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Abstract—Issues of fairness often arise in graphical neural
networks used for misinformation detection. However, improving
fairness can often come at the cost of reducing accuracy and vice
versa. Therefore, we formulate the task of balancing accuracy and
fairness as a multi-objective optimization (MOOQO) problem where
we seek to find a set of Pareto optimal solutions. Traditional
first-order approaches to solving MOO problems such as multi-
gradient descent can be costly, especially with large neural
networks. Instead, we describe a more efficient approach using
the predictor-corrector method. Given an initial Pareto optimal
point, this approach predicts the direction of a neighboring
solution and refines this prediction using a few steps of multi-
gradient descent. We show experimentally that this approach
allows for the generation of high-quality Pareto fronts faster
than baseline optimization methods.

Index Terms—multi-objective optimization, fair machine learn-
ing, iterative methods, neural networks

I. INTRODUCTION

Misinformation on the Internet has become increasingly
widespread. For instance, platforms such as Yelp and Amazon
are frequently plagued by fake reviews. As a result, machine
learning algorithms have been adopted for the purpose of
detecting reviews that have a high likelihood of being spam.
However, the quality of such algorithms cannot be measured
using accuracy as a sole metric. Since these algorithms cannot
feasibly reach 100% accuracy, certain biases arise that can
harm some users. For example, users who have posted fewer
reviews are more likely to have their posts falsely flagged as
misinformation. Thus, we seek to minimize such unfairness
while still maintaining a sufficient level of accuracy. Our goal
is to optimize these two objectives: We want to reduce detec-
tion bias without drastically affecting the detection accuracy.

One challenge with optimizing multiple objectives is that
they can often conflict with each other. That is, reducing
unfairness can come at the cost of accuracy and vice versa.
Therefore, it may not always be the case that there exists a
single solution for which both unfairness and inaccuracy are
minimized. Past approaches have tried to circumvent this issue
by defining objective weights based on relative importance
of individual objectives so that a single optimal point can
be found. However, this process is often time-consuming and
problem specific [4]. Furthermore, users may want to compare
different trade-offs according to different objective weights
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such as when a user is willing to sacrifice accuracy in exchange
for greater fairness. In this case, a single solution is not always
sufficient.

We consider multi-objective optimization (MOO) methods
that allow us to explore different trade-offs by generating a
set of solutions known as the Pareto front [4]. Traditional
first-order MOO methods, such as multi-gradient descent
(MGD) [11], are computationally expensive on large graphs
due to the gradient computation at each iteration, and requiring
many iterations to generate a Pareto front.

We propose a more efficient approach using the predictor-
corrector method introduced in [1]. At a given Pareto optimal
point, the direction to a neighboring optimal point can be
approximated by the solution to a linear system representing
the tangent plane at the original point. This system can be
solved efficiently using iterative methods such as MINRES or
Conjugate Gradient. Then, this initial approximation is refined
using stochastic gradient descent. We demonstrate experimen-
tally that these methods result in reduced computation time
with minimal sacrifice in Pareto front quality.

II. PRELIMINARIES
A. A Graph Neural Network for Spam Detection

In order to predict which reviews have the highest likeli-
hood of being fake, we use a graph neural network (GNN)
containing layers with nodes representing users, products, and
reviews. The objectives we wish to minimize are the losses of
this network with respect to accuracy and fairness.

We measure accuracy loss using the normalized discounted
cumulative gain (NDCG) metric:

1o 1
Ej;ﬂ[yj - 1]log (rj +1) M

Here, 7; is the rank of the jth labeled review according
to its probability of being fake as predicted by the GNN
model, and Z is the maximum possible NDCG score used
for normalization.

We measure fairness loss using cross-NDCG (xNDCG),
which compares the equality in accuracy across two groups,
the favored group and the protected group. The favored group
(denoted A = 0) contains the top 30% of users based on
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review count, and the protected group (denoted A 1)
contains the remaining users in our dataset. XNDCG measures
the similarity in the NDCG scores of these groups as
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We can describe an MOO problem for optimizing these
losses by a vector-valued function f(x):R™ — R™ where z is
a vector containing the parameters for our neural network and
m is the number of objective functions we want to optimize.
That is, each component function f; : R™ — R represents one
of our loss functions to be optimized.

B. Predictor Corrector Method

Given a point of a function, the predictor-corrector method
allows us to approximate the value of that function at a nearby
point. This method consists of two steps (see Fig. 1). First, in
the predictor step, we determine an approximate direction to
a neighboring point, and then move along that direction based
on a predetermined, fixed step size. Then, we refine this initial
approximation in the corrector step. We describe each of these
steps in further detail below.

1o

f

Fig. 1: The predictor step (yellow) and corrector step (green)
given an initial point (red).

1) Predictor Step: In order to determine the direction in
which to move, we solve for the vector v in the following
linear system derived in [3]:

H(xzg)v =V f(x5)8 3)

where z{; is some starting Pareto optimal point, H (x{) and
V f(xf) are respectively the Hessian and Jacobian of our loss
functions at zj;, and [ is a weighting vector (a b) where
a,b € [0,1]. Here, § determines which direction along the
Pareto front to move in relation to x{. Intuitively, this approach
works by finding a suitable direction to move along the tangent
plane of f at z{ as depicted in Fig. 1.
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Solving this linear system directly is impractical as comput-
ing and inverting the Hessian is prohibitively expensive, requir-
ing O(n®) time. Furthermore, for our purposes, the Hessian
matrices are both large and dense, meaning that the storage
of full Hessian matrices is infeasible. Instead, we use iterative
solvers, which allow us to efficiently solve the system without
the need for explicit computation of the Hessian. In particular,
we consider the minimal residual method (MINRES) and the
Conjugate Gradient method (CG) discussed in detail in the
next section. MINRES and CG require only a linear operator
to compute a matrix-vector product on the left-hand side of
Eq. (3).

2) Corrector Step: For our experiments, we use a single
step of multi-gradient descent from [11] as the corrector step.
Any other multi-objective optimization method could be used
as well. The choice in method for this step is made to save
running time with minimal effect on Pareto front quality.

III. ITERATIVE METHODS

We start by describing basic first-order and second-order
methods to motivate the CG and MINRES methods.

A. Gradient Descent

Gradient Descent (GD) is a basic first-order optimization
method for convex functions. Given an initial guess zg for
the minimum of a function f(x), GD iteratively updates xg
using the direction of steepest descent. Since the gradient of f
is the direction of maximal increase, the direction of steepest
descent is simply the direction opposite to the gradient of f at
xo. Then, xg is updated by moving a predetermined fixed step
size parameter (learning rate) o along the computed direction.
This process is repeated until a specified maximum number
of iterations, maxiter, is reached, or until the magnitude of
the update is less than a certain tolerance, tol. Algorithm 1
provides an outline of the GD method.

Algorithm 1 Gradient Descent Algorithm
i=0
while ¢ < maxiter do
T; = o
d=Vf(x;)
if ad < tol then
break
end if
T, = x; —ad
end while

There also exist variations of GD such as multiple gradient
descent (MGD), which optimizes multiple objectives, and
stochastic gradient descent (SGD), which introduces random
perturbations at each iteration. However, there are two main
issues that come with using GD and its variations. First, the
convergence rate of GD can vary depending on the choice of
o For instance, GD can take much longer to converge in low
curvature scenarios for small « [5]. Additionally, when using
GD, there exists a possibility of stopping at a local minimum
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rather than the global minimum of the function. Both of these
issues arise from the fact that GD is a first-order method and
no second-order curvature information is used.

B. Newton’s Method

Newton’s method (NM) is a second-order optimization
method that seeks to address the issues with GD by utilizing
information about the second-order derivative of f. NM is very
similar to GD, with the main difference being that NM scales
the descent direction based on the curvature of f at the given
point. That is, at each iteration of NM,

Tip1 = 2 — H(2:) 'V f ()

where H is the Hessian of f at x;. However, this requires
explicit computation and inversion of the Hessian, which is
far too costly for our method. An iterative linear solver avoids
computation of the Hessian matrix.

C. CG and MINRES

Conjugate Gradient (CG) [10] and MINRES [8] are iterative
methods for approximately solving a linear system Ax = b
where A is symmetric. Both methods belong to a class of
linear solvers known as matrix-free solvers, meaning that the
storage of the matrix A is not required. Instead, we only
need to define the matrix-vector product Av for an arbitrary
vector v using a linear operator. Both of these methods are
known to converge monotonically, so we are able to improve
runtime using early termination. Therefore, a restriction on the
maximum number of iterations is imposed on these methods
to ensure a reasonable runtime.

1) Conjugate Gradient: The conjugate gradient method
solves the linear system Ax = b as a more efficient version
of the gradient descent algorithm. CG typically converges in
much fewer iterations and addresses the issues with step size
present in GD. CG operates by repeatedly finding optimal
points along conjugate directions. That is, at iteration k, given
a point zj and a direction p, CG updates zj, as

“)

Th+1 = Tk + Py,

where
~ pf(Az +b)
AP
Note that in (5), we require the computation of a matrix-
vector product Az. We will describe later how this can be
done without the explicit storage of A. Then, a new direction
conjugate to py is computed. Intuitively, the requirement that
directions be conjugate is enforced to ensure that minimization
along the current iteration has no effect on work done in
previous iterations. In other words, at the kth iteration we
minimize f along a certain direction pj. Requiring pgy1 to
be conjugate to p; ensures that as we move in the direction
Pk+1, our approximate solution is still minimized along the

direction py.

This method is guaranteed to converge in at most n itera-
tions, where n is the dimension of A, but CG often reaches an
acceptable tolerance in much fewer iterations. However, it is

®)
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important to note that CG requires the matrix A to be positive-
definite [9]. Since our Hessian matrices are not guaranteed to
be positive-definite, CG may not always work.

2) MINRES: The MINRES method solves the system Az =
b by minimizing the residual at the kth iteration. The Krylov
subspace of dimension k is defined as

K*(A, 7o) = span{ro, Arg, ..., AF"1rg}, (6)

and is augmented incrementally with each iteration of MIN-
RES. Note that C is never explicitly computed.

The residual of an approximate solution xj, is a measure of
how well z; approximates the exact solution and is defined
as

ry = Axy — b. @)
Then, at iteration k£ of MINRES, we find
2 € KF(A,70)
and compute x; = x + zx such that the residual norm
[Irell2 = || Azx — 0|2 ®)

is minimized. This continues until (8) is within a certain
tolerance, which is typically specified by the user. Also, note
that unlike CG, MINRES works for indefinite matrices [8].
Therefore, we choose to use MINRES in our experiments as
our matrices are not always positive definite.

D. Hessian-Vector Products

Recall that for the predictor step, we want to solve the linear
system H(z§)v = V(xf)8 without using direct methods.
When using matrix-free methods such as CG and MINRES,
we are able to solve the given linear system without explicitly
storing H by instead finding the product of the Hessian with
an arbitrary vector v. In fact, this computation constitutes a
large portion of the computational cost at each iteration of
CG and MINRES. Therefore, a primary concern is not only
to define this product to avoid storage of H, but also to ensure
the efficient computation of Hessian-vector products (HVPs).
One method for doing so is the finite difference method:

Ho — im Vf(z+ev)— Vf(x)

e—0 €

By choosing € to be some positive value close to 0, we
can closely approximate the value of the product Hv using
only two gradient computations [5]. This can be done using
two instances of automatic differentiation (AD). However, this
method is not numerically stable, so we use another method
known as the Pearlmutter algorithm [5]. This algorithm allows
for computation of Hv for neural networks in O(n) time
by using both forward and backwards passes through the
neural network. In our approach, this is done using two
backpropagation calls.
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Fig. 2: Pareto front comparison on YelpChi, YelpNYC, and YelpZip datasets

IV. EXPERIMENTS
A. Experimental Setup

We compare the performance of our algorithm using
predictor-corrector method (PC) and MGD on three spam-
detection datasets: YelpChi, YelpNYC, and YelpZip based on
results given in [1]. The sizes of these datasets and their
corresponding graph neural network sizes are given in Table
I. For these experiments, we choose the favored group to
contain users in the top 30% based on review count and the
protected group to contain the remaining users. As described
in Section II, we use NDCG and xNDCG to measure accuracy
and loss, respectively.

These experiments were run with a graph neural network,
with an initial Pareto optimal solution generated using 75
optimization steps of MGD. The baseline MGD was tested
at 20, 30, and 40 training epochs, which were optimized
by solving quadratic programming problems. A learning rate
of 0.005 was found to offer the best performance. 1. The
predictor step used 50 maximum iterations of MINRES, based
on ablation studies in [4]. The predictor and corrector step
used a step size 0.1 and 0.01 respectively, as these values
were found to minimize runtime while maintaining Pareto
front quality.

TABLE I: Dataset and model sizes

Datasets | Products  Reviews Users Model size

YelpChi 201 67395 38063 1234
YelpNYC 923 358911 160220 1234

YelpZip 5044 608598 260277 1234

1) Pareto Front Quality: We perform a visual comparison
of the Pareto fronts generated on each of our methods. As
shown in Fig. 2, on YelpNYC, the Pareto front generated by
PC noticeably outperforms those of MGD for all values of
epochs. However, on YelpChi and YelpZip, we see that the
PC front is only slightly better than the fronts of MGD-20
and MGD-30, and is slightly worse than the front generated by
MGD-40. Also note that on all three datasets, PC generates a
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much larger Pareto front than all three MGD variants, resulting
in more expansive Pareto fronts that span a wider range of the
loss values.

B. Runtime Comparison

Fig. 3 shows a runtime comparison between the differ-
ent algorithms for Pareto front generation. We see that on
YelpNYC, PC clearly outperforms MGD since for all MGD
variants, PC generates a higher quality Pareto front with a
faster runtime. The only case where MGD outperforms PC
is MGD-20 on YelpChi and YelpZip. However, in this case,
the MGD-20 front is worse than the PC front. Seeing as the
difference in runtime is slight, we cannot say that MGD-20
outperforms PC, especially when Pareto front quality is taken
into account. When MGD-40 produces higher quality Pareto
fronts, we see that the runtime is significantly higher than that
of MGD. In the case of YelpZip, PC runs over three times
faster than MGD-40. Since the fronts generated by MGD-40
are only slightly better than the PC fronts, the small decrease in
Pareto front quality is an acceptable trade-off for the significant
reduction in runtime.

Predictor-Corrector
MGD: 20
MGD: 30
MGD: 40

Chi

NYC Zip

Fig. 3: Comparison of running time of different algorithms on
the datasets.
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Fig. 4: Pareto fronts generated by the predictor-corrector method for varying values of maximum MINRES iterations

C. Effect of the Maximum Number of Iterations

We also measure the effect that decreasing the maximum
number of iterations for the linear solver has on Pareto front
quality and runtime. We test two new values for maxiter, 25
and 10, and compare the results to our previous experiments
that used maxiter = 50.

Fig. 4 demonstrates how Pareto front quality is affected by
decreasing the maximum number of iterations for MINRES.
We see that as maxiter decreases, there is almost no effect on
Pareto front quality. On all three datasets, the fronts generated
using 10 and 25 MINRES iterations are nearly identical to each
other and to the baseline front generated with maxiter = 50.

Looking at the runtime comparison depicted in Fig. 5, we
see that when maxiter = 25 or maxiter = 10, there is
a noticeable decrease in runtime from our original method.
Thus, by reducing the number of iterations before MINRES
terminates, we can improve the runtime of our algorithm with
minimal impact on the quality of the Pareto front.

B maxiter = 50
Hm maxiter = 25
B maxiter = 10

4000 -

3000 -

Time (s)

1= 2000 -

10004

oL

chi NYC Zip

Fig. 5: Runtime comparison for varying maximum MINRES
iterations

D. Discussion

From our experimental results, we see that the predictor-
corrector method outperforms or is comparable with MGD on
all three datasets (YelpChi, YelpNYC, YelpZip), both in Pareto
front quality and runtime. On YelpNYC, PC generates a Pareto

front better than all three MGD fronts with a significantly
lower runtime. On YelpChi and YelpZip, the Pareto front
generated PC is better than all of the MGD fronts except when
the number of training epochs is 40. However, the PC front in
these cases includes a wider range of different tradeoffs and
is only slightly worse than the MGD front. Furthermore, we
see that PC runs significantly faster in these scenarios, so PC
still outperforms MGD.

We also show experimentally that the performance of the PC
algorithm can be further improved by decreasing the number
of maximum iterations allowed for the linear solver. Reducing
the maximum number of iterations leads to decreased runtime
while the resulting Pareto fronts remain largely unchanged.
From this we see that the linear solver plays an important
role in the efficiency of the PC algorithm, suggesting that
further improving the efficiency of these solvers will improve
the ability to quickly and accurately compute Pareto fronts.

V. CONCLUSION AND FUTURE WORK

We demonstrate the efficiency of a predictor-corrector
method for generating Pareto optimal networks for fair spam-
detection. We see that in many cases, the predictor-corrector
method outperforms traditional multi-objective optimization
methods, both in terms of Pareto front quality and runtime.
Furthermore, in cases where traditional methods yield more
accurate fronts, the predictor-corrector method runs signifi-
cantly faster with only a slight reduction in quality. Hence,
we see the the benefit of using this method for solving multi-
objective optimization problems.

With regards to future improvements to the method, we
can further reduce the time needed for Hessian-vector product
computations in our linear solvers. One option is to explore
the use of the Gauss-Newton approximation to the Hessian [2]
[5], which has the form

H=~J'J

where J is the Jacobian of our loss functions. One advan-
tage that this approximation has over the Hessian is that it
is guaranteed to be positive semi-definite, allowing us the
flexibility to use CG if desired [2]. Furthermore, there exists a
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generalized version of Pearlmutter’s algorithm for computing
the matrix-vector product with the Gauss-Newton matrix. In
fact, this algorithm runs faster than Pearlmutter’s algorithm
and uses less memory [5] [7]. However, this method’s reliance
on forward-mode AD, combined with the current lack of
support for forward AD in the Pytorch deep-learning frame-
work, means that another method for finding the matrix-vector
product may be needed.
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