Check for
Updates

Session 4: Cache and Memory

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Brief Announcement:
Spatial Locality and Granularity Change in Caching

Nathan Beckmann
beckmann@cs.cmu.edu
Carnegie Mellon University

CCS CONCEPTS

« Computer systems organization — Architectures; « Theory
of computation — Computability; Caching and paging algo-
rithms.

KEYWORDS
Caching; Spatial locality; Block granularity; Online algorithm

ACM Reference Format:

Nathan Beckmann, Phillip B. Gibbons, and Charles McGuffey. 2022. Brief
Announcement: Spatial Locality and Granularity Change in Caching. In
Proceedings of the 34th ACM Symposium on Parallelism in Algorithms and
Architectures (SPAA °22), July 11-14, 2022, Philadelphia, PA, USA. ACM, New
York, NY, USA, 3 pages. https://doi.org/10.1145/3490148.3538559

1 INTRODUCTION

Real systems make use of a hierarchy ranging from small, fast
memories to larger and slower storage devices [15]. Each level of the
hierarchy organizes its data in blocks to simplify management and
reduce overheads. The size of a block (block granularity) depends
on the level. For example, SRAM caches typically consist of 64 B
“lines”, DRAM of 2-4 KB “rows”, and flash/disk of 4 KB “pages”. This
brief announcement highlights our work [8, 19] providing the first
theoretical study of how this granularity change affects caching.

What caching opportunities and challenges are introduced
by granularity change? While caching policies traditionally ig-
nore granularity change (in both theory and practice), there is an
emerging trend in systems to optimize for it [5, 17, 18, 20-22, 24—
26]. Granularity change provides an optimization opportunity to
load some or all of the larger-granularity block at minimal cost
(see Figure 1), as the lower level has already fetched the entire
block [17, 18, 22]. But the heuristics used by these systems are
best-effort and have no theoretical bounds. We provide the first
theoretical framework to better understand and guide these designs.

What does prior caching work say about block granularity?
The original caching problem is well studied and understood. Sleator
and Tarjan [23] provided both lower and upper bounds for the cost
ratio when comparing the performance of online caches, which
must make decisions as requests arrive, against offline caches,
which are allowed to view the entire trace when making decisions.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9146-7/22/07.

https://doi.org/10.1145/3490148.3538559

Phillip B. Gibbons
gibbons@cs.cmu.edu
Carnegie Mellon University

173

Charles McGuffey
cmcguffey@reed.edu
Reed College
Fiat et al. [13] extended this 2
work to randomized algorithms 5
and showed ways of approx- & [Af B3
imating online policies using
other online policies. Work = || A B3|
on both complexity and algo- & el A2 A2
rithms has also been done on ~ © = \CZ 2
several caching variants [2, 6, mlazpgl BED¢B3
10-12, 27].
To our knowledge, no prior N \A1 \AZ\AS\ \B1 \82\83\

theoretical work accounts for §
granularity change. Prior work @

focuses on the temporal local-
ity of items within the access
trace and misses the signifi-
cant impact of spatial locality
among data items in the level
below. Models of computation
that account for transfers to and from the cache in “blocks” [1,
4,9, 14] permit items in a block to be individually accessed, but
not individually cached or evicted. As such, the “blocks” are the
(smaller) granularity of the cache itself and not the (larger) granular-
ity of the level below. Choosing which items to load is an additional
dimension with significant impact on performance.

Figure 1: In Granularity-Change
Caching, caches can load any sub-
set of the larger-granularity block
from the level below them, for the
same cost.

Our results. We study the effects of granularity change on caching:
(i) We develop a model for caching at a granularity boundary,
called the Granularity-Change (GC) Caching Problem;

(ii) We analyze competitive ratios in GC Caching, providing
complexity results, a lower bound for determinisitic online
policies, and an upper bound policy that outperforms any
policy considering only a single granularity; and

(iii) Because these bounds reveal a new issue that arises in GC
Caching where the choice of offline cache size affects the
competitiveness of different online policies relative to one
another, we develop a locality model for GC Caching that
admits upper and lower bounds for miss rate based solely
on the system’s cache size and the workload.

This brief announcement focuses on contribution (iii). A prior brief
announcement [7] focused on contribution (i), and [8] gives a
comprehensive treatment.

2 THE MODEL

The Granularity-Change Caching Model consists of a single
level of memory (cache) that receives a series of requests, referred
to as accesses, to data items. If the item is in the cache (a hit), then
the request is served and the cache is not charged. If the item is
not in the cache (a miss or fault), then the cache must load the item
from the subsequent level of memory or storage. If this load causes

https://doi.org/10.1145/3490148.3538559
https://doi.org/10.1145/3490148.3538559
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3490148.3538559&domain=pdf&date_stamp=2022-07-11

Session 4: Cache and Memory

the amount of data in cache to exceed the cache size k, then items
must be evicted from the cache to remedy the situation.

What makes the Granularity-Change Caching Model unique is
that the universe of items is partitioned into blocks of up to B items,
such that the cache can load any subset of the items in a block for
unit cost; i.e., items after the first are “free” (B=3 in Figure 1). When
B=1, the model exactly matches the traditional caching model.

The blocks represent the larger data granularity used by the
subsequent level of the memory hierarchy. In such systems, there
is typically a small memory buffer used to handle data as it is being
read or written. The cost of moving data from bulk storage into
this buffer is typically large relative to the cost of operating on the
buffer itself. Hence, once items are brought into the buffer, they can
be accessed at low cost, motivating our model [15, 16].

Definition 2.1. In the Granularity-Change Caching Problem,
we are given (i) a cache of size k, (ii) an (online or offline) trace o of
requests to items, and (iii) a partitioning of the items into disjoint
blocks (sets) such that no partition contains more than B items.
Starting with an empty cache, the goal is to minimize the number
of misses resulting from the requests in . When a requested item
is not in cache, any subset of that item’s block can be loaded, so
long as the subset contains the item.

Locality vs. traditional caching models. In traditional caching
models, all hits come from temporal locality, i.e., when an item
remains in cache between subsequent accesses. In GC Caching, hits
can also come from spatial locality, i.e., when an item I is in cache
due to an earlier access to a different item in the same block.

Baseline policies. We consider two baseline cache designs. An
Item Cache loads only the requested item from a block; i.e., it is a
traditional cache. By contrast, a Block Cache loads all the items in
a requested block and also evicts them together; i.e., it increases
the cache’s granularity to operate on blocks instead of items. Item
Caches perform well on temporal locality and poorly on spatial
locality, whereas Block Caches are the opposite.

3 COMPETITIVE RATIOS

We provide a theoretical framework for analyzing competitive ratios
in the GC Caching Problem. For details see [7, 8].
Our first result is the complexity class of the offline problem:

THEOREM 3.1. The Offline Granularity-Change Caching Problem
is NP-Complete.

We also show a general lower bound for deterministic policies:

THEOREM 3.2. The competitive ratio of any deterministic policy
is at least (k + (B—1)(h —1))/(k — h+ 1) where k is the size of the
online cache and h < k — B + 1 is the size of the optimal cache.

Finally, we provide an online policy, called Item-Block Layered
Partitioning (IBLP), that divides the available space into two differ-
ent layers of cache. The item layer serves each access to the cache
by loading only the items that are accessed. The block layer only
serves accesses that miss in the item layer, but loads and evicts
at the granularity of entire blocks at a time. Both layers perform
evictions using LRU.

174

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

Table 1: Salient bounds for online cache size k and optimal cache
size h, shown as: Augmentation > Competitive Ratio.

Setting S-TBound GC LowerB GC UpperB
Const. Augmentation k =2h>2X k~2h>BX k ~ 2h>2Bx
Ratio=Augmentation k =2h>2X k=~ VBh> VBx k ~ V2Bh»> V2B x

Constant Ratio k=2h»2x k=xBh»2Xx k =~ Bh>3x

THEOREM 3.3. The competitive ratio of IBLP is upper bounded by:
(b+B(2i-1))? i< 2Bb—b+2B*+B
8B(B+b) (i-h) =32
2Bi—Bb+b—B°-B
2i—2h

. _ 2Bb—b+2B’+B

i> o

where i > h is the size of the item layer, b is the size of the block layer,
and h is the size of the optimal cache.

Table 1 gives three salient points of comparison for the Sleator-
Tarjan bound, our lower bound, and our upper bound: constant
factor augmentation, the point where the augmentation meets the
competitive ratio, and constant competitive ratio. These results
show that, compared to traditional caching, the introduction of
spatial locality increases the gap between online and offline policies
by Bx, which can be spread between the competitive ratio and the
augmentation factor. We also note that the gap between our upper
and lower bounds is at most a multiplicative factor of 3x.

A new problem with competitive ratios. Our analysis reveals a
new issue that arises in GC Caching: the relative performance of
online policies (i.e., different item/block partition sizes) changes
with the size of the optimal cache they are compared against. This
is problematic in practice—we would like to be able to design and
analyze caches independent of a hypothetical comparator. To over-
come this, we next consider an analysis based on the amount of
temporal and spatial locality in the trace.

4 BEYOND COMPETITIVE RATIOS

We extend the locality of reference model by Albers et al. [3] to
account for block granularity. Their model adds a function f(n) that
characterizes the number of distinct items accessed in a window of
n accesses across a trace. They use this model to provide bounds
on the miss rate (the number of misses per access) of various re-
placement policies as a function of f(n). We extend this model by
adding a similar function g(n) to account for the number of distinct
blocks accessed in a window of size n.

THEOREM 4.1 (LOWER BOUND). Any deterministic replacement
policy has a miss rate of at least

g(f ' (k+1)-2)
flk+1)-2

Proor. We construct a family of traces matching the bound.
Each trace uses k + 1 distinct items. Due to the locality constraints,
these items can be partitioned into at most g(f~!(k + 1) — 2) blocks.
We generate traces in phases, where each phase consists of f~! (k +
1) — 2 accesses divided into k — 1 repetitions. A repetition consists
of repeated accesses to a single item that has not yet been accessed
this phase. In each phase, repetition 1 < j < k — 1 starts with the
F71(j +1) — 1th access of that phase and continues until the access
before the next block starts. These traces are consistent with f(n).

Session 4: Cache and Memory

Table 2: Salient bounds for comparing an equally split cache (i = b)
to the lower bound for a cache of half the size (h =i + b).

f(n) g(n) ‘ Lower Bound Item-Layer UB Block-Layer UB
nl/2 nl/2 1/h 1/i B/b

nlf2 pl/2Bi2 1/(B'/2h) 1/i 1/b

nl/? n'/2/B 1/Bh 1/i 1/Bb
e nllp 1/hP=1 1/iP~1 BP~1/pp-1
alle pipypiz | 1/(BP=D/Ppp-1y 1/iP~1 1/bP~1
ni/? nlp/B 1/BhP~1 1/iP~1 1/BbP~1

It remains to discuss g(n) and show the minimum miss rate of
policies on these traces. In the work of Albers et al. [3], the item is
chosen such that it is not in the cache; thus every repetition causes
one miss. In GC Caching, our ability to choose items is limited by
the g(n) function. In particular, the item not in cache may be from a
block that has not been accessed yet in the phase. If this is the case,
then choosing that item increases the number of blocks accessed
in the window, which may cause a violation. However, it is known
that a new block can be chosen at least g(p) times for a phase of
length p. Each of these new block choices returns us the freedom
to guarantee that we can pick the item that is not in cache. O

We now provide an upper bound for the miss rate of IBLP. Be-
cause this policy consists of two layers of cache acting in concert,
both layers must miss in order for the entire cache to miss. We
therefore begin by providing bounds for each layer individually.

LEMMA 4.2 (ITEM-LAYER UPPER BOUND). The miss rate of the item

layer of size i is at most
i—1
fli+1) -2

Proor. The item layer is simply a traditional LRU cache. The
change in model cannot cause the miss rate to increase, because
it only introduces new ways for a policy to hit. This means that
we can rely on the result from Albers et al. [3] on bounds on LRU
policies in the traditional model. O

LEMMA 4.3 (BLock-LAYER UPPER BOUND). The miss rate of the
block layer of size b is at most
b/B-1
g 1(b/B+1) -2

Proor. The behavior of the block layer depends on the block
that is accessed, but it is independent of the particular item. We
can view the block layer as an LRU cache with effective size b/B,
serving a trace where requests are to blocks instead of items. Simply
substitute the effective cache size and g(n) in Lemma 4.2. O

Taking the minimum of these miss rates for a given input pro-
vides an upper bound on the miss rate of IBLP.

THEOREM 4.4 (UPPER BOUND). The miss rate of IBLP with item
layer size i and block layer size b is upper bounded by:
i—1 b/B-1
i+ -2 g 1 (b/B+1) -2
As an example analysis, we consider how IBLP performs on

polynomial locality functions (i.e., f 1 (n) = cn? for some real num-
bers c and p). Because locality functions must be positive concave

min

175

SPAA *22, July 11-14, 2022, Philadelphia, PA, USA

functions, this covers the majority of high order terms that would
occur in real traces. We choose the partitioning and augmenta-
tion parameter factors such that i = b = h = k/2. Table 2 shows
the results of the analysis. At the extremes, where f(n) = g(n) or
f(n) = Bg(n), one of the partitions matches the lower bound. The
largest gap between the baseline and the upper bound for IBLP
occurs when the ratio between f(n) and g(n) is BI-(1/P) As the
value of p approaches oo, this gap approaches B.

In addition to reinforcing our results from competitive ratios, this
shows that the relative performance of IBLP is worst when locality
is high. But with high locality, miss ratios are low. Therefore, the
large relative gap results in a small number of additional misses.
This suggests that IBLP will perform well in practice.

ACKNOWLEDGMENTS

Supported in part by NSF grants CCF-1919223, CCF-2028949, a
Google Research Scholar Award, a VMware University Research
Fund Award, and by the Parallel Data Lab (PDL) Consortium.

REFERENCES

[1] Alok Aggarwal and Jeffrey S. Vitter. 1988. The Input/Output Complexity of Sorting and Related
Problems. Commun. ACM 31, 9 (1988).

[2] Susanne Albers, Sanjeev Arora, and Sanjeev Khanna. 1999. Page replacement for general

caching problems. In SODA.

Susanne Albers, Lene M. Favrholdt, and Oliver Giel. 2005. On paging with locality of reference.

J. Comput. System Sci. 70, 2 (2005).

Bowen Alpern, Larry Carter, and Jeanne Ferrante. 1993. Modeling Parallel Computers as

Memory Hierarchies. In Programming Models for Massively Parallel Computers.

Hagit Attiya and Gili Yavneh. 2017. Remote memory references at block granularity. In OPODIS.

Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph Naor, and Baruch Schieber. 2001. A

unified approach to approximating resource allocation and scheduling. JACM 48, 5 (2001).

Nathan Beckmann, Phillip B. Gibbons, and Charles McGuffey. 2021. Brief Announcement:

Block-Granularity-Aware Caching. In SPAA.

Nathan Beckmann, Phillip B. Gibbons, and Charles McGuffey. 2022. Spatial Locality and

Granularity Change in Caching. arXiv preprint arXiv:2205.14543 (2022).

Guy E. Blelloch, Rezaul Alam Chowdhury, Phillip B. Gibbons, Vijaya Ramachandran, Shimin

Chen, and Michael Kozuch. 2008. Provably good multicore cache performance for divide-and-

conquer algorithms. In SODA.

Mark Brehob, Stephen Wagner, Eric Torng, and Richard Enbody. 2004. Optimal replacement is

NP-hard for nonstandard caches. IEEE Trans. Comput. 53, 1 (2004).

Marek Chrobak, Howard J. Karloff, T. H. Payne, and Sundar Vishwanathan. 1991. New Results

on Server Problems. SIAM Journal on Discrete Mathematics 4, 2 (1991).

Guy Even, Moti Medina, and Dror Rawitz. 2018. Online generalized caching with varying

weights and costs. In SPAA.

Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and Neal E.

Young. 1991. Competitive paging algorithms. Journal of Algorithms 12, 4 (1991).

Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar Ramachandran. 1999. Cache-

Oblivious Algorithms. In FOCS.

John L. Hennessy and David A. Patterson. 2012. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann.

Bruce L. Jacob, Spencer W. Ng, and David T. Wang. 2008. Memory Systems: Cache, DRAM, Disk.

Morgan Kaufmann.

Djordje Jevdjic, Gabriel H. Loh, Cansu Kaynak, and Babak Falsafi. 2014. Unison cache: A

scalable and effective die-stacked DRAM cache. In MICRO.

Djordje Jevdjic, Stavros Volos, and Babak Falsafi. 2013. Die-stacked DRAM caches for servers:

Hit ratio, latency, or bandwidth? have it all with footprint cache. In ISCA.

Charles McGuffey. 2021. Modernizing Models and Management of the Memory Hierarchy for

Non-Volatile Memory. Ph.D. Dissertation. Carnegie Mellon University.

Onur Mutlu and Thomas Moscibroda. 2007. Stall-time fair memory access scheduling for chip

multiprocessors. In MICRO.

Onur Mutlu and Thomas Moscibroda. 2008. Parallelism-aware batch scheduling: Enhancing

both performance and fairness of shared DRAM systems. In ISCA.

Moinuddin K. Qureshi and Gabe H. Loh. 2012. Fundamental latency trade-off in architecting

DRAM caches: Outperforming impractical SRAM-tags with a simple and practical design. In

MICRO.

Daniel D. Sleator and Robert E. Tarjan. 1985. Amortized efficiency of list update and paging

rules. Commun. ACM 28, 2 (1985).

Kshitij Sudan, Niladrish Chatterjee, David Nellans, Manu Awasthi, Rajeev Balasubramonian, and

Al Davis. 2010. Micro-pages: increasing DRAM efficiency with locality-aware data placement.

In ASPLOS.

Ying Xu, Aabhas S. Agarwal, and Brian T. Davis. 2009. Prediction in dynamic SDRAM controller

policies. In SAMOS.

HanBin Yoon, Justin Meza, Rachata Ausavarungnirun, Rachael A. Harding, and Onur Mutlu.

2012. Row buffer locality aware caching policies for hybrid memories. In ICCD.

Neal Young. 1994. The k-server dual and loose competitiveness for paging. Algorithmica 11, 6

(1994).

B3

[4

[5]
[6]

[71

[8

[9

[10]
(1]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]
[26]

[27]

	1 Introduction
	2 The Model
	3 Competitive Ratios
	4 Beyond Competitive Ratios
	Acknowledgments
	References

