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Abstract— The statistical region merging (SRM) method for
image segmentation is based on some solid probabilistic and
statistical principles. It produces good segmentation results, and is
efficient in term of the computational time. The original SRM
algorithm is for Cartesian images sampled by square lattices
(sqL). Because hexagonal lattices (hexL) have the advantage that
each lattice point in a hexL has six equidistant adjacent lattice
points, in this paper, we perform image segmentation for
hexagonally sampled images using SRM. We first convert the
SRM algorithm from sqLs to hexLs. Then we use some test images
to compare the corresponding segmentation effect for hexLs
versus sqLs. The experimental results have shown that a hexL
exhibits evidently better image segmentation effect than the
corresponding sqL (with the same spatial sampling rate as the
hexL) using the usual 4-connectivity. Finally, we point out that CT
image segmentation may benefit from using hexLs since they
provide better image reconstruction effect than sqLs.

Keywords— Image segmentation, hexagonal lattices, statistical
region merging

1. INTRODUCTION

Image segmentation is to divide a digital image into some
homogeneous groups or regions such that the features within
each region vary little and the feature difference on the adjacent
regions should be as big as possible. It can be applied to image
analysis in fields such as medical imaging studied in [1] by
Sharma and Aggarwal and in [2] by Windisch and Kozlovszky.

As shown in [3] by Nija et al., the statistical region merging
(SRM) method in [4] by Nock and Nielsen is an effective image
segmentation method. By Schindler and Suter [5], SRM
produces good segmentation results and is very efficient in terms
of computational time. Furthermore, each segment produced by
SRM is a connected component with respect to the connectivity
for the SRM segmentation method, and hence the size of each
component can be output immediately from the SRM
segmentation. Thus, SRM is used in many situations studied in
papers such as [6-12].

The advantages of hexagonal lattices (hexL) for image
processing and for application domains such as computerized
tomography (CT) imaging are shown in papers such as [13-20].
As shown in [21], each lattice point in a hexL has six equidistant
neighbors. Because the adjacency of the lattice points is
important for image segmentation, hexLs may produce good
image segmentation effects. For CT imaging, by [13,15,16],
hexLs produce better image reconstruction effect than the usual

This research is supported by a National Science Foundation grant of the
USA with the Federal Award ID Number 2000158.

sqLs. Therefore, hexLs may perform better than sqLs on CT
image segmentation.

Wei et al. [17] implemented the graph-cut algorithm (GCA)
in [22] for image segmentation on hexLs. Felzenszwalb and
Huttenlocher in [23] pointed out that GCA is too slow. When an
image size is big, the image segmentation using GCA is not
practical. Although the interactive GCA using object and
background marking may achieve better effect, the
segmentation results may not be good because the geometry of
the object may be complicated. But, SRM can handle many
situations well, and is convenient to perform image
segmentation. In the following, we implement the SRM
algorithm on hexLs, and compare them with sqLs for the image
segmentation effect.

II. SRM FOR BOTH SQUARE AND HEXAGONAL LATTICES

A. Review of the General SRM Method

The graph building and the region growing (merging)
procedures between SRM and the graph-based image
segmentation method in [23] are the same. The main difference
is the merging criteria. As in [4], an image A to be segmented is
taken as an observation of a perfect image A*. There exist two
positive integers Q and g such that, for any pixel of A* , each
color channel of A is represented by @ independent random

variables that take values in the interval (i 06:7 %). The value of g

corresponds to the Red-Green-Blue (RGB) values of the image
h and is usually set to 256.

As in the usual set notation, for any discretized region R in
the domain of the image 4, let /R/ denote the cardinal number of
the set R. For each color band, let R- denote the observed average
ofthe color band and let £(R-) denote the expectation. Consider
two such regions R and R". By Corollary 1 in [4], forany 0 <
0 < 1,the probability of the event represented by the following
inequality is not more than o.

1 2

IR/ 0

1 1
R —R)-ER -R)>g _
G ) — E(: )l =g ZQfE/+

When E(R-) = E(-R), this inequality becomes

1 1 1 2
IR-—Rl>2g __ __+__ _
2Q /Rl R/ 0
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In the actual implementation, let , = 611 . The two regions R

and R’ can be merged only if the above inequality is false.

B. The SRM Method on sqLs

A usual color image 4 sampled on a sqL is represented as a
3D matrix or array

Ohypl<ism1<j< ,1<0<340e

As shown on the right side of Figure 1 in [21], the pixels of the
image A correspond to the lattice points in a sqL. In [4] and [6],
4-connectivity is used for the image segmentation using SRM.
An adjacent pair of pixels is called an edge of the image A. Let
I be the set consisting of the pixels (lattice points); let £be
the set of edges; and let ¢ = (V, E) be the corresponding
graph. For any such pair of pixels Pand @, the weight of the
corresponding edge is defined to be

max/UIP, — Q,/ : a € {&,7,2}(0°
where P, denotes a color value at pixel 7.

We also considered Sobel filters with kernels of size 3.x 3
for the computation of the weight of an edge. Let 4, be the a
color channel of the image A. The Sobel derivative at a pixel
(i, j) of the image / in the horizontal direction is denoted as
Soby (7, j), and defined to be

2-h(G+1)—2-h(G—-L)+h(+1j+1) -
' b(i—1j+D+k(G+1j—D—t(G—1;-1)]

The left derivative is denoted as D, (3 j), and defined to be
k(@ + 1 j) — k(@ j); the right derivative is denoted as Dr(3, j),
and defined to be & (G j) — (G — 1, j).

If an edge is horizontal with end points (3 j) and (7 + 1, j),
then the edge weights for Alg. 1 in this paper are based on the
weighted absolute values of the Sobel derivatives, the left
derivatives and the right derivatives. Let W; € [0, 1] be the
weight of Sob,(7, j). The edge weight is defined to be

1
Wi+ [Sobs(i DI + (1~ W) 5 [1Da(i )l + ID<. (L )I]

If an edge is vertical, then the weight can be defined
similarly. If an edge is in the diagonal direction with end points
(i j) and (7 + 1, j + 1), then the Sobel derivative at the pixel (7, j)
in this direction is defined to be

1
—[2-h(i+1j+1)—2-h(i1—1j— 1) +h(Gj+ 1)

6v2
Similar to Dg (3 j) and Dy (3 j), we can compute the directional

derivatives in two different directions along this diagonal. Then
the weight for this edge as well as the edges in another diagonal
direction can be similarly computed as in the horizontal
direction. If W; = 1, then the edge weight is the same as the
absolute value of the Sobel derivative.

After the weighted graph G is constructed, the SRM method
for image segmentation on a sqL can proceed using the
following Alg. 1. To compare the SRM based image
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segmentation effect using hexLs versus sqLs, we have made
Alg. 1 to include the situation of 8-connectivity.

Algorithm 1 Image segmentation using SRM on a sqL with
connectivity ¢ € {4, 8}

Input An image A4 of size m by by 3, the minimal size, the
values of Q and g and the weight W; € [0, 1] for the
directional derivatives using Sobel operators

Create a matrix A= @al;,ﬁ?’ of size m by n such that
ajj = m(j— 1) + i, which is a 1-to-1 function
mapping image pixels to counting numbers from 1 to
m ; use the 4-connectivity (8-connectivity
respectively) to construct the edge set £'and compute
the edge weights based on the Sobel directional
derivatives, the usual sided directional derivatives, and
the value of W7 and construct the graph ¢ = (V, E)
Based on the mapping, vertices of G are denoted as vk
for k =122..,/V/; let Ci={w} and let C=
{Ci/ 5 =12, ..., [/V/[}be the set of components to be
merged

Sort the elements of £ into e;, ez,..., €z in non-
decreasing edge weights

For g =12, ..., [E/, let uand vbe the two vertices
connected by the edge ey. If the component
containing v and the component containing vsatisfy
the merge criteria, then merge them, compute the
average values of the new component, let the index of
the bigger component to be the index of the merged
component, and map those two indices to the index of
the merged component

Use the averaged values of the merged components
and the map function to construct the segmented
image denoted as /s

The segmented image /45, the number of classes
(segments) in A, the number /£/ of edges, and the
number of pixels in each segment

Step 1

Step 2

Step 3

Step 4

Step 5

Output

C. The SRM Method on hexLs

As in [20], the image is usually sampled on a sqL, and the
area of a Voronoi cell of the lattice is 1. Let R, be the region that
is the union of the Voronoi cells of the lattice points in the image
domain. To compare the image segmentation effect of hexLs
versus sqLs, we construct a hexL such that the area of a Voronoi
cell of the hexL is also 1, which implies that those two lattices

2

V3
and let O be the hexL generated by the two vectors s- /1, 0]

and s [— 1_ /. Tt is easy to check that the area of a Voronoi

cellof 2 2 .
0 is 1. The region R, may be sampled by the hexL 0

as shown in Fig. 1.

sample the region R, with the same sampling rate. Let s=

Let Hexhm be an image sampled on the hexL O . To apply
SRM on Hexhm , the lattice points shown in Fig. 1 can be
ordered using the left-right and bottom-up order, which
generates a 1-to-1 function mapping a counting number 7 to the
it/ pixel (lattice point) of Hexhm according to the order. Let N,
be the number of lattice points in the image domain of Hexhm,;
and let 4, and B, be the vectors of length N, such that the it/

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on May 22,2023 at 18:14:09 UTC from IEEE Xplore. Restrictions apply.



component of 4, (,By respectively) is the x (, y respectively)
coordinate of the jt/ lattice point of Hexhm. The vectors A4,
and B, can be used for image interpolations and resampling
between the sqL and the hexL, and can be used to compute the
edge weights of the graph for Hexhm. Then we can construct
the weighted graph ¢ = (V, E) corresponding to Hexhm . The
edge set £ of this graph consists of edges in the horizontal, 60,
and 720" directions.

Similar to the situations of the edges in the diagonal
directions at a lattice point in the sqL, we can compute the edge
weights for Hexhm. For example, if an edge is in the horizontal
direction with end points denoted as (i j) and (7 + 1, j) as in Fig.
1, then the Sobel derivative at the pixel (7 j) of the image
Hexhm is defined to be

2 H (+1,)~2HG~1)+H (i+1j+1)
a a a
Hi(ij +1) + HGj— 1) = Ha(i = 1,j — D],

where Hdenotes Hexhm. The SRM based image segmentation
for Hexhm can proceed using the following Alg. 2.

‘.(518) ‘-(6,8) | «(7,8) I -(818)‘ -(9-8)l -(10.;3)
i «(47)  «(57) «(67) «(7.7) «(87) «(9.7) &(10,7) |
°r e(46) «(56) «(66) «(76) +(86) «(9.6) |
°r «(35) «(45) «(55) (65 (7.5 «(85) (95
ar «(34) o(44) .(5,2")6 «(6,4) o(74) «(84)
31 e(23)  «(33) «(43) «(53) «(63) «(7.3) «(83) ]
2r «(22)  «(32) «(42) «(52) «(62) «(7.2) 7
11 o(11)  «(21) «(B1) «(41) «(51) «(6,1) «(71) A
00 1 2 3 ‘Ii 5 6 7 8

Figure 1: A rectangular region is sampled by a hexL. The red star
point denotes the centroid of the region and, for each black lattice
point, the numbers inside the parenthesis denote the coordinates in
terms of the basis generating the lattice.

Algorithm 2 Image segmentation on a hexL using SRM

Input A matrix Hexhm of size pixeis by 3 where Hexhm
denotes the image sampled on the pixels in the hexLL

O as shown in Fig. 1 using the left-right and
bottom-up order, the minimal size, the values of
Qand g, the weight W; € /0, 1]for the directional
derivatives using Sobel operators, and the values of
Muex and  gex indicating the numbers of rows and
columns of the image pixels as in Fig. 1

Step 1 Generate the hexL O ; by referring to Fig. 1,
generate the 1-to-1 function mapping any counting
number 7/ < pixels to the it/ pixel of Hexhm
according to the left-right and bottom-up order;

use the image pixels to construct the edge set £and
compute the edge weights based on the Sobel
directional derivatives, the usual sided directional

derivatives, and the value of IW7; and construct the
graph ¢ = (V E)

39

Steps 2-4
Step 5

The same as Steps 2-4 in Alg. 1

Use the averaged values of the merged components
and the map function to construct the segmented
image Hexhs

The segmented image Hexhs, the number of classes
(segments) in Hex#hs, the number /£/ of edges, and
the number of pixels in each segment

Output

III. EXPERIMENTAL RESULTS FOR THE SRM METHODS ON
HEXAGONAL LATTICES VERSUS SQUARE ONES

In this section, Algs. 1 and 2 are applied to perform image
segmentation and to evaluate the corresponding effect. The input
and segmented images are plotted for visual comparisons.
Furthermore, we have used some convenient and stable
evaluation criteria as follows.

For the input image A of size mby by 3, let Adenote the
segmented image. The mean absolute error ( MAE) of the
segmentation is defined as

MAE = g, 5 JhGi2) ~hC il

where the norm can be Z; or Lz norm. We have computed the
MAE for each norm. As mentioned in [25], the MAE is less
sensitive to outliers than the root-mean-square Error. When the
number of segments of the segmentation is the same for both
algorithms, the algorithm with less MAE' values is preferred. In
our experiments, we let the minimal size be 3, g = 256, Wi =
O4,and Q =2k fork =6, 5, ..., 0.

For a usual image sampled on the sqL, to fairly compare the
segmentation effect of those two different kinds of lattices, the
image is resampled to a certain randomized grid as in [20] by
replacing each lattice point (7 j ) € sqL with (3, j ) + (13, ),
where r7 and rz are random numbers between —0.45 and 0.45.
Then interpolations are used to obtain two images sampled on
the sqL and the hexL, respectively. Because of the randomized
grid, the computational results may be a bit different for
different experiments. But the experimental results are almost
consistent for the comparison of image segmentation effect of
the hexL versus the sqL. For the input image (from [27]) shown
in the top-left of Fig. 2, the segmentation results are shown in

The input image Q=64, 4-connec: 56 segms

Q=64, Hex-connec: 52 segms

Figure 2: The top-left is the input image for the algorithms gen. images
in Figs 2, 3, 4, and 5.
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boundaries of the salient objects in the segmented images using
the sqL with 4-connectivity tend to be horizontal and vertical,
and the salient objects are not quite similar to those in the input
image. From Tables 1 and 2, we can see that for each Q value,
il the MAE values for the hexL are usually smallest.

Table 1: The MAE values for Algs. 1 and 2 using L1 norm with
different Q values and connectivity using the input in Fig. 2.

Q 32 16 8 4 2 1
Alg. 1,4-conne. | 2648 | 28.43 | 30.02 | 33.67 | 36.54 | 4021
Alg. 1,8-conne. | 23.04 | 24.88 | 26.62 | 29.15 | 32.23 | 37.11
Q=2, 4-connec: 10 segms Q=1, 4-connec: 6 segms Alg. 2, hexL. 22.12 | 23.24 | 24.76 | 26.96 | 30.05 | 36.39

Q=32, 4-connec: 46 segms Q=16, 4-connec: 33 segms

b

Q=8, 4-connec: 24 segms Q=4, 4-connec: 16 segms

o

Table 2: The MAE values for Algs. 1 and 2 using L2 norm with

- different Q values and connectivity using the input in Fig. 2.

Q 32 16 8 4 2 1
Figure 3: Segmented images using the sqL with 4-connectivity. Alg. 1, 4-conne. 15.92 | 17.07 | 18.06 | 20.16 | 21.86 | 24.00
Alg. 1, 8-conne. 14.00 | 15.09 | 16.16 | 17.63 | 19.42 | 22.29
Q=32, 8-connec: 43 segms Q=16, 8-connec: 31 segms Alg. 2, hexL. 13.49 14.16 15.04 16.29 1813 2176

The input image

Q=64, 4-connec: 325 segms

Q=8, 8-connec: 21 segms Q=4, 8-connec: 14 segms

el = i S s

Q=64, Hex-connec: 275 segms

Q=2, 8-connec: 10 segms Q=1, 8-connec: 7 segms

Figure 4: Segmented images using the sqL with 8-connectivity. Figure 6: The top-left is the input image for the algorithms generated

images in Figs 6, 7, 8, and 9.
Q=32, Hex: 36 segms Q=16, Hex: 25 segms

Q=32, 4-connec: 233 segms Q=16, 4-connec: 163 segms

- -

Q=8, Hex: 20 segms Q=4, Hex: 14 segms

-

Q=2, Hex: 10 segms Q=1, Hex: 6 segms

Figure 5: Segmented images using the hexL. . . . . -
8 8 8 g Figure 7: Segmented images using the sqL with 4-connectivity.

Figs. 2, 3, 4, and 5; and the corresponding MAE values are
shown in Tables 1 and 2. From those images, we can see that the
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Q=32, 8-connec: 200 segms

Q=16, 8-connec: 146 segms

Figure 8: Segmented images using the sqL with 8-connectivity.

Q=32, Hex: 216 segms Q=16, Hex: 161 segms

Q=8, Hex: 108 segms

=

Q=2, Hex: 44 segms

=

Figure 9: Segmented images using the hexL.

Q=4, Hex: 78 segms

R

Q=1, Hex: 35 segms

. 1

Table 3: The MAE values for Algs. 1 and 2 using L1 norm with
different Q values and connectivity using the input in Fig. 6.

Q 32 16 8 4 2 1
Alg. 1,4-conne. | 1532 | 1598 | 16.84 | 17.94 | 19.57 | 20.58
Alg. 1,8-conne. | 14.44 | 1495 | 15.83 | 16.66 | 18.18 | 19.20
Alg. 2, hexL. 13.75 | 1424 | 15.18 | 1594 | 17.71 | 18.60

We also used another input image (from [28]) shown in the
top-left of Fig. 6. The segmentation results are shown in Figs.
7, 8, and 9; and the corresponding MAE values are shown in
Table 3. When Q=64, the input image and segmented images are
shown in Fig. 6.

As for the computational time of the SRM algorithm using
the hexL, the size of the input image in the top-left of Fig. 2 (,
Fig. 6 respectively) is 130 by 132 by 3 (, 630 by 630 by 3
respectively). The computational time by Matlab is shown in
Table 4. As the number of edges for the hexagonally sampled
images is just about 75% of the number of edges for the
corresponding image sampled on the sqL with 8-connectivity,
its computational time is much less. In some actual application

domains such as CT imaging, by [13] and [15], the image can be
reconstructed directly using the hexL; and the reconstruction
effect using the hexL is better than the effect using the sqL. Then
the SRM algorithm using the hexL can be directly applied
without resampling from the sqL. Although the 2™ input image
has size 630 .x630x3, the computational time of each algorithm
is acceptable. In the future, the display device may also be made
for hexLs. Therefore Alg. 2 has promising applications.

Table 4: Computational time in seconds for Algs. 1 and 2.

Image size Alg.1 (4-connec.) Alg.1 (8-connec.) | Alg.2 (Hex.)
130x132 X3 0.0245 seconds 0.4965 seconds 0.0372 seconds
630x630x3 0.7441 seconds 12.0885 seconds 1.2167 seconds

IV. CONCLUSION AND FUTURE WORK

We have developed a computer algorithm for the SRM
method on the hexL. The algorithm is tested using some
images and @ values. The experimental results are evaluated
using the MAE measure. The segmented images are displayed,
and the MAE values are tabulated for convenient comparisons.

The experimental results have shown that the hexL
achieves better image segmentation effect than the sqL with
the usual 4-connectivity. For the hexagonally sampled image,
although the number of edges is much less than the
corresponding number for the image sampled on the sqL with
8-connectivity, the image segmentation effect is still very
good. As shown in those segmented images, image
segmentation may reduce the amount of noise in the salient
features of an image, and may make the boundaries of the
salient objects more evident. Furthermore, each segment in
the output image of the SRM algorithms is connected, and the
size of the segment can be output. The SRM algorithm on the
hexL may help automatically determine the sizes of salient
objects in an image. Because a lattice is important for efficient
indexing of image pixels and for mathematical operations on
the image, other sampling schemes are not considered in this
paper.

In [29] by Khan, several image segmentation algorithms are
surveyed. In the future, we may compare the sqL with the hexL
for image segmentation using other efficient algorithms such as
those in [30-32] based on watershed transforms, histogram
thresholding, etc. Furthermore, we may reconstruct the images
using both the sqL and hexL from the same CT sinogram as
mentioned in [20]. Then perform image segmentations using
Algs. 1 and 2, and compare the effect of those algorithms. We
may also generalize the image segmentation algorithms from
hexLs to 3-dimensional optimal sampling lattices as in [33].
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