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Abstract—This paper studies how an edge-based federated
learning algorithm called FedAegis can be designed to be ro-
bust under both heterogeneous data distributions and Byzantine
adversaries. The divergence of local data distributions leads to
suboptimal results for the training process of federated learning,
and the Byzantine adversaries aim to prevent the training process
from converging in a distributed learning system. In this paper,
we show that an edge-based hierarchical federated learning
architecture can help tackle this dilemma by utilizing edge nodes
geographically close to clusters of local devices. By combining a
distributionally robust global loss function with a local Byzantine-
robust aggregation rule, FedAegis can defend against remote
Byzantine adversaries who cannot manipulate local devices’
connections to edge nodes, meanwhile accounting for global data
heterogeneity across benign local devices. Experiments with the
MNIST, FMNIST and CIFAR-10 datasets show that our proposed
algorithm can achieve convergence and high accuracy under
heterogeneous data and various attack scenarios, while state-of-
the-art defenses and robustness mechanisms are non-converging
or have reduced average and/or worst-case accuracy.

Keywords—Federated learning, edge computing, data hetero-
geneity, Byzantine robustness, distributionally robust optimization

I. INTRODUCTION

The increasing usage of mobile devices has resulted in un-
precedented massive amount of data being generated, and
provides machine learning applications with the perfect op-
portunity to train jointly in a distributed way. As a result,
federated learning (FL) [1] has emerged to take advantage of
training with the decentralized data on mobile devices instead
of gathering all data and training in the cloud. The federation
of local devices protects the privacy and security of the raw
data owned by mobile device users. More efficient use of the
network bandwidth and lower latency can also be achieved by
only communicating training updates instead of raw data [2].
Given the advantages, FL has seen application in the field of
Internet of Things (IoT) [3], health Al diagnosis [4], etc.

One challenge for FL is the heterogeneous data distribu-
tions among local devices. Since the wildly adopted optimi-
zation method, stochastic gradient descent (SGD) [5], relies on
independent and identically distributed (IID) data sampling,
many research works assume IID data across training local
devices for simplicity [1]. Nevertheless, this assumption hardly
holds in reality. The training data on a specific mobile device
is determined by its user. Thus, the local data can be highly
heterogeneous (non-IID) across local devices. In addition to
non-IID data, another challenge is the possibility of Byzantine
attacks. For instance, an attacker can poison the learning pro-
cess remotely by compromising a subset of the local devices
and modifying their raw data or model updates before or during
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training. This can lead to the training process not being able
to converge, or degrade the accuracy of the trained model on
specific or all classes of data. Severe damage could be incurred
in use cases like autonomous driving or smart healthcare if
such attacks cannot be controlled.

Both non-IID data on benign devices and Byzantine attacks
from compromised devices are non-trivial problems as shown
in existing works [3], [6]-[8]. Yet, their combined effects can
be even harder to address, since a central learner has no way of
distinguishing between a benign device with non-IID data and
a compromised device launching dedicated attacks. Solutions
tackling one challenge alone may lead to poor performance
when facing the other. For instance, robust algorithms for non-
IID data may unintentionally include malicious data or model
updates in training, and hence cannot converge or have low
accuracy; Byzantine-robust learning algorithms may have to
trim off too many non-IID data points or model updates, such
that they have poor performance on rare but benign data. To
our best knowledge, there is no existing work addressing the
combined challenges of non-IID data and Byzantine attacks,
which are both realistic risks to FL in real-world scenarios.

The goal of this paper is to propose a solution that can
achieve both superior accuracy and robustness under Byzantine
attacks and non-IID data. We present FedAegis, an edge-based
hierarchical Byzantine-robust FL algorithm for non-IID data.
Compared to traditional FL algorithms, FedAegis combines
Byzantine-robust aggregation in FL with a distributionally ro-
bust loss function to address both challenges at the same time.
The two techniques are further novelly combined using an
edge-based 3-layer architecture, which utilizes edge computing
to mitigate the impact of trimming in Byzantine-robust aggre-
gation on the model robustness for benign but heterogeneous
data. Our contributions are summarized as follows:

1) We design FedAegis, an edge-based hierarchical Byzantine-
robust FL algorithm for non-IID data to tackle the combined
challenges of heterogeneous data and Byzantine adver-
saries. Our solution novelly combines Byzantine-robust
aggregation and a distributionally robust loss function under
an edge-based 3-layer FL architecture.

2) We show experiment results with various datasets, data
distributions and attack settings to validate the superior
accuracy and robustness of FedAegis compared to state-
of-the-art non-robust and robust FL algorithms.

The rest of this paper is organized as follows. Sec. II talks
about background and related work. Sec. III describes the FL
model, our edge system model and the threat model. Sec. IV
explains details of our solution. Sec. V presents the evaluation
results. Sec. VI concludes the whole paper.

II. BACKGROUND AND RELATED WORK
Byzantine Adversaries and Defenses in FL. There exist two
kinds of attacks against general machine learning models: data



poisoning attacks and model poisoning attacks. Many works
like [9], [10] aim to poison training data. In FL, however, data
poisoning attacks could hardly succeed as described in [6]
and validated in our results in Sec. V. Hence local model
poisoning attacks are wildly adopted [6], [7], [11], [12]. As
a few examples, Gaussian attacks [12] use tensors drawn
from a Gaussian distribution in place of the original updates;
omniscient attacks [12] use negative tensors of the original
ones; inner product manipulation attacks [7] use negative
tensors of the expectation of all benign workers’ updates.

Byzantine-robust aggregation has been proposed to de-
fend against general Byzantine adversaries in FL [12]-[14].
Defenses are primarily based on trimming a certain portion
of model updates considered as outliers and hence likely
malicious, or computing an aggregated model based on a
majority of the received updates. Krum [12] for instance finds
a local model closest to all benign models as the global model.
Trimmed mean defense [13] trims a certain part of the smallest
and largest values in the received model updates for each
model parameter, and then takes the average of the rest as value
of the parameter in the aggregated model. Median defense [13]
chooses the median value of each parameter among all updates
as the global model parameter value. These defenses, however,
do not consider non-IID data, and hence may lead to low
accuracy on non-IID data as shown in our evaluation.
Non-IID Data. Existing works [3], [8] have pointed out how
non-IID data can degrade the performance of traditional FL
algorithms such as FedAvg and FedSGD [1] compared to when
data are IID across local devices. Reference [8] identified
weight divergence as the root cause, which is due to the
difference between the data distribution on each local device
and the population distribution among all. Existing works
have addressed this problem using a shared dataset among
local devices [8], which is not practical in privacy-sensitive
situations, as well as utilizing robust optimization techniques
in the learning process [15], which nevertheless is vulnerable
to Byzantine adversaries as we show in our evaluation.

III. SYSTEM AND THREAT MODELS
A. Federated Learning Model
The traditional FL. model consists of a central server and local
devices that form a 2-layer architecture. In FL, the central
server sends the global model parameters to the local devices
as their initial model parameters in each communication round.
After getting the initial model parameters, the local devices
train the models with local data and then send the updated
model parameters back to the server. The server then aggre-
gates all model updates received from local devices to derive
the new global model parameters for training in the next round.
In the classic FedAvg algorithm, for instance, the central server
takes the weighted average of the received local model updates
as the global model parameters for the next round.

Formally, let W denote the global parameters kept by the
central server, and let ¥ = {W/|j = 1,...,n} be the set
of model parameters of local devices, where n is the number
of local devices. Denote the current communication round as
t, and let W; and ¥, = {¥]} be global model parameters
before update and the local model parameters of devices after
update in round ¢ respectively. The aggregation rule used by
the central server is denoted as agg. Then we have:

Wt+1 = agg(\Ilt) (1)

The 2-layer FL architecture is depicted in Fig. 1.
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B. Edge System Model

Edge computing has been introduced in FL to reduce commu-
nication overhead in [16]. We assume local devices connect
to edge nodes based on their geographical locations. Devices
under each edge node may have IID or non-IID data distribu-
tions. Edge nodes perform intermediate aggregation between
local devices and the central server. Let m be the number of
edge nodes, and denote the set of aggregated model parameters
of edge nodes as ® = {©% | i = 1,...,m}. The system model
of an edge-based 3-layer FL architecture with attacks which
will be explained in the next subsection is depicted in Fig. 2.
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Fig. 2: Edge system model with attacks

ELocal Device

Specifically, in each communication round, the central
server broadcasts the global model parameters to local devices
via the edge nodes. Local devices perform local training and
then send the updated parameters to their connected edge
nodes. Each edge node performs model aggregation for all
connected local devices before sending the aggregated model
parameters to the central server. Finally the central server
aggregates parameters received from all edge nodes to update
the global model which finishes one round of training. Note
that the edge nodes and the central server can apply different
aggregation rules. For edge node ¢ and the central server, we
define their aggregation rules as:

O = agge(¥e);  Wip1 = agge(©y), )
where agg® and agg. are the aggregation rules used by edge
node ¢ and the central server, respectively.

C. Threat Model

We assume a small fraction of local devices are compromised
by a Byzantine adversary, while the central server and the
edge nodes are benign. The attacker can launch data poisoning
attacks or local model poisoning attacks as described in Fig. 3.
In a data poisoning attack, the attacker replaces benign data
of each compromised local device with malicious data before
the training process starts. In a local model poisoning attack,
the attacker actively manipulates the model updates that each
compromised device sends to the central server during the
training process. The attacker’s goal is to prevent the training
process from converging or lower accuracy of the trained



model towards the entire target data distribution or specific
classes of data. In this paper, we consider remote Byzantine
adversaries who are unable to disturb the connections between
local devices and edge nodes but can manipulate training data
and the model update process of the local devices. These
attackers widely exist in real world. For instance, an attacker
can take control of a number of mobile devices remotely by
exploiting hardware or software vulnerabilities on the devices.
The attacker, however, cannot change the physical locations of
the devices as well as which edge nodes they connect to.
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Fig. 3: Byzantine attacks on local devices

IV. DISTRIBUTIONALLY AND BYZANTINE ROBUST
OPTIMIZATION

A. Overview

We propose an edge-based FL algorithm along with DRO,
FedAegis, to deal with the aforementioned challenges. To
tackle the Byzantine adversaries, we apply Byzantine-robust
aggregation on the edge node layer to mitigate the manipulated
updates. To handle non-IID data across benign devices, DRO is
applied to the overall learning model to improve both average-
case and worst-case accuracy. In our algorithm, the edge
nodes not only reduce the communication overhead, but more
importantly serve as the first line of defense against Byzantine
adversaries who would attempt to destabilize learning or lower
accuracy, while leaving as much benign information as possi-
ble for the central server to tackle the benign data heterogeneity
with DRO. Under the assumption of a remote Byzantine ad-
versary who cannot manipulate devices’ geographical locations
and connections to the edge nodes, this defense is expected to
work well in most cases where not all compromised devices
are connected to one or a few edge nodes. Next we introduce
the detailed techniques used in building this algorithm.

B. Byzantine-Robust Aggregation Rules

FedAvg is not robust under Byzantine adversaries since it
aggregates the malicious updates and fails to converge in
the training process as shown later in our results. To defend
against Byzantine adversaries, Byzantine-robust aggregation
rules have been proposed in the literature as defenses:
Trimmed Mean [13]: The intuition is to trim out the poten-
tially malicious local model updates and take the mean of the
rest local model parameters as the global model parameters.
It assumes the compromised models are likely the ones that
are distinct from most of the other local models. For the ¢th
parameter of the model, the central server first sorts all local
models’ ith parameters. The largest and smallest P% of the
ith local model parameters are then removed and for the rest,
the central server takes the average value as the ith parameter
for the global model. The time complexity is O(nlogn - d)
given n total devices and d model parameters.

Median Defense [13]: As its name, the median defense takes
the median value of each parameter among all local models as
the central server’s parameter. Taking the ith parameter of the
model as an example, the central server takes the median value

among all local models’ ith parameters as the ¢th parameter
of the global model. The time complexity is O(n - d).
Other Defenses: Defenses such as Krum [12] and Bulyan [14]
have high complexity and are unsuitable for large-scale FL.
For instance, Krum picks a local model closest to potentially
benign models w.r.z. Euclidean distance between model param-
eters as the global model. The time complexity is O(n? - d).
We apply a Byzantine-robust aggregation rule denoted as
aggp, at each edge node to mitigate malicious updates early
in the stage. Then, at the central server, we apply the FedAvg,
which takes the average of the intermediate aggregated models
uploaded by all edge nodes, weighted by the number of data
points under each edge node. Denote d; as the number of
data points of all local devices under edge node i, and D as
the total number of data points of all local devices. Then the

aggregation rules in Eq. (2) can be rewritten as:
di

) = agger(¥1); Wen =) 260, O)

C. Distributionally Robust Optimization
DRO is a technique that creates an uncertainty set based on
the empirical distribution of data. It can increase the robustness
of machine learning models by improving their performance
under the worst-case data distribution within the uncertainty
set. Inspired by [17], we design a DRO-based global loss
function for our FL. model.

Denote a machine learning model as h(w) with parameters
w € Q C R where d is the parameter dimension and {2 is
the parameter space; R is the real number set. Let the training
loss function associated with learning model h and data point
(z,y) be L(h(xz,w),y). The loss function denoted as F' is then
defined as the expectation of the loss for training data points
B = {(xk,yx) | k=1,...,s} of all local devices:

F(B,w) = B(ay e[ LMk, @), yk)]- )

Let the empirical distribution of all training data be P = {p;, =
1/s| k=1,...,s}. Define @ = {Q| >.7_, qx = 1} as the
uncertainty set, where Q = {¢qx € [0,1]|k = 1,...,s} is an
arbitrary probability distribution over the training data. The
difference between the empirical distribution and an arbitrary
Q € Q is defined via the Kullback-Leibler (KL) divergence.
For discrete probability distributions M and N defined on the
same probability space, X, the KL divergence from N to M
is defined as:

Dgu(M | N)=3_ _ Mx)log(M(z)/N(z)). (5)
Given an arbitrary distribution Q € O, we apply the KL
divergence between Q and PP as a regularization term to the
empirical loss function F'(B,w) over Q, and define the DRO
loss function as:

1
Do(w) = Ea,, g )~olL(M (2, W), yr)] — BDKL(@ | P). (6)

The hyper-parameter 3 along with the KL divergence controls
the distance between the empirical training distribution and an
arbitrary distribution in the created uncertainty set. The closer
a distribution Q is to the empirical distribution, the smaller the
value of the regularization term is.

The goal is to optimize the DRO loss function Dg(w) over
any distribution Q in the uncertainty set instead of just for the
empirical distribution to achieve robust performance. In other
words, we would like to find parameters w of the model h(w),
which minimize the maximum DRO loss over all distributions



in the uncertainty set:
i D . 7
arg min{max|Dg(w)]} ©)

To solve this optimization problem, we need to find the optimal

solution for the inner maximization problem and then minimize

the maximum inner objective by solving for the optimal model

parameters w. Thus, we first derive the optimal solution Q* for

the inner maximization problem as:

Q" ={q; = softmaz(BL(h(zk,w),yx)) | k=1,...,s}

(®)

Derivation of Eq. (8): Given any w, the inner problem can be

rewritten as a constrained optimization problem:

S
max kzl{qk [L(h

ma (200 ), )] — %qk log(sq)}. ©)

There exists a Lagrangian multiplier 4 € R so that Eq. (10)
below holds. To simplify, denote the loss L(h(zk,w), yx) for
data point (zx, yx) as Li(w). As Eq. (9) is strictly convex over
Q, based on the Karush—-Kuhn-Tucker conditions, we have:

Li(w) — %(bg(sqk) +1)+pu=0Vk=1,...,s 10,

E ° [ 1.
k=1
By solving Eq. (10), we can derive Q* as in Eq. (8).
Given Eq. (8) as the optimal solution to the inner problem,

we can then solve Eq. (7) as a general machine learning
problem. The gradient of the DRO loss function is as follows:

V. Do (w) = ZZ ) ‘mmm(w)

= Z V(L (@) = By yy)ne Vo (Lr(w))]-

As we can see frorn Eq. (11), with data sampled based
on Q*, V,,Li(w) is an unbiased estimation of the gradient of
DRO loss. Therefore, the optimization problem in Eq. (7) can
be solved using SGD via sampling data points based on the
distribution Q*. However, since Q* will not available until one
forward propagation over the entire training dataset B, we use
historical data to approximate Q* for the current round [17].
Let ¢, be the last round in which data point (2, yx) is sampled.
In round ¢, we approximate Q* with Q* = {§;}, where:

Gr = exp(BL(w0))/ Y exp(BLx(wr,)).  (12)

In Eq. (12), the denominator of the softmax in Eq. (8) is
replaced by the sum of stale exponentiated loss L, (w;, ) of
each data point (x,,y,) when it was last sampled, while the
numerator is the current loss Ly (w;) of the sampled data point
(g, yr). Ideally, we would like to sample from Q* during
training based on the above derivation. However, this is diffi-
cult to implement in FL since each local device independently
decides which data points to sample. Instead, in Algorithm 1,
we apply uniform sampling for each local device, and applies
d;, as a multiplicative weight to the loss gradient of data point
(zk, yr). This, however, requires each local device to obtain
the historical global information EL = )" _exp(fLx(ws,)).
To realize this, each local device needs to send its own ex-
ponentiated loss sum, EL; ;=3 p exp(BLy(wy,)), where
Bj is denoted as the dataset of local device 7, to the central
server via edge node ¢ after every round. The central server
then aggregates the exponentiated losses, and then sends the
aggregated exponentiated loss 'L back to each local device
in the next round. Directly applying the weights would result
in a very small value for the loss gradient (corresponding to

(1)

Algorithm 1: FedAegis

Input: training dataset B = U;’L:I B; with a total
number s; batch size b; learning rate 7; DRO
hyper-parameter 3 > 0; weight clipping range
[¢min, Gmaz]; Max communication round 7.

1 Initialize EL « 1;

2 for communication round t =1, 2,....,T do

3 central server broadcasts (W, EL) to edge nodes;
4 for Vedge node i in parallel do

5 edge node broadcasts (W;, EL) to local

devices;

6 for Vdevice j under edge node i in parallel do
7 uniformly sample a batch of size b in B;;
8 for data point (xy,yy) in the batch do

9 qy exp(@Lk(Wt))/EL;

10 (j]t — W_ChP (627 [Qmina %nax]);

1 ELi; < 325 exp(BLr(Wy));

12 Ul =Wy —n- 35 GV L (Wh));

13 | device j sends (V{, EL;) to edge node i;
14 O} < aggy(P4), EL; < 32, ELi j;
15 edge node i sends (©%, FL;) to central server;
16 | Wit <Y ie BOLEL«+ L3 EL;, ;

a significantly reduced learning rate). Thus, we normalize §;
to q; = sd; =exp(BLy(w:))/EL by the total number of data
points s of all devices, where EL=FL /s, to keep the same
scale of learning rate as sampling from Q*. This way, each
local device obtains the global information to compute g of
each sampled local data point, which is then multiplied to the
loss gradient of each data point before the local updates.

D. FedAegis: Edge-based Byzantine-robust FL with DRO
Combining Byzantine-robust aggregation with DRO, our edge-
based FL algorithm, FedAegis, is shown in Algorithm 1. In
FedAegis, a communication round starts with the central server
broadcasting the global model parameters W, and the E'L in
Lines 3 and 5. The local training on each device is in Lines 6-
12. Line 9 calculates the weight of each sampled data point
for its loss gradient. To tackle instability that these weights
bring, we use weight clipping [17] to clip the weight values
that are beyond a range of [¢min, Gmaz] in Line 10. Line 13
updates the local model parameters and £ L; ; under edge node
1. Edge node 7 then aggregates the model parameters using
median defense and calculates EL; =} ; EL; ; in Line 14. In
Line 15, the aggregated parameters and EL for edge node 1@
are sent to the central server. Next, the central server aggregates
parameters from all edge nodes via FedAvg in Line 16 and
obtains the updated global model parameters W;_ 1, meanwhile
calculating EL=1 %", FL; for the next round.

V. PERFORMANCE EVALUATION

A. Experiment Setup

1) Models and datasets: We used convolutional neural
networks (CNNs) to train and test on three datasets with
their default training-testing data splitting: MNIST [18], FM-
NIST [19] and CIFAR-10 [20]. These are benchmarks for
supervised image classification. Specifically, CNNs with 2
convolutional layers and 2 or 3 fully connected layers were
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Fig. 4: Average test accuracy for the three datasets under non-IID data setting and different attack/no-attack scenarios

used for MNIST, FMNIST and CIFAR-10, with 21840, 12128
and 62006 total parameters respectively. More complex models
could be used for higher accuracy. In MNIST and FMNIST,
there were 600 local devices each with 100 data points, and
20 edge nodes each connected to 30 devices. In CIFAR-10,
there were 500 devices each with 100 data points and 10 edge
nodes each connected to 50 devices. To simulate non-IID data
for local devices, we divided each dataset into 5 sub-datasets,
each containing data points of only 2 classes. In all algorithms,
50 devices were randomly picked in one round. In our 3-layer
architecture, 5 edge nodes with 10 devices under each were
randomly picked in one round. Default hyper-parameters are:
n = 0.01; B = 10; ¢min = 0.6; @maa = 6; T" = 500.

2) Byzantine Adversaries: We implemented one type of
data attack and three types of local model attacks. Denote
the set of compromised local devices before attack as A,
and benign local devices as I' with |T'| = P-n. The default
percentage of compromised devices for each dataset was:
P =10% for MNIST, P = 6% for FMNIST and P = 1%
for CIFAR-10. Compromised devices were distributed evenly
under each edge node. The details of the attacks are as follows.
Gaussian Attack: The attacker replaced the weight updates
of compromised devices with tensors drawn from a zero-mean
Gaussian distribution. The corrupted local weight update for
device a € A is U = N(0, 0?), where o was the attack
strength with a default value of 200.

Omniscient Attack: The weight updates were replaced by
the negative of it multiplied by a scalar S denoting the attack
strength with a default value of 10. The corrupted local weight
update for device « € A is V¢ = —5 - U,

Inner Product Manipulation (IPM) Attack: The attacker
replaced weight updates with negative tensors of average of
all benign weight updates. IPM attack was based on the strong
assumption that the attacker can eavesdrop on the updates of
all devices. A scalar S was used to adjust the attack strength
with a default value of 20. The corrupted local weight update
for device a € A is ¥ = —ﬁ > ner U7

Data Attack: We launched a label flipping attack where the
labels of data points on each compromised local device were
flipped from one class to another chosen by the attacker.

In our results, we denote Gaussian attack, Omniscient
attack, IPM attack and data attack as MA 1, MA 2, MA
3 and DA, respectively. We compared our algorithm with
several state-of-the-art non-robust and robust FL algorithms.
FedAvg with a cross-entropy loss function, is denoted as FA.
When DRO is added to the original loss function, we denote
it as D. When trimmed mean defense is used but without
DRO, we denote it as TM; similarly when median defense

is used, we denote it as M. Our algorithm is denoted as FAS.
Noting that our algorithm could be sensitive to the distribution
of local devices under the edge nodes, we considered two
typical distributions of the local devices: a random distribution
where local devices under an edge node possessed data from
randomly selected sub-datasets, and a disparate distribution
where each edge node only served devices with data from
the same sub-dataset. We denote our algorithm applied in the
former case as FAS-R and the latter as FAS-D.

3) Metrics: We evaluated the performance of different
learning algorithms using accuracy and Fj score under the test
datasets. Specifically, to evaluate the robustness of learning
algorithms against heterogeneous data, we evaluated the F}
score of the worst-performing classes in testing. The balanced
F-measure is widely used in the literature, which is the
harmonic mean of precision and recall: F; = 2/(recall™ +
precision’l). For our ten-class datasets, instead of the bal-
anced F-measure which aims two-class classification problem,
the unbalanced F-measure was used instead. Consider a subset
of classes C, and let the probability of a data point belonging
to any class in C be p. Let r be the probability that our
prediction is correct. For instance, assume all classes have the
same number of data points, then for a single class C' = {c},
we have p = 0.1. This leaves us with: True Positive = npr;
False Negative = np(1 — r); False Positive = n(1 — p)r;
True Negative = n(l — p)(1 — r). Therefore, we have the
unbalanced F-measure: F| = 2rp/(r + p). From this equation,
F| is monotonously increasing with r € (0, 1). The maximum
value of the unbalanced F-measure is: Fy, . = 0.1819 with
r = 1, p = 0.1. For our unbalanced F-measure, every empirical
Fy value was divided by FY .. to make a normalization.

B. Evaluation Results

1) Average test accuracy: The average test accuracy, which
is the average accuracy of all test devices, for MNIST, FM-
NIST and CIFAR-10 under default percentage of compromised
devices and attack strength is in Fig. 4. When facing non-
IID data without attack, FA performed better than TM and
M for all three datasets. This shows that trimming off local
model updates as in TM and M leads to lower accuracy.
Among all attacks, the data attack was relatively weak, and
could be defended by all algorithms even including FA. This
is consistent with the observations in [6]. Under local model
attacks and non-IID data, FA and D with no defense were not
able to converge. The TM defence was also non-converging
when facing the combined effects of both non-IID data and the
attacks. Noting that a test accuracy of 10% means a random
guess and indicates the non-convergence of FA, D and TM
under attacks. M alleviated the non-convergence problem but



was not able to maintain a high accuracy on the test datasets.
Under both random and disparate device distributions across
edge nodes, our algorithm (FAS-R and FAS-D) managed to
tackle the two challenges at the same time and remained
Byzantine-robust as well as achieved high accuracy at all times.
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We further used FMNIST to test different attack settings
to show effectiveness of our algorithm, including with 50%
or 150% of the default percentage of attack devices (P) or
the attack strength (5), as shown in Fig. 5. We only show the
results of FAS-R, FAS-D and M, since D, TM and FA are not
robust under attacks from Fig. 4. The accuracy of M decreased
as P or S went up. FAS-R and FAS-D remained the same level
of test accuracy under different settings, further showing their
robustness under different attack power with non-IID data.

2) Worst-class performance: In Table I, we show the
average worst one, two and three classes normalized F scores
for the test datasets. Only algorithms FAS-R, FAS-D and M
are shown since the others are not robust under attacks. In
almost all cases, our algorithm (FAS-R and FAS-D) reached
the best average worst-class normalized F; scores. M in rare
cases may slightly outperform for k=3 worst classes, by sacri-
ficing performance of the worst 1 or 2 classes. This indicates
that our algorithm improved the worst-case performance for
heterogeneous data under attacks, further demonstrating the
strong robustness advantage of our algorithm.

Metric Average Worst k-class Normalized F' Score

Setting k=1[k=2[k=3]k=1]k=2]k=3[k=1]k=2]k=3
Attack| Method MNIST FMNIST CIFAR-10
FAS-R (5.335/5.366(5.392|1.551|2.375|2.799|0.965|1.056 |1.312
MA 1| FAS-D |5.105|5.168|5.177|0.147|0.565|0.866 | 0.096|0.116 | 0.385

M |1.778]1.862{1.912|0.083|0.535|0.777|0.003|0.008|0.014
FAS-R (5.320(5.352{5.380(1.209 (2.194 |2.663|0.620|0.763 |1.055
MA 2 | FAS-D |5.205|5.230|5.254|0.103|0.488|0.5800.076|0.090|0.355

M [1.691]1.783]1.834/0.043]0.391]0.767|0.011|0.024|{0.047
FAS-R (5.339(5.382(5.409 (1.649 |2.465 |2.882|0.553|0.672(0.965
MA 3 | FAS-D |5.309|5.316|5.330/0.197|0.538|0.781|0.056|0.067 | 0.340
M [4.619]4.745]4.832(0.172]0.496(0.999(0.004|0.010{0.029
TABLE I: Average worst k-class normalized F1 score for the
three datasets under different attacks and non-IID data

VI. CONCLUSIONS
In this paper, we proposed an edge-based hierarchical fed-
erated learning algorithm, FedAegis, to tackle the problems
of Byzantine adversaries and heterogeneous data distributions
in FL. FedAegis applies Byzantine-robust aggregation at the
edge nodes to defend against Byzantine adversaries early in the
communication round. This serves to stop the attack as early
as possible meanwhile leaves sufficient information for the
central server to further tackle data heterogeneity across benign
devices. To address the heterogeneous data distributions, we
applied distributionally robust optimization to customize the
loss function of the training model, which defines an uncer-
tainty set around the empirical data distribution to capture the

different devices’ data distributions. We evaluated FedAegis
and compared it to state-of-the-art non-robust and robust FL
algorithms on three datasets: MNIST, FMNIST and CIFAR-
10. The results showed that FedAegis could not only improve
the test accuracy and the worst-case performance for non-
IID data, but also remained robust under Byzantine attacks,
outperforming state-of-the-art algorithms which either did not
converge or had low average and/or worst-case performance
when facing both non-1ID data and Byzantine attacks.
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