This article has been accepted for inclusion in a future issue of this magazine.

Principles and Practices for Application-Network Co-Design
in Edge Computing

Ruozhou Yu, Senior Member, IEEE, Guoliang Xue, Fellow, IEEE

Abstract—Edge computing promises low-latency and high-
throughput real-time processing to enable critical and life-
changing future applications such as fully autonomous driving
and metaverse, and is receiving wide interest from application
designers, service providers and academic researchers. As for now,
however, the full power of edge computing has yet been unleashed,
as stakeholders face difficulty in realizing the promised services
and hence investment and efforts waver. This article describes
a new conceptual framework, called the application-network co-
design approach, to align and direct efforts across application,
computing and networking domains towards fully fledged edge
computing. At a high level, we introduce current practices and
efforts in edge computing, identify limitations of existing efforts,
present the overarching goal and principles of the co-design
approach, and discuss existing and future prerequisite technologies
for implementing the approach. We illustrate the principles and
process of the co-design approach with two compelling edge
applications: autonomous driving and virtual/augmented reality
for metaverse.

Index Terms—Edge computing, real-time applications,
computing-network convergence, application-aware networking,
end-to-end performance guarantee

I. INTRODUCTION AND BACKGROUND

Edge computing is a computing paradigm where computing
resources, such as edge servers or micro-data centers, are
deployed within edge networks such as the cellular network
where end devices like mobile phones or robots are directly
connected [1]. When computing is near data sources or sinks,
it can significantly lower network latency and save network
bandwidth for data transmission. This is in contrast to cloud
computing, where computing power is remotely in the Internet
core, and hence end-to-end performance is highly affected by
the unstable and unpredictable Internet used to access the cloud.

The need for edge computing comes from modern applica-
tions that crucially need ultra-low latency and high throughput.
Examples include autonomous driving, virtual/augmented real-
ity (VR/AR) and smart manufacturing. Using the cloud would
likely violate these applications’ performance requirements,
making them unusable or unsafe to use. Edge computing also
improves user experience of many other applications including
web services, internet-of-things (IoT), smart cities, connected
healthcare, and many more.

Edge computing’s goal is to support applications’ stringent
performance goals that cannot be satisfied by traditional cloud
computing. Performance goals are commonly in terms of
quality-of-service (QoS) metrics such as latency, throughput
and reliability. Many edge applications specifically have end-
to-end QoS goals. For instance, a self-driving car may require
sensory processing results to be received within 100ms of data
generation. This includes time spent on both computing and

communications. Violating the 100ms end-to-end bound may
lead to accidents or crashing due to decision-making based on
stale information.

In an edge computing ecosystem, several key stakeholders
exist, each with distinct goals:

Infrastructure providers: Computing and network are man-
aged by computing and network providers respectively. They
may be different parties, e.g., when a cloud provider deploys
regional micro-data centers in contract with a local Internet
Service Provider (ISP). In other cases, a single computing-
network provider owns and manages the entire infrastructure,
e.g., a cellular provider deploying mobile edge computing
(MEC) in her cellular network. Their goal is to maximize
revenue by providing computing/network resources that meet
application needs, subject to resources owned, and deployment,
maintenance and utility costs.

Application owners and users: An application owner seeks to
deploy and operate her application in the edge network, in place
of or complementary to the cloud. The goal is to serve users
with usable and satisfactory performance. If performance de-
grades, the owner may lose revenue or face legal issues (such as
accidents involving self-driving cars). An owner’s tasks include
requesting resources from infrastructure providers, configuring
the application at the edge, and maintaining its operation. Their
goal is to maximize or guarantee user satisfaction, subject to
costs for edge deployment and operations.

Platform providers: Platform providers may arise in edge
computing to orchestrate resources from multiple computing
and network providers. A platform provider meets-and-matches
applications’ needs with providers’ offerings, and earns revenue
by charging service fees from one or both parties. It is not
uncommon that a platform provider is also an infrastructure
provider. For instance, an ISP that has contracts with multiple
computing providers can take advantage of her role and act as
an intermediate exchange who provisions computing services
from different providers for applications. Their goal is to
maximize revenue by orchestrating resources from multiple
infrastructure providers.

Born as a performance-oriented paradigm, edge computing
faces unique challenges to satisfy performance goals of edge
applications and users. Edge computing features geo-distributed
computing resources to bring computation to users, but any
given location has limited resources. Thus hotspots may arise
when users are crowded in certain areas. User mobility ex-
acerbates the problem since hotspots may move over time.
Furthermore, a user’s perceived performance is affected by
many factors. Some are controlled by providers and application

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this magazine.

owners, such as resource and application configurations. Other
factors, such as wireless channel conditions, user mobility and
hardware/software failures, are not controlled by any party.
These make it exceptionally difficult to provide stable and
guaranteed performance to edge application users. The issue is
also aggravated by the diverse goals and ad hoc management
of different stakeholders above. Their uncoordinated efforts
could lead to ineffective performance optimization and resource
wastage due to obliviousness of each other’s knowledge and
decision-making. The next section elaborates on this last issue
from an academia perspective.

II. CURRENT APPROACHES AND LIMITATIONS

The community has taken diverged approaches to define how
edge computing should work:

Computing perspective: One line of research spans from
distributed and cloud computing. Here, edge computing is
regarded as a distributed cloud environment (called an edge-
cloud) compared to a centralized cloud. Research has focused
on managing virtual machines (VMs) or containers to satisfy
applications’ computation needs. This aligns with the cloud
paradigm where computing is the only (sensible) need to be
served. Key techniques inherited from cloud computing include
auto-scaling to tackle dynamic load, load balancing to reduce
overheating, failover to handle hardware/software failures, etc.

Most efforts along this line overlook or underrate the im-

pact of networking in edge computing. Assumptions such as
access links as bottlenecks, static pair-wide bandwidth, regular
network topologies or perfectly stable channels are frequently
made but seldomly justified in practice. As such, existing tech-
niques can barely provide end-to-end performance guarantees,
which is similar to the cloud.
Networking perspective: Another line originates from the
networking community. Here edge computing is tied to the
network that it is built upon. For instance, MEC builds
computing power directly within mobile networks. Existing
research on MEC thus emphasizes network components and
their interplay with computing, including bandwidth/radio allo-
cation, communication scheduling, routing, mobility handling,
etc. Taking communications into account enables identifying
network bottlenecks and is essential for modeling end-to-end
performance.

A heritage from traditional networking is the focus on best-
effort services for aggregate traffic, and thus negligence of
individual applications’ or users’ needs. For example, network
queueing theory usually studies average queueing delay or
long-term queue stability, while neglecting worst-case perfor-
mance experienced by few users. Network QoS is implemented
via limited priority classes (e.g., DiffServ) in coarse granularity.
Moreover, application-agnostic networking lacks the ability to
model end-to-end processing of user demands in distributed
applications. These significantly hinder realizing end-to-end
performance guarantees.

Application perspective: Finally, many efforts focused on
designing applications that utilize edge computing. Content de-
livery, video streaming and IoT are by far the most successful,

Goal: QoS/QoE
performance
Constraints:
budget, demands

(&) () (%)

App-Net
Co-Design

Aygreement
lAyccountability
lAYbstraction

(%) () (&

Goal: revenue
Constraints:

resources, cost, _/

penalty

&) (®)

Goal: revenue

Lyutomation

Constraints:
resources, cost,
penalty

Fig. 1: Application-network co-design represents a convergence of
efforts from different parties for delivering satisfactory and guaranteed
edge computing performance, with four major principles: agreement,
accountability, abstraction, and automation.

but many more are in progress including autonomous driving,
metaverse, smart manufacturing and connected healthcare. As
many edge applications are still immature, there has been
limited understanding in the actual performance and cost-
efficiency of these applications, and in return how applications
affect design and management of the edge.

As a key limitation, current efforts mostly assume that each
application exclusively occupies the entire edge, including com-
munication channels and computing servers. This would lead
to over-optimistic estimation of edge computing’s costs and
benefits. In some cases, this might cause unexpected failures
or violation of applications’ performance goals, and lead to
safety issues in use cases such as autonomous driving.

From the above, the lack of coordinated knowledge and
efforts across computing, networking and application domains
has become the root cause of many obstacles faced by edge
computing. A principled approach is in-need to remove the
barrier across these domains and align their efforts.

III. THE CO-DESIGN APPROACH
A. Overview

Application-network co-design' (a.k.a., the co-design ap-
proach) is a principled approach to integrate networking, com-
puting and application domain efforts for joint edge resource
allocation and performance optimization, shown in Fig. 1. In
this approach, all efforts are centered around satisfying end-
to-end performance goals of each and every accommodated
edge application, subject to resource, cost, energy, overhead,
topology, and other constraints posed by the application owner
and edge providers. Its core lies in closely coupling applications
with computing and network management through (dynamic)
provisioning and service-level agreement (SLA) guarantees.
The following “4A” principles guide the design and implemen-
tation of co-design solutions:

'As application and computing are always coupled in practice, we omit
“computing” in naming our approach for brevity and to emphasize the conver-
gence between application and network that differs from existing paradigms.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this magazine.

Agreement: Achieving end-to-end performance guarantee re-
quires cooperation and mutual agreement among all parties.
SLAs are extensively used in the Internet and the cloud to
express mutually agreed performance goals, with negotiated
compensation terms when requirements are violated. Tradi-
tionally, SLAs are established for per-component availability
goals, e.g., “5Mbps data rate for link A for 99.9% of time”.
At the edge, due to stringent performance requirements, a
major paradigm shift is from component-wise SLAs to end-
to-end SLAs. For instance, an application owner may request
for “100ms end-to-end latency for 99.9% of user requests
with up to 500 requests-per-second”. The guarantee covers the
entire process from when a request leaves a user device until
when computation result is received by the device, traversing
territories of all parties: the edge network, computing node(s),
and application software. Naturally, fulfilling the guarantee
requires collaboration, coordination and accounting across all
parties.

Accountability: SLAs are associated with financial interests
like application owners’ costs and providers’ violation penalty.
Hence accountability is essential. Before an SLA is negotiated,
all parties need to obtain and agree on an accurate, reliable
and trustworthy performance model of the target application.
This ensures that all parties correctly understand: 1) if the SLA
terms can be fulfilled by available resources, 2) configuration
and resource allocation required to fulfill the SLA, 3) realms
of responsibilities of each party for fulfillment, and 4) how
to detect and attribute an SLA violation. Performance model
can be obtained by profiling the application in a controlled
environment, e.g., a virtualized edge environment run by a
provider that emulates the real environment. After an SLA
is established, runtime measurement is needed to validate the
SLA terms, detect violation and attribute faults. An accounting
module is needed to collect, analyze and store measurement
results, with a certified method for result validation documented
in the SLA. Agreement and accountability (with incentives
or penalty) jointly forms the basis of realizing secure and
trustworthy edge environment.

Abstraction: Heterogeneity widely exists in the edge. Co-
existing applications have different processing components,
structures, traffic patterns, and performance goals. Furthermore,
edge resources including communication channels, comput-
ing devices and virtualization technologies differ. A general
abstraction is required to capture the inter-play between ap-
plication structure, user demands and edge resources. Take
the realization graph abstraction in [2] as an example. A
realization graph defines essential elements for realizing an
application, including: which edge nodes host each application
component, how to distribute load between components, and
what constitutes an end-to-end processing realization of a user
request for which the end-to-end performance can be measured.
Such an abstraction not only guides provisioning algorithm
design, but also defines how the provisioning result is realized
in the edge. The abstraction in [2] is however network-agnostic.
Abstractions fully embracing the co-design approach is further
needed.

Automation: The edge environment is volatile with wireless
links, mobility, and demand changes. This necessitates au-
tomated responses to dynamic events, including on-demand
resource provisioning and dynamic SLA establishment. Auto-
mated responses can be triggered by predicted demand changes,
or explicit requests from users. For instance, an autonomous
driving application can request for additional resources at
intersections that may become congested; a multi-player VR
game can request for a short-term SLA for each matched
game initiated by its users. Machine intelligence can play key
roles for tasks such as demand prediction, automated resource
provisioning, and SLA negotiation. Automation is crucial for
alleviating the operation and coordination overhead of our
approach.

B. Key Prerequisites for the Co-Design Approach

The co-design approach requires computing services that can
be dynamically and automatedly orchestrated with performance
isolation, such as VMs and containers. Cloud native solutions
such as Kubernetes and KubeVirt are readily available for
dynamic orchestration, instance migration and auto-scaling for
VMs and containers. Application profiling is a widely used
technique for performance modeling and optimization [3].
These current technologies are ready to embrace the co-design
approach, pending support from the other parties.

Network prerequisites: Network operations in co-design must
be able to identify individual applications’ traffic flows, isolate
network resources (e.g., bandwidth and priority queues), and
measure QoS of each traffic flow. Traditional networks are
difficult to implement this approach since routers/switches have
a limited number of queues, and networks are designed to
be application-agnostic. Programmable and software-defined
networks (SDNs) are the de facto approach to application-aware
networking. For example, P4-supported routers/switches can be
used to dynamically program the network for measurement [4],
routing and traffic engineering; software-defined radio with
srsSRAN or alternatives can support dynamic allocation of
radio resources in runtime [5]. Additionally, network measure-
ment with ultra-fine granularity (e.g., nanosecond-level packet
timestamping [6]) is seeing its way into large-scale testbeds
and likely production environments soon, offering tools for
accurate and intelligent network monitoring. As most of these
functionalities are already implemented, additional overhead for
co-design is mostly incurred in the control plane that commonly
has sufficient resources in SDNs.

Application prerequisites: A co-designed application requires
several considerations during design and implementation. First,
native measurement and accounting are needed for end-to-
end SLAs. This requires a built-in measurement module that
can 1) track end-to-end performance of user requests, 2)
obtain component-wise performance breakdown for bottleneck
identification and resolution, and 3) incur minimal impact
on application performance. OpenTracing and alternatives [7]
represent a promising approach, enabling distributed tracing of
a user request from end to end. Each application component
processing a request records and reports the accurate times-

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this magazine.

tamps of reception and transmission. The overhead of fine-
grained measurement can be minimized by sampling only a
fractions of requests for tracing, such as one in a thousand.
All measurement data should be gathered at a central, trusted
server, where the data is analyzed to detect any SLA violation
and to make dynamic adjustments.

Second, the application should have maximal deployment
flexibility and low migration overhead. A modular design
with singletons or loosely coupled components allows dynamic
deployment and migration in face of changing environment
and dynamic load. Microservices and serverless computing are
examples of suitable design paradigms, both enabling runtime
adjustment of service deployment and/or inter-dependencies
across services.

Third, automated management is needed for the application.
This includes measurement and accounting aforementioned,
but also user modeling and demand estimation, adaptive con-
figuration such as load balancing, and interfacing with com-
puting/networking for provisioning and negotiation. While no
existing product is available to automate all these tasks, service
meshes and orchestrators are good candidates upon which fully
automated management modules can be implemented.

IV. CASE STUDIES WITH EXAMPLE APPLICATIONS

Example 1: Autonomous Driving Use Case

Autonomous driving vehicle (ADV) is an important use case
of edge computing. ADVs need to process sensory data and
make driving decisions in real time. Vehicles further need to
collaborate for safe driving. For instance, automated platooning
enables a group of vehicles to drive together at the same speed;
collaborative perception allows vehicles to remove blind spots
via data sharing and view merging. In general, an end-to-end
autonomous driving system can be decomposed into various
tasks, which can be implemented across on-board units (OBUs)
and the edge based on task requirements.

Consider an ADV system supporting three high-level tasks
in Fig. 2(a): collaborative collision avoidance (CCA), collab-
orative blind spot removal (CBR), and route planning (RP).
Perception, ego state management and control are basic com-
ponents commonly implemented at OBUs. Components such as
object tracking, localization, mapping, and motion planning can
be implemented at OBUs, in the edge, or both at the same time
serving different tasks. The three high-level components (CCA,
CBR and RP) all rely on fusing data from multiple vehicles,
and are best implemented with help of the edge.

On-board and edge components communicate via the
vehicle-to-infrastructure (V2I) interface defined in IEEE
802.11p or 3GPP C-V2X standards [8]. Vehicles share the
wireless channel via broadcast communication. Messages from
different components have different sizes and rates. The high-
level tasks (CCA, CBR, RP) also have different real-time
requirements: CCA requires maximum end-to-end latency of
25ms, CPR requires 100ms, and RP has sub-second or higher
latency bounds [9]. In a typical application-agnostic network,
all messages randomly access the wireless data link, and

share the same bottleneck if the channel is busy (e.g., at a
crowded intersection). Computing at the edge that does not
respect the limited link resource will experience poor end-to-
end performance even if computation is done in real-time.

To employ the co-design approach, first a profiling step is
taken jointly by the application owner and edge providers. A
virtual environment is setup by providers to run offloadable
components of this application. The application owner supplies
sample user demands, such as via test vehicles. End-to-end
tracing is enabled in profiling, and measurement data are stored
and analyzed. From profiling, a performance model is derived
with information on: 1) traffic volumes between on-board and
edge components, 2) network latency and throughput given
channel conditions and radio bandwidth, and 3) computation
latency and throughput given different resource configurations.
Note that profiling can be done in a privacy-preserving manner:
providers need not know exact functionalities of components,
but just regard components as black-box programs and observe
that profiling is done in a reliable and trustworthy manner.
After done, data and profiled model are stored by all parties
for provisioning and auditing.

After profiling, the application owner can initiate SLA re-
quests. A distributed optimization algorithm governs the ne-
gotiation process. In the algorithm, providers take as inputs
application components and inter-dependencies and map them
to computing nodes and network paths with resource allocation,
generating one or multiple realization plans. The plans and
pricing are then sent to the application owner, who inspects
and picks the best plan given her end-to-end performance
goals and budget. An example is shown in Fig. 2(b). The
application owner can dynamically request SLAs to handle
changing demands at different locations.

At runtime, distributed tracing is employed for randomly
selected vehicle requests for end-to-end inspection. If SLA vio-
lation is detected, data will be sent to all parties for validation.
Penalty will apply when a provider is found liable.

A key for the ADV use case is risk-awareness. Since the
scenario is safety-critical, highly reliable SLA satisfaction is re-
quired, and any violation case must be handled with precaution.
For instance, a vehicle should host backups for any offloaded
component to tackle failures or lagging. The backups need not
consume much computation power, but must be standby to
tackle any emergency. Resource provisioning needs to tackle
unexpected variations in communication, mobility and demand.
Risk measures such as conditional value-at-risk, and robust
approaches such as distributionally robust optimization, should
be employed for robust provisioning.

Example 2: Multi-User VR/AR Use Case

VR/AR is another scenario where edge computing is highly
desired. VR/AR applications need to process and deliver visual
data to users in real-time to have acceptable user experience,
and have tighter latency requirements than most other appli-
cations. An end-to-end rendering latency of over 15-30ms can
already cause motion sickness to users [10]. Multi-user VR/AR,
such as multi-player gaming or teleconferencing, is more chal-

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this magazine.

Motion L—‘

|Actuators H Control I‘

I
| Planning (MP) [+

High-level Components

Primitive [| | Obect K2 Primitive | "World Updat Global
Components jec Components i | Worid Jpdate oba
Ego State | | Tracking (OT) ‘ oo CCA }‘ Perception | K (WuU) H Synchronization
| Sensors ! Cameras &
—*| Localization (L) oo CBR egbe Sensors m Local \/(|I<_a\>/\L/J)Update
Perception T
—»| Mapping (M) oo RP o ‘

I bkt A
| P|i;\’/;]rs|(;1r§l1t Action |~— \\ Local Action
Update (LAU)
. Local | [Visual Rendering
| Display Rendering | | (VR) High-level

Components

(a) An ADV system with three high-level tasks: collaborative collision avoidance

(CCA), collaborative blindspot removal (CBR), and route planning (RP).

[\‘/ Road-side unit {&/BS g Cloud => Upstream < Downstream]

& OT, L, M,
:’\‘/

Perception Data

Ego State

2,
g

A

&\ @

—
——
L)),

Up/Downlink Allocation —Edge Routing & Bw Allocation

(b) An example realization of the ADV system with offloaded mid- and
high-level tasks. In addition to task placement (computing), it also includes
network routing and resource allocation.

Fig. 2: Autonomous driving vehicle (ADV) use case illustration.

lenging since users are distributed and hence communications
can be excessive yet tightly latency-budgeted.

Due to hardness of processing and transmitting raw video
captures or game frames in real-time, many VR/AR applica-
tions employ layered processing. Specifically, user view updates
are divided into different layers, processed by different compo-
nents [10]. For instance, in VR gaming, one layer corresponds
to game world changes such as monsters spawning or demising,
which needs to be synchronized among all players but does not
need ultra-low latency; another layer corresponds to a player’s
local changes such as facing direction change or player action,
which needs immediate feedback. To improve responsiveness
to action-triggered events, user behavior prediction can be
employed. Processing components can be deployed across user
devices, the edge and the cloud. An example is shown in Fig. 3

A co-design approach again begins with profiling with real
or synthesized games or meetings, where a performance model
in terms latency, throughput, resources and demands (number
of users and traffic per user) is generated. Then, dynamic SLA
negotiation and provisioning can take place on-demand. For
instance, when a new matched game or meeting is initiated, a
short-term SLA can be negotiated to cover exactly the period
of the game or meeting. This ensures on-demand pricing and
avoids resource under-utilization. Since user behaviors and
traffic demands are relatively static for these applications, risk-
awareness is not as crucial as in autonomous driving, except
when users exhibit high mobility or dynamic wireless channels.
Finally, runtime SLA validation again takes place with end-to-
end tracing and measurement, and violation is punished post
completion of each SLA.

(a) A multi-player VR/AR game with local and global updates.

[O VR User 4, BS o=3 Regional DC => Upstream <= DownstreamJ
e

© B =]
%0 Rendering Data < e

Up/Downlink Allocation Edge Routing &
Bw Allocation

| Local Updates & Rendering |

Perception/Action Data

© @

SN e
s)

(b) An example realization of the game with asynchronous local-global
updates, including routing and bandwidth allocation.

Fig. 3: Virtual/augmented reality (VR/AR) use case illustration.
V. ROADS BEHIND AND AHEAD

A. Relationship to Existing Approaches

The idea behind the co-design approach is not new. It nat-
urally inherits from concepts and paradigms such as net-
work function virtualization (NFV), service-oriented archi-
tecture (SOA) networking, or application-aware networking
(AAN) [11]. All of these seek the closer coupling between
application/service, computing, and networking than traditional
agnostic approaches. Nevertheless, there exists a fundamental
conceptual shift from existing concepts to this new approach. In
existing concepts, it is common that one domain serves as the
“first-class entity” who defines the primary objective of design
and optimization, and other domains are mainly in support
roles. For instance, in SOA and the succeeding microservice-
based architecture, the primary goal is to design software that is
composed of loosely coupled or independent services, and com-
puting and networking serve support roles whose constraints
and goals are seldom considered in application design. In AAN
or NFV, the primary goal is instead the optimization of network
operations in terms of improved efficiency and reduced cost,
while applications are regarded as given and fixed and their
performance goals commonly served with “best effort”.

The co-design approach is one step further in integrating
efforts and aligning goals across all domains. All parties have
commensurate rights in pursuing their own goals (e.g., perfor-
mance for application owners, and revenue for edge providers),
in the mean time being obligated to satisfying requirements and
constraints posed by each other. Their awareness of each other,
willingness to collaborate and form agreements, and means of
enabling such collaboration are thus of crucial importance to
success of this approach. These do not mean full disclosure of
each party’s intentions and information to the other parties (e.g.,
full details of the application software or resources in the edge).
Each party can participate by only exposing the level of infor-

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this magazine.

mation that it is willing to disclose, for instance, a realization
plan might only contain number and types of VMs/containers,
guaranteed data rate or latency between VMs/containers, and
associated cost; details of how these resources are orchestrated
can be hidden from the application owner for security or privacy
reasons. Technically, SOA or AAN allows one party to centrally
manage the optimization task by taking inputs from other
parties, while the co-design approach enables decentralized
negotiation and optimization among all parties in a cooperative
and automated manner.

B. Challenges and Future Directions

We have identified several challenges and places where efforts
are needed for the co-design approach to be practical.
Federated optimization: The term federated optimization ex-
tends from federated learning, and is a generic method for dis-
tributed optimization while preserving data privacy of involved
parties [12]. It allows the application owner and edge providers
to jointly optimize for resource provisioning and negotiate
the SLA terms, without revealing sensitive information such
as network topology or application demands to each other.
The method involves formulating a decomposable formulation,
where each party holds part of the variables, constraints, and/or
objective function. Parties are involved in a distributed itera-
tive process such as primal-dual decomposition or distributed
stochastic gradient descent to jointly solve the formulation.
Messages exchanged only reveal intermediate results such as
gradients or aggregate dual prices but no raw data of each party.
Designing privacy-preserving federated optimization algorithms
will not only address the privacy concerns, but also reduce the
cognitive and operational overhead for secure data management
in the co-design process.

Robust, risk-aware and adaptive optimization: Resilience is
crucial at the edge [13], [14]. Robustness methods proactively
tackle unexpected situations such as hardware/software faults
or demand bursts, making sure that resources are always
available to cover up all except some rare cases. Risk modeling
and optimization further allow minimizing the probability and
costs of potential SLA violations in the rare cases. Automated
adaptation ensures that even a rare unfavorable situation arises,
the system has contingency plans to ensure safe and acceptable
operations until the situation is resolved.

Game theory-based incentives: Keep in mind that providers
have goals centered around revenue, and application owners
have budget considerations. Incentive mechanism, including
pricing, cost management and violation penalty/compensation,
is an integral part of an edge system [15]. An on-demand
market mechanism, i.e., one where resource prices are closely
tied to demand and supply of resources, works favorably
toward everyone’s interest: 1) application owners can purchase
resources and SLAs only when needed without long-term
financial commitment; 2) edge providers can set low prices at
low demand to attract more buyers, and set high prices when
demand is high to boost revenue. Mechanism design should
however be strategy-proof and trustworthy. In other words,
no one should neither be able nor has incentive to deviate

from the aligned goal of all parties or deliberately harm the
system. Truthful mechanisms, for instance, are valuable tools,
which ensure that each party achieves the highest utility when
behaving cooperatively.

Accountable design and SLAs: Traditional network measure-
ment tools face difficulties in obtaining both end-to-end and
per-component breakdown measurements in a trustworthy way.
Distributed tracing with high-accuracy network-wide clock
synchronization is a promising way. For all parties to trust the
measurement result, the measurement process should be totally
transparent or verifiable to every party involved. Note that this
almost contradicts the privacy requirements of different parties,
and hence privacy-preserving validation methods are needed.
Promising methods include: trusted execution environments
(TEEs) for providing trusted and verifiable results, privacy-
preserving or secure computation for privacy guarantees, and/or
blockchain or other technologies for distributed consensus
between all parties.

VI. SUMMARY

Edge computing is a key enabling technology for next-
generation applications. However, reaping its full benefits is
not trivial. Best-effort services are no longer suitable for
performance-stringent applications like ADV or VR/AR. And
yet end-to-end performance guarantee is not achievable without
close cooperation across computing, networking and appli-
cation domains. Application-network co-design represents a
conceptual framework as well as a principled approach for
realizing such cooperation. Core principles include agreement
and accountability that are desired in any type of machine
or human cohort, and abstraction and automation that are
specific to the digitized edge computing ecosystem. Prerequisite
technologies for the co-design approach are mostly ready,
except pending design and implementation shifts mostly at the
application side. The approach is well positioned in use cases
such as ADV and multi-user VR/AR, but can be essentially
applied in any application scenario that benefits from edge
performance guarantees. Still, research and development are
needed in regards to theoretical understanding and systems
implementation of this approach in real life scenarios.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants 2007391,
2007469 and 2045539. The information reported here does not
reflect the position or the policy of the funding agency.

REFERENCES

[11 W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637-646,
oct 2016.

[2] R. Yu, V. T. Kilari, G. Xue, and D. Yang, “Load Balancing for Interdepen-
dent IoT Microservices,” in Proc. IEEE INFOCOM, 2019, pp. 298-306.

[3] R. Weingértner, G. B. Brischer, and C. B. Westphall, “Cloud Resource
Management: A Survey on Forecasting and Profiling Models,” Journal
of Network and Computer Applications, vol. 47, pp. 99-106, jan 2015.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87-95, jul 2014.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

[3]
(6]

(71

(8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

This article has been accepted for inclusion in a future issue of this magazine.

D. Johnson, D. Maas, and J. Van Der Merwe, “Open Source RAN Slicing
on POWDER,” in ACM MobiSys Demos, 2021, pp. 507-508.

I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, P. Ruth, and E. Deelman, “FABRIC: A National-Scale Pro-
grammable Experimental Network Infrastructure,” IEEE Internet Com-
puting, vol. 23, no. 6, pp. 38—47, nov 2019.

B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
Your Observability: An Industrial Survey of Microservice Tracing and
Analysis,” Empirical Software Engineering, vol. 27, no. 1, p. 25, jan
2022.

R. Molina-Masegosa, J. Gozalvez, and M. Sepulcre, “Comparison of
IEEE 802.11p and LTE-V2X: An Evaluation With Periodic and Aperiodic
Messages of Constant and Variable Size,” IEEE Access, vol. 8, pp.
121526121548, 2020.

ETSI TS 122 186, “5G; Service Requirements for Enhanced V2X
Scenarios,” Tech. Rep., 2020.

W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards Effi-
cient Edge Cloud Augmentation for Virtual Reality MMOGs,” in Proc.
ACM/IEEE SEC, 2017, pp. 1-14.

S. Zhao and D. Medhi, “Application-Aware Network Design for Hadoop
MapReduce Optimization Using Software-Defined Networking,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
804-816, dec 2017.

J. Kone¢ny, B. McMahan, and D. Ramage, “Federated Optimization:
Distributed Optimization Beyond the Datacenter,” pp. 1-5, 2015,
date accessed: 2022-01-30. [Online]. Available: http://arxiv.org/abs/1511.
03575

V. Prokhorenko and M. Ali Babar, “Architectural Resilience in Cloud,
Fog and Edge Systems: A Survey,” IEEE Access, vol. 8, pp. 28 078—
28095, 2020.

Y. Chen, B. Ai, Y. Niu, H. Zhang, and Z. Han, “Energy-Constrained
Computation Offloading in Space-Air-Ground Integrated Networks Using
Distributionally Robust Optimization,” /IEEE Transactions on Vehicular
Technology, vol. 70, no. 11, pp. 12113-12 125, nov 2021.

J. Moura and D. Hutchison, “Game Theory for Multi-Access Edge Com-
puting: Survey, Use Cases, and Future Trends,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, pp. 260-288, 2019.

Ruozhou Yu (Student Member 2013, Member 2019,
Senior Member 2021) is an Assistant Professor of
Computer Science at North Carolina State Univer-
sity, USA. He received his PhD degree (2019) in
Computer Science from Arizona State University,
USA. His research interests include internet-of-things,
cloud/edge computing, smart networking, algorithms
and optimization, distributed machine learning, secu-
rity and privacy, blockchain, etc. He has served on
the organizing committees of IEEE INFOCOM 2022-
2023 and IEEE IPCCC 2020-2023, and as members

of the technical committee of IEEE INFOCOM 2020-2023. He is a recipient
of the NSF CAREER Award in 2021.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

Guoliang Xue (Member 1996, Senior Member
1999, Fellow 2011) is a Professor of Computer
Science in the School of Computing and Aug-
mented Intelligence at Arizona State University.
His research interests span the areas of Internet-
of-things, cloud/edge/quantum computing and net-
working, crowdsourcing and truth discovery, QoS
provisioning and network optimization, security and
privacy, optimization and machine learning. He re-
ceived the IEEE Communications Society William R.
Bennett Prize in 2019. He is an Associate Editor of
IEEE Transactions on Mobile Computing, as well as a member of the Steering
Committee of this journal. He served on the editorial boards of IEEE/ACM
Transactions on Networking and IEEE Network Magazine, as well as the
Area Editor of IEEE Transactions on Wireless Communications, overseeing
13 editors in the Wireless Networking area. He has served as VP-Conferences
of the IEEE Communications Society. He is the Steering Committee Chair of
IEEE INFOCOM.

