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Abstract— The statistical region merging (SRM) method for 

image segmentation is based on some solid probabilistic and 

statistical principles. It produces good segmentation results, and is 

efficient in term of the computational time. The original SRM 

algorithm is for Cartesian images sampled by square lattices 

(sqL). Because hexagonal lattices (hexL) have the advantage that 

each lattice point in a hexL has six equidistant adjacent lattice 

points, in this paper, we perform image segmentation for 

hexagonally sampled images using SRM. We first convert the 

SRM algorithm from sqLs to hexLs. Then we use some test images 

to compare the corresponding segmentation effect for hexLs 

versus sqLs. The experimental results have shown that a hexL 

exhibits evidently better image segmentation effect than the 

corresponding sqL (with the same spatial sampling rate as the 

hexL) using the usual 4-connectivity. Finally, we point out that CT 

image segmentation may benefit from using hexLs since they 

provide better image reconstruction effect than sqLs. 
 

Keywords— Image segmentation, hexagonal lattices, statistical 

region merging 

I. INTRODUCTION 

Image segmentation is to divide a digital image into some 
homogeneous groups or regions such that the features within 
each region vary little and the feature difference on the adjacent 
regions should be as big as possible. It can be applied to image 
analysis in fields such as medical imaging studied in [1] by 
Sharma and Aggarwal and in [2] by Windisch and Kozlovszky. 

As shown in [3] by Nija et al., the statistical region merging 
(SRM) method in [4] by Nock and Nielsen is an effective image 
segmentation method. By Schindler and Suter [5], SRM 
produces good segmentation results and is very efficient in terms 
of computational time. Furthermore, each segment produced by 
SRM is a connected component with respect to the connectivity 
for the SRM segmentation method, and hence the size of each 
component can be output immediately from the SRM 
segmentation. Thus, SRM is used in many situations studied in 
papers such as [6-12]. 

sqLs. Therefore, hexLs may perform better than sqLs on CT 
image segmentation. 

Wei et al. [17] implemented the graph-cut algorithm (GCA) 
in [22] for image segmentation on hexLs. Felzenszwalb and 
Huttenlocher in [23] pointed out that GCA is too slow. When an 
image size is big, the image segmentation using GCA is not 
practical. Although the interactive GCA using object and 
background marking may achieve better effect, the 
segmentation results may not be good because the geometry of 
the object may be complicated. But, SRM can handle many 
situations well, and is convenient to perform image 
segmentation. In the following, we implement the SRM 
algorithm on hexLs, and compare them with sqLs for the image 
segmentation effect. 

II. SRM FOR BOTH SQUARE AND HEXAGONAL LATTICES 

A. Review of the General SRM Method 

The graph building and the region growing (merging) 
procedures between SRM and the graph-based image 
segmentation method in [23] are the same. The main difference 
is the merging criteria. As in [4], an image h to be segmented is 
taken as an observation of a perfect image h∗. There exist two 
positive integers Q and g such that, for any pixel of h∗ , each 
color channel of h∗ is represented by Q independent random 

variables that take values in the interval (0,  
g
). The value of g 

ொ   

corresponds to the Red-Green-Blue (RGB) values of the image 

h and is usually set to 256. 

As in the usual set notation, for any discretized region R in 
the domain of the image h, let |R| denote the cardinal number of 

the set R. For each color band, let R- denote the observed average 

of the color band and let E(R-) denote the expectation. Consider 
two such regions R and Rr. By Corollary 1 in [4], for any 0 < 
o  ≤ 1, the probability of the event represented by the following 
inequality is not more than o. 

 
 

The advantages of hexagonal lattices (hexL) for image 
1 

|(R- − -R--r) − E(R- − -R--r)| ≥ g  
1 1 2 

 +   | 
processing and for application domains such as computerized 
tomography (CT) imaging are shown in papers such as [13-20]. 
As shown in [21], each lattice point in a hexL has six equidistant 
neighbors. Because the adjacency of the lattice points is 

2Q  R 

When E(R-) = E(-R--r), this inequality becomes 

|R | o 

important for image segmentation, hexLs may produce good 
image segmentation effects. For CT imaging, by [13,15,16], 

|R- − -R--r| ≥ g  
1 1 

+ 
1
    

2
 

r 

hexLs produce better image reconstruction effect than the usual 
2Q |R| |R | o 
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o =  
| |2

 In the actual implementation, let  1 . The two regions R 
6 1 

and Rr can be merged only if the above inequality is false. 

 

B. The SRM Method on sqLs 

A usual color image h sampled on a sqL is represented as a 
3D matrix or array 

൛hi,j,k: 1 ≤ i ≤ m, 1 ≤ j ≤  , 1 ≤  
 
݇ ≤ 3ൟ. 

As shown on the right side of Figure 1 in [21], the pixels of the 
image h correspond to the lattice points in a sqL. In [4] and [6], 
4-connectivity is used for the image segmentation using SRM. 
An adjacent pair of pixels is called an edge of the image h. Let 
V be the set consisting of the pixels (lattice points); let E be 
the set of edges; and let G  = (V, E) be the corresponding 
graph. For any such pair of pixels P and Q, the weight of the 
corresponding edge is defined to be 

max൛|Pa − Qa| ∶ a  ൟ{࡮, ࡮, ࡮ } ∋ 

where Pa denotes a color value at pixel P. 

We also considered Sobel filters with kernels of size 3× 3 
for the computation of the weight of an edge. Let ha be the a 
color channel of the image h. The Sobel derivative at a pixel 
(i, j) of the image h in the horizontal direction is denoted as 
Sobx(i, j), and defined to be 

1 [2 ∙ h (i + 1, j) − 2 ∙ h (i − 1, j) + h (i + 1, j + 1) − 
 

segmentation effect using hexLs versus sqLs, we have made 
Alg. 1 to include the situation of 8-connectivity. 

   a a a 

ha(i − 1, j + 1) + ha(i + 1, j − 1) − ha(i − 1, j − 1)] 

The left derivative is denoted as DL(i, j), and defined to be 
ha(i + 1, j) − ha(i, j); the right derivative is denoted as DR(i, j), 
and defined to be ha(i, j) − ha(i − 1, j). 

If an edge is horizontal with end points (i, j) and (i + 1, j), 
then the edge weights for Alg. 1 in this paper are based on the 
weighted absolute values of the Sobel derivatives, the left 

derivatives and the right derivatives. Let W1 ∈ [0, 1] be the 
weight of Sobx(i, j). The edge weight is defined to be 

1 
W1 ∙ |Sobx(i, j)| + (1 − W1) ∙ 

2 
[|DR(i, j)| + |D ܮ(i, j)|] 

If an edge is vertical, then the weight can be defined 
similarly. If an edge is in the diagonal direction with end points 
(i, j) and (i + 1, j + 1), then the Sobel derivative at the pixel (i, j) 
in this direction is defined to be 

1 
[2 ∙ ha(i + 1, j + 1) − 2 ∙ ha(i − 1, j − 1) + ha(i, j + 1) 

6√2 
− ha(i − 1, j) + ha(i + 1, j) − ha(i, j − 1)] 

Similar to DR (i, j) and DL (i, j), we can compute the directional 

 

 

 

 

 

 

 
 

C. The SRM Method on hexLs 

As in [20], the image is usually sampled on a sqL, and the 
area of a Voronoi cell of the lattice is 1. Let Ru be the region that 

is the union of the Voronoi cells of the lattice points in the image 
domain. To compare the image segmentation effect of hexLs 
versus sqLs, we construct a hexL such that the area of a Voronoi 
cell of the hexL is also 1, which implies that those two lattices 

sample the region Ru with the same sampling rate. Let s= 

and let  be the hexL generated by the two vectors s ∙ [1, 0] 
 

and s ∙ [− 
1 

, 
√ 

]. It is easy to check that the area of a Voronoi 
2 2 cell of 

derivatives in two different directions along this diagonal. Then 
the weight for this edge as well as the edges in another diagonal 
direction can be similarly computed as in the horizontal 
direction. If W1 = 1, then the edge weight is the same as the 
absolute value of the Sobel derivative. 

After the weighted graph G is constructed, the SRM method 
for image segmentation on a sqL can proceed using the 
following Alg. 1. To compare the SRM based image 

 is 1. The region Ru may be sampled by the hexL  
as shown in Fig. 1. 

Let Hexhm be an image sampled on the hexL  . To apply 
SRM on Hexhm , the lattice points shown in Fig. 1 can be 
ordered using the left-right and bottom-up order, which 
generates a 1-to-1 function mapping a counting number i to the 
itℎ pixel (lattice point) of Hexhm according to the order. Let Nh 

be the number of lattice points in the image domain of Hexhm; 
and let Ah and Bh be the vectors of length Nh such that the itℎ 

2 

3 

Algorithm 1 Image segmentation using SRM on a sqL with 

connectivity c ∈ {4, 8} 
Input An image h of size m by by 3, the minimal size, the 

values of Q and g, and the weight W1 ∈ [0, 1] for the 

directional derivatives using Sobel operators 

Step 1 Create a matrix A= ൫ai,j൯ of size m by n such that 

ai,j = m(j − 1) + i, which is a 1-to-1 function 

mapping image pixels to counting numbers from 1 to 

m ; use the 4-connectivity (8-connectivity 

respectively) to construct the edge set E and compute 

the edge weights based on the Sobel directional 

derivatives, the usual sided directional derivatives, and 
the value of W1; and construct the graph G = (V, E) 

Step 2 Based on the mapping, vertices of G are denoted as vk 
for k = 1,2, … , |V| ; let Ck = {vk}; and let C =  
{Ck|   ݇ = 1,2, … , |V|} be the set of components to be 

merged 

Step 3 Sort the elements of E into e1, e2 ,…,  e|E| in non- 

decreasing edge weights 

Step 4 For q = 1,2, … , |E|, let u and v be the two vertices 

connected by the edge eq. If the component 

containing u and the component containing v satisfy 

the merge criteria, then merge them, compute the 

average values of the new component, let the index of 

the bigger component to be the index of the merged 

component, and map those two indices to the index of 
the merged component 

Step 5 Use the averaged values of the merged components 

and the map function to construct the segmented 
image denoted as hs 

Output The segmented image hs, the number of classes 

(segments) in hs, the number |E| of edges, and the 

number of pixels in each segment 
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component of Ah (,Bh respectively) is the x (, y respectively) 

coordinate of the itℎ lattice point of Hexhm. The vectors Ah 

and Bh can be used for image interpolations and resampling 
between the sqL and the hexL, and can be used to compute the 
edge weights of the graph for Hexhm. Then we can construct 
the weighted graph G = (V, E) corresponding to Hexhm . The 
edge set E of this graph consists of edges in the horizontal, 60°, 
and 120° directions. 

Similar to the situations of the edges in the diagonal 
directions at a lattice point in the sqL, we can compute the edge 
weights for Hexhm. For example, if an edge is in the horizontal 
direction with end points denoted as (i, j) and (i + 1, j) as in Fig. 
1, then the Sobel derivative at the pixel (i, j) of the image 
Hexhm is defined to be 

1 [2 ∙ H (i + 1, j) − 2 ∙ H (i − 1, j) + H (i + 1, j + 1) − 
 

 

Steps 2-4 The same as Steps 2-4 in Alg. 1 

Step 5 Use the averaged values of the merged components 

and the map function to construct the segmented 

image Hexhs 
Output The segmented image Hexhs, the number of classes 

(segments) in Hexhs, the number |E| of edges, and 

the number of pixels in each segment 

 
 

III. EXPERIMENTAL RESULTS FOR THE SRM METHODS ON 

HEXAGONAL LATTICES VERSUS SQUARE ONES 

In this section, Algs. 1 and 2 are applied to perform image 
segmentation and to evaluate the corresponding effect. The input 
and segmented images are plotted for visual comparisons. 
Furthermore, we have used some convenient and stable 
evaluation criteria as follows. 

6 a a a 

Ha(i, j + 1) + H(i, j − 1) − Ha(i − 1, j − 1)], 

where H denotes Hexhm. The SRM based image segmentation 
for Hexhm can proceed using the following Alg. 2. 

For the input image h of size m by  by 3, let h̅ denote the 

segmented image. The mean absolute error ( MAE ) of the 
segmentation is defined as 

MAE = 
1

 
mn 

m 
i=1 

n 
j=1 ‖h(i, j, : ) − h(̅ i, j, : )‖, 

 

 

 

 

 

 

 

 

 

 

 

 
        

 

Figure 1: A rectangular region is sampled by a hexL. The red star 
point denotes the centroid of the region and, for each black lattice 
point, the numbers inside the parenthesis denote the coordinates in 
terms of the basis generating the lattice. 

 
Algorithm 2 Image segmentation on a hexL using SRM 

Input A matrix Hexhm of size Pixels by 3 where Hexhm 
denotes the image sampled on the pixels in the hexL 

 as shown in Fig. 1 using the left-right and 

bottom-up order, the minimal size, the values of 

Q and g, the weight W1 ∈ [0, 1] for the directional 

derivatives using Sobel operators, and the values of 

mHex and Hex indicating the numbers of rows and 

columns of the image pixels as in Fig. 1 

Step 1 Generate the hexL  ; by referring to Fig. 1, 

generate the 1-to-1 function mapping any counting 

number i  ≤  Pixels to the itℎ pixel of Hexhm 
according to the left-right and bottom-up order; 

use the image pixels to construct the edge set E and 

compute the edge weights based on the Sobel 

directional derivatives, the usual sided directional 

derivatives, and the value of W1; and construct the 
graph G = (V, E) 

where the norm can be L1 or L2 norm. We have computed the 
MAE for each norm. As mentioned in [25], the MAE is less 
sensitive to outliers than the root-mean-square Error. When the 
number of segments of the segmentation is the same for both 
algorithms, the algorithm with less MAE values is preferred. In 
our experiments, we let the minimal size be 3, g = 256, W1 = 
0.4, and Q = 2k for k = 6, 5, … , 0. 

For a usual image sampled on the sqL, to fairly compare the 
segmentation effect of those two different kinds of lattices, the 
image is resampled to a certain randomized grid as in [20] by 

replacing each lattice point (i, j ) ∈ sqL with (i, j ) + (r1, r2 ) , 
where r1 and r2 are random numbers between −0.45 and 0.45. 
Then interpolations are used to obtain two images sampled on 
the sqL and the hexL, respectively. Because of the randomized 
grid, the computational results may be a bit different for 
different experiments. But the experimental results are almost 
consistent for the comparison of image segmentation effect of 
the hexL versus the sqL. For the input image (from [27]) shown 
in the top-left of Fig. 2, the segmentation results are shown in 

 

 

 

 
Figure 2: The top-left is the input image for the algorithms gen. images 
in Figs 2, 3, 4, and 5. 

∑ ∑ 
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Figure 3: Segmented images using the sqL with 4-connectivity. 

 

 

 

 

 
Figure 4: Segmented images using the sqL with 8-connectivity. 

 

 

 

 

 
Figure 5: Segmented images using the hexL. 

 
 

Figs. 2, 3, 4, and 5; and the corresponding MAE values are 
shown in Tables 1 and 2. From those images, we can see that the 

boundaries of the salient objects in the segmented images using 
the sqL with 4-connectivity tend to be horizontal and vertical, 
and the salient objects are not quite similar to those in the input 
image. From Tables 1 and 2, we can see that for each Q value, 
the MAE values for the hexL are usually smallest. 

Table 1: The MAE values for Algs. 1 and 2 using L1 norm with 
different Q values and connectivity using the input in Fig. 2. 

 

Q 32 16 8 4 2 1 

Alg. 1, 4-conne. 26.48 28.43 30.02 33.67 36.54 40.21 

Alg. 1, 8-conne. 23.04 24.88 26.62 29.15 32.23 37.11 

Alg. 2, hexL. 22.12 23.24 24.76 26.96 30.05 36.39 

 

Table 2: The MAE values for Algs. 1 and 2 using L2 norm with 
different Q values and connectivity using the input in Fig. 2. 

 

Q 32 16 8 4 2 1 

Alg. 1, 4-conne. 15.92 17.07 18.06 20.16 21.86 24.00 

Alg. 1, 8-conne. 14.00 15.09 16.16 17.63 19.42 22.29 

Alg. 2, hexL. 13.49 14.16 15.04 16.29 18.13 21.76 

 
 

 

 

 
Figure 6: The top-left is the input image for the algorithms generated 
images in Figs 6, 7, 8, and 9. 

 

 

 

 

 

Figure 7: Segmented images using the sqL with 4-connectivity. 
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Image size Alg.1 (4-connec.) Alg.1 (8-connec.) Alg. 2 (Hex.) 

130×132×3 0.0245 seconds 0.4965 seconds 0.0372 seconds 

630×630×3 0.7441 seconds 12.0885 seconds 1.2167 seconds 

 

domains such as CT imaging, by [13] and [15], the image can be 
reconstructed directly using the hexL; and the reconstruction 
effect using the hexL is better than the effect using the sqL. Then 
the SRM algorithm using the hexL can be directly applied 
without resampling from the sqL. Although the 2nd input image 
has size 630×630×3, the computational time of each algorithm 
is acceptable. In the future, the display device may also be made 
for hexLs. Therefore Alg. 2 has promising applications. 

Table 4: Computational time in seconds for Algs. 1 and 2. 
 

 

 
Figure 8: Segmented images using the sqL with 8-connectivity. 

 
 

 

 

 
 

Figure 9: Segmented images using the hexL. 
 

Table 3: The MAE values for Algs. 1 and 2 using L1 norm with 
different Q values and connectivity using the input in Fig. 6. 

 

Q 32 16 8 4 2 1 

Alg. 1, 4-conne. 15.32 15.98 16.84 17.94 19.57 20.58 

Alg. 1, 8-conne. 14.44 14.95 15.83 16.66 18.18 19.20 

Alg. 2, hexL. 13.75 14.24 15.18 15.94 17.71 18.60 

 

We also used another input image (from [28]) shown in the 
top-left of Fig. 6. The segmentation results are shown in Figs. 
7, 8, and 9; and the corresponding MAE values are shown in 
Table 3. When Q=64, the input image and segmented images are 
shown in Fig. 6. 

As for the computational time of the SRM algorithm using 
the hexL, the size of the input image in the top-left of Fig. 2 (, 
Fig. 6 respectively) is 130 by 132 by 3 (, 630 by 630 by 3 
respectively). The computational time by Matlab is shown in 
Table 4. As the number of edges for the hexagonally sampled 
images is just about 75% of the number of edges for the 
corresponding image sampled on the sqL with 8-connectivity, 
its computational time is much less. In some actual application 

IV. CONCLUSION AND FUTURE WORK 

We have developed a computer algorithm for the SRM 

method on the hexL. The algorithm is tested using some 

images and Q values. The experimental results are evaluated 

using the MAE measure. The segmented images are displayed, 

and the MAE values are tabulated for convenient comparisons. 

The experimental results have shown that the hexL 

achieves better image segmentation effect than the sqL with 

the usual 4-connectivity. For the hexagonally sampled image, 

although the number of edges is much less than the 

corresponding number for the image sampled on the sqL with 

8-connectivity, the image segmentation effect is still very 

good. As shown in those segmented images, image 

segmentation may reduce the amount of noise in the salient 

features of an image, and may make the boundaries of the 

salient objects more evident. Furthermore, each segment in 

the output image of the SRM algorithms is connected, and the 

size of the segment can be output. The SRM algorithm on the 

hexL may help automatically determine the sizes of salient 

objects in an image. Because a lattice is important for efficient 

indexing of image pixels and for mathematical operations on 

the image, other sampling schemes are not considered in this 

paper. 
In [29] by Khan, several image segmentation algorithms are 

surveyed. In the future, we may compare the sqL with the hexL 
for image segmentation using other efficient algorithms such as 
those in [30-32] based on watershed transforms, histogram 
thresholding, etc. Furthermore, we may reconstruct the images 
using both the sqL and hexL from the same CT sinogram as 
mentioned in [20]. Then perform image segmentations using 
Algs. 1 and 2, and compare the effect of those algorithms. We 
may also generalize the image segmentation algorithms from 
hexLs to 3-dimensional optimal sampling lattices as in [33]. 
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