
Principles and Practices for Application-Network Co-Design
in Edge Computing

Ruozhou Yu, Senior Member, IEEE, Guoliang Xue, Fellow, IEEE

Abstract—Edge computing promises low-latency and high-
throughput real-time processing to enable critical and life-
changing future applications such as fully autonomous driving
and metaverse, and is receiving wide interest from application
designers, service providers and academic researchers. As for now,
however, the full power of edge computing has yet been unleashed,
as stakeholders face difficulty in realizing the promised services
and hence investment and efforts waver. This article describes
a new conceptual framework, called the application-network co-
design approach, to align and direct efforts across application,
computing and networking domains towards fully fledged edge
computing. At a high level, we introduce current practices and
efforts in edge computing, identify limitations of existing efforts,
present the overarching goal and principles of the co-design
approach, and discuss existing and future prerequisite technologies
for implementing the approach. We illustrate the principles and
process of the co-design approach with two compelling edge
applications: autonomous driving and virtual/augmented reality
for metaverse.

Index Terms—Edge computing, real-time applications,
computing-network convergence, application-aware networking,
end-to-end performance guarantee

I. INTRODUCTION AND BACKGROUND

Edge computing is a computing paradigm where computing

resources, such as edge servers or micro-data centers, are

deployed within edge networks such as the cellular network

where end devices like mobile phones or robots are directly

connected [1]. When computing is near data sources or sinks,

it can significantly lower network latency and save network

bandwidth for data transmission. This is in contrast to cloud

computing, where computing power is remotely in the Internet

core, and hence end-to-end performance is highly affected by

the unstable and unpredictable Internet used to access the cloud.

The need for edge computing comes from modern applica-

tions that crucially need ultra-low latency and high throughput.

Examples include autonomous driving, virtual/augmented real-

ity (VR/AR) and smart manufacturing. Using the cloud would

likely violate these applications’ performance requirements,

making them unusable or unsafe to use. Edge computing also

improves user experience of many other applications including

web services, internet-of-things (IoT), smart cities, connected

healthcare, and many more.

Edge computing’s goal is to support applications’ stringent

performance goals that cannot be satisfied by traditional cloud

computing. Performance goals are commonly in terms of

quality-of-service (QoS) metrics such as latency, throughput

and reliability. Many edge applications specifically have end-
to-end QoS goals. For instance, a self-driving car may require

sensory processing results to be received within 100ms of data

generation. This includes time spent on both computing and

communications. Violating the 100ms end-to-end bound may

lead to accidents or crashing due to decision-making based on

stale information.

In an edge computing ecosystem, several key stakeholders

exist, each with distinct goals:

Infrastructure providers: Computing and network are man-

aged by computing and network providers respectively. They

may be different parties, e.g., when a cloud provider deploys

regional micro-data centers in contract with a local Internet

Service Provider (ISP). In other cases, a single computing-

network provider owns and manages the entire infrastructure,

e.g., a cellular provider deploying mobile edge computing

(MEC) in her cellular network. Their goal is to maximize

revenue by providing computing/network resources that meet

application needs, subject to resources owned, and deployment,

maintenance and utility costs.

Application owners and users: An application owner seeks to

deploy and operate her application in the edge network, in place

of or complementary to the cloud. The goal is to serve users

with usable and satisfactory performance. If performance de-

grades, the owner may lose revenue or face legal issues (such as

accidents involving self-driving cars). An owner’s tasks include

requesting resources from infrastructure providers, configuring

the application at the edge, and maintaining its operation. Their

goal is to maximize or guarantee user satisfaction, subject to

costs for edge deployment and operations.

Platform providers: Platform providers may arise in edge

computing to orchestrate resources from multiple computing

and network providers. A platform provider meets-and-matches

applications’ needs with providers’ offerings, and earns revenue

by charging service fees from one or both parties. It is not

uncommon that a platform provider is also an infrastructure

provider. For instance, an ISP that has contracts with multiple

computing providers can take advantage of her role and act as

an intermediate exchange who provisions computing services

from different providers for applications. Their goal is to

maximize revenue by orchestrating resources from multiple

infrastructure providers.

Born as a performance-oriented paradigm, edge computing

faces unique challenges to satisfy performance goals of edge

applications and users. Edge computing features geo-distributed

computing resources to bring computation to users, but any

given location has limited resources. Thus hotspots may arise

when users are crowded in certain areas. User mobility ex-

acerbates the problem since hotspots may move over time.

Furthermore, a user’s perceived performance is affected by

many factors. Some are controlled by providers and application

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

owners, such as resource and application configurations. Other

factors, such as wireless channel conditions, user mobility and

hardware/software failures, are not controlled by any party.

These make it exceptionally difficult to provide stable and

guaranteed performance to edge application users. The issue is

also aggravated by the diverse goals and ad hoc management

of different stakeholders above. Their uncoordinated efforts

could lead to ineffective performance optimization and resource

wastage due to obliviousness of each other’s knowledge and

decision-making. The next section elaborates on this last issue

from an academia perspective.

II. CURRENT APPROACHES AND LIMITATIONS

The community has taken diverged approaches to define how

edge computing should work:

Computing perspective: One line of research spans from

distributed and cloud computing. Here, edge computing is

regarded as a distributed cloud environment (called an edge-

cloud) compared to a centralized cloud. Research has focused

on managing virtual machines (VMs) or containers to satisfy

applications’ computation needs. This aligns with the cloud

paradigm where computing is the only (sensible) need to be

served. Key techniques inherited from cloud computing include

auto-scaling to tackle dynamic load, load balancing to reduce

overheating, failover to handle hardware/software failures, etc.

Most efforts along this line overlook or underrate the im-

pact of networking in edge computing. Assumptions such as

access links as bottlenecks, static pair-wide bandwidth, regular

network topologies or perfectly stable channels are frequently

made but seldomly justified in practice. As such, existing tech-

niques can barely provide end-to-end performance guarantees,

which is similar to the cloud.

Networking perspective: Another line originates from the

networking community. Here edge computing is tied to the

network that it is built upon. For instance, MEC builds

computing power directly within mobile networks. Existing

research on MEC thus emphasizes network components and

their interplay with computing, including bandwidth/radio allo-

cation, communication scheduling, routing, mobility handling,

etc. Taking communications into account enables identifying

network bottlenecks and is essential for modeling end-to-end

performance.

A heritage from traditional networking is the focus on best-
effort services for aggregate traffic, and thus negligence of

individual applications’ or users’ needs. For example, network

queueing theory usually studies average queueing delay or

long-term queue stability, while neglecting worst-case perfor-

mance experienced by few users. Network QoS is implemented

via limited priority classes (e.g., DiffServ) in coarse granularity.

Moreover, application-agnostic networking lacks the ability to

model end-to-end processing of user demands in distributed

applications. These significantly hinder realizing end-to-end

performance guarantees.

Application perspective: Finally, many efforts focused on

designing applications that utilize edge computing. Content de-

livery, video streaming and IoT are by far the most successful,

A greement
A ccountability
A bstraction
A utomation

App-Net
Co-Design

Goal: revenue
Constraints:
resources, cost,
penalty

Computing
Goal: revenue
Constraints:
resources, cost,
penalty

Networking

Goal: QoS/QoE
performance
Constraints:
budget, demands

Application

Fig. 1: Application-network co-design represents a convergence of
efforts from different parties for delivering satisfactory and guaranteed
edge computing performance, with four major principles: agreement,
accountability, abstraction, and automation.

but many more are in progress including autonomous driving,

metaverse, smart manufacturing and connected healthcare. As

many edge applications are still immature, there has been

limited understanding in the actual performance and cost-

efficiency of these applications, and in return how applications

affect design and management of the edge.

As a key limitation, current efforts mostly assume that each

application exclusively occupies the entire edge, including com-

munication channels and computing servers. This would lead

to over-optimistic estimation of edge computing’s costs and

benefits. In some cases, this might cause unexpected failures

or violation of applications’ performance goals, and lead to

safety issues in use cases such as autonomous driving.

From the above, the lack of coordinated knowledge and

efforts across computing, networking and application domains

has become the root cause of many obstacles faced by edge

computing. A principled approach is in-need to remove the

barrier across these domains and align their efforts.

III. THE CO-DESIGN APPROACH

A. Overview

Application-network co-design1 (a.k.a., the co-design ap-

proach) is a principled approach to integrate networking, com-

puting and application domain efforts for joint edge resource

allocation and performance optimization, shown in Fig. 1. In

this approach, all efforts are centered around satisfying end-
to-end performance goals of each and every accommodated

edge application, subject to resource, cost, energy, overhead,

topology, and other constraints posed by the application owner

and edge providers. Its core lies in closely coupling applications

with computing and network management through (dynamic)

provisioning and service-level agreement (SLA) guarantees.

The following “4A” principles guide the design and implemen-

tation of co-design solutions:

1As application and computing are always coupled in practice, we omit
“computing” in naming our approach for brevity and to emphasize the conver-
gence between application and network that differs from existing paradigms.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

Agreement: Achieving end-to-end performance guarantee re-

quires cooperation and mutual agreement among all parties.

SLAs are extensively used in the Internet and the cloud to

express mutually agreed performance goals, with negotiated

compensation terms when requirements are violated. Tradi-

tionally, SLAs are established for per-component availability

goals, e.g., “5Mbps data rate for link A for 99.9% of time”.

At the edge, due to stringent performance requirements, a

major paradigm shift is from component-wise SLAs to end-
to-end SLAs. For instance, an application owner may request

for “100ms end-to-end latency for 99.9% of user requests

with up to 500 requests-per-second”. The guarantee covers the

entire process from when a request leaves a user device until

when computation result is received by the device, traversing

territories of all parties: the edge network, computing node(s),

and application software. Naturally, fulfilling the guarantee

requires collaboration, coordination and accounting across all

parties.

Accountability: SLAs are associated with financial interests

like application owners’ costs and providers’ violation penalty.

Hence accountability is essential. Before an SLA is negotiated,

all parties need to obtain and agree on an accurate, reliable

and trustworthy performance model of the target application.

This ensures that all parties correctly understand: 1) if the SLA

terms can be fulfilled by available resources, 2) configuration

and resource allocation required to fulfill the SLA, 3) realms

of responsibilities of each party for fulfillment, and 4) how

to detect and attribute an SLA violation. Performance model

can be obtained by profiling the application in a controlled

environment, e.g., a virtualized edge environment run by a

provider that emulates the real environment. After an SLA

is established, runtime measurement is needed to validate the

SLA terms, detect violation and attribute faults. An accounting

module is needed to collect, analyze and store measurement

results, with a certified method for result validation documented

in the SLA. Agreement and accountability (with incentives

or penalty) jointly forms the basis of realizing secure and

trustworthy edge environment.

Abstraction: Heterogeneity widely exists in the edge. Co-

existing applications have different processing components,

structures, traffic patterns, and performance goals. Furthermore,

edge resources including communication channels, comput-

ing devices and virtualization technologies differ. A general

abstraction is required to capture the inter-play between ap-

plication structure, user demands and edge resources. Take

the realization graph abstraction in [2] as an example. A

realization graph defines essential elements for realizing an

application, including: which edge nodes host each application

component, how to distribute load between components, and

what constitutes an end-to-end processing realization of a user

request for which the end-to-end performance can be measured.

Such an abstraction not only guides provisioning algorithm

design, but also defines how the provisioning result is realized

in the edge. The abstraction in [2] is however network-agnostic.

Abstractions fully embracing the co-design approach is further

needed.

Automation: The edge environment is volatile with wireless

links, mobility, and demand changes. This necessitates au-

tomated responses to dynamic events, including on-demand

resource provisioning and dynamic SLA establishment. Auto-

mated responses can be triggered by predicted demand changes,

or explicit requests from users. For instance, an autonomous

driving application can request for additional resources at

intersections that may become congested; a multi-player VR

game can request for a short-term SLA for each matched

game initiated by its users. Machine intelligence can play key

roles for tasks such as demand prediction, automated resource

provisioning, and SLA negotiation. Automation is crucial for

alleviating the operation and coordination overhead of our

approach.

B. Key Prerequisites for the Co-Design Approach

The co-design approach requires computing services that can

be dynamically and automatedly orchestrated with performance

isolation, such as VMs and containers. Cloud native solutions

such as Kubernetes and KubeVirt are readily available for

dynamic orchestration, instance migration and auto-scaling for

VMs and containers. Application profiling is a widely used

technique for performance modeling and optimization [3].

These current technologies are ready to embrace the co-design

approach, pending support from the other parties.

Network prerequisites: Network operations in co-design must

be able to identify individual applications’ traffic flows, isolate

network resources (e.g., bandwidth and priority queues), and

measure QoS of each traffic flow. Traditional networks are

difficult to implement this approach since routers/switches have

a limited number of queues, and networks are designed to

be application-agnostic. Programmable and software-defined

networks (SDNs) are the de facto approach to application-aware

networking. For example, P4-supported routers/switches can be

used to dynamically program the network for measurement [4],

routing and traffic engineering; software-defined radio with

srsRAN or alternatives can support dynamic allocation of

radio resources in runtime [5]. Additionally, network measure-

ment with ultra-fine granularity (e.g., nanosecond-level packet

timestamping [6]) is seeing its way into large-scale testbeds

and likely production environments soon, offering tools for

accurate and intelligent network monitoring. As most of these

functionalities are already implemented, additional overhead for

co-design is mostly incurred in the control plane that commonly

has sufficient resources in SDNs.

Application prerequisites: A co-designed application requires

several considerations during design and implementation. First,

native measurement and accounting are needed for end-to-

end SLAs. This requires a built-in measurement module that

can 1) track end-to-end performance of user requests, 2)

obtain component-wise performance breakdown for bottleneck

identification and resolution, and 3) incur minimal impact

on application performance. OpenTracing and alternatives [7]

represent a promising approach, enabling distributed tracing of

a user request from end to end. Each application component

processing a request records and reports the accurate times-

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

tamps of reception and transmission. The overhead of fine-

grained measurement can be minimized by sampling only a

fractions of requests for tracing, such as one in a thousand.

All measurement data should be gathered at a central, trusted

server, where the data is analyzed to detect any SLA violation

and to make dynamic adjustments.

Second, the application should have maximal deployment

flexibility and low migration overhead. A modular design

with singletons or loosely coupled components allows dynamic

deployment and migration in face of changing environment

and dynamic load. Microservices and serverless computing are

examples of suitable design paradigms, both enabling runtime

adjustment of service deployment and/or inter-dependencies

across services.

Third, automated management is needed for the application.

This includes measurement and accounting aforementioned,

but also user modeling and demand estimation, adaptive con-

figuration such as load balancing, and interfacing with com-

puting/networking for provisioning and negotiation. While no

existing product is available to automate all these tasks, service

meshes and orchestrators are good candidates upon which fully

automated management modules can be implemented.

IV. CASE STUDIES WITH EXAMPLE APPLICATIONS

Example 1: Autonomous Driving Use Case

Autonomous driving vehicle (ADV) is an important use case

of edge computing. ADVs need to process sensory data and

make driving decisions in real time. Vehicles further need to

collaborate for safe driving. For instance, automated platooning

enables a group of vehicles to drive together at the same speed;

collaborative perception allows vehicles to remove blind spots

via data sharing and view merging. In general, an end-to-end

autonomous driving system can be decomposed into various

tasks, which can be implemented across on-board units (OBUs)

and the edge based on task requirements.

Consider an ADV system supporting three high-level tasks

in Fig. 2(a): collaborative collision avoidance (CCA), collab-

orative blind spot removal (CBR), and route planning (RP).

Perception, ego state management and control are basic com-

ponents commonly implemented at OBUs. Components such as

object tracking, localization, mapping, and motion planning can

be implemented at OBUs, in the edge, or both at the same time

serving different tasks. The three high-level components (CCA,

CBR and RP) all rely on fusing data from multiple vehicles,

and are best implemented with help of the edge.

On-board and edge components communicate via the

vehicle-to-infrastructure (V2I) interface defined in IEEE

802.11p or 3GPP C-V2X standards [8]. Vehicles share the

wireless channel via broadcast communication. Messages from

different components have different sizes and rates. The high-

level tasks (CCA, CBR, RP) also have different real-time

requirements: CCA requires maximum end-to-end latency of

25ms, CPR requires 100ms, and RP has sub-second or higher

latency bounds [9]. In a typical application-agnostic network,

all messages randomly access the wireless data link, and

share the same bottleneck if the channel is busy (e.g., at a

crowded intersection). Computing at the edge that does not

respect the limited link resource will experience poor end-to-

end performance even if computation is done in real-time.

To employ the co-design approach, first a profiling step is

taken jointly by the application owner and edge providers. A

virtual environment is setup by providers to run offloadable

components of this application. The application owner supplies

sample user demands, such as via test vehicles. End-to-end

tracing is enabled in profiling, and measurement data are stored

and analyzed. From profiling, a performance model is derived

with information on: 1) traffic volumes between on-board and

edge components, 2) network latency and throughput given

channel conditions and radio bandwidth, and 3) computation

latency and throughput given different resource configurations.

Note that profiling can be done in a privacy-preserving manner:

providers need not know exact functionalities of components,

but just regard components as black-box programs and observe

that profiling is done in a reliable and trustworthy manner.

After done, data and profiled model are stored by all parties

for provisioning and auditing.

After profiling, the application owner can initiate SLA re-

quests. A distributed optimization algorithm governs the ne-

gotiation process. In the algorithm, providers take as inputs

application components and inter-dependencies and map them

to computing nodes and network paths with resource allocation,

generating one or multiple realization plans. The plans and

pricing are then sent to the application owner, who inspects

and picks the best plan given her end-to-end performance

goals and budget. An example is shown in Fig. 2(b). The

application owner can dynamically request SLAs to handle

changing demands at different locations.

At runtime, distributed tracing is employed for randomly

selected vehicle requests for end-to-end inspection. If SLA vio-

lation is detected, data will be sent to all parties for validation.

Penalty will apply when a provider is found liable.

A key for the ADV use case is risk-awareness. Since the

scenario is safety-critical, highly reliable SLA satisfaction is re-

quired, and any violation case must be handled with precaution.

For instance, a vehicle should host backups for any offloaded

component to tackle failures or lagging. The backups need not

consume much computation power, but must be standby to

tackle any emergency. Resource provisioning needs to tackle

unexpected variations in communication, mobility and demand.

Risk measures such as conditional value-at-risk, and robust

approaches such as distributionally robust optimization, should

be employed for robust provisioning.

Example 2: Multi-User VR/AR Use Case

VR/AR is another scenario where edge computing is highly

desired. VR/AR applications need to process and deliver visual

data to users in real-time to have acceptable user experience,

and have tighter latency requirements than most other appli-

cations. An end-to-end rendering latency of over 15-30ms can

already cause motion sickness to users [10]. Multi-user VR/AR,

such as multi-player gaming or teleconferencing, is more chal-

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

Sensors

Actuators

Ego State

Perception

Control

Object
Tracking (OT)

Localization (L)

Mapping (M)

Motion
Planning (MP)

CCA

CBR

RP

Primitive
Components

High-level Components

(a) An ADV system with three high-level tasks: collaborative collision avoidance
(CCA), collaborative blindspot removal (CBR), and route planning (RP).

Road-side unit BS Cloud Upstream Downstreamad-side eeeeeeeeeee unit

MP, CCA

OT, L, M, CBR

RP

Perception Data

Ego State

Instructions

Up/Downlink Allocation Edge Routing & Bw Allocation

(b) An example realization of the ADV system with offloaded mid- and
high-level tasks. In addition to task placement (computing), it also includes
network routing and resource allocation.

Fig. 2: Autonomous driving vehicle (ADV) use case illustration.

lenging since users are distributed and hence communications

can be excessive yet tightly latency-budgeted.

Due to hardness of processing and transmitting raw video

captures or game frames in real-time, many VR/AR applica-

tions employ layered processing. Specifically, user view updates

are divided into different layers, processed by different compo-

nents [10]. For instance, in VR gaming, one layer corresponds

to game world changes such as monsters spawning or demising,

which needs to be synchronized among all players but does not

need ultra-low latency; another layer corresponds to a player’s

local changes such as facing direction change or player action,

which needs immediate feedback. To improve responsiveness

to action-triggered events, user behavior prediction can be

employed. Processing components can be deployed across user

devices, the edge and the cloud. An example is shown in Fig. 3

A co-design approach again begins with profiling with real

or synthesized games or meetings, where a performance model

in terms latency, throughput, resources and demands (number

of users and traffic per user) is generated. Then, dynamic SLA

negotiation and provisioning can take place on-demand. For

instance, when a new matched game or meeting is initiated, a

short-term SLA can be negotiated to cover exactly the period

of the game or meeting. This ensures on-demand pricing and

avoids resource under-utilization. Since user behaviors and

traffic demands are relatively static for these applications, risk-

awareness is not as crucial as in autonomous driving, except

when users exhibit high mobility or dynamic wireless channels.

Finally, runtime SLA validation again takes place with end-to-

end tracing and measurement, and violation is punished post

completion of each SLA.

Cameras &
Sensors

Display

Perception

Ego State

Local
Rendering

World Update
(WU)

Local View Update
(LVU)

Local Action
Update (LAU)

Visual Rendering
(VR)

Primitive
Components

High-level
Components

Player Input
Sensors Action

Global
SynchronizationS ti

(a) A multi-player VR/AR game with local and global updates.

VR User BS Regional DC Upstream Downstream

Perception/Action Data

Rendering Data

Local Updates & Rendering GS

Up/Downlink Allocation Edge Routing &
Bw Allocation

(b) An example realization of the game with asynchronous local-global
updates, including routing and bandwidth allocation.

Fig. 3: Virtual/augmented reality (VR/AR) use case illustration.

V. ROADS BEHIND AND AHEAD

A. Relationship to Existing Approaches

The idea behind the co-design approach is not new. It nat-

urally inherits from concepts and paradigms such as net-

work function virtualization (NFV), service-oriented archi-

tecture (SOA) networking, or application-aware networking

(AAN) [11]. All of these seek the closer coupling between

application/service, computing, and networking than traditional

agnostic approaches. Nevertheless, there exists a fundamental

conceptual shift from existing concepts to this new approach. In

existing concepts, it is common that one domain serves as the

“first-class entity” who defines the primary objective of design

and optimization, and other domains are mainly in support

roles. For instance, in SOA and the succeeding microservice-

based architecture, the primary goal is to design software that is

composed of loosely coupled or independent services, and com-

puting and networking serve support roles whose constraints

and goals are seldom considered in application design. In AAN

or NFV, the primary goal is instead the optimization of network

operations in terms of improved efficiency and reduced cost,

while applications are regarded as given and fixed and their

performance goals commonly served with “best effort”.

The co-design approach is one step further in integrating

efforts and aligning goals across all domains. All parties have

commensurate rights in pursuing their own goals (e.g., perfor-

mance for application owners, and revenue for edge providers),

in the mean time being obligated to satisfying requirements and

constraints posed by each other. Their awareness of each other,

willingness to collaborate and form agreements, and means of

enabling such collaboration are thus of crucial importance to

success of this approach. These do not mean full disclosure of

each party’s intentions and information to the other parties (e.g.,

full details of the application software or resources in the edge).

Each party can participate by only exposing the level of infor-

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

mation that it is willing to disclose, for instance, a realization

plan might only contain number and types of VMs/containers,

guaranteed data rate or latency between VMs/containers, and

associated cost; details of how these resources are orchestrated

can be hidden from the application owner for security or privacy

reasons. Technically, SOA or AAN allows one party to centrally

manage the optimization task by taking inputs from other

parties, while the co-design approach enables decentralized

negotiation and optimization among all parties in a cooperative

and automated manner.

B. Challenges and Future Directions

We have identified several challenges and places where efforts

are needed for the co-design approach to be practical.

Federated optimization: The term federated optimization ex-

tends from federated learning, and is a generic method for dis-

tributed optimization while preserving data privacy of involved

parties [12]. It allows the application owner and edge providers

to jointly optimize for resource provisioning and negotiate

the SLA terms, without revealing sensitive information such

as network topology or application demands to each other.

The method involves formulating a decomposable formulation,

where each party holds part of the variables, constraints, and/or

objective function. Parties are involved in a distributed itera-

tive process such as primal-dual decomposition or distributed

stochastic gradient descent to jointly solve the formulation.

Messages exchanged only reveal intermediate results such as

gradients or aggregate dual prices but no raw data of each party.

Designing privacy-preserving federated optimization algorithms

will not only address the privacy concerns, but also reduce the

cognitive and operational overhead for secure data management

in the co-design process.

Robust, risk-aware and adaptive optimization: Resilience is

crucial at the edge [13], [14]. Robustness methods proactively
tackle unexpected situations such as hardware/software faults

or demand bursts, making sure that resources are always

available to cover up all except some rare cases. Risk modeling

and optimization further allow minimizing the probability and

costs of potential SLA violations in the rare cases. Automated

adaptation ensures that even a rare unfavorable situation arises,

the system has contingency plans to ensure safe and acceptable

operations until the situation is resolved.

Game theory-based incentives: Keep in mind that providers

have goals centered around revenue, and application owners

have budget considerations. Incentive mechanism, including

pricing, cost management and violation penalty/compensation,

is an integral part of an edge system [15]. An on-demand

market mechanism, i.e., one where resource prices are closely

tied to demand and supply of resources, works favorably

toward everyone’s interest: 1) application owners can purchase

resources and SLAs only when needed without long-term

financial commitment; 2) edge providers can set low prices at

low demand to attract more buyers, and set high prices when

demand is high to boost revenue. Mechanism design should

however be strategy-proof and trustworthy. In other words,

no one should neither be able nor has incentive to deviate

from the aligned goal of all parties or deliberately harm the

system. Truthful mechanisms, for instance, are valuable tools,

which ensure that each party achieves the highest utility when

behaving cooperatively.

Accountable design and SLAs: Traditional network measure-

ment tools face difficulties in obtaining both end-to-end and

per-component breakdown measurements in a trustworthy way.

Distributed tracing with high-accuracy network-wide clock

synchronization is a promising way. For all parties to trust the

measurement result, the measurement process should be totally

transparent or verifiable to every party involved. Note that this

almost contradicts the privacy requirements of different parties,

and hence privacy-preserving validation methods are needed.

Promising methods include: trusted execution environments

(TEEs) for providing trusted and verifiable results, privacy-

preserving or secure computation for privacy guarantees, and/or

blockchain or other technologies for distributed consensus

between all parties.

VI. SUMMARY

Edge computing is a key enabling technology for next-

generation applications. However, reaping its full benefits is

not trivial. Best-effort services are no longer suitable for

performance-stringent applications like ADV or VR/AR. And

yet end-to-end performance guarantee is not achievable without

close cooperation across computing, networking and appli-

cation domains. Application-network co-design represents a

conceptual framework as well as a principled approach for

realizing such cooperation. Core principles include agreement

and accountability that are desired in any type of machine

or human cohort, and abstraction and automation that are

specific to the digitized edge computing ecosystem. Prerequisite

technologies for the co-design approach are mostly ready,

except pending design and implementation shifts mostly at the

application side. The approach is well positioned in use cases

such as ADV and multi-user VR/AR, but can be essentially

applied in any application scenario that benefits from edge

performance guarantees. Still, research and development are

needed in regards to theoretical understanding and systems

implementation of this approach in real life scenarios.

ACKNOWLEDGEMENT

This work was supported in part by NSF grants 2007391,

2007469 and 2045539. The information reported here does not

reflect the position or the policy of the funding agency.

REFERENCES

[1] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision and
Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp. 637–646,
oct 2016.

[2] R. Yu, V. T. Kilari, G. Xue, and D. Yang, “Load Balancing for Interdepen-
dent IoT Microservices,” in Proc. IEEE INFOCOM, 2019, pp. 298–306.

[3] R. Weingärtner, G. B. Bräscher, and C. B. Westphall, “Cloud Resource
Management: A Survey on Forecasting and Profiling Models,” Journal
of Network and Computer Applications, vol. 47, pp. 99–106, jan 2015.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-Independent Packet Processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, jul 2014.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

[5] D. Johnson, D. Maas, and J. Van Der Merwe, “Open Source RAN Slicing
on POWDER,” in ACM MobiSys Demos, 2021, pp. 507–508.

[6] I. Baldin, A. Nikolich, J. Griffioen, I. I. S. Monga, K.-C. Wang,
T. Lehman, P. Ruth, and E. Deelman, “FABRIC: A National-Scale Pro-
grammable Experimental Network Infrastructure,” IEEE Internet Com-
puting, vol. 23, no. 6, pp. 38–47, nov 2019.

[7] B. Li, X. Peng, Q. Xiang, H. Wang, T. Xie, J. Sun, and X. Liu, “Enjoy
Your Observability: An Industrial Survey of Microservice Tracing and
Analysis,” Empirical Software Engineering, vol. 27, no. 1, p. 25, jan
2022.

[8] R. Molina-Masegosa, J. Gozalvez, and M. Sepulcre, “Comparison of
IEEE 802.11p and LTE-V2X: An Evaluation With Periodic and Aperiodic
Messages of Constant and Variable Size,” IEEE Access, vol. 8, pp.
121 526–121 548, 2020.

[9] ETSI TS 122 186, “5G; Service Requirements for Enhanced V2X
Scenarios,” Tech. Rep., 2020.

[10] W. Zhang, J. Chen, Y. Zhang, and D. Raychaudhuri, “Towards Effi-
cient Edge Cloud Augmentation for Virtual Reality MMOGs,” in Proc.
ACM/IEEE SEC, 2017, pp. 1–14.

[11] S. Zhao and D. Medhi, “Application-Aware Network Design for Hadoop
MapReduce Optimization Using Software-Defined Networking,” IEEE
Transactions on Network and Service Management, vol. 14, no. 4, pp.
804–816, dec 2017.

[12] J. Konečný, B. McMahan, and D. Ramage, “Federated Optimization:
Distributed Optimization Beyond the Datacenter,” pp. 1–5, 2015,
date accessed: 2022-01-30. [Online]. Available: http://arxiv.org/abs/1511.
03575

[13] V. Prokhorenko and M. Ali Babar, “Architectural Resilience in Cloud,
Fog and Edge Systems: A Survey,” IEEE Access, vol. 8, pp. 28 078–
28 095, 2020.

[14] Y. Chen, B. Ai, Y. Niu, H. Zhang, and Z. Han, “Energy-Constrained
Computation Offloading in Space-Air-Ground Integrated Networks Using
Distributionally Robust Optimization,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 11, pp. 12 113–12 125, nov 2021.

[15] J. Moura and D. Hutchison, “Game Theory for Multi-Access Edge Com-
puting: Survey, Use Cases, and Future Trends,” IEEE Communications
Surveys & Tutorials, vol. 21, no. 1, pp. 260–288, 2019.

Ruozhou Yu (Student Member 2013, Member 2019,
Senior Member 2021) is an Assistant Professor of
Computer Science at North Carolina State Univer-
sity, USA. He received his PhD degree (2019) in
Computer Science from Arizona State University,
USA. His research interests include internet-of-things,
cloud/edge computing, smart networking, algorithms
and optimization, distributed machine learning, secu-
rity and privacy, blockchain, etc. He has served on
the organizing committees of IEEE INFOCOM 2022-
2023 and IEEE IPCCC 2020-2023, and as members

of the technical committee of IEEE INFOCOM 2020-2023. He is a recipient
of the NSF CAREER Award in 2021.

Guoliang Xue (Member 1996, Senior Member
1999, Fellow 2011) is a Professor of Computer
Science in the School of Computing and Aug-
mented Intelligence at Arizona State University.
His research interests span the areas of Internet-
of-things, cloud/edge/quantum computing and net-
working, crowdsourcing and truth discovery, QoS
provisioning and network optimization, security and
privacy, optimization and machine learning. He re-
ceived the IEEE Communications Society William R.
Bennett Prize in 2019. He is an Associate Editor of

IEEE Transactions on Mobile Computing, as well as a member of the Steering
Committee of this journal. He served on the editorial boards of IEEE/ACM
Transactions on Networking and IEEE Network Magazine, as well as the
Area Editor of IEEE Transactions on Wireless Communications, overseeing
13 editors in the Wireless Networking area. He has served as VP-Conferences
of the IEEE Communications Society. He is the Steering Committee Chair of
IEEE INFOCOM.

This article has been accepted for inclusion in a future issue of this magazine.

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery S. Downloaded on May 23,2023 at 01:23:03 UTC from IEEE Xplore. Restrictions apply.

