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Metamaterial characterization
from far-field acoustic wave
measurements using
convolutional neural network

YeonJoon Cheong, Hyung-Suk Kwon and Bogdan-loan Popa*

Mechanical Engineering, University of Michigan, Ann Arbor, MI, United States

Identifying the material properties of unknown media is an important scientific/
engineering challenge in areas as varied as in-vivo tissue health diagnostics and
metamaterial characterization. Currently, techniques exist to retrieve the
material parameters of large unknown media from elastic wave scattering in
free-space using analytical or numerical methods. However, applying these
methods to small samples on the order of few wavelengths in diameter is
challenging, as the fields scattered by these samples become significantly
contaminated by diffraction from the sample edges. Here, we propose a
method to extract the material parameters of small samples using
convolutional neural networks trained to learn the mapping between far-
field echoes and the material parameters. Networks were trained with
synthetic time domain echo data obtained by simulating the free-space
scattering of sound from unknown media underwater. Results show that
neural networks can accurately predict effective material parameters such as
mass density, bulk modulus, and shear modulus even when small training sets
are used. Furthermore, we demonstrate in experiments executed in a water tank
that the networks trained with synthetic data can accurately estimate the
material properties of fabricated metamaterial samples from single-point
echo measurements performed in the far-field. This work highlights the
effectiveness of our approach to identify unknown media using far-field
acoustic reflection dominated by diffraction fields and will open a new
avenue toward acoustic sensing technigues.
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Introduction

Extracting material parameters of unknown objects using far-field scattered elastic
waves is an essential challenge for applications such as acoustic imaging, non-destructive
evaluation, and metamaterial characterization. Conventional approaches typically apply
numerical or computational methods to invert the wave equation and obtain the
properties of the medium under investigation. In these approaches the medium is
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probed in free-space with acoustic waves and the scattered sound
is processed to extract all of the components of material
parameter tensors such as mass density and stiffness.
However, these methods are limited to large-sized samples
where diffraction from the sample edges does not disturb too
much the scattered fields [1, 2]. Also, these methods typically
require probing the sample from multiple directions to obtain all
the desired properties.

However, in many cases including metamaterial design and
in-vivo tissue diagnostics, the unknown objects are elastically
small having diameters of a few wavelengths of the probing wave
and the influence of diffraction is significant. This makes the
aforementioned approaches ineffective and unable to produce all
the elastic properties of interest. For instance, ultrasound
elastography and impediography are used to extract only a
small number of stiffness tensor components and impedance
of abnormal tissues. Changes in these material properties could
sometimes be linked to pathological tissue changes [3, 4], which
suggests that tissue diagnostics could improve significantly if all
the mechanical properties of these complex, anisotropic media
were measured (instead of just a few) including all the stiffness
and mass density tensor components.

Techniques reduce the influence of diffraction in small-sized
samples have been studied, but most solutions are incompatible
with free-space diagnostics methods. For example, waveguides
are extensively used to remove the effect of edge diffraction
[5-14]. However, these methods are not applicable when the
objects cannot be placed in waveguides (e.g., non-destructive
evaluation such as tissue diagnostics) or when the existence of
waveguides can adversely affect the measurement itself [15] (e.g.,
metamaterial characterization underwater).

A recent study has shown that, instead of mitigating the
effects of diffraction, complex spatial diffraction patterns
obtained in near-field measurements can be used to effectively
extract the material parameters of small metamaterial samples
with the help of machine learning algorithms [16]. However,
near-field measurements are not always available, e.g., in-vivo
tissue diagnostics. Nevertheless, it has also been shown that
use far-field
discriminate acoustically small objects such as fish [17],

echolocating animals scattered wave to
which suggests that the information contained in the
diffracted fields could be extracted from far-field single
point measurements.

Here, we propose a method to estimate the material
parameters from single point far-field scattered wave (echo)
measurements. In our approach, we utilize convolutional
neural networks (CNNs) to map the complex patterns
induced by edge diffraction in the time domain echoes to
material parameters such as mass density, bulk modulus, and
shear modulus. Moreover, we show that this method requires
probing the unknown material from only one direction, in
contrast to conventional analytical methods that require many
directions of incidence [1, 2]. Results show that CNNs trained
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with synthetic time domain echoes can effectively predict these
material parameters. Importantly, we show that our CNN trained
with synthetic data can process actual measurements produced
by a hydrophone and can accurately predict the material
which
demonstrates that our method is robust to measurement errors.

parameters of fabricated metamaterial samples,

Methods
Experimental setup

Figure 1A illustrates the experimental setup used to evaluate
the material parameters of a sample under test from far-field
scattered fields. In the setup, a small sample with known
geometry and unknown material parameters is placed
underwater and ensonified by a point source. The far-field
backscattered acoustic wave (echo) is recorded by a receiver
co-located with the source. The diffraction from the small sample
edges generates patterns in the far-field echoes which are
determined by the mechanical properties of the sample.
Without loss of generality, in this paper the sample is
isotropic and thus its elastic behavior is determined by mass
density (p), bulk modulus (K), and shear modulus (G). We also
assume the lossless sample is non-resonant and thus its
dispersion is negligible.

We consider a rectangular sample of width W, height H, and
thickness T in a background medium of known material
parameters (pg, Ko, Go). The sample is ensonified by a point
source situated a distance d in front of the sample. The distance d
is chosen large enough to assure that the evanescent field
components scattered by the sample attenuate enough at the
receiver.

Figure 1B shows examples of far-field echoes determined by
two material parameter sets [(p = 400 kg/m’, K = 0.5 GPa, G =
30 kPa) and (p = 6,000 kg/m’, K = 12 GPa, G = 50 GPa)] for a
scenario in which the source produces a 7-cycle Gaussian pulse of
full width at half maximum (FWHM) bandwidth 20% centered at
120 kHz in a water background (p, = 1,000 kg/m?, K = 2.25 GPa,
G=0Pa)and W=H =4\, T=0.161,d = 15A. Here A = 12 mm is
the wavelength corresponding to 120kHz. The material
dispersion is considered small enough so that p, K, and G are
approximately constant in the frequency band excited. The
echoes were simulated using a three-dimensional time-domain
solver of the elastic wave equation included in the k-Wave
toolbox [18]. Figure 1B depicts two types of echo differences.
The first is an amplitude variation (top) mostly caused by
different mechanical impedances and the second corresponds
to relative phase variations between the various frequencies
contained in the acoustic pressure, which translate in slight
echo pattern changes in certain regions of the signal (bottom).
The latter are caused by how the fields scattered by the sample
edges (i.e., diffracted fields) interfere in the far-field. Our method
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Schematic of material characterization using far-field acoustic echoes. (A) A small sample of known geometry and unknown material
parameters is ensonified by a point source and echoes are measured by a receiver co-located with the source. (B) Far-field echoes from two different
materials show complex time domain variation. The top and bottom panels show echoes before and after normalization. The change in material

parameters result in echo amplitude and shape variations.

seeks to map these pattern changes to the material parameters
that produced them.

Material parameter retrieval using CNNs

Convolutional neural networks are known for their
excellent performance in pattern recognition tasks. For
instance, they are used with great success for image
recognition and classification [19, 20]. Recent studies in
acoustics also showed that CNNs work well with acoustic
data to identify and classify sounds in both time- (1D) and
time-frequency domains (2D). In these works, the marine
mammal species were classified using the sounds produced by
animals using CNNs [21, 22]. Our goal here is to solve a
related regression problem by training CNNs directly on the
time-domain echo data to learn the edge-diffraction induced
patterns of temporal echoes (see Figure 1B) and map them to
the material parameter tuple (p, K, G).

Mathematically, the trained CNNs should provide the
closed-form mapping g: F — M, where F is the set that
contains far-field echoes and M is the N-dimensional set of
unknown material parameters. Finding g is a complicated
problem. However, finding the inverse mapping g™': M — F
is a much easier task. For instance, with given material parameter
tuple m € M, the corresponding far-field echo f € F can be
simulated or even measured experimentally. Here, to estimate g,
we compute numerically f € Fr for a range of material
parameters m € My and train a CNN using this data. The
symbols Fr and My stand for the two subsets used for
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training the CNN. The trained CNN extrapolates g for data
in the entire M. To assess the prediction performance, the
trained CNNs are tested on a separate dataset (test set)
feFy=g"'(My), where the ground truth values of
material parameters m € My are known and My N My =&
is the empty set. Equally important, we will see that the trained
CNN also provides insight into the salient echo features that
identifies the sample.

The set of material parameters M for which g is defined is
chosen depending on application. For example, if we want to
determine the effective macroscopic properties of a metamaterial
sample, we choose M to encompass all the possible material
parameters the sample could have. To illustrate the method in an
example, we consider a metamaterial sample designed to operate
underwater and whose elastodynamic behavior and effective
material parameters were determined in our previous work
[16] (see Figure 2). These effective properties obtained with a
different method will be used to validate the approach described
here. The metamaterial has W = H = 50 mm, T = 2 mm, and
consists of copper spheres with a diameter of 2 mm pressure
fitted inside a 3D-printed polylactic acid (PLA) matrix. The
fabricated metamaterial sample has the same geometry and
size as used in the simulations of far-field echoes. Far-field
echoes reflected by this metamaterial will be measured to
characterize the material properties of the sample using our
proposed approach.

In this design, a single unit cell consists of a copper sphere
inside an empty square of PLA and everything is permeated by
water. The material parameters of copper are p = 8,960 kg/m’,
K =123 GPa, and G = 45 GPa and the surrounding water has the
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Fabricated Metamaterial

FIGURE 2
Fabricated metamaterial sample consisting of copper
spheres embedded in a PLA matrix.

properties listed above. Hence, the fabricated artificial material is
expected to have effective macroscopic properties between those
of water and copper. However, the exact values depend strongly
on several unknown factors such as the friction force between the
PLA and the spheres and the exact material properties of the
plastic. Similar to [16], we choose the size of M conservatively to
cover the material parameters of our fabricated sample, namely, p
€ (400, 6,000) kg/m’, K € (0.5, 12) GPa, and G € (0, 50) GPa.

The source position and properties are the same as used in
the example shown in Figure 1. Namely, the source is placed
directly in front of the sample at d = 185 mm away from it. The
source ensonifies the metamaterial with a 7-cycle Gaussian pulse
centered at 120 kHz. Synthetic echoes were generated by
randomly the
m= (p,K,G) € My c M. The mass density was sampled

sampling material parameters
following a uniform distribution. The elastic moduli K and G
cover large intervals of several orders of magnitudes and thus
their logarithms were sampled uniformly. For each m we
simulated the far-field echoes f = g¢"'(m). The echoes were
simulated using k-Wave at a sampling rate of 1 MHz. Each
echo consists of 314 samples (which corresponds to 0.314 ms
long signals) and is long enough to contain the diffraction
patterns. A total of 2000 echoes were generated and divided
into training and test sets with a ratio of 4:1. In this work, we
followed the paradigm described in [23] where test sets are used
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to assess the loss function during training to prevent overfitting
and to assess the final performance of the network.

In the following, we will show that the prediction from
trained CNNs on synthetic test sets show good estimation of the
material parameters, and the accuracy improves when trained
with a second training dataset of narrower range informed by
the first set. More importantly, we will show that the CNNs
estimate very well the material parameters of the fabricated
metamaterial sample and provide very close values to those
reported in [16].

Results

Material parameter estimation in a large
material space

The CNN used in this work consists of three convolutional
layers followed by two fully-connected layers. The inputs are 1D
signals of 314 samples that represent time domain echoes. The
first convolutional layer has 16 channels and a kernel size of 1 x
5 samples and is followed by a 1 x 2 max-pooling layer. The
second and third convolutional layers have 32 and respectively
64 channels with kernel sizes of 1 x 10 and respectively 1 x
15 samples. Both of these convolutional layers are also followed
by 1 x 2 max-pooling layers. All three convolutional layers use
rectified linear units (ReLUs) activation functions. The two fully-
connected layers consist of 2048 nodes and employ ReLU
activation functions. The output layer consists of three nodes
that represent the estimated material parameters. The three
output nodes were linearly mapped to values between 0 and
1, and thus all outputs are equally weighted to compute the
mean-square-error (MSE) loss. The converged loss curves shown
in Supplementary Figure S1 of the supplementary material
illustrate that the networks were trained without overfitting
the training datasets.

Figures 3A-C show the estimated material parameters for the
media represented in the test set. Given the wide range of elastic
moduli covering multiple orders of magnitude, K and G (Figures
3A,B) are plotted on logarithmic scales and the mass density
(Figure 3C) is plotted on a linear scale. The scattered plots with
circular dots indicate the estimation versus ground truth value
and the red solid lines show the ground truth vs. ground truth
lines that become the indicator of correct prediction. The mean
and confidence interval of the predicted material parameters
calculated from 12-13 uniformly divided ranges of the material
parameters are depicted with blue lines and error bars,
respectively. The confidence interval was determined as + 2¢
of the mean, where ¢ is the standard deviation in each range. If
the estimated material parameters followed normal distributions,
this would indicate 95% confidence intervals. Although the
distributions of our output variables are unknown, we verified
that 93% of the data fall within the + 20 confidence intervals.
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Test set estimation of bulk modulus (A,D), shear modulus (B,E), and mass density (C,F). Bulk and shear moduli are plotted on log scales. Dotted
arrows indicate predicted values using the measured echo from the metamaterial sample, and the highlighted regions illustrate the confidence
intervals for those predictions. The first row shows estimated values in the large M space and the second row shows those from the reduced material
space M'’. The confidence intervals (error bars) are significantly smaller for the lower row. The estimated values from the metamaterial sample
bounded by the confidence interval highlighted in (D—F) show excellent agreement with the reported values published in [16].

Figures 3A-C show that the estimated material parameters
match well the real values. One exception is the shear modulus
for which smaller values have negligible influence on the
scattered acoustic field. Consequently, low G media behave
elastically like acoustic fluids and the exact shear modulus
value is irrelevant from the point of view of elastic waves
scattering, consistent with previous findings [16, 24].

After assessing the CNN performance using the test set analysis,
we analyze the neural network ability to process experimental
measurements inevitably affected by experimental errors. The
experiment was performed in a cube-shaped water tank with a
side length of 50 cm (Figure 4A). A single Teledyne-Reson TC
4013 hydrophone was placed in front of the sample a distance
d =185 mm away from it to accurately replicate the setup shown in
Figure 1. The hydrophone plays the role of source and receiver. The
source pulse used in the experiment was identical to the one used for
synthesizing the training and test datasets, i.e., a 7-cycle Gaussian
broadband pulse centered at 120 kHz. The incident pulse was
measured 3 cm in front of the sample to measure the incident field
amplitude and thus calibrate the amplitude of the backscattered field.
Before submerging the sample into the water tank and doing the
measurement, the sample was degassed in a vacuum chamber to
remove any possible air bubble formation at the surface and inside the
matrix, which influences the sample reflectivity.

Frontiers in Physics

The measured echo shown in Figure 4 (solid line) is passed
through the CNN. The estimated material parameters are p =
1833.2 kg/m®, K =2.63 GPa, and G =256 MPa and the
confidence intervals of the estimation were p € (782-3,632)
kg/m?, K € (1.82-4.57) GPa, and G € (39.8 MPa —-4.79 GPa).
The estimated effective material parameters were roughly in
the same range as the previously reported values [16]. To
increase the precision of the estimation we train a second
CNN in a smaller material parameter space M’ obtained using
the + 20 confidence intervals given above. As a result, the
volume of M’ reduces by a factor of 15 compared to the
original space M.

Material parameter estimation in the
reduced material space

The training approach described in the previous section
was repeated with the smaller material parameter space M’.
Given the smaller M’, a total of 850 simulations were
generated and divided into training and test sets with a
ratio of 4:1. Figures 3D-F show the estimations for the test
set. The second CNN was able to estimate the material
parameters significantly better than the first CNN, as
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Measurement setup (A) and simulated echo using the predicted material parameters (B). The far-field echo simulated using the predicted
material parameters shows excellent match with the measurement, and demonstrates that the CNN estimates well the effective material parameters

of the sample.

reflected in a smaller confidence intervals than these shown in
Figures 3A-C. The second CNN performs better than the first
CNN because its output cover a much smaller space than the
first CNN. Consequently, the training set of the second CNN
samples more densely the network’s output space leading to a
better interpolation of the outputs than the first CNN.
After verifying that the CNN performs well, we passed the
measured echo through the CNN to obtain the effective material
parameters of the fabricated sample. The estimated effective
material parameters are highlighted together with their
confidence intervals in Figures 3D-F. The estimated values are
p =1251.3 kg/m’, K = 2.45 GPa, and G = 74.1 MPa and match
very well previously reported values for the same metamaterial
sample [16]. For reference, the effective material parameters
reported in the past work were p=1285.1 kg/m’, K =2.5
GPa, and G = 0.72 MPa. The two sets of values are within
2.6% and 2% of each other for the mass density and the bulk
modulus, respectively. The discrepancy in the predicted shear
moduli is irrelevant, given that low values of G have no influence
on the scattering characteristics of the metamaterials, as
explained earlier. To further test the robustness of the trained
CNN, we have used an echo produced by the same metamaterial
sample but for a different position of the source/receiver. In this
additional experiment, the metamaterial sample was moved by
2 mm from its original position. (see Supplementary Figure S2).
To further validate the CNN estimations, we performed another
numerical simulation with the estimated material parameters and
compared the numerically simulated echo against the measurement.
The measured and simulated echoes show an excellent match. The
small differences are unavoidable experimental errors caused, for
example, by the scattering from the physical hydrophone, which
contaminates the measured echo in the 0.7-0.8 ms interval.
However, we will show in the following that the disturbances
due to these errors have little influence on the parameter estimation.
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Analysis of echo features targeted by
the CNN

Neural networks are excellent at mapping patterns in
complicated input signals to output quantities that influence
these patterns. An interesting opportunity arises in which we can
probe the CNN to understand salient features in the input echoes
that facilitate this mapping. Specifically, we performed an
analysis in which the input echoes were occluded with a
sliding window of size five samples, which is equivalent to the
kernel size of the first convolutional layer. We zeroed the echo
inside the occluded window and passed the modified signal to the
network. The variation of the CNN outputs provides significant
information about echo regions targeted by the CNN.

We applied this method in two scenarios. First, we occluded the
measured echo which we tested our CNN upon (Figure 4B). Second,
the occlusion analysis was applied to all the echoes in the test set for
the second CNN trained to process the reduced material space M.

Figure 5A presents again the measured echo and Figures 5B-D
show the material parameters predicted with the occluded echo. The
horizontal axis in Figures 5B-D is the starting point of the occlusion
window. For instance, t = 0 ms in Figure 5B indicates the occlusion
window was placed from ¢ = 0 ms-0.005 ms. The regions that were
most sensitive to the estimation of material parameters are highlighted
in each figure. The results show that the sensitive regions for predicting
the bulk modulus and the mass density were around ¢ = 0.02 msand ¢ =
0.04 ms, which correspond to the early and tail regions of the echo pulse
(see Figure 5D). On the other hand, it can be seen that the region
targeted by the CNN to estimate the shear modulus was between
0.03 and 0.045 ms, which corresponds to the mid-to-tail part of the
echo. It is also interesting to note that the disturbance caused by
experimental errors at t = 0.07-0.08 ms has caused a variation in the
shear modulus which translated in a larger than expected estimated
value of 74.1 MPa. But this error has not influenced the other two
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and mass density (D,H) when input echoes were occluded with sliding time window. The top row illustrates the output material parameters by
occluding the measured echo, where the case of no occlusion is plotted with red dotted line. The bottom row illustrates normalized variation of the
output parameters where the dotted lines illustrate the mean from the test set and the shaded regions illustrate + one standard deviation
regions. Regions that are most sensitive to changes are highlighted with a vertical band.

material parameters, which further demonstrates that the influence of
the shear modulus is represented in the latter part of the echo signal.

To generalize this observation, we performed the same
analysis to the simulated echoes in the test set. Figure 5E
shows the averaged waveform (solid line) of the normalized
170 echoes in the test dataset, and the + one standard deviation
region (shaded areas). Together these provide an idea of the echo
waveforms produced by various material parameters. Figures
5F-H show the average variation in each material parameter and
up to one standard deviation away from the average (shaded
region) as a result of the occlusion. The quantities are normalized
to the case when no occlusion was applied. These metrics
represent the relative sensitivity to the occlusion. The targeted
regions for the bulk modulus and mass density were consistent
with the analysis applied only to the measured echo.

Between the two sensitive regions, t = 0.04 ms was
more sensitive (~2 folds) to the change in material
parameters, indicating that the CNN may be more
relying on this region. This is understandable because
the initial part of the echo represents the specular
reflection, and thus has the same shape independent on
the material parameters. However, this region still plays a
significant role in the CNN decisions most likely because
the early echo peaks represent time references used to
measure the timing of subsequent peaks.

Interestingly, Figure 5G shows that the CNN is targeting
different regions for G than the other two parameters, most
notably the later parts of the echo consistent with Figure 5C.
Figure 5C shows an additional echo region of interest than 5 g
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because the simulated test echoes obtained for relatively small
values of G are essentially zero in the region 0.07-0.08 ms (see
Figure 5A). As a result, occluding this region influenced by the
experimental errors has no effect on the CNN output.

Discussion

In this work, we proposed a convolutional neural network-
based method for characterizing material properties of
unknown small material samples in free-space from single
point far-field measurements. The success of our method
relies on two factors, namely the excellent ability of CNNs
to deal with pattern recognition tasks and a judicious
Unlike
methods that attempt to mitigate the diffraction from the

generation of training datasets. conventional
sample using large samples and multiple directions of
incidence, our approach maps the unique diffraction
patterns occurring in the time-domain echoes to the
that these

Moreover, analysis of the CNNs provide important insights

material parameters produced patterns.
into what parts of the echoes are targeted by the networks.
This work presents a multi-tier method in which the accuracy
of the CNN increases with each level. Each level produces closed-
form expressions of the material parameters versus time-domain
echo for increasingly smaller material parameter space that
converges towards the effective material properties. The
advantage of this method is the significant reduction in the

training set size at the expense of training more networks.
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The CNNs were trained with synthetic data obtained in
unsupervised numerical simulations, so that the training
procedure is fast and inexpensive. This is in contrast with
other machine learning approaches that rely on slow and
expensive measurements for training. Remarkably, our
CNNs trained with numerical simulations maintain
ability to characterize fabricated samples from measured
echoes.

Our approach is considerably simple yet has robust
performance. The only apparatus used to probe the sample is
a single hydrophone employed as both source and receiver and
the method require only one measurement point. The results of
this work highlight the effectiveness of identifying unknown
media using diffraction fields and will open a new avenue
toward far-field acoustic sensing.

Data availability statement

The raw data supporting the conclusion of this article
will be made available by the authors, without undue

reservation.

Author contributions

B-IP has developed the concept. YC developed CNN code
and analyzed the results. YC wrote the manuscript. H-SK
fabricated the metamaterial. YC performed the measurements.
B-IP provided manuscript proofreading and revisions.

References

1. Aristégui C, Baste S. Optimal recovery of the elasticity tensor of general
anisotropic materials from ultrasonic velocity data. The J Acoust Soc America (1997)
101:813-33. doi:10.1121/1.418040

2. Hosten B. Elastic characterization of orthotropic composite materials from
ultrasonic inspection through non-principal planes. In: Review of progress in
quantitative nondestructive evaluation. Berlin, Germany: Springer (1991).
p. 1437-44,

3. Azhari H. Basics of biomedical ultrasound for engineers. New York, NY, USA:
John Wiley & Sons (2010).

4. Rho JY. An ultrasonic method for measuring the elastic properties of human
tibial cortical and cancellous bone. Ultrasonics (1996) 34:777-83. doi:10.1016/
s0041-624x(96)00078-9

5. Belkebir K, Bonnard S, Pezin F, Sabouroux P, Saillard M. Validation of
2d inverse scattering algorithms from multi-frequency experimental data.
J  Electromagn  waves  Appl  (2000)  14:1637-67. doi:10.1163/
156939300x00437

6. Song BH, Bolton JS. A transfer-matrix approach for estimating the
characteristic impedance and wave numbers of limp and rigid porous materials.
J Acoust Soc America (2000) 107:1131-52. doi:10.1121/1.428404

7. Fokin V, Ambati M, Sun C, Zhang X. Method for retrieving effective properties
of locally resonant acoustic metamaterials. Phys Rev B (2007) 76:144302. doi:10.
1103/physrevb.76.144302

8. Popa BI, Cummer SA. Design and characterization of broadband acoustic
composite metamaterials. Phys Rev B (2009) 80:174303. doi:10.1103/physrevb.
80.174303

Frontiers in Physics

10.3389/fphy.2022.1021887

Funding

This work was supported by the National Science Foundation
under Grant No. CMMI-2054768.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

The handling editor TL declared a past co-authorship/
collaboration with the author YC.

Publisher’'s note

Allclaimsexpressedin thisarticleare solely those of theauthors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary Material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphy.2022.
1021887/full#supplementary-material

9. Zigoneanu L, Popa BI, Cummer SA. Design and measurements of a broadband
two-dimensional acoustic lens. Phys Rev B (2011) 84:024305. doi:10.1103/physrevb.
84.024305

10. Park JH, Lee HJ, Kim YY. Characterization of anisotropic acoustic
metamaterial slabs. J Appl Phys (2016) 119:034901. doi:10.1063/1.4939868

11. Sieck CF, Alu A, Haberman MR. Origins of willis coupling and acoustic
bianisotropy in acoustic metamaterials through source-driven homogenization.
Phys Rev B (2017) 96:104303. doi:10.1103/physrevb.96.104303

12. Muhlestein MB, Sieck CF, Wilson PS, Haberman MR. Experimental evidence
of willis coupling in a one-dimensional effective material element. Nat Commun
(2017) 8:15625-9. doi:10.1038/ncomms15625

13. Zhai Y, Kwon HS, Popa BI. Active willis metamaterials for ultracompact
nonreciprocal linear acoustic devices. Phys Rev B (2019) 99:220301. doi:10.1103/
physrevb.99.220301

14. Geib N, Sasmal A, Wang Z, Zhai Y, Popa BI, Grosh K. Tunable nonlocal
purely active nonreciprocal acoustic media. Phys Rev B (2021) 103:165427. doi:10.
1103/physrevb.103.165427

15. Wilson PS, Roy RA, Carey WM. An improved water-filled impedance tube.
J Acoust Soc Am (2003) 113:3245-52. doi:10.1121/1.1572140

16. Zhai Y, Kwon HS, Choi Y, Kovacevich D, Popa BI. Learning the dynamics of
metamaterials from diffracted waves with convolutional neural networks. Commun
Mater (2022) 3:53. doi:10.1038/s43246-022-00276-w

17. Cheong Y, Shorter KA, Popa BIL Acoustic scene modeling for echolocation in
bottlenose dolphin. J Acoust Soc America (2021) 150:A121. doi:10.1121/10.0007837

frontiersin.org



Cheong et al.

18. Treeby BE, Cox BT. k-wave: Matlab toolbox for the simulation and
reconstruction of photoacoustic wave fields. J Biomed Opt (2010) 15:021314.
doi:10.1117/1.3360308

19. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with
deep convolutional neural networks. Adv Neural Inf Process Syst (2012) 25.

20. Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. Inception-v4, inception-resnet
and the impact of residual connections on learning. In: Thirty-first AAAIL
conference on artificial intelligence (2017). doi:10.5555/3298023.3298188

21. Zhong M, Castellote M, Dodhia R, Lavista Ferres J, Keogh M, Brewer A.
Beluga whale acoustic signal classification using deep learning neural

Frontiers in Physics

09

10.3389/fphy.2022.1021887

network models. | Acoust Soc America (2020) 147:1834-41. doi:10.1121/
10.0000921

22. Yang W, Luo W, Zhang Y. Classification of odontocete echolocation clicks
using convolutional neural network. J Acoust Soc America (2020) 147:49-55. doi:10.
1121/10.0000514

23. Kuhn M, Johnson K. Applied predictive modeling, vol. 26. Berlin, Germany:
Springer (2013).

24. Urzhumov Y, Ghezzo F, Hunt J, Smith DR. Acoustic cloaking transformations
from attainable material properties. New ] Phys (2010) 12:073014. doi:10.1088/
1367-2630/12/7/073014

frontiersin.org



	Metamaterial characterization from far-field acoustic wave measurements using convolutional neural network
	Introduction
	Methods
	Experimental setup
	Material parameter retrieval using CNNs

	Results
	Material parameter estimation in a large material space
	Material parameter estimation in the reduced material space
	Analysis of echo features targeted by the CNN

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary Material
	References


