
1.  Introduction
1.1.  Overview of Mixing in Numerical Models

Mixing is an irreversible process that redistributes tracers and dissipates energy. In primitive equation ocean 
models, turbulence closure schemes are used to parameterize the physical mixing due to subgrid-scale turbu-
lence. In addition to the prescribed physical mixing, spurious or numerical mixing may be generated by several 
sources, such as the discretization of the advective terms in the momentum and tracer equations (Burchard & 
Rennau,  2008; Gibson et  al.,  2017; Griffies et  al.,  2000; Smolarkiewicz,  1983), spurious convection due to 
grid-scale noise (Ilıcak, 2016; Ilıcak et al., 2012), and cabbeling that arises from the nonlinear equation of state 
for seawater density (Ilıcak et  al.,  2012; McDougall,  1987). Numerical mixing induces spurious diffusion or 
anti-diffusion of tracer gradients, which affects the tracer distribution and may introduce biases in the tracer 
field (Holmes et al., 2021). Numerical mixing is often significant in regions with strong velocity shear and tracer 
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overestimates the time-averaged online numerical mixing by 60% at hourly output. The s 2 budget compares 
poorly due to large truncation errors associated with the tendency and advection terms. The residual of the s 2 
budget starts to converge to the 𝐴𝐴 𝐴𝐴

′
2 budget as output frequency increases to 10 min—an unrealistic frequency 

for long-term coastal ocean simulations—but neither method unconditionally converges to the online method 
and therefore cannot be recommended for generic analysis of numerical mixing. We also investigate the 
effects of horizontal resolution on numerical mixing using a two-way nested grid with the online method. The 
volume-integrated numerical mixing constitutes 57% of the bulk physical mixing—the mixing prescribed by 
the turbulence closure scheme—in the coarse model and may exceed the physical mixing by half an order of 
magnitude. We find numerical mixing is reduced by 35% on average in the nested model, likely due to new 
dynamical processes that emerge in the nested simulation.

Plain Language Summary  Numerical models are powerful tools for studying the general 
circulation of the ocean, allowing us to examine the ocean's complex relationship with Earth's weather and 
climate in greater detail than observations allow. However, numerical ocean models are prone to several types 
of numerical errors because they represent physical processes with discrete approximations. One of these errors 
is numerical mixing, a process by which the discretized transport of tracers by currents generates spurious 
mixing. Recent studies suggest numerical mixing can be as large as the physical mixing prescribed by a 
parameterization, especially in regions with strong tracer gradients, such as in estuaries or the coastal ocean. In 
this study, we examine numerical salinity mixing using a combination of on- and offline methods in a model 
of the ocean state over the Texas-Louisiana continental shelf in the Gulf of Mexico. Offline methods rely on 
existing model output and are often easier to implement than online methods. However, offline methods trade 
numerical accuracy for convenience because online methods require modifying a model's source code and 
re-running it. We find offline estimates of numerical mixing should not be used because they may be inaccurate 
even at impractically high resolution.
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gradients (Fringer et al., 2019; Kalra et al., 2019; Rennau & Burchard, 2009), however, it is seldom quantified 
in realistic simulations of estuarine and coastal flows (Broatch & MacCready, 2022; Ralston et al., 2017; Wang 
et al., 2021).

This study is focused on quantifying the magnitude of spurious mixing—in particular, the numerical mixing 
generated by the discretization of tracer advection—distinct from the prescribed mixing specified through mixing 
closure parameterizations regardless of the accuracy of these closure models; that is to say, spurious mixing that 
cannot be directly controlled by model configuration. For example, errors in physical mixing relative to a true 
ocean state may arise when using a grid or geopotential aligned horizontal diffusion tensor, instead of rotating 
the diffusion tensor to align with the isoneutral directions (Griffies et al., 1998; Redi, 1982). However, a mixing 
tensor aligned with geopotentials is still something that is specified—an explicit parameterization of unresolved 
processes, albeit poorly or incorrectly—and can be controlled in the model setup; such parameterizations are 
considered to be “prescribed,” even if unphysical, for purposes of this study.

In limited-domain coastal ocean simulations, explicit horizontal mixing is commonly kept as low as possi-
ble, ideally with no explicit horizontal mixing, allowing a flux-limiting (e.g., MPDATA, Smolarkiewicz & 
Margolin, 1998) or upwind (e.g., 3rd order, Shchepetkin & McWilliams, 1998) tracer advection scheme to prevent 
the accumulation of variance at the grid scale. This has the advantage that mixing, in the form of numerical diffu-
sion, is strongest in the regions where tracer gradients are large but is small elsewhere. Tracer distributions across 
energetic fronts remain monotonic, and weaker tracer gradients associated with less energetic features remain 
persistent, resulting in tracer fields that, for example, have the same qualitative structures as remotely sensed sea 
surface temperature or other optical water properties. As such, advection schemes that can cause significant, but 
targeted, numerical diffusion are important tools in modern coastal oceanography. However, a disadvantage of 
this approach is that it is difficult to control and quantify the amount of mixing within the simulation.

Numerical methods have been developed for quantifying numerical mixing online during the model run based 
on tracer variance dissipation (Burchard & Rennau, 2008; Klingbeil et  al.,  2014), water mass transformation 
(Holmes et al., 2021; Lee et al., 2002; Megann, 2018), and energetics (Ilıcak et al., 2012; Petersen et al., 2015; 
Winters et al., 1995). However, online methods are not always practical because they require modifying a model's 
source code and rerunning it, or may be unavailable when downloading model output from an external source. 
Consequently, offline methods for quantifying numerical mixing based on tracer variance budgets have become 
increasingly popular among estuarine and coastal modelers (X. Li et al., 2018; MacCready et al., 2018; Wang 
et al., 2017, 2021), who often use salinity as the tracer of interest because it dominates the density structure in 
many coastal regions. Salinity distributions are also strongly controlled by lateral advection—and thus more 
susceptible to errors in the advection scheme—since salinity structure in coastal regions is primarily driven 
by lateral boundary conditions (e.g., rivers) rather than surface boundary conditions (e.g., precipitation and 
evaporation).

We use a subset of a submesoscale-resolving ocean model of the Texas-Louisiana (TXLA) continental shelf in the 
northern Gulf of Mexico (nGoM) during summer as a case study, where the density field is dominated by salinity 
variations due to freshwater input from the Mississippi and Atchafalaya rivers. This region is known to have an 
energetic eddy field (Hetland, 2017) and intense fronts (Qu, Thomas, Wienkers, et al., 2022). Understanding the 
circulation and mixing in this region is important for better predictions of along-coast connectivity and constitu-
ent transport (Thyng, 2023), seasonal hypoxia (Ruiz-Xomchuk et al., 2021; W. Zhang et al., 2015), and the shelf 
ecosystem (Fennel et al., 2011). We also want to understand the sensitivity of numerical mixing to resolution, 
so we use a two-way nested child model with five times the parent resolution to test the sensitivity of numerical 
mixing to horizontal grid resolution.

1.2.  Quantifying Physical Mixing

Physical mixing can be defined as the dissipation of salinity variance, χ s, due to molecular processes (Burchard 
et al., 2009), which is analogous to the dissipation of turbulent kinetic energy ϵ (MacCready et al., 2018). ϵ repre-
sents the rate at which kinetic energy is dissipated by molecular viscosity and has units of velocity squared per 
unit time (m 2 s −3). χ s represents the rate at which salinity variance is dissipated by molecular diffusion (Nash & 
Moum, 2002) and has units of salinity squared per unit time (g 2 kg −2 s −1). The molecular dissipation of salinity 
variance is assumed to be equal to, on average, the dissipation of Reynolds averaged salinity variance at the scales 
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of the turbulent eddies (Burchard & Rennau, 2008; Nash & Moum, 2002; Osborn & Cox, 1972), and may be 
written as

𝜒𝜒
𝑠𝑠
= 2𝑠𝑠′𝐮𝐮′

⋅ ∇𝑠𝑠 = 2𝜅𝜅𝐻𝐻

[

(

𝜕𝜕𝜕𝜕
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𝑣𝑣

� (1)

where s is the salinity, u is the 3D velocity vector, an overbar is used to denote a Reynolds average, and a prime 
is used to denote a perturbation from that average. The physical mixing resolved by a model is quantified as the 
dissipation of Reynolds averaged salinity variance with the eddy diffusivity κ. Due to the vast differences in the 
horizontal and vertical scales in the ocean, κ is separated into horizontal (κH) and vertical (κs) components and 
thus requires different parameterizations. κH is parameterized by the horizontal mixing scheme and κs parameter-
ized by the turbulence closure scheme (Burchard & Rennau, 2008; MacCready et al., 2018).

As discussed above, in many estuarine and coastal models, if κH is prescribed, it is often done with the smallest 
possible values to reduce spurious noise in the salinity field. Consequently, the horizontal mixing 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 is often 

much smaller (Geyer & MacCready, 2014) than the vertical mixing 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑣𝑣 , with some exceptions (e.g., Broatch & 
MacCready, 2022). While this is different than many larger-scale ocean circulation models, we consider hori-
zontal mixing as part of the physical mixing because it is prescribed, whereas numerical mixing is not some-
thing that can be directly controlled in the model setup. Generally, horizontal and vertical down-gradient closure 
models—including parameterizations of vertical shear mixing, harmonic, and biharmonic lateral mixing—result 
in a positive definite χ s that represents a sink of salinity variance.

1.3.  Quantifying Numerical Mixing

Salinity variance budgets provide a means to quantify the bulk physical and numerical mixing within a control 
volume (X. Li et al., 2018; Lorenz et al., 2021; Qu et al., 2022). Numerical models are designed to conserve 
salinity, but not salinity variance, therefore numerical mixing is treated as an additional subgrid-scale term and 
quantified as the residual of the salinity variance budget (MacCready et  al.,  2018). Salinity variance can be 
defined with or without reference to a volume mean (Burchard & Rennau, 2008; Qu et al., 2022), with the former 
denoted hereinafter as the volume-mean salinity variance 𝐴𝐴 𝐴𝐴

′
2

=
(

𝑠𝑠 − 𝑠𝑠
)2 , where 𝐴𝐴 𝐴𝐴 is the volume-averaged salinity 

𝐴𝐴
1

𝑉𝑉
∭ 𝑠𝑠 𝑠𝑠𝑠𝑠  , and the latter denoted as the salinity squared s 2. For example, consider a three-dimensional control 

volume with no external sources or sinks of volume-mean salinity variance (i.e., no surface salt fluxes or horizon-
tal diffusive boundary fluxes). The numerical mixing 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛 based on the volume-integrated 𝐴𝐴 𝐴𝐴

′
2 budget is

𝑛𝑛𝑛𝑛𝑛𝑛 = 
{

−
𝑑𝑑

𝑑𝑑𝑑𝑑 ∭𝑉𝑉

𝑠𝑠
′
2

𝑑𝑑𝑑𝑑 −
∬

𝐴𝐴𝑙𝑙

𝐮𝐮𝑠𝑠
′
2

⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑 −
∭

𝑉𝑉

𝜒𝜒
𝑠𝑠
𝑑𝑑𝑑𝑑

}

,� (2)

where 𝐴𝐴  denotes a generic discretization operator, t denotes time, V denotes the domain volume, Al denotes the 
area of the lateral control volume boundaries, u is the velocity normal to the open boundaries, 𝐴𝐴 𝐧̂𝐧 is the outward 
pointing normal vector, and χ s is the physical mixing as defined in the right-hand-side (RHS) of Equation 1. Equa-
tion 2 is modified version of Equation 3 of MacCready et al. (2018). We have written the volume-mean salinity 
variance budget inside of a discretization operator because numerical mixing only appears as a consequence of 
discretization. As with the physical mixing, the numerical mixing is assumed to be a sink of salinity variance (the 
reasons for this will become more apparent in Section 2), which is reflected in the sign convention of the RHS 
terms. Equation 2 demonstrates that in the absence of diffusive fluxes, contributions to numerical mixing arise 
from the time rate of change of variance within the control volume, the advection of variance through the lateral 
boundaries, and the dissipation of variance due to turbulent mixing.

A salinity variance budget based on 𝐴𝐴 𝐴𝐴
′
2 (X. Li et al., 2018) showed that the volume-mean salinity variance may 

be used as a tracer for the stratification within a control volume, an approach that inspired later studies (Broatch 
& MacCready, 2022; L. Li et al., 2021; Wang & Geyer, 2018). Conversely, Lorenz et al. (2021) and Burchard 
et al. (2019) derived a series of approximate relations for the total mixing within a control volume based on 
the s 2 budget because it is easier to apply to model output and field observations than the 𝐴𝐴 𝐴𝐴

′
2 budget. There are 

a number of examples where mixing within a control volume is estimated by the boundary fluxes. The bulk 
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mixing M in an estuary may be approximated as M = sinsoutQr (Burchard, 2020; Burchard et al., 2019), where 
sin and sout are the inflowing and outflowing salinities calculated with the total exchange flow (TEF) analysis 
framework (MacCready, 2011), respectively, and Qr is the river discharge. Under the same assumptions, Qu 
et al. (2022) showed that M may be quantified directly in terms of the net boundary advection of salinity vari-
ance into the estuary. Due to the recent invention of the theory, TEF has only been applied to numerical model 
output. However, a recent paper by Lemagie et  al.  (2022) suggested how TEF may be measured with field 
observations.

Without a robust estimate of 𝐴𝐴 𝐴𝐴 for many estuaries and coastal regions, it may be feasible to only estimate the 
advective boundary fluxes of s 2. Consequently, there is strong motivation to explore how s 2 and 𝐴𝐴 𝐴𝐴

′
2 are related. 

Despite the physical mixing being identical in the s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets (since 𝐴𝐴 𝐴𝐴 has no spatial gradients), this is not 

necessarily true for other terms (e.g., advection) in their respective equations. This is particularly relevant for real-
istic, unsteady flows within control volumes characterized by advective and diffusive lateral boundary fluxes, and 
surface salt fluxes caused by evaporation and precipitation. Therefore, it is unclear a priori if the s 2 budget may 
be used to robustly estimate numerical mixing given possible dynamical differences with 𝐴𝐴 𝐴𝐴

′
2 , especially because 

they will have different numerical implementations when quantified with a numerical model.

Offline computation of the salinity variance budgets introduces additional discretization errors that are dependent 
on the model output type (i.e., snapshots or averages), output frequency, and numerical methods used to compute 
any associated derivatives or integrals. Consequently, offline approximations of the salinity variance budgets are 
not direct estimates of numerical mixing because they include other sources of error besides the truncation errors 
associated with the advection scheme, and may be further skewed by other sources of spurious mixing. Never-
theless, we follow Wang et al. (2021) and refer to the offline approximation of the salinity variance budgets for 
quantifying numerical mixing as the “offline method.” Wang et al. (2021) examined the accuracy of the 𝐴𝐴 𝐴𝐴

′
2 budget 

in a series of idealized and realistic simulations. They suggested the 𝐴𝐴 𝐴𝐴
′
2 budget agrees well qualitatively with the 

online diagnostic method of Burchard and Rennau (2008) when the model output frequency captures typical flow 
timescales (e.g., a gravity current), but they did not quantify the difference between the on- and offline methods 
for their realistic simulation.

No studies to date, however, have examined the accuracy of the s 2 budget for quantifying numerical mixing. A 
heuristic argument can be made that the s 2 budget is subject to larger numerical error than the 𝐴𝐴 𝐴𝐴

′
2 budget because 

s 2 is generally much larger than 𝐴𝐴 𝐴𝐴
′
2 unless the system experiences strong, time-dependent stratification (e.g., a 

salt-wedge estuary). Therefore, it is useful to investigate whether this error significantly impacts the accuracy of 
the numerical mixing associated with s 2 and 𝐴𝐴 𝐴𝐴

′
2 .

1.4.  Objectives of This Paper

Acknowledging the importance of numerical mixing in estuarine and coastal models, the primary goal of this 
study is to examine numerical mixing in a domain dominated by internal baroclinic instabilities with an ener-
getic flow field (i.e., 𝐴𝐴 (1) Rossby number). Previous studies focused on tidally dominated estuaries (Broatch & 
MacCready, 2022; MacCready et al., 2018; Ralston et al., 2017; Wang & Geyer, 2018) and coastal ocean (Wang 
et al., 2021) regimes that were strongly advective, but were also characterized by strong physical mixing. In the 
nGoM during summer, tides and wind forcing are weak; thus we expect our regime to be strongly advective, but 
without the associated strong boundary layer mixing that characterized previous studies.

Previous studies (referenced above) have suggested success in calculating numerical mixing using offline meth-
ods; accurate offline estimates of numerical mixing would be a powerful tool when online methods are not 
feasible. We investigate the feasibility of this approach in our nGoM domain by expanding the work of Wang 
et al. (2021) to assess the accuracy of the volume-integrated s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets for quantifying numerical mixing. 

We use the online method of Burchard and Rennau (2008) as the benchmark to assess the accuracy of the offline 
budgets because it is dependent on a model's internal timestep and insensitive to model output frequency. Offline 
methods would be considered robust and convergent if they converge to the online method as model output 
frequency increases, while maintaining relatively high accuracy at lower output frequency. The s 2 budget has the 
additional constraint that is must yield similar estimates of numerical mixing as the 𝐴𝐴 𝐴𝐴

′
2 budget at the same output 

frequency.
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2.  Theory
We derive volume-integrated budget equations for salinity squared s 2 and volume-mean salinity variance 𝐴𝐴 𝐴𝐴

′
2 . The 

derivation is similar to Lorenz et al. (2021), who derived s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets for a realistic estuarine domain. In the 

case presented here, the salinity surface and bottom boundary conditions are modified for the model used in this 
study (Regional Ocean Modeling Systems, ROMS, Shchepetkin & McWilliams, 2005). A rigorous exploration of 
the differences between the s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets in the context of numerical mixing is included.

2.1.  Salinity Squared Budget

Consider a three-dimensional control volume with four open lateral boundaries and an open boundary at the sea 
surface. We start with Reynolds-averaged salinity conservation in Cartesian coordinates:

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝑠𝑠 = ∇𝐻𝐻 ⋅ (𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠) +

𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝑠𝑠

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

,� (3)

where u is redefined as the 3D velocity vector. To derive volume-integrated budgets of s 2 and 𝐴𝐴 𝐴𝐴
′
2 , we first consider 

the local salinity boundary conditions. ROMS parameterizes surface volume fluxes due to evaporation and 
precipitation as surface salt fluxes (i.e., a virtual salt flux), which is to say no water is added or taken away from 
the domain (Nagy et al., 2020; Roullet & Madec, 2000; Shchepetkin & McWilliams, 2005), so the corresponding 
surface and bottom boundary conditions are

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

= 𝑠𝑠(𝐸𝐸 − 𝑃𝑃 ) at 𝑧𝑧 = 𝜁𝜁

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

= 0 at 𝑧𝑧 = −ℎ,

� (4)

where E and P are the evaporation and precipitation per unit area, respectively, ζ is the free surface elevation, 
and h is the depth of the ocean bottom below mean sea level. To derive an equation for s 2 and the accompanying 
boundary conditions, we multiply Equations 3 and 4 by 2s and apply the product rule:

𝜕𝜕𝜕𝜕
2

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝑠𝑠

2
= ∇𝐻𝐻 ⋅

(

𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠
2
)

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
2

𝜕𝜕𝜕𝜕

))

− 2𝜅𝜅𝐻𝐻 (∇𝐻𝐻𝑠𝑠)
2
− 2𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

,� (5)

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
2

𝜕𝜕𝜕𝜕

)

= 2𝑠𝑠
2
(𝐸𝐸 − 𝑃𝑃 ) at 𝑧𝑧 = 𝜁𝜁

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
2

𝜕𝜕𝜕𝜕

)

= 0 at 𝑧𝑧 = −ℎ,

� (6)

where the third and fourth terms on the right-hand-side are the dissipation of salinity variance χ s as defined in 
Equation 1 (Burchard & Rennau, 2008). To form a volume-integrated budget for s 2, we integrate Equations 5 
and 6 over the domain:

∭�

��2

��
��

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
Tendency

+∬��

��2 ⋅ �̂ ��

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Boundary advection

−∬��

(

2�2
)

(� − � ) ��

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Surface fluxes

= ∭�
∇� ⋅

(

��∇��2
)

��
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Horz. diffusion

−∭�
�� ��

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Physicalmixing

− 
��,�2
⏟⏟⏟

Numericalmixing

,
� (7)

where AI is the area of the lateral control volume boundaries, Av is the area of the control volume boundaries at 
the sea surface, and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 is the s 2 numerical mixing. As shown in Equation 7, five terms affect the time rate 
of change of s 2 within a control volume (i.e., tendency), the advective flux of s 2 through the lateral boundaries, 
the diffusive s 2 flux at the sea surface due to evaporation and precipitation, the horizontal turbulent s 2 diffusion 
within the control volume, the prescribed physical mixing, and the numerical mixing. Note the s 2 diffusion is 
expressed as a volume integral instead of a boundary area integral to account for the surface and bottom slopes. 
The numerical mixing arises when Equation 7 is discretized and is calculated as
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���,�2 =
{

−∭�

��2

��
�� −∬��

��2 ⋅ �̂ �� +∬��

(

2�2
)

(� − � ) ��

+∭�
∇� ⋅

(

��∇��2
)

�� −∭�
�� ��

}

.
� (8)

2.2.  Volume-Mean Salinity Variance Budget

Following MacCready et  al.  (2018) and Lorenz et  al.  (2021), we define the volume-mean salinity variance 
as 𝐴𝐴 𝐴𝐴

′
2

=
(

𝑠𝑠 − 𝑠𝑠
)2 , where 𝐴𝐴 𝐴𝐴 is the volume-averaged salinity 𝐴𝐴

1

𝑉𝑉
∭

𝑉𝑉
𝑠𝑠 𝑠𝑠𝑠𝑠  . A local equation for 𝐴𝐴 𝐴𝐴

′
2 is obtained by 

subtracting 𝐴𝐴 𝐴𝐴𝑡𝑡𝑠𝑠 from Equation 3, multiplying by 2s′, and applying the product rule:

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇𝑠𝑠

′
2

= ∇𝐻𝐻 ⋅

(

𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠
′
2

)

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

))

− 2𝜅𝜅𝐻𝐻

(

∇𝐻𝐻𝑠𝑠
′
)2

− 2𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕

)2

− 2𝑠𝑠
′ 𝑑𝑑𝑠𝑠

𝑑𝑑𝑑𝑑
.� (9)

We derive the surface and bottom boundary conditions by multiplying Equation 4 by 2s′:

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

)

= 2𝑠𝑠
2
(𝐸𝐸 − 𝑃𝑃 ) − 2𝑠𝑠𝑠𝑠(𝐸𝐸 − 𝑃𝑃 ) at 𝑧𝑧 = 𝜁𝜁

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

)

= 0 at 𝑧𝑧 = −ℎ,

� (10)

where we have split the 𝐴𝐴 𝐴𝐴
′
2 surface boundary condition into contributions from s 2 and 𝐴𝐴 𝐴𝐴 similar to Lorenz 

et al. (2021). Noting that the volume integral of s′ is zero and that 𝐴𝐴 𝐴𝐴 has no spatial gradients, volume integrating 
Equations 9 and 10 yields

∭�

��′2

��
��

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
Tendency

+∬��

��′2 ⋅ �̂ ��

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
Boundary advection

−∬��

(

2�2 − 2��
)

(� − � ) ��

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Surface fluxes

= ∭�
∇� ⋅

(

��∇��′
2
)

��
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Horz. diffusion

−∭�
�� ��

⏟⏞⏞⏞⏟⏞⏞⏞⏟
Physicalmixing

− 
��,�′2

⏟⏞⏟⏞⏟
Numericalmixing

,
� (11)

where 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 is the 𝐴𝐴 𝐴𝐴
′
2 numerical mixing. Similar to the s 2 budget, the time rate of change of 𝐴𝐴 𝐴𝐴

′
2 is controlled 

by five terms: lateral boundary advection, diffusive fluxes through the vertical boundary, horizontal turbulent 
diffusion within the control volume, physical mixing, and numerical mixing. As with the s 2 budget, 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 may 

be calculated by discretizing Equation 11 and rearranging:

���,�′2 =
{

−∭�

��′2

��
�� −∬��

��′2 ⋅ �̂ �� +∬��

(

2�2 − 2��
)

(� − � ) ��

+∭�
∇� ⋅

(

��∇��′
2
)

�� −∭�
�� ��

}

.
� (12)

Note that the physical mixing χ s is the same as in the s 2 budget, but it is unclear how 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 relates to 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 . 
Hereinafter, we drop the 𝐴𝐴  notation used to indicate discretization.

2.3.  Differences Between s 2 and 𝑨𝑨 𝑨𝑨
′
𝟐𝟐 Budgets

An expression relating 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , making use of the Reynolds decomposition used to define the 
volume-mean salinity variance, is derived to quantify the differences between the s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets. If we rede-

fine the salinity as 𝐴𝐴 𝐴𝐴 = 𝑠𝑠 + 𝑠𝑠
′ , where the overline and prime retain their previous definitions, a local equation for 

s in terms of 𝐴𝐴 𝐴𝐴 and s′ can be written as
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𝜕𝜕
(

𝑠𝑠 + 𝑠𝑠
′
)

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇

(

𝑠𝑠 + 𝑠𝑠
′
)

= ∇𝐻𝐻 ⋅

[

𝜅𝜅𝐻𝐻∇𝐻𝐻

(

𝑠𝑠 + 𝑠𝑠
′
)]

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝑠𝑠

(

𝜕𝜕
(

𝑠𝑠 + 𝑠𝑠
′
)

𝜕𝜕𝜕𝜕

))

.� (13)

Multiplying Equation 13 by 𝐴𝐴 2
(

𝐴𝐴 + 𝐴𝐴
′
)

 leads to an expanded form of the s 2 equation:

𝜕𝜕𝑠𝑠
2

𝜕𝜕𝜕𝜕
+ 2𝑠𝑠

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕
+ 2𝑠𝑠

′
𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕
+ 𝐮𝐮 ⋅ ∇

(

𝑠𝑠
2
+ 2𝑠𝑠𝑠𝑠

′
+ 𝑠𝑠

′
2

)

= ∇𝐻𝐻 ⋅

(

𝜅𝜅𝐻𝐻∇𝐻𝐻

(

𝑠𝑠
2
+ 2𝑠𝑠𝑠𝑠

′
+ 𝑠𝑠

′
2

))

+
𝜕𝜕

𝜕𝜕𝜕𝜕

(

𝜅𝜅𝑠𝑠

(

𝜕𝜕𝑠𝑠
2

𝜕𝜕𝜕𝜕
+ 2𝑠𝑠

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

))

− 2𝜅𝜅𝐻𝐻

[

(

∇𝐻𝐻

(

𝑠𝑠 + 𝑠𝑠
′
))2

]

− 2𝜅𝜅𝑠𝑠

(

𝜕𝜕𝑠𝑠

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕

)2

.

� (14)

We note that any terms containing spatial gradients of 𝐴𝐴 𝐴𝐴 vanish from Equation 14. However, we retain them for 
clarity because 𝐴𝐴 𝐮𝐮 ⋅ ∇𝐴𝐴

2 does not vanish if the divergence theorem is used to transform the advective fluxes into 
boundary area integrals. Applying a similar decomposition to the surface and bottom boundary conditions and 
multiplying by 𝐴𝐴 2

(

𝐴𝐴 + 𝐴𝐴
′
)

 , we have

𝜅𝜅𝑠𝑠

(

2𝑠𝑠
𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

)

=

(

2𝑠𝑠
2
+ 4𝑠𝑠𝑠𝑠

′
+ 2𝑠𝑠

′
2

)

(𝐸𝐸 − 𝑃𝑃 ) at 𝑧𝑧 = 𝜁𝜁

𝜅𝜅𝑠𝑠

(

2𝑠𝑠
𝜕𝜕𝜕𝜕

′

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕

)

= 0 at 𝑧𝑧 = −ℎ.

� (15)

After volume-integrating and rearranging to group like terms together, the s 2 budget in terms of 𝐴𝐴 𝐴𝐴 + 𝐴𝐴
′ becomes

𝑑𝑑𝑠𝑠
2

𝑑𝑑𝑑𝑑
𝑉𝑉 + 𝑠𝑠

2

∬
𝐴𝐴𝑙𝑙

𝐮𝐮 ⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠𝑠
2
tendency and advection

+ 2𝑠𝑠
∭

𝑉𝑉

𝜕𝜕𝜕𝜕
′

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 + 2𝑠𝑠

∬
𝐴𝐴𝑙𝑙

𝐮𝐮𝑠𝑠
′
⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cross tendency and advection

+

∭
𝑉𝑉

𝜕𝜕𝜕𝜕
′
2

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 +

∬
𝐴𝐴𝑙𝑙

𝐮𝐮𝑠𝑠
′
2

⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠𝑠′
2
tendency and advection

−
∬

𝐴𝐴𝑣𝑣

(

2𝑠𝑠
2
+ 4𝑠𝑠𝑠𝑠

′
+ 2𝑠𝑠

′
2

)

(𝐸𝐸 − 𝑃𝑃 ) 𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Surface fluxes

=

2𝑠𝑠
∭

𝑉𝑉

∇𝐻𝐻 ⋅

(

𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠
′
)

𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Cross horz. diffusion

+
∭

𝑉𝑉

∇𝐻𝐻 ⋅

(

𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠
′
2

)

𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝑠𝑠′
2
horz. diffusion

−
∭

𝑉𝑉

𝜒𝜒
𝑠𝑠
𝑑𝑑𝑑𝑑

⏟⏞⏞⏞⏟⏞⏞⏞⏟

Physicalmixing

− 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2

⏟⏟⏟

𝑠𝑠2 numericalmixing

.

� (16)

In current form, Equation 16 contains several new terms due to the influence of 𝐴𝐴 𝐴𝐴 as well as the 𝐴𝐴 𝐴𝐴
′
2 tendency and 

advection terms. The physical mixing remains the same for both budgets and the resulting numerical mixing is the 
same as the residual of the s 2 budget. To quantify the differences in numerical mixing between the s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets, 

we obtain an expression for 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 −
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 after subtracting Equation 11 from Equation 16 and rearranging:

���,�2 −���,�′2 = −��2

��
� − 2�∭�

��′

��
�� − �2 ∬��

� ⋅ �̂ �� − 2�∬��

��′ ⋅ �̂ ��

+ 2�∭�
∇� ⋅

(

��∇��′
)

�� +∬��

(

2�2 + 2��′
)

(� − � ) ��.
� (17)

As shown in Equation 17, there are six extra terms that appear when expressing s 2 in terms of 𝐴𝐴 𝐴𝐴 and s′: two 
tendency terms, two advective boundary flux terms, and two turbulent diffusion terms. The first tendency term 

𝐴𝐴

(

𝜕𝜕𝑡𝑡𝑠𝑠
2

)

𝑉𝑉  describes the evolution of the volume-averaged salinity squared with respect to time, and  the second 

term 𝐴𝐴 2𝑠𝑠∭
𝑉𝑉
𝜕𝜕𝑡𝑡𝑠𝑠

′
𝑑𝑑𝑑𝑑  is a cross term that represents the volume-averaged salinity multiplied by the tendency of the 

salinity perturbations. The first advection term 𝐴𝐴 𝑠𝑠
2 ∬

𝐴𝐴𝑙𝑙

𝐮𝐮 𝑑𝑑𝑑𝑑 describes the advection of the  flow through  the lateral 
boundaries multiplied by the volume-averaged salinity squared, and the second advec tion  term 𝐴𝐴 2𝑠𝑠∬

𝐴𝐴𝑙𝑙

𝐮𝐮𝑠𝑠
′
𝑑𝑑𝑑𝑑 is 

another cross term that describes the advection of the volume-averaged salinity times the salinity perturbations 
through the lateral boundaries. Subtracting Equation 11 from Equation 16 will yield a residual that is partially 
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modulated by the model output frequency for unsteady flows. Additionally, the individual terms in each budget 
(i.e., s 2 tendency and 𝐴𝐴 𝐴𝐴

′
2 tendency) may evolve differently depending on how large the extra terms are in Equa-

tion 17. For clarity, we note that analytically, the left-hand-side of Equation 17 is equal to zero and arises due to 
discretization errors during the computation of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 and 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 . We examine how these extra terms affect the 

dynamics of the s 2 budget relative to the 𝐴𝐴 𝐴𝐴
′
2 budget in Section 4.

3.  Numerical Model Configuration
3.1.  Realistic Hydrodynamic Model and Nested Grid

We use the Texas-Louisiana continental shelf model (TXLA), which covers the entire Texas-Louisiana shelf 
and outer slopes (Figure 1). The model configuration is similar to Qu, Thomas, Hetland, and Kobashi (2022) 
and is reviewed here. The model is a validated, realistic implementation of ROMS configured in this iteration as 
part of the Coupled-Ocean-Atmosphere-Wave-Sediment Transport modeling system (COAWST ver. 3.7, Warner 
et al., 2010). The model solves the primitive equations over a curvilinear horizontal grid with terrain-following 
vertical coordinates (Arakawa & Lamb, 1977; Shchepetkin & McWilliams, 2005; X. Zhang, Marta-Almeida, & 
Hetland, 2012). The model uses 30 vertical layers that are concentrated near the surface and bottom to adequately 
resolve the boundary layers. The horizontal resolution spans from 0.65 km near the coast to 3.7 km near the outer 
continental slope, with a mean resolution of 1.57 km in the location of the nested grid.

A third-order upwind scheme and a fourth-order centered scheme are used for momentum advection and 
Multidimensional Positive Definite Advection (MPDATA) is used for tracer advection (Smolarkiewicz & 
Margolin, 1998). The k − ω scheme is used for vertical mixing (Umlauf et al., 2003; Warner et al., 2005) and 
horizontal mixing is parameterized along geopotential surfaces with constant horizontal viscosity (5.0 m 2 s −1) 
and diffusivity (1.0 m 2 s −1) values, both of which are scaled to the grid size. The model uses a baroclinic timestep 
of 75 s and a barotropic timestep of 1.875 s. The model provides hourly output and neglects tides because they 
are weak over the region (DiMarco & Reid, 1998). The model is one-way nested into Global HYCOM Reanalysis 
to provide open boundary forcing and uses ERA-Interim data sets to provide surface forcing (Dee et al., 2011). 
Additionally, the model uses streamflow data from nine rivers to provide freshwater forcing: Sabine, San Anto-
nio, Trinity, Brazos, Calcasieu, Lavaca, Nueces, including the Mississippi and Atchafalaya, which provides the 

Figure 1.  TXLA parent (coarse) and child (fine) model domain outlined with the blue and red lines, respectively. The 
colorbar displays the model bathymetry with a basemap located above the colorbar.
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bulk of the discharge. The streamflow salinity is set to zero at all rivers and streamflow temperature is estimated 
using the bulk approach described by Stefan and Preud'homme (1993).

The nested model is configured to be two-way such that variables are exchanged across the open boundary. The 
bathymetry and vertical grid parameters of the child domain are the same as the parent's because the child domain 
was created from the parent domain. The bathymetry of the child domain was obtained by linearly interpolating the 
bathymetry of the parent domain. The ratio of the nesting is five to one, resulting in a mean horizontal resolution of 315 
m in the child model. The surface fluxes, open boundaries and initial conditions were also obtained from the parent 
model by interpolating the parent model outputs to the child grid. By doing so, the models can reduce initialization 
shocks typically seen at the beginning of the simulation. A comparison between the parent and child grids along the 
open boundaries (i.e., contact points) showed that the fluxes in and out of the boundaries were internally conserved.

The model has been used in several recent studies focusing on small-scale processes and dynamics in the nGoM 
(Kobashi & Hetland, 2020; Qu et al., 2021; Qu, Thomas, Hetland, & Kobashi, 2022; Qu, Thomas, Wienkers, 
et al., 2022; Ruiz-Xomchuk et al., 2021). For this study, we focus our analysis to the location of the child grid 
(Figure 1). The region is located west of the M/A river discharge points, which contribute to the generation of 
a baroclinic current over the shelf. The region is often saturated with eddies during summer (Figures 2e and 2f) 
due to formation of baroclinic instabilities (Hetland, 2017; X. Zhang, Hetland, et  al.,  2012). A diurnal land-
sea breeze in near-resonance with the local inertial period forces near-inertial motions (e.g., waves and oscil-
lations) that are perturbed by surface and river forcing (X. Zhang et al., 2009). The volume-integrated flow is 
strongly time dependent and serves as an excellent test case to investigate the accuracy of the offline methods in 
a realistic simulation. Previous studies focusing on submesoscale processes in the nGoM (Barkan, McWilliams, 
Shchepetkin, et al., 2017; Luo et al., 2016) have primarily focused east of the M/A discharge points in the after-
math of the 2010 Deepwater Horizon oil spill. The wave-mean flow interactions in our study region can enhance 
mixing and lead to the rapid vertical exchange of biogeochemical tracers (e.g., oxygen), which becomes more 
pronounced as the horizontal resolution increases (Qu, Thomas, Wienkers, et al., 2022). We anticipate significant 
numerical mixing due to strong salinity gradients (Figures 2a–2d), particularly near the northeastern boundary of 
the child domain where the Atchafalaya plume is more prevalent.

3.2.  Simulation Overview

We performed two numerical simulations: one of the native TXLA model without nesting (hereinafter the 
“coarse” simulation), and the second with nesting turned on (hereinafter the “fine” simulation). Both simulations 
are analyzed from 3 June to 13 July 2010. Due to file corruption issues during the restart process of the fine simu-
lation, we removed the following times (in UTC) from both the coarse and fine grid simulations when directly 
comparing the simulations: 17 June 22:30–18 June 19:30, 19 June 14:30–19:30, and 9 July 18:30.

There are several notable mixing events driven by a combination of surface salt fluxes, wind stress, and fresh-
water input that otherwise contrast with periods of low physical mixing, allowing us to study numerical mixing 
under a variety of different environmental conditions. Over the inner shelf during the study period, contributions 
to density variations from variation in the temperature field are small relative to those from salinity variations. 
We focus our analysis to metrics that influence numerical mixing, in particular different metrics from the velocity 
gradient tensor normalized by the Coriolis parameter such as vertical relative vorticity ζ/f, horizontal divergence 
δ/f, horizontal strain rate α/f, and the horizontal salinity gradient magnitude |∇Hs|. They are defined as:

𝜁𝜁∕𝑓𝑓 =

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

∕𝑓𝑓𝑓� (18)

𝛿𝛿∕𝑓𝑓 =

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)

∕𝑓𝑓𝑓� (19)

𝛼𝛼∕𝑓𝑓 =

√

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
−

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

+

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

∕𝑓𝑓𝑓� (20)

|∇��| =

√

(

��
��

)2

+
(

��
��

)2

.� (21)
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Figure 2.  Surface fields on 20 June 2010 12:30 UTC for the coarse (left column) and fine (right column) simulations of 
salinity (a and b), horizontal salinity gradient magnitude |∇Hs| (c and d), relative vertical vorticity ζ/f (e and f), horizontal 
divergence δ/f (g and h), and horizontal strain rate α/f (i and j). Note that all velocity gradient tensor quantities are normalized 
by the Coriolis parameter f and all variables are defined in text.
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To isolate the effects of nesting on model processes, all variables discussed hereinafter from the coarse grid 
are subsetted offline to the location of the child grid and compared directly with the child grid of the fine 
simulation. Figure 2 displays a sample of surface fields for the coarse and fine simulations of salinity, |∇Hs|, 
ζ/f, δ/f, and α/f during a time where numerous eddies are seen over the shelf. These eddies are considered to be 
submesoscale because they exhibit 𝐴𝐴 (1) surface Rossby numbers, as approximated by ζ/f (Barkan, McWilliams, 
Shchepetkin, et  al.,  2017; Kobashi & Hetland, 2020; McWilliams, 2016). The salinity of the fine simulation 
exhibits subtle differences near the northeastern boundary, however the effects of nesting are more striking in 
the vorticity. Several frontal eddies with anticyclonic cores and cyclonic filaments are resolved by both simu-
lations. The cyclonic filaments are often associated with frontal convergence (Kobashi & Hetland, 2020; Qu, 
Thomas, Wienkers, et  al.,  2022) and salinity gradients orders of magnitude stronger than those found in the 
anticyclonic cores where the salinity is more homogeneous. The horizontal strain rate is enhanced throughout 
the fine simulation, which acts to sharpen the horizontal salinity gradients and enhance frontogenesis (Hoskins 
& Bretherton, 1972).

Figure 3.  Probability density functions (PDFs) of surface ζ/f (a), δ/f (b), α/f (c), and |∇Hs| (d) for the entire simulation period 
as defined in text. Dashed lines display δ/f, α/f, and |∇Hs| sorted by ζ/f > 1 corresponding to the model fronts. The black 
dashed line in (a) demonstrates where ζ/f = 1. Each PDF was constructed discretely using 150 equal-spaced bins by first 
computing histograms and then normalized so the PDFs integrate to one.

Table 1 
Median and Pearson's Median Skewness for the Surface and Whole Water Column ζ/f, δ/f, α/f, and |∇Hs| for the Coarse 
and Fine Simulations

Simulation 𝐴𝐴 𝜁𝜁∕𝑓𝑓   �̃∕� 𝐴𝐴 𝛿𝛿∕𝑓𝑓   �̃∕�  𝐴𝐴 𝛼𝛼∕𝑓𝑓   �̃∕� 𝐴𝐴
(

|∇𝐻𝐻𝑠𝑠|

)

∗ 10
4  |̃∇��| 

Coarse: Surf. −0.054 0.296 0.009 −0.154 0.470 0.757 1.000 0.926

Fine: Surf. −0.140 0.399 0.0346 −0.206 0.576 0.756 0.989 0.805

Coarse: Whole −0.002 0.092 0.002 −0.049 0.405 0.767 0.905 0.884

Fine: Whole −0.026 0.144 0.008 −0.064 0.497 0.801 1.02 0.839

Note. Median quantities are denoted by an overline, and skewness quantities are denoted by a tilde. Median and skewness 
of the whole water column were computed by subsampling the coarse simulation every three ξ, η (x, y) points and the fine 
simulation every 15 ξ, η points. |∇Hs| medians have units of g kg −1 m −1.
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To better understand the impacts of nesting on surface processes, Figure 3 displays probability density functions 
(PDFs) of the various properties discussed above. Figure 3 also displays the latter three quantities sorted by 
ζ/f > 1, which correspond to 𝐴𝐴 (1) surface Rossby numbers associated with submesoscale fronts. The associated 
median and median-skewness of the velocity gradient tensor quantities and |∇Hs| are shown in Table 1. The rela-
tive vorticity is skewed cyclonically (positively) with a negative median for both simulations, with the median of 
the fine simulation decreasing by 159% and skewness increasing by 31%. The divergence for both simulations 
have positive medians (i.e., divergence) and negative skewnesses, with the fine simulation increasing over 260% 
and the skewness decreasing by 34%. The strain for both models follows a χ distribution, consistent with the 
results of Shcherbina et al. (2013). The salinity gradient magnitude of the fine simulation has a slightly smaller 
median and skewness compared to the coarse simulation. When sorted by ζ/f > 1, the latter three quantities have 
significantly higher probabilities toward the tails of their distributions. This makes intuitive sense because the 
submesoscale fronts are associated with strong horizontal salinity gradients, elevated convergence/divergence, 
and elevated strain (McWilliams, 2016). Interestingly, PDFs of |∇Hs| remain essentially unchanged between the 
coarse and fine simulations, with slightly stronger gradients at the tail of the fine distribution, suggesting that 
changes to the velocity gradients do not necessarily result in similar changes to the salinity gradients.

A possible explanation for the relatively unchanged salinity gradients in the nested model is due to the horizontal 
mixing scheme. ROMS scales grid-dependent horizontal diffusivities as

𝜅𝜅𝐻𝐻 =
𝜅𝜅0

max

√

𝑑𝑑𝑑𝑑

√

𝑑𝑑𝑑𝑑𝑑� (22)

where κ0 is a prescribed background turbulent diffusivity (specified previously) and dA is the lateral grid cell 
area. The maximum grid cell area is unique to each model grid, resulting in κH being twice as large on average 
in the fine simulation compared to the coarse. As we will show in Section 4, this increases the magnitude of the 
horizontal mixing and turbulent diffusion significantly, which may prevent the horizontal salinity gradients from 
sharpening as expected.

Trends remain similar for the entire water column (Figure 4), however the distributions of ζ/f and δ/f are slightly 
more Gaussian. α/f still follows a χ distribution, but is significantly weaker relative to the surface distribution. 
|∇Hs| changes modestly compared to the velocity gradients, with the coarse simulation having slightly larger 
salinity gradients near the tails of the distribution.

Figure 4.  Same as Figure 3, but for the entire water column.
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3.3.  Implementation of the Online Method for Numerical Mixing

The online numerical mixing 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is calculated locally following Burchard and Rennau (2008):

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =

𝐴𝐴
{

𝑠𝑠
2
}

− (𝐴𝐴{𝑠𝑠})
2

Δ𝑡𝑡
,� (23)

where A is the advection operator (i.e., MPDATA) and Δt is the model time step, which yields the numerical 
mixing in each grid cell. A discretized version of Equation 23 may be found in Burchard and Rennau (2008). 

𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is computed using s as the representative tracer instead of s′ because s′ requires calculating 𝐴𝐴 𝐴𝐴 for the 
location of the child grid during the model run. An analysis (not shown) of Equation 23 for a first order upwind 
scheme suggests that 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 should be identical whether s or s′ is used as the tracer. However, this is not 
necessarily the case for higher-order, nonlinear advection schemes that employ more sophisticated numerical 
algorithms. Therefore, it is unclear whether the online method should converge to 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 in addition to 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 

if offline discretization errors are small.

Although we will use the relative agreement between on- and offline methods as the basis to assess this, other 
sources of spurious mixing such as spurious convection due to high grid cell Reynolds numbers (Ilıcak, 2016; 
Ilıcak et al., 2012), cabbeling, and numerical diffusion may potentially contaminate both on- and offline methods. 
Generally, we do not expect these sources to be significant based on the results of Wang et al. (2021). We do not 
expect spurious convection to be significant because ROMS employs a third-order upstream advection scheme 
that enforces small grid-scale Reynolds numbers (Ilıcak et al., 2012; Shchepetkin & McWilliams, 2005). Cabbe-
ling is also not likely to be an issue, as work by Barkan, McWilliams, Molemaker, et al. (2017) slightly east of 
our study area suggested it is less significant in the M/A plume compared to other oceanic regions. However, we 
cannot say a priori whether numerical diffusion will be significant. We will revisit these comments in Sections 4 
and 5. The numerical implementation of the offline method is shown in Appendix A.

4.  Results
4.1.  Spatial Structure of the Numerical and Physical Mixing

To motivate our analysis of the physical and numerical mixing, Figure 5 displays cross-sections of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 
χ s split into horizontal and vertical components when a strong cross-shelf density gradient is generated by fresh-
water input for the coarse and fine simulations. A nearshore and offshore pycnocline are observed, where the 
nearshore pycnocline near 29°N is associated with freshwater input from the Atchafalaya River and the offshore 
near pycnocline is associated with freshwater input from the Mississippi River (Kobashi & Hetland,  2020). 
The  numerical mixing, although noisy, is approximately 2.75 times larger when averaged over the cross section in 
the coarse simulation compared to the physical mixing and may be orders of magnitude larger locally. The nega-
tive mixing is due to the anti-diffusive properties of MPDATA, which acts to reduce the total mixing but does not 
have a physical interpretation. The numerical mixing is concentrated primarily where the isopycnals are pinched 
in the pycnoclines, generally corresponding to strong horizontal salinity gradients. Stronger salinity gradients are 
located shoreward of 29.25°N, however the numerical mixing is small relative to the offshore pycnocline, likely 
due to increased grid resolution. Previous studies have shown that numerical mixing is related to the horizontal 
salinity gradients (Hofmeister et al., 2011; Kalra et al., 2019; Klingbeil et al., 2014; Wang et al., 2021) and we 
investigate this more in Section 5.

The physical mixing exhibits different spatial trends when broken into horizontal 𝐴𝐴
(

𝜒𝜒
𝑠𝑠

𝐻𝐻

)

 and vertical 
(

��
�
)

 compo-
nents. This is due to two reasons: different parameterizations for the horizontal and vertical turbulent diffusivities 
and different distributions of the horizontal and vertical salinity gradients. 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑣𝑣 is concentrated at the surface and 
in the middle of cross-section. The areas of high physical mixing roughly correspond to where the vertical shear 
and turbulent diffusivity are strong (and large vertical velocity variance). Similar to the numerical mixing, 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 

is strongly correlated with |∇Hs| and comprises 9.1% of the total physical mixing 𝐴𝐴
(

𝜒𝜒
𝑠𝑠

𝐻𝐻
+ 𝜒𝜒

𝑠𝑠

𝑣𝑣

)

 when averaged over 
the cross section.

Model nesting produces several notable differences, although the general trends remain the same. There are 
several locations where the numerical mixing in the fine simulation is stronger than the coarse simulation. The 
physical mixing averaged over the cross-section in the fine simulation is larger than the coarse simulation, with 

 19422466, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003380 by O
regon State U

niversity, W
iley O

nline Library on [22/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Advances in Modeling Earth Systems

SCHLICHTING ET AL.

10.1029/2022MS003380

14 of 30

Figure 5.  Cross-sections for the coarse (left) and fine (right) simulations examining mixing and related properties where a strong cross-shelf density gradient is present 
on 8 June 2010 00:30 UTC. Density (a and b), 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (c and d), 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑣𝑣 (e and f), 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝐻𝐻
 (g and h), |∇Hs| (i and j), and magnitude of vertical shear 𝐴𝐴

√

(𝜕𝜕𝑧𝑧𝑢𝑢)
2
+ (𝜕𝜕𝑧𝑧𝑣𝑣)

2 (k and l). 
Isopycnals are displayed with gray lines every kg m −3 for the range shown in the colorbar. Note that the numerical mixing is on a linear scale and the physical mixing is 
on a log scale.
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𝐴𝐴 𝐴𝐴
𝑠𝑠

𝐻𝐻
 now comprising 24% of the total physical mixing. As discussed in Section 3, this is primarily due to an 

increase in the magnitude of κH in the fine simulation. The spatially averaged numerical mixing decreases by 51%, 
with the mean numerical mixing being positive for both simulations. In this particular cross-section, the decrease 
in average numerical mixing appears to be due to a more symmetric distribution of positive and negative values, 
which is evident in probability density functions and estimates of skewness over the cross-section. Equation 23 is 
limited in this application because it does not separate the horizontal and vertical contributions of tracer advection 
to numerical mixing. Horizontal and vertical tracer advection are often computed with different subroutines in 
ocean models, which could allow 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to be decomposed into components. Such a decomposition could be 
used to assess whether refinement of the horizontal or vertical grid resolution is required to reduce numerical 
mixing.

To examine the broader spatial variability, Figure 6 displays depth- and time-integrated χ s and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , the ratio 
of integrated 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 to 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑣𝑣 , and the ratio of integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to χ s. Both 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝑣𝑣 and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 are strongest near the north-
eastern boundary due to a large influx of brackish water from the M/A river plume. 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 is more significant near 

the southwestern boundary. This is unsurprising because the vertical salinity gradients will be weaker relative to 
the horizontal further offshore where the plume stratification is weaker (in contrast to the northeastern bound-
ary). The integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 in the coarse simulation is significantly noisier, with a small patch of negative values 
concentrated near the northeastern boundary. As a consequence, this will decrease the total mixing and may 
spuriously alter the timescales of mixing processes associated with submesoscale fronts, although more analysis 
is needed to confirm this. The integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 exceeds χ s for a significant portion of the domain in the coarse 
simulation, with the greatest discrepancy occurring near the southwestern boundary where χ s is weaker.

There is a marked enhancement of integrated χ s in the fine simulation. This is especially true for the ratio of 
𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 to 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑣𝑣 . As discussed previously, we believe this is due to an increase in κH of the fine simulation. A newly 
resolved patch of χ s in the fine simulation spanning almost half the latitudinal extent of the domain is seen east 
of 93°W. 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is reduced throughout the domain of the fine simulation. Additionally, the ratio of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 to χ s 
substantially decreases in the fine simulation, with the numerical mixing exceeding the physical mixing in several 
patches near the southwestern boundary.

4.2.  Temporal Variability

Here, we explore the volume-integrated s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets and compare the accuracy of the numerical mixing esti-

mated from the 𝐴𝐴 𝐴𝐴
′
2 budget to the online method. Figure 7 shows a time series for the coarse simulation of surface 

wind forcing, the terms in Equations 8 and 12, and a comparison between the different methods for quantifying 
volume-integrated numerical mixing. All wind forcing was spatially averaged over the location of the child grid. 
The land-sea breeze can generally be seen throughout the simulation, with several exceptions (e.g., 30 June and 
7 July) due to transient wind events such as storms.

Time series of volume-averaged s 2 and 𝐴𝐴 𝐴𝐴
′
2 (Figures 7a and 7b) demonstrate that 𝐴𝐴 𝐴𝐴

2
≫ 𝑠𝑠

′
2 and that the budgets 

exhibit a different time dependency. The volume-averaged 𝐴𝐴 𝐴𝐴
′
2 rarely exceeds 10 (g kg −1) 2 and exhibits reduced 

inertial variability throughout the simulation. The oscillations displayed in the s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets correspond 

strongly to the local inertial period (∼24 hr) because they are modulated by other variables prone to inertial 
variability such as the horizontal velocities. Higher frequency oscillations are generated by competition between 
transient changes in the surface wind field and freshwater input from the M/A rivers.

For s 2 and 𝐴𝐴 𝐴𝐴
′
2 , the advection and tendency terms are highly correlated and have been combined to reduce clutter. 

Mathematically, this is expressed using the volume integral of their material derivatives and is written as

∭
𝑉𝑉

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑 =

∭
𝑉𝑉

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
𝑑𝑑𝑑𝑑 +

∬
𝐴𝐴𝑙𝑙

𝐮𝐮𝑐𝑐 ⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑𝑑� (24)

where c is the tracer. Stronger winds are generally associated with larger tendency and advection terms for s 2 and 
𝐴𝐴 𝐴𝐴

′
2 , which is reflected in their respective material derivatives. The difference between the material derivatives and 

surface fluxes for s 2 and 𝐴𝐴 𝐴𝐴
′
2 elucidates the influence that removing the volume average salinity has on the dynam-

ics of 𝐴𝐴 𝐴𝐴
′
2 (Figures 7d and 7e). 𝐴𝐴 ∭ 𝐷𝐷

𝐷𝐷𝐷𝐷

(

𝑠𝑠
2
)

𝑑𝑑𝑑𝑑  is significantly noisier than 𝐴𝐴 ∭ 𝐷𝐷

𝐷𝐷𝐷𝐷

(

𝑠𝑠
′
2

)

𝑑𝑑𝑑𝑑  , which we hypothesize 

is due the larger numerical error associated with the tendency term, and to a lesser extent, the advection term. 
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Figure 6.  Various depth and time-integrated mixing quantities for the coarse and fine simulations. Depth- and time-integrated total physical mixing χ s (a and b). Ratio 
of depth- and time-integrated 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 to 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝑣𝑣 (c and d), where bluer colors indicate more horizontal physical mixing and greener colors indicate less horizontal physical 
mixing. Depth- and time-integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (e and f). Ratio of depth- and time-integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and χ s (g and h), where red colors indicate more numerical mixing and 
blue colors indicate less numerical mixing.
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Figure 7.  Time series from the coarse simulation averaged over the location of the child grid for east-west wind stress 
τx, north-south wind stress τy, and wind speed (a). Volume-averaged s 2 (b), volume-averaged 𝐴𝐴 𝐴𝐴

′
2 (c), volume-integrated s 2 

budget (d) and 𝐴𝐴 𝐴𝐴
′
2 budget (e), and comparison between the offline numerical mixing and the online numerical mixing (f). The 

tendency and advection terms of Equations 8 and 12 have been combined using the material derivative 𝐴𝐴 ∭
𝑉𝑉

𝐷𝐷𝐷𝐷

𝐷𝐷𝐷𝐷
𝑑𝑑𝑑𝑑  , where c 

denotes the tracer. The horizontal s 2 and 𝐴𝐴 s
′
2 diffusion terms were omitted from (d) and (e) because they are more than an order 

of magnitude smaller than the other terms, but are included in their respective numerical mixing calculations.
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The tendency term in the s 2 budget is nearly an order of magnitude larger than the 𝐴𝐴 𝐴𝐴
′
2 budget and will experience 

larger error because both tendency terms are calculated using the same numerical scheme (i.e., centered finite 
differences). This error should be reduced by increasing the model output frequency, which we investigate in 
Section 5. Surface s 2 fluxes exert a much larger influence on the s 2 budget for much of the simulation, with the 
physical mixing term often remaining the smallest. The opposite is true for the 𝐴𝐴 𝐴𝐴

′
2 budget, where the term balance 

often experiences competition between the physical mixing and the material derivative.

Estimates of numerical mixing depend strongly on whether s 2 or 𝐴𝐴 𝐴𝐴
′
2 is used, with both offline methods demon-

strating significant error with respect to time. 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 is significantly noisier than 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 and may exceed the 
other methods by over an order of magnitude despite the online method being derived in terms of s and s 2. 
Consequently, the s 2 budget should not be used for offline quantification of numerical mixing because 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 
does not converge to 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 for hourly output. 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 are positive definite, with 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 almost 

always overestimating 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . The accuracy of 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 relative to 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is strongly time dependent and 
the time-averaged 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 is 60% larger than the time-averaged 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . From 17–24 June the time-averaged 

𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is 141% larger than the time-averaged 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 . From 1–8 July however, it is only 12% larger. These 
results suggest the offline method is not suitable for accurate quantification of numerical mixing in our model. 
However, it is unclear whether convergence between 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 , and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 can be achieved by increasing 

the output frequency. We discuss possible causes for this, including potential impacts of model output frequency, 
discretization errors, and other sources of spurious mixing that may contaminate the on- and offline methods in 
Section 5.

The effects of the extra terms on the behavior of the s 2 budget are further explored in Figure 8. The volume-averaged 
salinity changes by less than 1  g  kg −1 over the simulation and experiences a strong inertial signal until the 
end of June, after which the inertial signal weakens or vanishes for several days at a time. The differences 
between the s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets are generally dominated by competition between 𝐴𝐴

(

𝜕𝜕𝑡𝑡𝑠𝑠
2

)

𝑉𝑉  and cross-advective 
flux 𝐴𝐴 2𝑠𝑠∬ (𝐮𝐮𝑠𝑠

′
) ⋅ 𝑑𝑑𝑑𝑑 (r = 0.95, p ≪ 0.05). Physically, this relationship shows that in the presence of stratifica-

tion, the differences between the volume-integrated s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets is partially modulated by the size of the 

control volume V (𝐴𝐴 𝐴𝐴𝑡𝑡𝑠𝑠
2 is small relative to V) and the advection of the salinity perturbations through the lateral 

boundaries. The residual of 𝐴𝐴

(

𝜕𝜕𝑡𝑡𝑠𝑠
2

)

𝑉𝑉 + 2𝑠𝑠∬ (𝐮𝐮𝑠𝑠
′
) ⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑 is balanced out by the differences in surface fluxes 

𝐴𝐴 ∬
(

2𝑠𝑠
2
+ 2𝑠𝑠𝑠𝑠

′

)

(𝐸𝐸 − 𝑃𝑃 ) 𝑑𝑑𝑑𝑑 and the volume-averaged salinity squared times the advection of the flow through 

the lateral boundaries 𝐴𝐴 𝑠𝑠
2 ∬ 𝐮𝐮 ⋅ 𝐧̂𝐧 𝑑𝑑𝑑𝑑 . The horizontal cross diffusion term 𝐴𝐴 2𝑠𝑠∭ ∇𝐻𝐻 ⋅ (𝜅𝜅𝐻𝐻∇𝐻𝐻𝑠𝑠

′
) 𝑑𝑑𝑑𝑑  remains on 

average several orders of magnitude smaller than the other terms in the s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets. This is because the 

horizontal diffusion terms are small for our model due to prescribed value of κH. Ultimately, all of the extra terms 
in the s 2 budget are linked to 𝐴𝐴 𝐴𝐴 , with 𝐴𝐴

(

𝜕𝜕𝑡𝑡𝑠𝑠
2

)

𝑉𝑉  decreasing in magnitude when amplitude of the inertial variability 

of 𝐴𝐴 𝐴𝐴 decreases. The 𝐴𝐴 𝐴𝐴
2 advection term is not as sensitive to the changes in the inertial variability of 𝐴𝐴 𝐴𝐴 and oscillates 

between first and second order, becoming more important at the end of June as 𝐴𝐴 𝐴𝐴 begins to increase.

To investigate the bulk impacts of nesting on mixing, Figure 9 displays time series volume-integrated χ s, 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝐻𝐻
 , 

and ratios of fine to coarse χ s, 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 , total mixing, and the ratio of χ s and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for both simulations. For 
the coarse simulation, 𝐴𝐴 𝐴𝐴

𝑠𝑠

𝐻𝐻
 comprises 2.3% of the total physical mixing in the coarse simulation and 5.8% in the 

fine simulation. In the coarse simulation, the volume-integrated and time-averaged ratio of numerical to  total 
mixing is 50%. For the fine simulation, this ratio decreases to 32% because the physical mixing increases 
and the numerical mixing decreases. The time-averaged physical mixing in the fine simulation is 42% larger 
than the coarse simulation and is almost always larger instantaneously, with the greatest disparity occurring 
during the wind-driven mixing event near 6 July where the fine simulation physical mixing is a factor of four 
larger than the  coarse simulation. The time-averaged numerical mixing in the fine simulation is 35% smaller 
on average relative to the coarse simulation and only grows larger than the coarse numerical mixing at several 
times. The total mixing in the fine simulation is 14% larger on average than the coarse simulation, but exhibits 
large temporal variability and may be twice as large or reduced by a third compared to the coarse simulation. 
During the first 3 weeks of June, the total mixing in the fine simulation may be more or less than the coarse 
simulation due to reduced numerical mixing, but for the remainder of the simulation the relative increase in 
physical mixing generally exceeds the decrease in numerical mixing. A striking comparison is the ratio of 
numerical to physical mixing. The numerical mixing is larger than the physical mixing in the coarse simula-
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Figure 8.  Time series from the coarse simulation of the volume-averaged salinity (a) and the balance of the 
volume-integrated extra terms in the s 2 equation given by Equation 17. 𝐴𝐴 𝐴𝐴

2 tendency and advection (b), 𝐴𝐴 2𝐴𝐴𝐴𝐴
′ tendency and 

advection (c), turbulent horizontal cross diffusion (d), extra s 2 surface fluxes (e), and differences between the s 2 and 𝐴𝐴 𝐴𝐴
′
2 

numerical mixing 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 −
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 (f). 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 −
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 yields a large residual that should decrease as model output 
frequency increases.
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tion for a significant portion of the simulation due to the strong inertial variability in the physical mixing, at 
several times over half an order of magnitude larger. However, this ratio is significantly reduced in the fine 
simulation.

5.  Discussion
We find that numerical mixing constitutes a significant fraction of the total mixing—the sum of physical and 
numerical mixing—and exceeds the physical mixing for much of the simulation due to strong lateral salinity 
gradients generated by freshwater input from the Mississippi and Atchafalaya rivers.

Figure 9.  Time series of volume-integrated χ s, 𝐴𝐴 𝐴𝐴
𝑠𝑠

𝐻𝐻
 , and 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for the coarse and fine simulations (a). All plots below 

are derived from these values, displaying fine/coarse physical mixing (b), fine/coarse numerical mixing (c), fine/coarse 
total mixing (d), and numerical/physical mixing for both models (e). Missing values seen in the time series correspond to 
output lost during the restart process of the fine simulation and were removed from the parent simulation offline for direct 
comparison. Note each plot is on a log scale of base 10 or base 2.
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Our analysis of the offline tracer budgets suggests the s 2 budget may overestimate the online numerical mixing 
by over an order of magnitude (Figure 7). Building on the work of Wang et al. (2021), we hypothesized that the 
differences are primarily due to errors associated with the tendency term of each tracer and can be reduced by 
increasing the model output frequency. To test our hypothesis and examine whether 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 will converge to 

𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 , we performed two additional numerical simulations of the coarse model with output frequencies of 30- 
and 10 min (twice and six times finer than the native resolution, respectively). The results of the simulations are 
summarized in Figure 10 and discussed in Sections 5.1 and 5.2.

Additionally, the local and volume-integrated numerical mixing constitute significant fractions of the total 
mixing, even when the model resolution is increased to 𝐴𝐴 (300m) in a two-way nested simulation. Despite the 
time-averaged spatially integrated numerical mixing decreasing in the fine simulation by 35%, Figure 5 suggests 
that numerical mixing may be occasionally enhanced at the grid-scale. Numerical mixing is dependent on a 
number of factors, including the magnitude of the horizontal salinity gradients, grid resolution, model timestep, 
and the representation of dynamical processes. Wang et al. (2021) suggested that numerical mixing is propor-
tional to the square of the horizontal salinity gradients, however they did not demonstrate that this relationship 
is robust for higher order and more complex advection schemes. We find, based on Figures 3 and 4 that, on 
average, the salinity gradients do not increase significantly in the fine simulation, but there are more instances 
of high values of relative vorticity, divergence, and strain. Even when considering the increased horizontal 
mixing in the fine simulation, the results suggest that different physical processes have emerged in the fine 
simulation. We discuss the relationship between horizontal resolution, numerical mixing, and model processes 
in Section 5.3.

5.1.  Convergence Between 𝑨𝑨 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝟐𝟐 and 𝑨𝑨 
𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏′

𝟐𝟐

As the output frequency increases, 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 beings to converge toward 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 but still remains noisy, with the two 
in much better agreement for the 10 min output simulation. However, we find this insufficient because 10 min 
output is impractical for long-term coastal ocean simulations at this time. To test our hypothesis that the higher 
inaccuracy associated with 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 is primarily due to errors associated with the tendency term ∭V∂ts 2 dV, we 

Figure 10.  Time series for the coarse simulation for model output frequencies of 60, 30, and 10 min of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 (a) and 
𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 (b). Comparison of 10 min output 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 , and volume-integrated 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 (c).
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down-sampled the 10 min output of the s 2 budget to match the 30 min output. After rearranging Equation 7, the 
residual term balance can be written as

Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 = −ΔTendency − ΔAdvection + ΔSurface 𝑠𝑠2 flux − ΔPhysicalmixing + ΔHorz. diff.,� (25)

where Δ = γ30 − γ10, with γ denoting the terms in the volume-integrated s 2 budget and the subscripts referring to 
the model output frequency in minutes. The difference in the estimate of numerical mixing due to differences in 
model output frequency is given by 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 .

We computed the covariance between each term in Equation 25 and 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 divided by the variance of 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 
to test the significance of each term, which we denote by the variable q. This provides an estimate of the frac-
tion of the variance in 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 explained by each term. For −ΔTendency, q = 1.271 and for −ΔAdvection, 
q = −0.270, indicating that ΔTendency will over-predict 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , whereas −ΔAdvection will compensate for 
this over-prediction. When combined, q = 1.001, indicating that ΔPhysical Mixing, ΔSurface s 2 flux, and ΔHorz. 
Diff. do not significantly contribute to 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , which is because they are orders of magnitude smaller relative 
to ΔTendency and ΔAdvection. ΔAdvection is also significant, but to a lesser extent than ΔTendency because the 
horizontal velocities are highly unsteady and therefore sensitive to model output frequency. The physical mixing 
is computed online and remains more periodic relative to ΔTendency and ΔAdvection, so it is less sensitive to 
model output frequency. Likewise, the freshwater flux (E − P) has an temporal resolution of several hours that 
is linearly interpolated prior to the calculation of ΔSurface s 2 flux, so it is unsurprising it remains insignificant. 
ΔHorz. diff. does not change signficantly because the horizontal s 2 diffusion is well under an order of magnitude 
smaller than the other terms in the volume-integrated s 2 budget. These results were consistent with scatter plots 
of 𝐴𝐴 Δ𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 and the RHS terms of Equation 25 (not shown).

5.2.  Convergence Between 𝑨𝑨 
𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏′

𝟐𝟐 and 𝑨𝑨 𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏𝒏

For 10 min output, 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 becomes slightly less noisy but the general structure remains unchanged and uncon-
ditional convergence (i.e., for all times) is not achieved. Interestingly, convergence does not substantially improve 
as output frequency increases, especially during the last week of the simulation when the largest physical and 
numerical mixing occurs (Figure 7d).

There are a number of factors that could cause the difference between on- and offline estimates of numerical 
mixing, and many of them are difficult to quantify. First, we cannot say with certainty that 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 will yield 
identical results whether s or s′ is computed locally despite our analysis with a 1D upwind scheme. Another 
source of error is our use of lower-order accurate discretizations for offline analysis of the tracer variance budgets 
(see Appendix A). For example, ROMS has implemented several higher order internal time-stepping schemes for 
tracers since its inception (e.g., third-order Adams-Bashforth), whereas we use a first order centered finite differ-
ence for time derivatives in the s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets. Likewise, we used volume-conserving fluxes in the calculation 

of the s 2 and 𝐴𝐴 𝐴𝐴
′
2 boundary advection instead of reconstructing the MPDATA scheme offline. These discretization 

errors may be further compounded by our use of average files compared to snapshots.

The reason for this is the offline method is intended to focus on practicality. Recreating a model's complex numer-
ical schemes offline may be more cumbersome than coding the online method into the source code and rerunning 
it if computational resources are not a concern. Other sources of error are the numerical diffusion of s 2 and 𝐴𝐴 𝐴𝐴

′
2 

through the lateral boundaries of the control volume or the generation of spurious convection. Quantification of 
numerical diffusion would require estimating a numerical diffusion coefficient and as we have shown, we cannot 
guarantee an offline calculation will be robust. The situation is similar regarding the quantification of spurious 
convection.

The online method should be used as the reference due to the lack of convergence and influence of discreti-
zation errors associated with the offline method. We can say that increasing the model output frequency will 
marginally improve the offline estimates, and that the 𝐴𝐴 𝐴𝐴

′
2 budget will generally yield more accurate estimates 

of the numerical mixing than the s 2 budget, especially at low output frequency. In our case, 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 almost 
always overestimates 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and qualitatively captures the temporal variability well. However, there is no 
guarantee this will be the case for other ocean models. Therefore, we cannot recommend the offline method 
for generic analysis of numerical mixing because it does not converge even at impractically high output 
frequencies and we are unable to identify the exact reasons for the lack of convergence. These issues may 
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be compounded for larger-scale ocean models. The proper output variables would have to be chosen before 
running the simulation and the output frequency will be decreased for larger-scale models. Future research 
could potentially improve the offline method by using higher-order numerical schemes for the tendency and 
advection terms, but this would have to be tested on a per-model basis and referenced against an online bench-
mark for validation.

5.3.  Relating Numerical Mixing to |∇Hs| and Other Processes

As shown in Figure 5, numerical mixing may be over an order of magnitude larger than the physical mixing in 
regions with strong density gradients, generally corresponding to areas of larger |∇Hs|. Smolarkiewicz (1983) 
showed that after discretizing a one-dimensional advection equation with a first-order upwind scheme, the 
numerical mixing 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 = |𝑢𝑢|Δ𝑥𝑥(1 − 𝐶𝐶)

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

∼ |𝑢𝑢|Δ𝑥𝑥

(

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕

)2

,� (26)

where |u| is the magnitude of the constant horizontal velocity, Δx is the horizontal grid resolution, 𝐴𝐴 𝐴𝐴 =
𝑢𝑢Δ𝑡𝑡

Δ𝑥𝑥
 is the 

Courant number with online time step Δt. After rearranging, it can be shown that the right-hand-side of Equa-
tion 26 is formulated such that the numerical mixing is equal to an implicit diffusion coefficient |u|Δx − u 2Δt 
multiplied by the square of the horizontal salinity gradients. As Wang et  al.  (2021) notes, when the Courant 
number is less than one, the numerical mixing is approximately proportional to the square of the horizontal 
salinity gradients. Wang et  al.  (2021) applied this equation to a realistic simulation of the Changjiang River 
plume using two tracer advection schemes (MPDATA and Third-order Upstream-biased Horizontal Scheme) and 
suggested that this relationship holds true qualitatively (their Figures 8 and 9).

We further investigate the relationship between 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)
2
= (𝜕𝜕𝑥𝑥𝑠𝑠)

2
+ (𝜕𝜕𝑦𝑦𝑠𝑠)

2 in Figure 11, which shows 
weighted histograms of the absolute value of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)

2 in log10 space, weighted by grid cell volume 
dV, for the coarse and fine simulations. We performed a weighted linear regression analysis to test the robustness 
of the two-dimensional form of Equation 26. There is a clear log-log relationship between 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)

2 
(r 2 = 0.55 for coarse simulation, r 2 = 0.39 for the fine simulation). To test for a power law dependence, we 
conducted an empirical linear fit of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 and 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)

2 in log10 space, which slightly improved the fit (r 2 = 0.60 
for coarse simulation, r 2 = 0.46 for the fine simulation). The relatively high r 2 suggest that the horizontal salinity 
gradients could be used to roughly approximate the numerical mixing, even for higher order and more complex 
advection schemes.

As 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)
2 increases, more of the domain volume is concentrated at larger values of 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . The relationship 

begins to taper off at 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)
2
∼ 

(

10
−6
)

  g 2 kg −2 m −2, corresponding to salinity gradients associated with surface 
fronts and the pycnocline in the M/A river plume. These fronts have strong salinity gradients and numerical 
mixing, but they occupy a small portion of the water column, hence the decrease in grid cell volume. Weaker 
salinity gradients are associated with longer length and time scales and are correlated with weaker numerical 
mixing.

The differences between the coarse and fine simulations demonstrate that the fine simulation has weaker numeri-
cal mixing distributed at stronger salinity gradients than the coarse simulation. In other words, for a given salinity 
gradient, the fine simulation will experience less numerical mixing on average compared to the coarse simulation. 
The dividing line separating the positive and negative changes to dV between the simulations has a slope of nearly 
one, suggesting that the change in numerical mixing is proportional to 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)

2 . The coefficient of determination is 
lower in the fine simulation because the numerical mixing depends not only on |∇Hs|, but the components of grid 
resolution dV, water velocities, and the model timestep. In the fine simulation, Δx and Δy decreased by a factor 
of five, but the time-averaged volume-integrated numerical mixing decreases by only 35%, suggesting a nonlinear 
relationship between numerical mixing, the square of the horizontal salinity gradients, and horizontal grid resolu-
tion. Although identifying the exact dynamical feedbacks that cause this non-linearity to arise is beyond the scope 
of this paper, an analysis (not shown) of the instability angle 𝐴𝐴 𝐴𝐴𝑅𝑅𝑅𝑅𝑏𝑏

 derived in Thomas et al. (2013) (their Equation 
8) suggests that the fine simulation is more susceptible to symmetric and inertial instabilities than the coarse 
simulation. Coupled with the sharp changes of the velocity gradient tensor but insignificant changes to |∇Hs| in 
Figures 3 and 4, this is consistent with the idea that different dynamical processes emerge as the resolution is 
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increased, which complicates the relationship between horizontal resolution and numerical mixing. However, had 
|∇Hs| increased significantly, this would have increased the numerical mixing in the fine simulation.

6.  Summary and Conclusions
We have studied physical and numerical mixing in a numerical model of the Texas-Louisiana (TXLA) conti-
nental shelf using a combination of on- and offline methods based on salinity variance. Physical mixing is 
defined as the dissipation of salinity variance associated with numerical closure schemes and numerical mixing 

Figure 11.  Histograms of the horizontal salinity gradient squared 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)
2 and absolute value of online numerical mixing 

𝐴𝐴 |𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛| weighted by grid cell volume dV for the coarse (a) and fine (b) simulations, and their differences (c). The 
thick dashed lines in (a) and (b) display weighted linear regression results for the approximate two-dimensional form of 
Equation 26 (black) and an empirical fit in log-log space (gray). The regressions and weighted coefficients of determination 
were obtained by subsampling the coarse grid model every three ξ, η points and the fine simulation every 15 points for the 
entire simulation period. The thick dashed gray lines in (c) indicate a slope of 1.
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is defined as the mixing generated by the discretization of salinity advection. Salinity variance can be defined 
in terms of salinity squared s 2 and volume-mean salinity variance 𝐴𝐴 𝐴𝐴

′
2 . Previous research (Burchard et al., 2019; 

MacCready et al., 2018; Qu et al., 2022) has shown the residuals of the s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets can be used to esti-

mate numerical mixing. However, the robustness of the offline method in realistic simulations has only been 
assessed qualitatively by Wang et al. (2021). The online method, which locally calculates numerical mixing 

𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 as the difference between the advected salinity squared and the square of the advected salinity divided 
by the model timestep (Burchard & Rennau, 2008). 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is used to evaluate the accuracy of the offline 
method.

We find the residuals of the s 2 and 𝐴𝐴 𝐴𝐴
′
2 budgets, 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 and 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 , do not converge to the online method. This 

is true even as the model output frequency is increased to 10 min, an impractical output frequency for long-term 
realistic coastal models at this time. The s 2 budget at hourly output may miscalculate numerical mixing by over an 
order of magnitude. During the study period, 𝐴𝐴 𝐴𝐴

2
≫ 𝑠𝑠

′
2 , which causes the resulting tendency and advection terms 

in the s 2 budget to be over an order of magnitude larger than the 𝐴𝐴 𝐴𝐴
′
2 budget. We derive the s 2 budget in terms of 

volume-averaged salinity 𝐴𝐴 𝐴𝐴 and salinity perturbation s′ to relate 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 and 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 and investigate the conse-
quences of this scaling. We find the s 2 budget experiences larger truncation error compared to the 𝐴𝐴 𝐴𝐴

′
2 budget when 

using identical numerical schemes. 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 begins to converge to 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 as output frequency increases but is still 
noisy at 10 min output. The scaling of s 2 and 𝐴𝐴 𝐴𝐴

′
2 over the shelf is quite different than previous estuarine models 

(X. Li et al., 2018; L. Li et al., 2021; Warner et al., 2020), where 𝐴𝐴 𝐴𝐴
′
2 may be similar in scale to s 2 since estuary 

domains include a transition from fresh river water to background coastal salinities.

The time-averaged 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 is 60% larger than the time-averaged 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . Although 𝐴𝐴 
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′

2 is much less sensitive 
to model output frequency, it does not converge to 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 for all times and cannot be considered robust. There 
are many sources of uncertainty that could contaminate the on- and offline methods. For example, a mismatch 
between our model's in- and external schemes for calculating time derivatives or additional sources of spurious 
mixing such as grid-scale noise in velocity.

Consequently, we cannot recommend the offline method for generic quantification of numerical mixing. Although 
Wang et al. (2021) qualitatively showed success in estimating numerical mixing offline, we find offline mixing 
estimates to be inaccurate, and only useful in providing a rough sense and scale of the numerical mixing. Despite 
this, the offline method qualitatively captures the larger signals in the temporal variability well and might be 
informative to researchers who are unable to use an online method. We also feel the approach might be useful in 
comparing different scenarios where the primary questions are about the relative magnitude of numerical mixing. 
This is particularly relevant for estuarine and coastal models already using a high model output frequency and 
spatial resolution, but less so for larger-scale models that employ a lower output frequency.

It is also clear that sources of uncertainty need to be evaluated on a per-model basis, so offline calculation cannot 
be generally recommended as a primary approach. Given the strong advection and weak physical mixing during 
summer in the nGoM, we think that our domain is particularly challenging for accurate offline calculation of 
numerical mixing, and is a good demonstration of the weaknesses of the offline approach. Other regions with 
relatively stronger physical mixing, for example, partially mixed estuaries, may be more suitable to the offline 
approach. However, a comprehensive understanding of when an offline approach may be feasible is outside the 
scope of the present study, and so for now we feel the offline approach must be treated as suspect for a particular 
region until demonstrated otherwise.

Regarding the online analysis, the numerical mixing remains significant relative to the physical mixing even for 
a submesoscale-resolving coastal ocean model. We find the volume-integrated numerical mixing comprises 57% 
of the bulk physical mixing. Instantaneously, the volume-integrated numerical mixing may exceed the physical 
mixing by almost half an order of magnitude, motivating us to use a two-way nested model with five times the 
native horizontal grid resolution to examine the sensitivity of numerical mixing to horizontal resolution. We 
find that the time-averaged volume-integrated numerical mixing decreases by approximately 35% in the fine 
simulation, suggesting a nonlinear relationship between horizontal resolution and numerical mixing. Building on 
the work of Wang et al. (2021), we use weighted property histograms to show that numerical mixing is approxi-
mately proportional to the square of the horizontal salinity gradients 𝐴𝐴 (∇𝐻𝐻𝑠𝑠)

2 . As horizontal resolution increases, 
this relationship weakens because newly resolved dynamical processes emerge, which are evident in histograms 
of the velocity gradient tensor and |∇Hs|.

 19422466, 2023, 4, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003380 by O
regon State U

niversity, W
iley O

nline Library on [22/05/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



Journal of Advances in Modeling Earth Systems

SCHLICHTING ET AL.

10.1029/2022MS003380

26 of 30

The salinity field and flow structure for the control volume examined here are dominated by interactions between 
a rich field of submesoscale eddies, sharp fronts, and strong near-inertial currents. It is encouraging that increas-
ing the horizontal grid resolution decreases the numerical mixing and increases the physical mixing, but at 
significant computational expense. Another key question resulting from this work is how do changes in numer-
ical and physical mixing at the grid-scale affect the evolution of the mean flow and tracer fields for estua-
rine and coastal models? We expect numerical mixing to be significant in other realistic simulations of coastal 
flows, which is particularly relevant for researchers focusing on submesoscale processes, where the impacts of 
grid-scale numerical mixing are more likely to be pronounced.

Appendix A:  Numerical Implementation of the Offline Method
Here, we provide details of the numerical implementation of Equations 8 and 12 for the case of hourly model 
output. We used average files to construct the volume-integrated s 2 and 𝐴𝐴 𝐴𝐴

′
2 budgets, which output averages of all 

variables between each hour. The implementation is shown for a 3D control volume V larger than one discrete 
water column. Spatial indices are denoted with subscripts i, j, k corresponding to the x, y, z directions with 
temporal index n. Calculations at the cell centers are denoted with whole indices. Calculations on the center of 
cell edges are denoted with half indices.

Starting with the volume-integrated s 2 budget, the tendency term Tend n was calculated as

Tend
𝑛𝑛
=

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

𝜕𝜕𝑡𝑡

(

𝛿𝛿
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2
)

𝛿𝛿
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑑𝑑𝑑𝑑 𝑑
� (A1)

where ∂t denotes a centered finite difference, that is,

𝜕𝜕𝑡𝑡

(

𝛿𝛿
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2
)

=

𝛿𝛿
𝑛𝑛+1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(

𝑠𝑠
𝑛𝑛+1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2

− 𝛿𝛿
𝑛𝑛−1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

(

𝑠𝑠
𝑛𝑛−1

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2

2Δ𝑇𝑇
,

� (A2)

where 𝐴𝐴 𝐴𝐴
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 is the vertical layer thickness, 𝐴𝐴

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2

 is the salt squared and ΔT is the model output frequency, not to 

be confused with the model timestep (e.g., Equation 23). Tend n is discretized as the volume integral of the time 
rate of change of the total s 2 content in a cell divided by the cell thickness. We computed the tendency terms 
in this form because the offline method consistently yielded better agreement between 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 , 𝐴𝐴 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛′
2 , and            

𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 .

There are several methods to compute the advection term Adv n. An advantage of using average files compared to 
model snapshots (history files) is that they include the volume-conserving fluxes Huon and Hvom, which are the 
volume fluxes through the x and y faces calculated online that are averaged over the specified output frequency. 
They are defined as

Huon��±1∕2,�,� =
(

���±1∕2,�
)

(

���±1∕2,�,�
)(

���±1∕2,�,�
)

Hvom�
�,�±1∕2,� =

(

���,�±1∕2
)

(

���,�±1∕2,�
)(

���,�±1∕2,�
)

,
� (A3)

where DY is the cell width in the y direction and DX is the cell boundary width in the x direction. As MacCready 
and Giddings (2016) note, using Huon and Hvom helps reduce errors when quantifying advection through the 
lateral boundaries. The boundary fluxes may also be computed offline without the volume-conserving fluxes, 
however there may be decrease in accuracy. Adv n is formulated such that fluxes out of the control volume are 
considered positive and was calculated as

Adv
𝑛𝑛
=

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

(

Huon
𝑛𝑛

𝑖𝑖±1∕2,𝑗𝑗𝑗𝑗𝑗

)

(

𝑠𝑠
𝑛𝑛

𝑖𝑖±1∕2,𝑗𝑗𝑗𝑗𝑗

)2
|

|

|

|

|

|

𝐸𝐸

𝑊𝑊

+

𝐼𝐼
∑

𝑖𝑖=1

𝐾𝐾
∑

𝑘𝑘=1

(

Hvom
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖±1∕2,𝑘𝑘

)

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖±1∕2,𝑘𝑘

)2

|

|

|

|

|

|

|

𝑁𝑁

𝑆𝑆

� (A4)

where E, W, N, S denote the east, west, north, and south boundaries of the control volume, respectively. The half 
indices in this case correspond to the centers of cell edges at the lateral boundaries. To expand the ± notation, 
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𝐴𝐴

(

𝑠𝑠
𝑛𝑛

𝑖𝑖−1∕2,𝑗𝑗𝑗𝑗𝑗

)2

 corresponds to s 2 at the western boundary of the control volume, 𝐴𝐴

(

𝑠𝑠
𝑛𝑛

𝑖𝑖+1∕2,𝑗𝑗𝑗𝑗𝑗

)2

 corresponds to the 

eastern boundary, 𝐴𝐴

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖−1∕2,𝑘𝑘

)2

 corresponds to southern boundary, and 𝐴𝐴

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖+1∕2,𝑘𝑘

)2

 corresponds to the northern 

boundary.

The surface s 2 flux surf n was calculated as

surf
𝑛𝑛
=

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

(

2𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖

)(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖

)

(

𝐸𝐸
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖
− 𝑃𝑃

𝑛𝑛

𝑖𝑖𝑖𝑖𝑖

𝜌𝜌𝑤𝑤

)

𝑑𝑑𝑑𝑑� (A5)

where 𝐴𝐴 𝐴𝐴
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖
 and 𝐴𝐴 𝐴𝐴

𝑛𝑛

𝑖𝑖𝑖𝑖𝑖
 are the evaporation and precipitation per unit area (“Evaporation” and “Rain” in ROMS output) 

computed online as part of the model forcing, and ρw is the density of freshwater set to a constant value of 
1,000 kg m −3.

The volume-integrated horizontal diffusion Hdiff n was calculated as

Hdiff
𝑛𝑛
=

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

𝜕𝜕𝑥𝑥

[

(

𝜅𝜅𝐻𝐻𝐻𝐻𝐻±1∕2,𝑗𝑗

)

(

𝜕𝜕𝑥𝑥

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2
)]

+ 𝜕𝜕𝑦𝑦

[

(

𝜅𝜅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻±1∕2

)

(

𝜕𝜕𝑦𝑦

(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2
)]

𝑑𝑑𝑑𝑑 𝑑� (A6)

where κH,i,j is the horizontal turbulent diffusivity computed offline defined in Equation 22. κH,i,j was first linearly 
interpolated to the centers of cell edges to align the model grid after computing horizontal derivatives ∂x and 
∂y of s 2, which are calculated using a Jacobian to account for the change of the sea surface height with respect 
to time (Shchepetkin & McWilliams, 2005). Further details of the Jacobian calculation may be found in Thyng 
et al. (2022).

The resolved vertical mixing 𝐴𝐴 (𝜒𝜒
𝑠𝑠

𝑣𝑣 )
𝑛𝑛 was calculated online so discretization errors do not bias comparisons with 

𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 . 𝐴𝐴 (𝜒𝜒
𝑠𝑠

𝑣𝑣 )
𝑛𝑛 was calculated as

(𝜒𝜒
𝑠𝑠

𝑣𝑣 )
𝑛𝑛
=

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

Vert.Mix
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 𝑑� (A7)

where 𝐴𝐴 Vert.Mix
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
 is the resolved vertical mixing, denoted by “AKr” in ROMS syntax (not to be confused with 

AKs, the resolved vertical salinity diffusion coefficient). AKr was linearly interpolated to the cell centers of the 
vertical grid prior to integration. We note that offline calculations of 𝐴𝐴 (𝜒𝜒

𝑠𝑠

𝑣𝑣 )
𝑛𝑛 , although not used in this study, tended 

to overestimate the online calculations.

The resolved horizontal mixing 𝐴𝐴
(

𝜒𝜒
𝑠𝑠

𝐻𝐻

)𝑛𝑛 was computed offline because it is not currently programmed into the 
ROMS source code. It is also much smaller than other terms for our model, so offline discretization errors do not 
significantly impact 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 . 𝐴𝐴

(

𝜒𝜒
𝑠𝑠

𝐻𝐻

)𝑛𝑛 was calculated as

(

𝜒𝜒
𝑠𝑠

𝐻𝐻

)𝑛𝑛

=

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

2𝜅𝜅𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻

[

(

𝜕𝜕𝑥𝑥𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2

+
(

𝜕𝜕𝑦𝑦𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)2
]

𝑑𝑑𝑑𝑑 𝑑� (A8)

Horizontal gradients were calculated using a Jacobian but then interpolated to cell centers for both horizontal and 
vertical grids. Once calculated, the above terms may be substituted into Equation 8 to obtain 𝐴𝐴 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛2 .

The process for discretizing the volume-mean salinity variance budget is similar, but requires calculation of the 
volume-averaged salinity 𝐴𝐴 𝑠𝑠

𝑛𝑛 . 𝐴𝐴 𝑠𝑠
𝑛𝑛 was calculated as

𝑠𝑠
𝑛𝑛
=

1

𝑉𝑉 𝑛𝑛

𝐼𝐼
∑

𝑖𝑖=1

𝐽𝐽
∑

𝑗𝑗=1

𝐾𝐾
∑

𝑘𝑘=1

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑑𝑑𝑑𝑑 𝑑� (A9)

The volume-mean salinity variance 𝐴𝐴

(

𝑠𝑠
′
2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)𝑛𝑛

 may be calculated as

(

𝑠𝑠
′
2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)𝑛𝑛

=
(

𝑠𝑠
𝑛𝑛

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
− 𝑠𝑠

𝑛𝑛
)2

.� (A10)
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The terms in Equation 12 may be calculated by substituting 𝐴𝐴

(

𝑠𝑠
′

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)𝑛𝑛

 and 𝐴𝐴

(

𝑠𝑠
′
2

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

)𝑛𝑛

 where applicable into Equa-
tions A1, A2 and A4–A6. Recalculation of the physical mixing terms is not required because 𝐴𝐴 𝑠𝑠

𝑛𝑛 has no spatial 
gradients.

Data Availability Statement
All TXLA model output used in this study is publicly available at https://hafen.geos.tamu.edu/thredds/catalog/
catalog.html under the “TXLA ROMS nested model for SUNRISE/2010” subdirectory. The corresponding anal-
ysis code is available at https://doi.org/10.5281/zenodo.7566722. The calculations were performed in Python ver. 
3.9 using the xarray (Hoyer et al., 2021), xgcm (Abernathey et al., 2022), and xroms (Thyng et al., 2022) pack-
ages. More information about specific packages used for analysis can be found in the code repository.
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