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Abstract—Issues of fairness often arise in graphical neural
networks used for misinformation detection. However, improving
fairness can often come at the cost of reducing accuracy and vice
versa. Therefore, we formulate the task of balancing accuracy and
fairness as a multi-objective optimization (MOO) problem where
we seek to find a set of Pareto optimal solutions. Traditional
first-order approaches to solving MOO problems such as multi-
gradient descent can be costly, especially with large neural
networks. Instead, we describe a more efficient approach using
the predictor-corrector method. Given an initial Pareto optimal
point, this approach predicts the direction of a neighboring
solution and refines this prediction using a few steps of multi-
gradient descent. We show experimentally that this approach
allows for the generation of high-quality Pareto fronts faster
than baseline optimization methods.

Index Terms—multi-objective optimization, fair machine learn-
ing, iterative methods, neural networks

I. INTRODUCTION

Misinformation on the Internet has become increasingly

widespread. For instance, platforms such as Yelp and Amazon

are frequently plagued by fake reviews. As a result, machine

learning algorithms have been adopted for the purpose of

detecting reviews that have a high likelihood of being spam.

However, the quality of such algorithms cannot be measured

using accuracy as a sole metric. Since these algorithms cannot

feasibly reach 100% accuracy, certain biases arise that can

harm some users. For example, users who have posted fewer

reviews are more likely to have their posts falsely flagged as

misinformation. Thus, we seek to minimize such unfairness

while still maintaining a sufficient level of accuracy. Our goal

is to optimize these two objectives: We want to reduce detec-

tion bias without drastically affecting the detection accuracy.

One challenge with optimizing multiple objectives is that

they can often conflict with each other. That is, reducing

unfairness can come at the cost of accuracy and vice versa.

Therefore, it may not always be the case that there exists a

single solution for which both unfairness and inaccuracy are

minimized. Past approaches have tried to circumvent this issue

by defining objective weights based on relative importance

of individual objectives so that a single optimal point can

be found. However, this process is often time-consuming and

problem specific [4]. Furthermore, users may want to compare

different trade-offs according to different objective weights

such as when a user is willing to sacrifice accuracy in exchange

for greater fairness. In this case, a single solution is not always

sufficient.

We consider multi-objective optimization (MOO) methods

that allow us to explore different trade-offs by generating a

set of solutions known as the Pareto front [4]. Traditional

first-order MOO methods, such as multi-gradient descent

(MGD) [11], are computationally expensive on large graphs

due to the gradient computation at each iteration, and requiring

many iterations to generate a Pareto front.

We propose a more efficient approach using the predictor-

corrector method introduced in [1]. At a given Pareto optimal

point, the direction to a neighboring optimal point can be

approximated by the solution to a linear system representing

the tangent plane at the original point. This system can be

solved efficiently using iterative methods such as MINRES or

Conjugate Gradient. Then, this initial approximation is refined

using stochastic gradient descent. We demonstrate experimen-

tally that these methods result in reduced computation time

with minimal sacrifice in Pareto front quality.

II. PRELIMINARIES

A. A Graph Neural Network for Spam Detection

In order to predict which reviews have the highest likeli-

hood of being fake, we use a graph neural network (GNN)

containing layers with nodes representing users, products, and

reviews. The objectives we wish to minimize are the losses of

this network with respect to accuracy and fairness.

We measure accuracy loss using the normalized discounted

cumulative gain (NDCG) metric:

1

Z

n
∑

j=1

1[yj = 1]
1

log (rj + 1)
. (1)

Here, rj is the rank of the jth labeled review according

to its probability of being fake as predicted by the GNN

model, and Z is the maximum possible NDCG score used

for normalization.

We measure fairness loss using cross-NDCG (xNDCG),

which compares the equality in accuracy across two groups,

the favored group and the protected group. The favored group

(denoted A = 0) contains the top 30% of users based on
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review count, and the protected group (denoted A = 1)

contains the remaining users in our dataset. xNDCG measures

the similarity in the NDCG scores of these groups as
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. (2)

We can describe an MOO problem for optimizing these

losses by a vector-valued function f(x):Rn → R
m where x is

a vector containing the parameters for our neural network and

m is the number of objective functions we want to optimize.

That is, each component function fi : R
n → R represents one

of our loss functions to be optimized.

B. Predictor Corrector Method

Given a point of a function, the predictor-corrector method

allows us to approximate the value of that function at a nearby

point. This method consists of two steps (see Fig. 1). First, in

the predictor step, we determine an approximate direction to

a neighboring point, and then move along that direction based

on a predetermined, fixed step size. Then, we refine this initial

approximation in the corrector step. We describe each of these

steps in further detail below.

Fig. 1: The predictor step (yellow) and corrector step (green)

given an initial point (red).

1) Predictor Step: In order to determine the direction in

which to move, we solve for the vector v in the following

linear system derived in [3]:

H(x∗

0)v = ∇f(x∗

0)β (3)

where x∗

0 is some starting Pareto optimal point, H(x∗

0) and

∇f(x∗

0) are respectively the Hessian and Jacobian of our loss

functions at x∗

0, and β is a weighting vector
(

a b
)

where

a, b ∈ [0, 1]. Here, β determines which direction along the

Pareto front to move in relation to x∗

0. Intuitively, this approach

works by finding a suitable direction to move along the tangent

plane of f at x∗

0 as depicted in Fig. 1.

Solving this linear system directly is impractical as comput-

ing and inverting the Hessian is prohibitively expensive, requir-

ing O(n3) time. Furthermore, for our purposes, the Hessian

matrices are both large and dense, meaning that the storage

of full Hessian matrices is infeasible. Instead, we use iterative

solvers, which allow us to efficiently solve the system without

the need for explicit computation of the Hessian. In particular,

we consider the minimal residual method (MINRES) and the

Conjugate Gradient method (CG) discussed in detail in the

next section. MINRES and CG require only a linear operator

to compute a matrix-vector product on the left-hand side of

Eq. (3).

2) Corrector Step: For our experiments, we use a single

step of multi-gradient descent from [11] as the corrector step.

Any other multi-objective optimization method could be used

as well. The choice in method for this step is made to save

running time with minimal effect on Pareto front quality.

III. ITERATIVE METHODS

We start by describing basic first-order and second-order

methods to motivate the CG and MINRES methods.

A. Gradient Descent

Gradient Descent (GD) is a basic first-order optimization

method for convex functions. Given an initial guess x0 for

the minimum of a function f(x), GD iteratively updates x0

using the direction of steepest descent. Since the gradient of f

is the direction of maximal increase, the direction of steepest

descent is simply the direction opposite to the gradient of f at

x0. Then, x0 is updated by moving a predetermined fixed step

size parameter (learning rate) α along the computed direction.

This process is repeated until a specified maximum number

of iterations, maxiter, is reached, or until the magnitude of

the update is less than a certain tolerance, tol. Algorithm 1

provides an outline of the GD method.

Algorithm 1 Gradient Descent Algorithm

i = 0

while i < maxiter do

xi = x0

d = ∇f(xi)
if αd < tol then

break

end if

xi = xi − αd

end while

There also exist variations of GD such as multiple gradient

descent (MGD), which optimizes multiple objectives, and

stochastic gradient descent (SGD), which introduces random

perturbations at each iteration. However, there are two main

issues that come with using GD and its variations. First, the

convergence rate of GD can vary depending on the choice of

α. For instance, GD can take much longer to converge in low

curvature scenarios for small α [5]. Additionally, when using

GD, there exists a possibility of stopping at a local minimum
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rather than the global minimum of the function. Both of these

issues arise from the fact that GD is a first-order method and

no second-order curvature information is used.

B. Newton’s Method

Newton’s method (NM) is a second-order optimization

method that seeks to address the issues with GD by utilizing

information about the second-order derivative of f . NM is very

similar to GD, with the main difference being that NM scales

the descent direction based on the curvature of f at the given

point. That is, at each iteration of NM,

xi+1 = xi −H(xi)
−1∇f(xi)

where H is the Hessian of f at xi. However, this requires

explicit computation and inversion of the Hessian, which is

far too costly for our method. An iterative linear solver avoids

computation of the Hessian matrix.

C. CG and MINRES

Conjugate Gradient (CG) [10] and MINRES [8] are iterative

methods for approximately solving a linear system Ax = b

where A is symmetric. Both methods belong to a class of

linear solvers known as matrix-free solvers, meaning that the

storage of the matrix A is not required. Instead, we only

need to define the matrix-vector product Av for an arbitrary

vector v using a linear operator. Both of these methods are

known to converge monotonically, so we are able to improve

runtime using early termination. Therefore, a restriction on the

maximum number of iterations is imposed on these methods

to ensure a reasonable runtime.

1) Conjugate Gradient: The conjugate gradient method

solves the linear system Ax = b as a more efficient version

of the gradient descent algorithm. CG typically converges in

much fewer iterations and addresses the issues with step size

present in GD. CG operates by repeatedly finding optimal

points along conjugate directions. That is, at iteration k, given

a point xk and a direction pk, CG updates xk as

xk+1 = xk + αpk, (4)

where

α =
pTk (Axk + b)

pTkApk
. (5)

Note that in (5), we require the computation of a matrix-

vector product Ax. We will describe later how this can be

done without the explicit storage of A. Then, a new direction

conjugate to pk is computed. Intuitively, the requirement that

directions be conjugate is enforced to ensure that minimization

along the current iteration has no effect on work done in

previous iterations. In other words, at the kth iteration we

minimize f along a certain direction pk. Requiring pk+1 to

be conjugate to pk ensures that as we move in the direction

pk+1, our approximate solution is still minimized along the

direction pk.

This method is guaranteed to converge in at most n itera-

tions, where n is the dimension of A, but CG often reaches an

acceptable tolerance in much fewer iterations. However, it is

important to note that CG requires the matrix A to be positive-

definite [9]. Since our Hessian matrices are not guaranteed to

be positive-definite, CG may not always work.

2) MINRES: The MINRES method solves the system Ax =
b by minimizing the residual at the kth iteration. The Krylov

subspace of dimension k is defined as

Kk(A, r0) = span{r0, Ar0, ..., A
k−1r0}, (6)

and is augmented incrementally with each iteration of MIN-

RES. Note that K is never explicitly computed.

The residual of an approximate solution xk is a measure of

how well xk approximates the exact solution and is defined

as

rk = Axk − b. (7)

Then, at iteration k of MINRES, we find

zk ∈ Kk(A, r0)

and compute xk = x0 + zk such that the residual norm

||rk||2 = ||Axk − b||2 (8)

is minimized. This continues until (8) is within a certain

tolerance, which is typically specified by the user. Also, note

that unlike CG, MINRES works for indefinite matrices [8].

Therefore, we choose to use MINRES in our experiments as

our matrices are not always positive definite.

D. Hessian-Vector Products

Recall that for the predictor step, we want to solve the linear

system H(x∗

0)v = ∇(x∗

0)β without using direct methods.

When using matrix-free methods such as CG and MINRES,

we are able to solve the given linear system without explicitly

storing H by instead finding the product of the Hessian with

an arbitrary vector v. In fact, this computation constitutes a

large portion of the computational cost at each iteration of

CG and MINRES. Therefore, a primary concern is not only

to define this product to avoid storage of H , but also to ensure

the efficient computation of Hessian-vector products (HVPs).

One method for doing so is the finite difference method:

Hv = lim
ǫ→0

∇f(x+ ǫv)−∇f(x)

ǫ
.

By choosing ǫ to be some positive value close to 0, we

can closely approximate the value of the product Hv using

only two gradient computations [5]. This can be done using

two instances of automatic differentiation (AD). However, this

method is not numerically stable, so we use another method

known as the Pearlmutter algorithm [5]. This algorithm allows

for computation of Hv for neural networks in O(n) time

by using both forward and backwards passes through the

neural network. In our approach, this is done using two

backpropagation calls.
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Fig. 2: Pareto front comparison on YelpChi, YelpNYC, and YelpZip datasets

IV. EXPERIMENTS

A. Experimental Setup

We compare the performance of our algorithm using

predictor-corrector method (PC) and MGD on three spam-

detection datasets: YelpChi, YelpNYC, and YelpZip based on

results given in [1]. The sizes of these datasets and their

corresponding graph neural network sizes are given in Table

I. For these experiments, we choose the favored group to

contain users in the top 30% based on review count and the

protected group to contain the remaining users. As described

in Section II, we use NDCG and xNDCG to measure accuracy

and loss, respectively.

These experiments were run with a graph neural network,

with an initial Pareto optimal solution generated using 75

optimization steps of MGD. The baseline MGD was tested

at 20, 30, and 40 training epochs, which were optimized

by solving quadratic programming problems. A learning rate

of 0.005 was found to offer the best performance. 1. The

predictor step used 50 maximum iterations of MINRES, based

on ablation studies in [4]. The predictor and corrector step

used a step size 0.1 and 0.01 respectively, as these values

were found to minimize runtime while maintaining Pareto

front quality.

TABLE I: Dataset and model sizes

Datasets Products Reviews Users Model size

YelpChi 201 67395 38063 1234
YelpNYC 923 358911 160220 1234

YelpZip 5044 608598 260277 1234

1) Pareto Front Quality: We perform a visual comparison

of the Pareto fronts generated on each of our methods. As

shown in Fig. 2, on YelpNYC, the Pareto front generated by

PC noticeably outperforms those of MGD for all values of

epochs. However, on YelpChi and YelpZip, we see that the

PC front is only slightly better than the fronts of MGD-20

and MGD-30, and is slightly worse than the front generated by

MGD-40. Also note that on all three datasets, PC generates a

much larger Pareto front than all three MGD variants, resulting

in more expansive Pareto fronts that span a wider range of the

loss values.

B. Runtime Comparison

Fig. 3 shows a runtime comparison between the differ-

ent algorithms for Pareto front generation. We see that on

YelpNYC, PC clearly outperforms MGD since for all MGD

variants, PC generates a higher quality Pareto front with a

faster runtime. The only case where MGD outperforms PC

is MGD-20 on YelpChi and YelpZip. However, in this case,

the MGD-20 front is worse than the PC front. Seeing as the

difference in runtime is slight, we cannot say that MGD-20

outperforms PC, especially when Pareto front quality is taken

into account. When MGD-40 produces higher quality Pareto

fronts, we see that the runtime is significantly higher than that

of MGD. In the case of YelpZip, PC runs over three times

faster than MGD-40. Since the fronts generated by MGD-40

are only slightly better than the PC fronts, the small decrease in

Pareto front quality is an acceptable trade-off for the significant

reduction in runtime.

Fig. 3: Comparison of running time of different algorithms on

the datasets.
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Fig. 4: Pareto fronts generated by the predictor-corrector method for varying values of maximum MINRES iterations

C. Effect of the Maximum Number of Iterations

We also measure the effect that decreasing the maximum

number of iterations for the linear solver has on Pareto front

quality and runtime. We test two new values for maxiter, 25

and 10, and compare the results to our previous experiments

that used maxiter = 50.

Fig. 4 demonstrates how Pareto front quality is affected by

decreasing the maximum number of iterations for MINRES.

We see that as maxiter decreases, there is almost no effect on

Pareto front quality. On all three datasets, the fronts generated

using 10 and 25 MINRES iterations are nearly identical to each

other and to the baseline front generated with maxiter = 50.

Looking at the runtime comparison depicted in Fig. 5, we

see that when maxiter = 25 or maxiter = 10, there is

a noticeable decrease in runtime from our original method.

Thus, by reducing the number of iterations before MINRES

terminates, we can improve the runtime of our algorithm with

minimal impact on the quality of the Pareto front.

Fig. 5: Runtime comparison for varying maximum MINRES

iterations

D. Discussion

From our experimental results, we see that the predictor-

corrector method outperforms or is comparable with MGD on

all three datasets (YelpChi, YelpNYC, YelpZip), both in Pareto

front quality and runtime. On YelpNYC, PC generates a Pareto

front better than all three MGD fronts with a significantly

lower runtime. On YelpChi and YelpZip, the Pareto front

generated PC is better than all of the MGD fronts except when

the number of training epochs is 40. However, the PC front in

these cases includes a wider range of different tradeoffs and

is only slightly worse than the MGD front. Furthermore, we

see that PC runs significantly faster in these scenarios, so PC

still outperforms MGD.

We also show experimentally that the performance of the PC

algorithm can be further improved by decreasing the number

of maximum iterations allowed for the linear solver. Reducing

the maximum number of iterations leads to decreased runtime

while the resulting Pareto fronts remain largely unchanged.

From this we see that the linear solver plays an important

role in the efficiency of the PC algorithm, suggesting that

further improving the efficiency of these solvers will improve

the ability to quickly and accurately compute Pareto fronts.

V. CONCLUSION AND FUTURE WORK

We demonstrate the efficiency of a predictor-corrector

method for generating Pareto optimal networks for fair spam-

detection. We see that in many cases, the predictor-corrector

method outperforms traditional multi-objective optimization

methods, both in terms of Pareto front quality and runtime.

Furthermore, in cases where traditional methods yield more

accurate fronts, the predictor-corrector method runs signifi-

cantly faster with only a slight reduction in quality. Hence,

we see the the benefit of using this method for solving multi-

objective optimization problems.

With regards to future improvements to the method, we

can further reduce the time needed for Hessian-vector product

computations in our linear solvers. One option is to explore

the use of the Gauss-Newton approximation to the Hessian [2]

[5], which has the form

H ≈ JTJ

where J is the Jacobian of our loss functions. One advan-

tage that this approximation has over the Hessian is that it

is guaranteed to be positive semi-definite, allowing us the

flexibility to use CG if desired [2]. Furthermore, there exists a
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generalized version of Pearlmutter’s algorithm for computing

the matrix-vector product with the Gauss-Newton matrix. In

fact, this algorithm runs faster than Pearlmutter’s algorithm

and uses less memory [5] [7]. However, this method’s reliance

on forward-mode AD, combined with the current lack of

support for forward AD in the Pytorch deep-learning frame-

work, means that another method for finding the matrix-vector

product may be needed.
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