, L. Xu, J. Tang, S. Liu, and Y. Zhu, “Building the
Computing System for Autonomous Micromobility Vehicles: Design
Constraints and Architectural Optimizations,” in International Sympo-
sium on Microarchitecture (MICRO). IEEE/ACM, 2020, pp. 1067–
1081.

[95] A. Zaleski, “China’s Blueprint to Crush the US Robotics Industry,”
CNBC, Sep 2017. [Online]. Available: https://www.cnbc.com/2017/09
/06/chinas-blueprint-to-crush-the-us-robotics-industry.html

[96] Q.-b. Zhang, P. Wang, and Z.-h. Chen, “An Improved Particle Filter
for Mobile Robot Localization Based on Particle Swarm Optimization,”
Expert Systems with Applications, vol. 135, pp. 181–193, 2019.

[97] B. Zheng and Z. Zhang, “An Improved EKF-SLAM for Mars Surface
Exploration,” International Journal of Aerospace Engineering, vol.
2019, 2019.

186

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on May 19,2023 at 23:02:07 UTC from IEEE Xplore. Restrictions apply.

