
Advances in Mathematics of Communications doi:10.3934/amc.xx.xx.xx
Volume X, No. 0X, 20xx, X–XX

ON THE COMPUTATIONAL HARDNESS OF THE CODE

EQUIVALENCE PROBLEM IN CRYPTOGRAPHY

Alessandro Barenghi

Department of Electronics and Information

Politecnico di Milano

Jean-François Biasse

Department of Mathematics and Statistics
University of South Florida

Edoardo Persichetti

Department of Mathematical Sciences
Florida Atlantic University

Paolo Santini

Department of Information Engineering

Università Politecnica delle Marche

(Communicated by the associate editor name)

Abstract. Code equivalence is a well-known concept in coding theory. Re-

cently, literature saw an increased interest in this notion, due to the intro-
duction of protocols based on the hardness of finding the equivalence between

two linear codes. In this paper, we analyze the security of code equivalence,

with a special focus on the hardest instances, in the interest of cryptographic
usage. Our work stems from a thorough review of existing literature, identifies

the various types of solvers for the problem, and provides a precise complexity

analysis, where previously absent. Furthermore, we are able to improve on the
state of the art, providing more efficient algorithm variations, for which we in-

clude numerical simulation data. Our results include also a dedicated method

for solving code equivalence with a quantum algorithm, as well as a refinement
of quantum Information-Set Decoding (ISD) algorithms. In the end, the goal

of this paper is to provide a complete, single point of access to the , which
can be used as a tool for designing schemes that rely on the code equivalence

problem.

1. Introduction

Code-based cryptography is one of the main areas of research aiming to provide
security in a post-quantum scenario. The area is largely based on the well-known
and understood Syndrome Decoding Problem (SDP), which leads to very good
solutions for key establishment [1, 2, 13], but has shown to be far from optimal when
designing signature schemes. With this in mind, a recent approach was presented
in 2020, leveraging the code equivalence problem as the main hardness assumption;
the result is the scheme known as LESS [8], a zero-knowledge protocol that can be
converted to signature scheme via the Fiat-Shamir transformation [11].

2010 Mathematics Subject Classification: 11T71, 94A60.

Key words and phrases: Code Equivalence, Linear Codes.
The first author is supported by NSF grant xx-xxxx.

1 ©20xx AIMS

http://dx.doi.org/10.3934/amc.xx.xx.xx

The publication of LESS stirred the community into giving a deeper look at the
hardness of code equivalence in practice; for example, shortly after the appearance
of LESS, Beullens introduced an improved algorithm to solve the code equivalence
problem [7] for certain specific instances. This had an immediate effect on LESS;
new parameter choices were published in [6], alongside a variety of computational
optimizations aimed at improving the protocol’s efficiency. Such optimizations are
possible, in the first place, as code equivalence can be seen as a particular type of
cryptographic group action, thus drawing another line in the sand when compared
with previous solutions from code-based cryptography. In the end, it is clear that
the practical hardness of solving code equivalence is worthy of further investigation.

Our Contribution. In this work, we analyze and improve on the computational
methods to solve instances of the Code Equivalence problem (CE) for which a solu-
tion exists, with a particular emphasis on the instances that are relevant to cryptog-
raphy. This contribution is of fundamental interest, and it will have an important
impact on future developments regarding schemes based on code equivalence, such
as LESS. More specifically, we focus on the most efficient methods to solve the Lin-
ear Equivalence Problem (LEP) for codes over fields of cardinality q ≥ 5, i.e. the
overwhelming majority of the LEP instances. Note that CE efficiently reduces to
LEP, which means that the techniques described in this paper apply to the resolu-
tion of almost all instances of CE. For the instances of LEP that we focus on, no
efficient method applies, and the best known technique is due to Beullens [7].

• In Section 5 we study the costs of Leon’s and Beullens’ algorithms for LEP. We
provide new arguments to measure the performance, that were not available
previously, and that are essential to assess any further improvement.

• In Section 6, we describe a new technique for solving LEP, and we demonstrate
that it is an improvement over the state of the art (Leon and Beullens)1.

In Section 4, we also analyze Leon’s and Beullens’ algorithms for computationally
hard instances of the Permutation Equivalence Problem (PEP). Instances of PEP
are a narrow subset of the set of instances of LEP (almost all LEP instances are not
a PEP instance), but there are efficient methods for generating hard PEP instances
(i.e. when codes have large hull) which can be used in cryptography. Therefore, it
is essential to have a precise analysis of the best computational methods for solving
PEP in these special instances.

Organization of the paper. We begin in Section 2 by recalling some background
notions about coding theory, as well as quantum search algorithms. In Section 3, we
describe the code equivalence problem and give a high level overview of its hardness,
and what are the main approaches for solvers. The permutation equivalence case is
treated first, in Section 4; we then describe solvers for linear equivalence separately,
in Section 5. Our improved technique is presented in Section 6. Finally, we conclude
in Section 7.

2. Background

We will use the conventions of Table 1 throughout the rest of the paper.

1When possible, we validate our analysis with numerical simulations; the employed Sage scripts
are available at https://github.com/paolo-santini/LESS_project

2

https://github.com/paolo-santini/LESS_project

a a scalar
A a set
a a vector
A a matrix
a a function or relation
A an algorithm
In the n× n identity matrix
[a; b] the set of integers {a, a+ 1, . . . , b}
U(A) the uniform distribution over the set A
$←− A sampling uniformly at random from A

Table 1. Notation used in this document.

We denote with Zq the ring of integers modulo q, and with Fq the finite field
of order q, as is customary; obviously, we have Zq = Fq when q is a prime. The
multiplicative group of Fq is indicated as F∗

q . Given a vector a ∈ Fn
q , we denote

by Values(a) the ordered multiset formed by its entries. We denote with Aut(Fq)
the group of automorphisms of the field Fq. The sets of vectors and matrices with
elements in Zq (resp. Fq) are denoted by Zn

q and Zm×n
q (resp. Fn

q and Fm×n
q).

We write GLk(q) for the set of invertible k × k matrices with elements in Fq, or
simply GLk when the finite field is implicit. Let Sn be the set of permutations over
n elements. Given a vector x = (x1, . . . , xn) ∈ Fn

q and a permutation π ∈ Sn, we
write the action of π on x as π(x) = (xπ(1), . . . , xπ(n)). Note that a permutation can
equivalently be described as an n×n matrix with exactly one 1 per row and column.
Analogously, for linear isometries, i.e. transformations τ = (v;π) ∈ F∗n

q ⋊ Sn, we
write the action on a vector x as τ(x) = (v1xπ(1), . . . , vnxπ(n)). Then, we can
also describe these in matrix form as a product Q = DP where P is an n × n
permutation matrix and D = {dij} is an n× n diagonal matrix with entries in F∗

q .
We denote with Mn the set of such matrices, usually known as monomial matrices.

2.1. Coding Theory. An [n, k]-linear code C of length n and dimension k ≤ n
over Fq is a k-dimensional vector subspace of Fn

q . It can be represented by a full-

rank matrix G ∈ Fk×n
q with rank k, called generator matrix, whose rows form a

basis for the vector space, i.e. C = {uG, u ∈ Fk
q}. Alternatively, a linear code can

be represented as the kernel of a full-rank matrix H ∈ F(n−k)×n
q , known as parity-

check matrix, i.e. C = {x ∈ Fn
q : HxT = 0}. For both representations, there may

exist a standard choice, called systematic form, which corresponds, respectively, to
G = (Ik |M) and H = (−MT | In−k). Generator (resp. parity-check) matrices in
systematic form can be obtained very simply by calculating the row-reduced echelon
formstarting from any other generator (resp. parity-check) matrix. We denote such
a procedure by sf. The parity-check matrix is important also as it is a generator
for the dual code, defined as the set of words that are orthogonal to the code, i.e.
C⊥ = {y ∈ Fn

q : ∀x ∈ C, x · yT = 0}. Codes that are contained in their dual, i.e.

C ⊆ C⊥, are called self-orthogonal or weakly self-dual, and codes that are equal to
their dual, i.e. C = C⊥, are called simply self-dual.

We now proceed by recalling some well known definitions and results, which we
will frequently use in the rest of the paper.

3

Definition 2.1. Let C ⊆ Fn
q be a code with dimension k. We define the permutation

automorphism group of C as

AutSn
(C) = {π ∈ Sn | π(C) = C} .

Analogously, we define the monomial automorphism group of C as

AutMn
(C) = {µ ∈ Mn | µ(C) = C} .

Note that, if π ∈ AutSn
, then for any G that generates C, there must exist

S ∈ GLk such that G = Sπ(C). Clearly, analogous relation applies to the monomial
automophism group.

Definition 2.2 (Code support). For a linear code C ⊆ Fn
q , we define the support

Supp(C) ⊂ {1, . . . , n} as the set of indexes i for which there is at least one codeword
c ∈ C such that ci ̸= 0.

We now introduce another concept which will be fundamental for the analysis
we develop in this paper.

Definition 2.3. Let C ⊆ Fn
q be a linear code with dimension k. A k′-dimensional

subcode C′ of C is a k′-dimensional vector space that can be generated by k′ code-
words of C. The set of all k′-dimensional subcodes with support size w is indicated

as A
(k′)
w (C). We refer to such a set as the k′-dimensional Hamming sphere with

radius w.

The concept of code support can be deemed as a direct generalization of the no-
tion of support for a vector (i.e. the set of indexes pointing at non null coordinates).
In particular, for a vector, the cardinality of its support is referred to as Hamming
weight :

wt(a) : Fn
q 7→ N := wt(a) = |Supp(a)| .

Remark 1. For k′ = 1, the set A
(k′)
w (C) contains all the codewords that have

Hamming weight w and are distinct, even when considering multiple scalars. To
ease the notation, we will refer to such a set as Aw(C).

We now continue with some properties of linear codes, in terms of subcodes
having a desired support size.

Lemma 1. Let C ⊆ Fn
q be a k-dimensional linear code. Then, the number of

subcodes of C with dimension k′ ≤ k is given by[
k
k′

]
q

=
(qk − 1) . . . (qk − qk

′−1)

(qk′ − 1) . . . (qk′ − qk′−1)
=

k′−1∏
i=0

qk − qi

qk′ − qi
.

When a code is picked at random, it is safe to assume that the contained k′-
dimensional subcodes are random as well, that is, uniformly distributed over the
set of all possible k′-dimensional vector subspaces of Fn

q . Starting from this con-
sideration (which is a standard assumption in coding theory), we can count the
number of subcodes having a certain support size.

Proposition 1. Let C ⊆ Fn
q be a random linear code with dimension k. Then, the

average number of subcodes with dimension k′ and support size w is bounded from
above by

(qk
′ − 1)w

(
n
w

)∏k′−1
i=0 (qk′ − qi)

[
k
k′

]
q

[nk′]q
.

4

Proof. Let J ⊆ {1, · · · , n} of size w, and consider the codes with dimension k′ and
whose support is exactly J . We can upper bound the number of such codes by

(qk
′
−1)w∏k′−1

i=0 qk′−qi
. Indeed, (qk

′ − 1)w counts the number of matrices that have no null

column among those indexed by J , while all the other ones are null; we divide this

number by
∏k′−1

i=0 qk
′ − qi to take into account all possible bases. Note that this is

an upper bound since not all the considered matrices will have full rank k′. Since we

have
(
n
w

)
choices for J , we obtain

(nw)(q
k′

−1)w∏k′−1
i=0 (qk′−qi)

as an upper bound for the number of

k′-dimensional subcodes of Fn
q with support size w. We now assume that all of the[

k
k′

]
q
subcodes of C with dimension k′ are randomly and uniformly picked among the

set of [nk′]q subspaces of Fn
q with dimension k′. Then, the probability that a specific

k′-dimensional subcode has support size w is
(qk

′
−1)w(nw)∏k′−1

i=0 (qk′−qi)

1

[nk′]
q

. Multiplying the

above probability by
[

k
k′

]
q
(that is, the number of subcodes in C with dimension

k′) we obtain the estimate.

Remark 2. When k′ = 1, the number of subcodes is equal to that of codewords
with Hamming weight w (without counting scalar multiples). For simplicity, we will
denote this quantity as Nw, and have

Nw = N (1)
w =

(
n

w

)
(q − 1)w−1 q

k − 1

qn − 1
.

Remark 3. When k′ = 2, we can improve upon the upper bound of Proposition 1
and obtain the average number of subcodes with support size w. To do this, it is
enough to subtract from (q2− 1)w (that is, the number of matrices with w non null
columns) the number of matrices that generate a one-dimensional space. Notice
that these matrices are such that both rows have weight w and are identical up to
a scalar multiplication; hence, they can be counted as (q− 1)w(q− 1) = (q− 1)w+1.

Consequently, we can set (q2−1)w−(q−1)w+1

(q2−1)(q2−1) as the number of subcodes of Fn
q with

dimension 2 and support J of size w. Plugging this estimate into the proof of the
above Proposition, we can estimate the average number of support size w subcodes
of a random code as

N (2)
w =

(
n

w

)
(q2 − 1)w − (q − 1)w+1

(q2 − 1)(q2 − q)

[k2]q
[n2]q

.

2.2. ISD algorithms. Information Set Decoding (ISD) is the best technique to
produce low weight codewords in a given code. There is a vast literature on ISD
algorithms, most of which apply to the binary case; an extensive review can be
found for example in [4]. For the more general, q-ary case (which is of interest to
us), the work of Peters [14] is usually considered the go-to reference. In this paper,
we will denote as CISD(q, n, k, w) the cost of finding a specific codeword with weight
w, in a code with length n and dimension k, defined over Fq. In other words, if
c is a codeword with weight w, then CISD(q, n, k, w) is the cost to have an ISD
routine return exactly c. To assess CISD(q, n, k, w), we rely on the analysis in [14].
Note that ISD is a randomized algorithm and, in case a code contains Nw > 1
codewords with weight w, then ISD will randomly return one of these codewords.
In such a case, the complexity to find a codeword with weight w can be assessed as
CISD(q,n,k,w)

Nw
.

5

3. The Code Equivalence Problem

The concept of equivalence between two codes, in its most general formulation, is
defined as follows.

Definition 3.1 (Code Equivalence). We say that two linear codes C1 and C2 are
equivalent, and write C1 ∼ C2, if there exist a field automorphism α ∈ Aut(Fq)
and a linear isometry τ = (v;π) ∈ F∗n

q ⋊ Sn that map C1 into C2, i.e. such that
C2 = τ(α(C1)) = {y ∈ Fn

q : y = τ(α(x)), x ∈ C1}.
Clearly, if C1 and C2 are two codes with generator matrices G1 and G2, respec-

tively, it holds that

C1 ∼ C2 ⇐⇒ ∃(S; (α,Q)) ∈ GLk ⋊ (Aut(Fq)×Mn) s.t. G′ = Sα(GQ).

The notion we just presented is usually known as semilinear equivalence and it
is the most generic. If the field automorphism is the trivial one (i.e. α = id), then
the notion is simply known as linear equivalence. If, furthermore, the monomial
matrix is a permutation (i.e. Q = DP with D = In), then the notion is known as
permutation equivalence. Note that, in cryptographic applications (e.g. [8, 6]), the
fields considered are always prime, and therefore the last two notions are the only
ones of interest to us. Finally, we state the following computational2 problem.

Problem 1 (Code Equivalence). Let G1,G2 ∈ Fk×n
q be two generator matrices for

two linearly equivalent codes C1 and C2. Find two matrices S ∈ GLk and Q ∈ Mn

such that G2 = SG1Q.

We normally refer, respectively, to permutation equivalence problem (PEP) or
linear equivalence problem (LEP), according to the notion of code equivalence con-
sidered, or simply to the code equivalence problem where such distinction is not
important.

3.1. High Level Hardness Overview. As proven in [15], the permutation equiv-
alence problem is unlikely to be NP-complete, since this property would imply a
collapse of the polynomial hierarchy. Yet, while the problem can be efficiently solved
for some families of codes, there are many instances that, after almost 40 years of
study, are still intractable. In the remainder of the paper, we analyze the best known
solvers for the code equivalence problem. We first deal with the case of permuta-
tion equivalence, and report the complexity of all techniques to solve this problem.
Then, we show how these techniques adapt to the case of linear equivalences.

We begin by recalling a trivial property of code equivalence.

Proposition 2. Let C1,C2 ⊆ Fn
q be two linear codes with dimension k, and let C⊥

1 ,

C⊥
2 be their duals. Then

i. if π ∈ Sn is such that π(C⊥
1) = C⊥

2 , then also π(C1) = C2;

ii. if τ ∈ Mn is such that τ(C⊥
1) = C⊥

2 , then also τ ′(C1) = C2, where τ ′ is derived
from τ by taking the inverses of the scaling factors.

The above proposition is crucial to understand the hardness of solving the code
equivalence problem. Indeed, the problem can equivalently be solved by looking at
the given codes, or at their duals. For the sake of simplicity, in this work, we will
describe all the algorithms and procedures by considering solely the codes initially

2Note that this problem is traditionally formulated as a decisional problem in literature, yet
for our purposes it is more natural to present here the search version.

6

given; to derive the corresponding complexity for the attack on the duals, it is
enough to replace k with n− k in all the provided formulas.

To avoid studying vacuously hard instances (i.e., those represented by codes that
are not equivalent), we will always consider the case in which at least a solution is
guaranteed to exist. Namely, we consider that:

- the code C1 is chosen at random;

- for PEP, we have C2
$←− {π(C1) | π ∈ Sn};

- for LEP, we have C2
$←− {τ(C1) | τ ∈ Mn}.

Note that the number of solutions to PEP is equal to the size of the automorphism
group. Indeed, if π solves PEP and σ is such that σ(C1) = C1, then we have another
solution to PEP by combining π and σ. Clearly, the same considerations hold for
LEP. To the best of our knowledge, the behaviour of the autormorphism groups of
random codes under this perspective has never been formally studied. However, it
is essentially folklore that these groups is trivial. Consequently, in our study we are
going to make use of the following structural assumption.

Assumption 1. We assume that the permutation and monomial automorphism
groups of the considered codes are trivial.

As a result of the above assumption, all the code equivalence instances we con-
sider admit only one solution.

3.1.1. The easy cases. We begin our analysis by discussing algorithms that treat
special cases, leading to very efficient solvers. The first such algorithm is the Support
Splitting Algorithm (SSA), introduced by Sendrier [17]. This solver is based on the
idea of signature function, i.e. a function S that fixes the action of the permutation
on each position in the code. A signature function is said to be fully discriminant if
it returns a different value in each position, and this allows to reveal the permutation
linking the two codes. The signature function proposed by Sendrier in [17] is based
on the hull space of a code, that is, the intersection between a code and its dual, for
which the weight enumerator is computed. In particular, to create a dependence
between the signature value and the code positions, one can puncture the code,
i.e. remove coordinates from the codewords. Putting these considerations together,
in [17, Section 5.2] Sendrier proposes to build a signature as

S(Ci) :=

{
Wef

(
H
(
C\i
))

, Wef

(
H
(
C⊥
\i
))}

,

where C\i is the code obtained from C punctured in position i, H denotes the
hull and Wef denotes the Weight Enumerator Function. The hull computation
requires simple linear algebra, and comes with a cost of O(n3) operations in the
finite field. To compute the weight enumerator of a code, one usually needs to
enumerate all of its codewords: assuming that the hull has dimension h, we can
use O(nqh) as an estimate for the cost of each Wef computation. On the other
hand, heuristically, we observe that using ln(n) refinements is enough to obtain a
fully discriminant signature. In the end, the complexity of SSA can be estimated as
O
(
n3 + n2qh ln(n)

)
. Thus, the hull dimension plays a crucial role in the analysis of

the performance of SSA. For random codes, this dimension is with high probability
equal to a small constant [18], de facto making SSA a polynomial-time solver for
PEP. On the other hand, SSA is very inefficient for codes that have a large hull.

7

This is, for instance, the case of (weakly) self-dual codes, for which SSA can be
made arbitrarily hard by choosing codes with a sufficiently large dimension. SSA
can be extended to solve the linear equivalence problem as well; however, in this
case, the algorithm is less efficient. In fact, such an adaptation requires applying
SSA to the closure of the code, i.e. the linear code defined as {c⊗a, c ∈ C}, where
a = (a1, · · · , aq−1) is any ordering of the non-zero elements of Fq. A fundamental
point is that, for q ≥ 5, the closure of a code is always weakly-self dual, and thus
has a hull of maximum dimension, leading to exactly the hardest instances for SSA
to solve. These results are corroborated by the analysis in [16].

Note that SSA trivially fails in the case of codes with an empty hull. In this
case, however, another approach is possible. In 2019, Bardet et al. [5] proposed a
new method to solve the permutation equivalence problem, which fully exploits the
connection between the permutation equivalence problem and the notion of graph
isomorphism. The core idea of [5] is to reduce code equivalence to an instance of the
Weighted Graph Isomorphism (WGI) problem. This is done by building matrices

of the form ACi
= G⊤

i (GiGi)
−1

Gi from the codes considered, and observing that

AC1
= P⊤AC1

P allows to recover the permutation P that connects the two codes.
Indeed, AC1 and AC2 are interpreted as the adjacency matrices of two graphs,
and hence can be given as input to some routine which solves the WGI problem.
Given that, to compute AC1

and AC2
, only O(n2.373) operations in the finite field

are required (this is essentially the cost of matrix inversion), we have that this
approach gives a complexity of

O

(
n2.373CWGI(n)

)
,

where CWGI(n) denotes the complexity of a solver for the weighted graph isomor-
phism problem. Note that this problem can be solved, for many classes of graphs,
with very efficient algorithms. Furthermore, Babai’s recent breakthrough paper [3]
shows that the problem can be solved, in the worst case, with quasi-polynomial
complexity. Hence, even in the worst case scenario, this solver runs in a time that
is quasi-polynomial in the code length, on codes that have a trivial hull. For the
more general case of codes with a non-trivial hull, the reduction from graph isomor-
phism works in a different way. In this case the complexity scales heavily with the
dimension of the hull and thus the solver is, in practice, much less efficient; a proof
of this fact can be found in [5, Theorem 10].

Finally, an algebraic approach was investigated in [16], where the author shows
how it is possible to solve permutation equivalence by modeling it as a quadratic sys-
tem. When the hull is trivial, it is possible to add several linear equations (through
a technique called block linearization), which makes the system very easy to solve.
However, in the general case of a non-trivial hull, the methods proposed by the
author (using shortened codes or searching for the closest vector in the code) al-
ways end up in exponential complexity; for example, the latter scales proportionally
to qk. It follows that, as mentioned by the author himself, this approach can be
deemed efficient only for the case of trivial hulls, once again.

8

To conclude this first section, we clarify the main takeaway to the reader. All
the methods described above provide efficient solvers for very specific cases (small
or trivial hulls); however, for codes with large hulls, these methods become quickly
impractical. More to the point: when considering code equivalence in cryptography,
it is easy to avoid these attacks. In fact, for the linear equivalence problem, it is
enough to consider random codes defined over a large enough alphabet (q ≥ 5),
and then the value qh = qk is already large enough for any realistic choice of code
parameters. On the other hand, if one wants to use permutation equivalence, choos-
ing a weakly-self dual code is sufficient to guarantee maximum hull dimension. All
these considerations are already taken into account in the original LESS work, and
constitute essentially just a set of “best practices”, to be considered when design-
ing a cryptosystem based on code equivalence. We now move on to summarizing
algorithms that are relevant to the analysis of such systems.

3.1.2. Solvers for hard instances. There are other algorithms that are able to solve
the hard instances described above, for which the previous solvers are ineffective.
This is because the complexity of such algorithms does not depends on the size of
the hull. Instead, the algorithms are based on a different observation, namely, that
both permutation and monomial transformations preserve the Hamming weight
distribution of the codewords. In particular, if two codes C1 and C2 are linked by
some permutation or monomial transformation, say τ , then we have that for any
subset of weight-w codewords A1 ⊆ C1, there must exist some subset of weight-w
codewords A2 ⊆ C2 such that τ(A1) = A2. Starting from this basic reasoning, the
goal becomes that of finding sets of codewords that i) can efficiently been computed,
and ii) have enough structure to allow for the reconstruction of τ .

Leon’s algorithm [12], which dates as the first technique to solve code equivalence,
chooses A1 and A2 as the set of all codewords having some low Hamming weight
w. The choice of w is crucial to determine the algorithm effectiveness. On the one
hand, in fact, if w is too low then A1 and A2 may have not enough structure (i.e.,
they contain very few codewords) so that reconstructing τ may not be possible.
Yet, low-weight codewords can be found with ISD algorithms, with a cost that is
significantly smaller than that of enumerating the whole code. On the other hand,
if w is too high, the number of codewords in A1 and A2 may become too high, so
that determining the sets becomes too time-consuming.

In a separate work [10], Feulner describes a method for computing the auto-
morphims group of a linear code, looking for canonical representatives via search
trees with several refinements. The author gives no concrete analysis about the
algorithm’s complexity, or even a heuristic formula. Yet, he mentions that, as the
consequence of practical experiments, the algorithm has essentially the same cost as
Leon’s algorithm (the difference is within a factor of two). Technically, this may be
due to the fact that the algorithm still uses codeword enumeration, which requires
exponential time. As the author himself recognizes, the algorithm may be improved
(in general, and not only for some specific codes) by using easier-to-compute signa-
ture functions, such as considering all codewords with a certain weight. But then,
the complexity of the algorithm would be the same as the one we are considering
for Leon’s algorithm. In the end, we deem that the algorithm does not constitute
a crucial improvement upon Leon’s algorithm. This is consistent with literature,
where the algorithm is mentioned several times in the same regard [16, 9].

9

Recently, Beullens [7] proposed an algorithm which is able, in some cases, to
improve over Leon’s algorithm. For the permutation equivalence case (i.e., when
τ ∈ Sn), one observes that the multisets formed by the entries of the codewords are
preserved as well. Hence, one can construct the sets A1 and A2 by considering pairs
of codewords (one in A1, one in A2) having the same multisets of entries. To avoid
too many collisions (which would make the algorithm perform worse than Leon’s),
one can consider only the codewords having some moderately low weight. As a key
observation, Beullens has shown how it is not necessary to find all of these matching
codewords (differently from what one does in Leon’s algorithm).

For the remainder of this work, we will focus our analysis on algorithms of this
second type, as they constitute the most efficient attack avenue for cryptographic
schemes based on code equivalence.

4. Solvers for Hard Permutation Equivalence Instances

In this section we recall the algorithms for the permutation equivalence problem,
whose complexity does not depend on the hull size, that we anticipated in the
previous section.

Leon’s Algorithm. Chronologically, the first method capable of solving the code
equivalence problem is due to Leon [12], and is based on the following reasoning.
Let C1 and C2 be two linear codes with length n and dimension k, and π ∈ Sn
such that π(C1) = C2. Let X be a set of codewords picked from C1. Then, there
must exist a set Y formed by codewords of C2 and such that π(X) = Y : among all
the maps from X to Y , there must necessarily also be those mapping C1 into C2.
In [12], Leon proposes an algorithm that constructs the ensemble of permutations
between two sets, with a running time that is polynomial in the cardinality of
the sets. Starting from the observation that permutations preserve the Hamming
weight, Leon suggests to form X and Y using the codewords with a properly low
weight w. Let Aw(C1) and Aw(C2) denote such sets, and MorSn

(Aw

(
C1), Aw(C2)

)
be the set of all permutations π ∈ Sn such that π

(
Aw(C1)

)
= Aw(C2). In a nutshell,

Leon’s algorithm operates as follows:

1. compute Aw(C1) and Aw(C2);

2. construct MorSn

(
Aw(C1), Aw(C2)

)
;

3. check if there exists π ∈ MorSn

(
Aw(C1), Aw(C2)

)
such that π(C1) = C2.

As Leon proves in the original paper, the complexity of the second and third steps
is polynomial in the cardinality of Aw(C1) and Aw(C2), which we estimate with Nw

as in Proposition 1. This also allows us to properly choose the value of w. Indeed,
Nw grows (exponentially) with w: when w is too high, Nw may become so large
that the first and second steps of the algorithm become too time-consuming. On
the other hand, if w is too low, then the sets Aw(C1) and Aw(C2) are rather small
and do not possess enough structure, in the sense that there may exist a very large
number of maps from Aw(C1) to Aw(C2).

Heuristically, optimal values of w are those that are slightly larger than the
minimum distance of the codes (which can be estimated with the Gilbert-Varshamov
distance). Indeed, this normally guarantees that the sets Aw(C1) and Aw(C2) are
moderately small and, at the same time, contain a sufficient number of codewords.
A lower bound on the complexity of Leon’s algorithm can be estimated as follows.

10

Proposition 3 ([7]). Let C1 ⊆ Fn
q be a random code with dimension k, π

$←− Sn
and C2 = π(C1). The cost of Leon’s algorithm, running with parameter w ∈ N,
w ≤ n, can be estimated3 as

O
(
ln(Nw)CISD(q, n, k, w)

)
.

For the sake of completeness, the proof of Proposition 3 is reported in Appendix
A, where we additionally (as a new result) derive a theoretical bound on the required
value for w. In practice, the attack is normally optimized when w is slightly larger
than the minimum distance (say, by 1 or 2).

Beullens’ Algorithm . In a recent work [7], Beullens introduced a novel approach to
solve the code equivalence problem. The algorithm can be thought of as a refinement
of Leon’s algorithm, in which one tries to reduce the computational complexity
by avoiding to compute the whole set of codewords with some fixed weight. The
algorithm is based on the simple, but effective, intuition that permutations preserve
also the multiset entries. Exploiting this observation, one can easily see how Leon’s
algorithm can be improved, by reducing the size of X and Y . In a nutshell, Beullens’
algorithm works by first finding a subset of codewords with weight w from each
code, and then searches for collisions among codewords having the same entries
multiset. Each found collision is then used to piece-wise reconstruct the action of
the permutation: if x ∈ C1 and y ∈ C2 have the same entries multiset and xi ̸= yj ,
then we guess π(i) ̸= j. When the number of collisions is sufficiently high, one
has enough information to fully retrieve the permutation π. As done in [7], we
can consider that the algorithm is successful whenever the number of collisions is
approximately 2n ln(n).

Note that, differently from Leon, Beullens’ algorithm is probabilistic, since it fails
in case i) bad collisions are found (i.e., codewords x and y that have the same entries
multiset but y ̸= π(x)), and ii) the number of collisions is too low. The analysis
of these cases and a precise cost estimate (which is missing in Beullens’ original
paper) are based on several technical aspects, which we detail in Appendix B. A
compact and simple analysis of Beullens’ algorithm is encapsulated in the following
Proposition.

Proposition 4. The time complexity of Beullens’ algorithm, running with parame-

ters L and w such that i) L =
√
2Nwn ln(n) and ii) (1−1/Nw)(q−1)L2

(
w+q−3
w−1

)−1
<

1 is

O

√n ln(n)

Nw
CISD(q, n, k, w)

 .

Condition i) implies that we do not find all codewords with weight w, otherwise
the algorithm would reduce to Leon. Condition ii) sets a lower bound on the
number of codewords we need to find, in order to have enough information to run
the permutation recovery algorithm. Finally, condition iii) expresses the fact that
bad collisions do not happen.

3Here we use the same estimate derived in [7, Section 2.2], which corresponds to a lower bound
for the actual complexity since the cost of steps 2 and 3 is neglected. In other words, the proposition

takes into account only the cost of the codewords enumeration phase.

11

5. Solvers for Hard Linear Equivalence Instances

In this section, we recall the procedure of Beullens, which is a starting point for
our new algorithm. We provide lower bounds on the complexities of Leon’s and
Beullens’ algorithms to solve LEP, in order to make a comparison with our own
estimate. These algorithms have several features which are similar to the ones we
have already analyzed in the previous section; yet, using monomial transformations
instead of permutations lead, in some cases, to radical differences. Analogously to
what we have done for the permutation case, we will study LEP under the hypoth-
esis that a solution always exists and, recalling Assumption 1, that the monomial
isomorphism group is trivial. As a consequence, we have that the only solutions
for the LEP instance represented by (C1,C2), with C2 = τ(C1), are the monomial
τ and its scalar multiples. Note that all of these transformations use the same
permutation, and differ only for the scaling coefficients.

5.1. Leon’s algorithm. Leon’s algorithm can be used to solve the linear equiva-
lence problem, with an operating procedure that is essentially identical to the one
we have already discussed in Section 4. The only difference is in the fact that,
after the codewords enumeration, one searches for a monomial matrix instead of a
permutation. When the value of w is properly chosen, this can be reconstructed in
polynomial time, so that the bottleneck in the computational complexity is (again)
in the codewords enumeration. Hence, also in this case, we can rely on Proposition
3 to have an estimate for the cost of the algorithm.

5.2. Beullens’ algorithm. In [7], Beullens proposed a second algorithm, to solve
the linear equivalence problem. The algorithm principle is analogous to the PEP
case, but some modifications are necessary, since monomial transformations do not
preserve the multisets of codewords entries. To overcome this issue, Beullens first
observes that if τ ∈ Mn is such that τ(C1) = C2, then for any subcode B1 ⊆ C1

there must exist a subcode B2 ⊆ C2 such that τ(B1) = B2. Considering sub-
codes of small dimension and small support (we expect that very few such subcodes
exist) instead of low weight codewords, we have that the same procedure as the
one to solve permutation equivalence (plus some tweaks) can retrieve the secret
monomial transformation. In particular, as in [7], we analyze the algorithm when
two-dimensional subcodes are employed. Note that, to obtain an algorithm solving
linear equivalence, we need the following three tweaks:

1. the codewords matching procedure shown in Algorithm 4 is replaced with an
algorithm that produces colliding subcodes. To do this, we need to i) tweak
ISD so that it returns subcodes with support size w, and ii) introduce the

function Lex(2) to take into account two-dimensional spaces. For an example of
how such functions may be computed, we refer the reader to Appendix C while,
for the sake of completeness, we report the full subcodes collisions procedure in

Algorithm 1. Note that computing Lex(2) has a cost of O
(
n(q2 − 1)(q2 − q)

)
;

2. the list P produced by Algorithm 1 contains pairs {X,Y } ∈ F2×n
q ×F2×n

q for

which Lex(2)(X) = Lex(2)(Y);

3. in the reconstruction phase, one first finds the permutation, and then recovers
the scaling factors. To have an efficient permutation recovery method, we can
proceed in a way that is analogous to that of the permutation equivalence
case; again, for the sake of completeness, we have reported the procedure in

12

Algorithm 2. Once the permutation has been recovered, the scaling factors
can be found in many efficient ways. For instance, the permutation can be
applied to a generator for C1, obtaining G′. Then, we choose a parity-check
matrix for C2, and aim to determine a non-singular diagonal matrix D such
that G′DH⊤

2 = 0. This linear system has k(n−k) equations for n unknowns,
so that in general it is over constrained and can be easily solved. The n non-
null entries of D are the unknown scaling coefficients v, which are used to
retrieve the desired monomial as π ⋊ v.

Algorithm 1: Algorithm to find and match subcodes

Data: Number of subcodes L ∈ N, support size w ∈ N, ISD routine
Input: linear codes C1,C2 ⊆ Fn

q with dimension k

Output: list P containing pairs (X,Y) ∈ F2×n
q × F2×n

q , such that

Lex(2)(X) = Lex(2)(Y)

/* Produce a list X of L subcodes from C1 with support size w */

1 X = ∅;

2 while |X| < L do
3 Call ISD to find B ⊆ C1 with support size w;

4 X ← basis of B;

5 X ← X ∪ {SF(X)};

/* Produce a list Y of L subcodes from C2 with support size w */

6 Y = ∅;

7 while |Y | < L do
8 Call ISD to find B ⊆ C2 with support size w;

9 Y ← basis of B;

10 Y ← Y ∪ {SF(Y)};

/* Find collisions between the lists X and Y */

11 for {X,Y } ∈ X × Y do

12 if Lex(2)(X) = Lex(2)(Y) then
13 P ← P ∪ {X,Y };

14 return P ;

We now proceed with the complexity analysis of the algorithm. We first argue
that the complexity to find a specific 2-dimensional subcode with support size w
is (essentially) the same as finding a specific codeword with weight w. One can
indeed apply the same procedure of an ISD algorithm, with only minor tweaks so
that the algorithm searches (and returns) a subcode. Namely, the algorithm in
[7] can be seen as an adaptation of Lee & Brickell ISD, since it just consists in
first applying the typical gaussian elimination and then checking whether couples
of rows generate a subcode with support size w. The resulting time complexity is
(essentially) the same as Lee & Brickell algorithm to find low weight codewords. For
the rest of this work (and coherently with the codewords search version), we will
denote by CISD(q, n, k, w) the corresponding time complexity of finding a solution,
in the regime in which a unique solution exists.

13

Algorithm 2: Fast permutation recovery, for the linear equivalence version
of Beullens’ algorithm.

Input: list P , containing M pairs {X,Y } ∈ F2×n
q × F2×n

q with support size
w and such that Values(X) = Values(Y)

Output: permutation π, or report failure

1 U ← n× n matrix made of all ones;

2 for {X,Y } ∈ P do
3 for i ∈ {1, · · · , n} do
4 xi ← i-th column of X;

5 for j ∈ {1, · · · , n} do
6 yj ← j-th column of Y ;

/* Filter (i, j) */

7 if (xi == 0) ̸= (yj == 0) then
8 ui,j = 0;

/* Use U to reconstruct the permutation; if not possible, report failure */

9 if U is a permutation matrix then
10 π ← permutation described by U ;

11 return π;

12 else
13 report failure;

To estimate the number of two-dimensional subcodes with support size w a ran-

dom code contains, on average, we use N
(2)
w , as in Remark 3. Taking all of this into

account, we have that the cost of each ISD call can be optimistically assessed as
CISD(q,n,k,w)

N
(2)
w

. Then, we can assess the cost of Algorithm 1 as follows.

Proposition 5. Let C1 ⊆ Fn
q be a random linear code with dimension k, and let

C2 = τ(C1) with τ
$←− Mn. Let P be the list obtained by running Algorithm 1 with

parameters L and w, with w ≤ n− k + 2. The algorithm runs in time

O

(
L
(
log2(L) + (q2 − q)(q − 1)

)
+M ′ +M ′′ +

L

N
(2)
w

CISD(q, n, k, w)

)
,

and produces a list P with M = M ′ + M ′′ elements, where M ′ = L2/N
(2)
w is the

average number of good collisions and M ′′ ≤ t(2)w (L2−M ′)

N
(2)
w

is that of bad collisions.

Proof. See Appendix E.

Remark 4. We expect
t(2)w (L2−M ′)

N
(2)
w

to be a loose upper bound on the value of M ′′,

especially when q is not high. This is due to the fact that t
(2)
w is a rather loose

upper bound on the number of equivalent subcodes with support size w that one
code possesses.

Note that, with arguments similar to those of Proposition 12, we can estimate the
probability with which Algorithm 2 succeeds in retrieving the correct permutation.
Yet, to avoid computations that may be too complicated, we omit these details and

14

skip to the more interesting case in which a much more simpler, slightly optimistic
of the Algorithm is derived.

5.3. Heuristic analysis. For comparison purposes, it is interesting to provide a
crude lower bound on the cost of Beullens’ algorithm. Indeed, since we do not have
a precise estimate of the number M ′′ of bad collisions, we need to make sure that
heuristic assumptions, made to compare our LEP resolution algorithm described in
Section 6 with Beullens’ method, are to the advantage of the latter. So, we con-
servatively neglect M ′ and assume that bad collisions never happen. Furthermore,
we bound from below the number of good collisions we need to reconstruct the
permutation. To this end, we consider that we must filter n(n− 1) pairs of indexes,
and each pair of subcodes gives information about 2w(n − w) pairs of indices, so

that we need at least
⌈

n(n−1)
2w(n−w)

⌉
pairs of subcodes. Since we have that the number

of good collisions is heuristically given by M ′ = L2/N
(2)
w , then we can set

L =

√
N

(2)
w

⌈
n(n− 1)

2w(n− w)

⌉
.

With this in mind, we can greatly simplify the analysis of the algorithm as follows.

Proposition 6. The time complexity of Beullens’ algorithm, running with pa-

rameters L and w such that i) L < N
(2)
w , ii) L =

√
N

(2)
w

⌈
n(n−1)

2w(n−w)

⌉
and iii)

t(2)w L2(1−1/N(2)
w)

N
(2)
w

< 1, is bounded from below by

Ω

(
L

N
(2)
w

CISD(q, n, k, w)

)
.

6. Improving Beullens’ algorithm for LEP

In this section, we analyze a method to improve Beullens’ approach to solve LEP.
Namely, we propose a new algorithm to choose the initial two-dimensional subcodes
from which the list P is built, which is based on first finding small weight codewords
and then combining them to obtain colliding subcodes.

6.1. Finding subcodes more efficiently. Our idea consists in constructing two
dimensional subcodes by first finding codewords with small Hamming weight, say
w′, and then considering only the subcodes which are generated by pairs of such
codewords and have support size w. Before analyzing our algorithm, we briefly
sketch the main intuition behind it. Remember that Beullens’ algorithm aims to
find pairs of subcodes with support size w and to produce a collision in the first
lexicographic basis. Note that no additional condition is required, apart from the
one on the support size. Heuristically, we expect any such subcodes to behave like a
length-w random code plus n−w coordinates that are always null. Consider a pair
of matrices such as those in Figure 1a: to have a matching in the computation of

Lex(2), the two matrices must lead to the same orange sub-matrix (which is expected
to contain a number of columns rather close to w). If, instead, we consider subcodes
generated by a pair of codewords with weight w′ (and, still, with support size w),

then the situation is depicted in Figure 1b. To have the same Lex(2) value, the
portions that must collide now contain 2w′ − w columns.

15

Lex(2)

(a)

Lex(2)

2w′ − w

w

(b)

Figure 1. Example of computation of Lex(2) starting from generator
matrices of two-dimensional subcodes with support size w. White-filled
rectangles denote portions of the matrix that contain only zeros, while
grey-filled rectangles indicate all-zeros sub-rows.

If we choose w′ so that 2w′ is only slightly larger than w, then we increase the
probability to find collisions (because the number of relevant columns gets lower).
Also, given how ISD operates, finding a sufficient number of low weight codewords
should be easier than directly finding some subcodes with small support. In the
end, this reasoning can be summarized as follows: we consider subcodes with a
structure that i) allows to easily find them, and ii) increases the probability to
find collisions. Notice that the special structure of the considered subcodes clearly
modifies the probability to find bad collisions; in the analysis of our algorithm, we
conservatively take this phenomenon into account. Ultimately, we also validate our
analysis by means of numerical simulations.

To formalize the above intuition, we consider the following procedure to search
for subcodes with small support:

1. use ISD to find L′ codewords with weight w′;

2. form 2× n matrices using all
(
L′

2

)
pairs of codewords;

3. keep only the matrices which generate a code with support size w.

Clearly, the values of L′ and w′ have a strong impact on the complexity of this
approach, which we derive in the sequel of this section.

We start our analysis with the following technical Lemma, which describes the
distribution probability of the support size of a subcode that is generated by two
codewords with known weights.

Lemma 2. Let a ∈ Fn
q with Hamming weight wa. Let b ∈ Fn

q be a random vector
with Hamming weight wb. Then, the code generated by a, b (i.e., admitting the
generator matrix whose rows are a and b) has dimension 2 with probability

16

{
1 if wb ̸= wa,

1− 1

(n
wa
)(q−1)wa−1

if wb = wa,

and support size w ∈ [0;n] with probability

ζwa,wb
(w) =


0 if w < max{wa;wb},
0 if w > min{n;wa + wb},(

wa

wa+wb−w

)(
n−wa

w−wa

)(
n
wb

) otherwise.

Proof. First, we consider the probability that the two chosen vectors do not generate
a space with dimension 2. Note that this can happen only if b = va for some
v ∈ F∗

q . In such a case, we clearly have wa = wb. There are q − 1 distinct values
for v (yielding to distinct vectors va), while the number of vectors with weight wa

is given by
(

n
wa

)
(q − 1)wa . Hence, the probability that b is one of them (that is,

the probability that a and b generate a space with dimension 1) is given by the
following formula:

q − 1(
n
wa

)
(q − 1)wa

=
1(

n
wa

)
(q − 1)wa−1

.

We now derive the probability distribution for the support size of C, which we
denote by w. Note that w = wa + wb − |Supp(a) ∩ Supp(b)|, from which we obtain
|Supp(a)∩Supp(b)| = wa+wb−w. It is immediately seen that it must be max{0;wa+
wb−n} ≤ |Supp(a)∩Supp(b)| ≤ min{wa;wb}, from which we find that the support
size of C is bounded as

max{wa;wb} ≤ w ≤ min{wa + wb;n}.

For all the admitted values, we have that we can have a support size w if and only
if the set entries of b overlap with those of a in exactly wa+wb−w positions. Since
b is random, this happens with probability

(
wa

wa+wb−w

)(
n−wa

w−wa

)(
n
wb

) .

Starting from a list containing L′ codewords with weight w′, the number of
subcodes with support size w that we can form using pairs of such codewords can
be estimated as (

L′

2

)
ζw′,w′(w) ≈ L′2ζw′,w′(w)

2
.

17

100 110 120 130 140 150
100

150

200

250

w

C
os
t
(i
n
lo
g
2
u
n
it
s)

CISD(q,n,k,w)

N
(2)
w

, k = 125

Eq. (1), k = 125
CISD(q,n,k,w)

N
(2)
w

, k = 100

Eq. (1), k = 100

Figure 2. Cost of finding a subcode with support size w. All the con-
sidered codes have q = 29 and n = 250.

Setting
L′2ζw′,w′ (w)

2 ≈ 1, from which L′ ≈
√

1
ζw′,w′ (w) , we have that on average

the considered approach produces one subcode. Hence, considering the number of
ISD calls we need, in order to produce L′ distinct codewords with weight w′, we
have that our proposed approach can find a subcode with support size w with a
cost given by

(1)

ln

(
1− 1

Nw′
√

ζw′,w′ (w)

)
Nw′ ln

(
1− 1

Nw′

) CISD(q, n, k, w′).

Note that, by using ISD directly, we need to face a cost given by CISD(q,n,k,w)

N
(2)
w

. To

show that this approach is faster than using ISD to directly search for subcodes (as
proposed in [7]), we report a comparison between the costs of these two approaches
in Figure 2, where we have considered several values of w and, for our proposed
approach, we have computed the value of w′ which minimizes (1). In the next section
we describe how this reasoning affects the complexity of Beullens’ algorithm.

6.2. Improved LEP algorithm. We now analyze the application of our proposed
approach to Beullens’ algorithm. Technically, we propose to replace Algorithm 1
with Algorithm 3. Notice that the only difference with Algorithm 1 is in how the
lists X and Y are constructed. According to the analysis we have performed in the
previous section, we expect this approach to be faster when the values of w′ and L′

are properly chosen.

As we have already anticipated, as a little technical caveat, we have that the
probability to have bad collisions gets modified, because we are considering subcodes
having a particular structure. To this end, we consider the following Proposition.

18

Algorithm 3: Our algorithm to find and match subcodes

Data: Number of codewords L′ ∈ N, weight w′ ∈ N, support size w ∈ N,
ISD routine

Input: linear codes C1,C2 ⊆ Fn
q with dimension k

Output: list P containing pairs (X,Y) ∈ F2×n
q × F2×n

q , such that
Values(Lex(X)) = Values(Lex(Y))

/* Produce a list X′ of L′ codewords from C1 with weight w′ */

1 X ′ = ∅;

2 while |X| < L do
3 Call ISD to find x ∈ C1 with weight w′;

4 X ′ ← X ′ ∪ {Lex(x)};
/* Use pairs of codewords to produce subcodes with support size w */

5 X ← ∅;

6 for a ∈ X ′ do
7 for b ∈ X ′ \ {a} do
8 X ← matrix with rows (a, b);

9 if Support of X has size w then
10 X ← X ∪ (Lex(X));

/* Produce a list Y ′ of L′ codewords from C2 with weight w′ */

11 Y ′ = ∅;

12 while |X| < L do
13 Call ISD to find y ∈ C2 with weight w′;

14 Y ′ ← Y ′ ∪ {Lex(y)};
/* Use pairs of codewords to produce subcodes with support size w */

15 Y ← ∅;

16 for a ∈ Y ′ do
17 for b ∈ Y ′ \ {a} do
18 Y ← matrix with rows (a, b);

19 if Support of Y has size w then
20 Y ← Y ∪ (Lex(Y));

/* Find collisions between the lists X and Y */

21 for {X,Y } ∈ X × Y do
22 if Values(LexX) = ValuesLex(Y) then
23 P ← P ∪ {X,Y };

24 return P ;

Proposition 7. Consider Algorithm 3, applied on two codes C1 and C2, where C1 is

random and C2 = τ(C1). Then, on average, P contains M ′ =
ζw′,w′ (w)

2

(
L′2

Nw′

)2
good

collisions and M ′′ = pw′(w)
L′4ζw′,w′ (w)

4

(
ζw′,w′(w)− 2

N2
w′

)
bad collisions, where

pw′(w) =

(
n

w−w′

)(
n−(w−w′)

w−w′

)(
n−2(w−w′)

2w′−w

)
(2w′ − w)!(q − 1)w−2w′+1

2
(
n
w′

)(
n−w′

w−w′

)(
w′

2w′−w

) .

19

Proof. We first derive the average number of good collisions. We consider that the
number of codewords in X ′ which are mapped into codewords in Y ′ (through τ) can

be estimated as M̃ = L′2

Nw′
. Indeed, for any codeword in X, we have only codeword

(among all the Nw′ ones in C2) which is its image through τ . Using any pair of
such codewords to construct subcodes, we obtain good collisions. Considering that
any of such subcodes will have the desired support size with probability ζw′,w′(w),
we can estimate the number of good collisions as

M ′ =

(
M̃

2

)
ζw′,w′(w) ≈ M̃2

2
ζw′,w′(w) =

ζw′,w′(w)

2

(
L′2

Nw′

)2

.

We now comment about the number of bad collisions. For any code, we dispose, on

average, of
(
L′

2

)
ζw′,w′(w) ≈ L′2

2 ζw′,w′(w) subcodes with support size w. Hence, we

have a total of
((

L′

2

)
ζw′,w′(w)

)2
≈
(

L′2

2 ζw′,w′(w)
)2

subcode pairs (one from X, one

from Y): since M ′ of these pairs are good collisions, the number of pairs which may

arise in bad collisions is
(

L′2

2 ζw′,w′(w)
)2
−M ′ =

L′4ζw′,w′ (w)

4

(
ζw′,w′(w)− 2

N2
w′

)
. If

each of these pairs is a bad collision with probability pw′(w), then we can estimate
the number of bad collisions as

pw′(w)
L′4ζw′,w′(w)

4

(
ζw′,w′(w)− 2

N2
w′

)
.

To conclude the proof, we need to estimate pw′(w). Any subcode in X is generated
by a 2 × n matrix in which i) the rows have weight w′, and ii) overlap in x =
2w′ − w positions (since the support has size w). The number of matrices with
these properties is obtained as

Uw′(w) =

(
n

w′

)(
n− w′

w′ − x

)(
w′

x

)
(q − 1)2w

′
=

(
n

w′

)(
n− w′

w − w′

)(
w′

2w′ − w

)
(q − 1)2w

′
.

Indeed, the term
(
n
w′

)(
n−w′

w′−x

)(
w′

x

)
counts all the possible supports for the rows of the

generator matrix, while the term (q − 1)2w
′
is due to the fact that, for each row,

there are (q−1)w′
choices for the set coefficients. We divide Uw′(w) by 2(q−1)(q−1)

to avoid multiple counting of the same matrix (since (q − 1)(q − 1) is the number
of matrices we can obtain by scaling each row, and the factor 2 is due to row

swapping). Finally, we multiply Uw′ (w)
2(q−1)2 by

[k2]q
[n2]q

to consider the probability that a

matrix generates indeed a subcode of C1. Now, we need to consider the number of
subcodes of C1 we can obtain by applying a monomial transformation to one of the
generator matrices in X. This quantity can be set as

t̃(2)w =

(
n

w′ − x

)(
n− w′ + x

w′ − x

)
(q − 1)2(w

′−x)

(
n− 2(w′ − x)

x

)
x!(q − 1)x−1

[k2]q
[n2]q

=

(
n

w − w′

)(
n− (w − w′)

w − w′

)(
n− 2(w − w′)

2w′ − w

)
(2w′ − w)!(q − 1)w−1

[k2]q
[n2]q

Indeed, for V ∈ X, we consider all possible matrices V ′ which can be obtained as
V ′ = σ(V), where σ ∈ Mn. In each V ′ we have w′ − x columns in which the entry
in the first row is set and the one in the second row is null; also, we must have w′−x
other columns in which the entry in the first row is null, and the one in the second

row is set. The number of such columns is counted as
(

n
w′−x

)(
n−w′+x
w′−x

)
(q−1)2∗(w′−x).

20

We then consider the number of monomial transformations of the columns con-
taining two set entries, which is equal to x: this number cannot be larger than(
n−2(w′−x)

x

)
x!(q−1)x. Indeed, it may happen that distinct transformations produce

the same matrix, but we neglect such a possibility to simplify the analysis. Finally,
we multiply again by the probability that the subcode generated by such a matrix
is contained in C1, and divide by (q − 1), to avoid multiple counting of matrices
that generate the same subcode. Given the above reasoning, we can set

pw′(w) =
t̃
(2)
w

Uw′ (w)
(q−1)

[k2]q
[n2]q

=

(
n

w−w′

)(
n−(w−w′)

w−w′

)(
n−2(w−w′)

2w′−w

)
(2w′ − w)!(q − 1)w−1

2
(
n
w′

)(
n−w′

w−w′

)(
w′

2w′−w

)
(q − 1)2w′−2

=

(
n

w−w′

)(
n−(w−w′)

w−w′

)(
n−2(w−w′)

2w′−w

)
(2w′ − w)!(q − 1)w−2w′+1

2
(
n
w′

)(
n−w′

w−w′

)(
w′

2w′−w

) .

We are now ready to evaluate the complexity of our new LEP algorithm.

Proposition 8. The time complexity of our LEP algorithm, using lists of L′ code-

words of weight w′ such that i) L′ = 4

√
4N2

w′
ζw′,w′ (w)n ln(n) and ii) M ′′ < 1, is in

O

(
ln (1− L′/Nw′)

Nw′ ln (1− 1/Nw′)
CISD(q, n, k, w′)

)
.

Conditions i) and ii) sets an estimate on the number of good collisions we need;
notice that condition ii) is obtained by setting M ′ = 2n ln(n). Finally, condition
iii) guarantees that, with high probability, bad collisions do not happen. For large
inputs, we have that L′/Nw′ = o(1), and therefore, the first order approximation of
the cost of our LEP algorithm simplifies as

O

(
CISD(q, n, k, w′)√

Nw′

4

√
n log(n)

ζw′,w′(w)

)
.

6.3. Performance of our new LEP algorithm. In this section we comment
about the effectiveness of our new approach. First, we present the results of numer-
ical simulations, to validate the statement of Proposition 7.

(n, k, q) (L′, w′, w)
Num subcodes M ′ M ′′

th. emp. th. emp. th. emp.

(40, 20, 7)
(10, 12, 19) 7.55 7.30 1.30 0.43 3.20 2.57
(100, 13, 20) 626.86 614.00 58.76 59.40 18558.74 15016.60

(30, 10, 13)
(11, 15, 21) 8.88 8.37 10.77 7.98 0.036 0.02
(40, 16, 24) 207.30 208.32 24.48 24.78 25.42 26.22

(30, 10, 19)
(25, 16, 24) 79.73 82.06 76.20 78.56 0.22 0.44
(50, 17, 24) 341.36 343.15 5.82 4.70 1.11 1.30

Table 2. Comparison between numerical results and theoretical esti-
mates on the composition of the list P obtained with Algorithm 3. For
each triplet (n, k, q), the empirical results have been averaged over 100
random codes.

21

To this end, for each parameter set, we have considered 100 different pairs of
codes C1 and C2. Then, for each pair, we have simulated Algorithm 3; in Table 2
we compare the empirical values of M ′ and M ′′ (averaged over all the trials) with
the theoretical ones, estimated though Proposition 7. As we can see from the table,
the theoretical estimates match the empirical ones; this provides a validation of the
heuristic we have employed to assess the performances of Algorithm 3.

In Figure 3 we compare the complexity arising from Proposition 8 with those of
Leon’s and Beullens’ algorithms. For our algorithm we rely on the average complex-
ity estimate resulting from Proposition 8, while for the other algorithms we have
considered the lower bounds resulting from Propositions 3 and 6. Remember that
for Leon’s algorithm we are underestimating the weight value which is necessary
to run the attack, so that, in practice, the actual complexity of the algorithm may
be much larger. For Beullens’ method, the lower bound comes from the fact that
Proposition 6 is derived assuming bad collisions never happen (i.e. M ′′ is set to 0).

11 53 103 151 199 251
70

80

90

100

110

120

130

140

150

q

C
os
t
(i
n
lo
g
2
u
n
it
s)

Leon
Beullens

This paper

(a) n = 200, k = 100, several q

100 150 200 250 300 350 400 450 500
50

100

150

200

250

300

n

C
os
t
(i
n
lo
g
2
u
n
it
s)

Leon
Beullens

This paper

(b) q = 251, k = 1
2
n, several n

Figure 3. Comparison between several methods to solve LEP.

This comparison shows that our proposed algorithm performs better than the
state-of-the-art solvers. Note that, in Figure 3, the cost of Beullens’ method gets
closer to ours for fixed q and n → ∞. In this regime, the simplifications made
in the cost analysis of Beullens’ algorithm might underestimate the real cost by a

significant margin. Indeed, the term M ′′ that we removed is dominated by t
(2)
w ∼

n!/(n− w)!, which is exponential in n. To give more insight on how our algorithm
operates, in Table 3 we have reported the optimal setting for the attack, for some
of the instances we have considered in Figure 3.

q L′ w′ w Cost

11 13 56 97 283.76

53 183 62 111 2105.34

103 8.83 · 107 80 124 2111.90

151 5.57 · 109 83 128 2114.19

199 4.48 · 1012 86 126 2115.17

251 3.39 · 1014 88 127 2115.78

Table 3. Optimal setting and resulting complexity for our algorithm to
solve LEP. All the considered codes have n = 200, k = 100.

22

7. Conclusions

The code equivalence problem is seeing an increasing presence in cryptographic
literature. Since protocols based on code equivalence have the potential to be very
efficient and lead to good solutions for code-based signature schemes (as well as other
functionalities), it is important to properly assess the hardness of the problem in
practical instances. In this paper, we provided a detailed analysis of the various
approaches for solvers, for both permutation and linear code equivalence.

We have briefly explained why solvers that exploit particular properties, such
as that of Bardet et al. [5] and Sendrier’s support splitting algorithm [17], do not
perform well in most instances of LEP, including the ones used in cryptography. In
fact, both solvers are only truly efficient for the case of codes with trivial hulls, and
it is thus easy to find hard instances. With regards to the latter, for example, it is
worth mentioning that, in the linear case, SSA needs to be applied to the closure of
the considered codes; however, for q ≥ 5, the closure of a code is always weakly-self
dual, and thus has a hull of maximum dimension k, leading to exactly the hardest
instances for SSA to solve.

As a consequence of the above considerations, we gave an extensive treatment
only to techniques that exploit the Hamming weight as an invariant, and utilize ISD
as a subroutine for searching codewords. We have summarized and given a precise
cost estimate of the two main algorithms of this type, Leon’s [12] and Beullens’ [7],
that can be originally applied to the case of permutation equivalence. We have
then shown how both can be adapted to the linear equivalence case, and produced
a concrete technical analysis, which was lacking in the original works. Furthermore,
we have presented an improved routine, that can considerably reduce the cost of
Beullens’ algorithm. We have given accurate complexity formulae, in all cases.

References

[1] M. R. Albrecht et al. “Classic McEliece: conservative code-based cryptography”. In: (). url:

https://classic.mceliece.org/.
[2] N. Aragon et al. “BIKE: Bit Flipping Key Encapsulation”. In: NIST Post-Quantum Stan-

dardization, 3rd Round (2021). url: https://bikesuite.org/.

[3] L. Babai. “Graph Isomorphism in Quasipolynomial Time”. In: CoRR abs/1512.03547 (2015).
arXiv: 1512.03547. url: http://arxiv.org/abs/1512.03547.

[4] M. Baldi et al. “A Finite Regime Analysis of Information Set Decoding Algorithms”. In:
Algorithms 12.10 (2019). issn: 1999-4893. url: https://www.mdpi.com/1999-4893/12/10/
209.

[5] M. Bardet, A. Otmani, and M. Saeed-Taha. “Permutation Code Equivalence is Not Harder
Than Graph IsomorphismWhen Hulls Are Trivial”. In: IEEE ISIT 2019. July 2019, pp. 2464–

2468.

[6] A. Barenghi et al. “LESS-FM: Fine-tuning Signatures from the Code Equivalence Problem”.
In: International Conference on Post-Quantum Cryptography. Springer. 2021, pp. 23–43.

[7] W. Beullens. “Not Enough LESS: An Improved Algorithm for Solving Code Equivalence

Problems over Fq”. In: International Conference on Selected Areas in Cryptography. Springer.
2020, pp. 387–403.

[8] J.-F. Biasse et al. “LESS is More: Code-Based Signatures Without Syndromes”. In: AFRICACRYPT.

Ed. by A. Nitaj and A. Youssef. Springer, 2020, pp. 45–65.
[9] A. Couvreur, T. Debris-Alazard, and P. Gaborit. “On the hardness of code equivalence

problems in rank metric”. In: arXiv preprint arXiv:2011.04611 (2020).
[10] T. Feulner. “The automorphism groups of linear codes and canonical representatives of their

semilinear isometry classes.” In: Adv. Math. Commun. 3.4 (2009), pp. 363–383.

[11] A. Fiat and A. Shamir. “How to prove yourself: Practical solutions to identification and
signature problems”. In: CRYPTO. Springer. 1986, pp. 186–194.

23

https://classic.mceliece.org/
https://bikesuite.org/
https://arxiv.org/abs/1512.03547
http://arxiv.org/abs/1512.03547
https://www.mdpi.com/1999-4893/12/10/209
https://www.mdpi.com/1999-4893/12/10/209

[12] J. Leon. “Computing automorphism groups of error-correcting codes”. In: IEEE Transac-
tions on Information Theory 28.3 (May 1982), pp. 496–511.

[13] C. A. Melchor et al. “HQC: Hamming Quasi-Cyclic”. In: NIST Post-Quantum Standardiza-

tion, 3rd Round (2021). url: http://pqc-hqc.org/.
[14] C. Peters. “Information-set decoding for linear codes over Fq”. In: International Workshop

on Post-Quantum Cryptography. Springer. 2010, pp. 81–94.
[15] E. Petrank and R. M. Roth. “Is code equivalence easy to decide?” In: IEEE Transactions

on Information Theory 43.5 (Sept. 1997), pp. 1602–1604.

[16] M. A. Saeed. In: PhD thesis (2017).
[17] N. Sendrier. “The Support Splitting Algorithm”. In: Information Theory, IEEE Transac-

tions on (Aug. 2000), pp. 1193–1203.

[18] N. Sendrier and P. Symbolique. “On the Dimension of the Hull”. In: SIAM Journal on
Discrete Mathematics 10 (Nov. 1995). doi: 10.1137/S0895480195294027.

Appendix A. Leon’s algorithm

In this Appendix we provide further details about Leon’s algorithm. We start
by proving Proposition 3.

Proposition 3 ([7]). Let C1 ⊆ Fn
q be a random code with dimension k, π

$←− Sn
and C2 = π(C1). The cost of Leon’s algorithm, running with parameter w ∈ N,
w ≤ n, can be estimated4 as

O
(
ln(Nw)CISD(q, n, k, w)

)
.

Proof. (Heuristic) We first consider the cost of the codewords enumeration in Step
1. For both codes C1, C2, we need to find all of the Nw codewords with weight w. To
this end, we model an ISD algorithm as an oracle that, in each call, returns a random
weight-w codeword. We first focus on C1: the first ISD call will take time complexity
CISD(q, n, k, w)/Nw. In the second call we desire to find a distinct codeword, so
that the time complexity of this second call is CISD(q, n, k, w)/(Nw − 1). If we
iterate this reasoning, we get that the codewords enumeration for C1 takes time

O

(
CISD(q, n, k, w) ·

Nw∑
i=1

1

i

)
.

When Nw is large, we consider that
∑Nw

i=1
1
i ≈ ln(Nw). The codewords enumera-

tion is repeated for C2, with analogous cost: this yields a constant factor 2 in the
complexity.

Under the assumption that w is properly chosen, MorSn

(
Aw(C1), Aw(C2)

)
con-

tains a very small number of elements (ideally, only one). So, we can neglect the
cost of steps 2 and 3, and consider only the cost of codewords enumeration.

We now give some insight on how the choice of w is expected to affect the
algorithm. In the following Proposition we derive a heuristic lower bound on the
size of MorSn

(
Aw(C1), Aw(C2)

)
, which is obtained under the (realistic) assumption

that weight-w codewords of random codes have random supports.

Proposition 9. Let C1 ⊆ Fn
q be a random code with dimension k, π

$←− Sn and

C2 = π(C1). Then, the set MorSn

(
Aw(C1), Aw(C2)

)
contains at least u! elements,

where u = max
{
1 ,
⌊
n
(
1− w

n

)Nw
⌋}

.

4Here we use the same estimate derived in [7, Section 2.2], which corresponds to a lower bound
for the actual complexity since the cost of steps 2 and 3 is neglected. In other words, the proposition

takes into account only the cost of the codewords enumeration phase.

24

http://pqc-hqc.org/
https://doi.org/10.1137/S0895480195294027

Proof. (Heuristic) Since C1 is random, we use Nw to estimate the number of code-
words with weight w. For i = 1, 2, let Bi = {j ∈ [1;n] | ∀x ∈ Aw(Ci) : cj = 0}
and Bi = {1, · · · , n} \ Bi. Note that, for any index j ∈ Bi, we have that all the
codewords in Aw(Ci) have a null entry in position j, while for any j ∈ Bi there is
at least a codeword in Aw(Ci) whose j-th entry is non null. Let us now consider
a permutation σ ̸= π such that σ(j) = π(j), for all j ∈ B1: this implies that
σ(j) ∈ B2 for all j ∈ B1. Then, clearly σ ∈ MorSn

(
Aw(C1), Aw(C2)

)
. Notice that

the number of valid permutations σ is equal to the number of bijections from B1

to B2, which is |B1|! = |B2|!. Note that this is only a lower bound, since there
may exist permutations that map Aw(C1) into Aw(C2) even if σ(j) ̸= π(j) for some
j ∈ B1.
To complete the proof, we need to estimate the size of B1. To this end, we rely on

the following estimate |B1| = n
(
1− w

n

)Nw
. Indeed, since C1 is random, we see any

of its codewords as a random vector. Consequently, the probability that an index j
is in the support of a codeword with weight w is w/n. Since C1 has Nw codewords
with weight w, the probability that an index never appear in the supports of all

Nw weight-w codewords is
(
1− w

n

)Nw
. Multiplying the above probability by n, we

obtain an estimate for the average size of B1.

The result in the above Proposition de facto sets a theoretical lower bound on
the value of w which must be used when running Leon’s algorithm.

Appendix B. Beullens’ algorithm for PEP

In this appendix we provide details about Beullens’ algorithm to solve PEP.
Given a pair (x,y) ∈ C1 × C2 such that Values(x) = Values(y), we will say that
(x,y) is a good collision if π(x) = y, and a bad collision if π(x) ̸= y. Once colliding
pairs of codewords have been obtained, one can employ a probabilistic procedure
to retrieve the permutation with some probability. In particular, in [7], the author
has considered an approach which works only in case bad collisions do not happen.

B.1. Finding matching codewords. We start by analyzing the routine which
produces pairs of colliding codewords. We briefly recall the approach of [7] and
provide a heuristic analysis on the number of bad and good collisions which one
expects to have, on average. To begin, we observe that for any pair of vectors
such that y = π(x), it must also be that vy = π(vx) for all v ∈ F∗

q . This means
that, given a pair (x,y) of colliding codewords, we are able to produce additional
q−1 pairs of colliding codewords which, however, do not bring any new information
about π. Considering all of these pairs in the permutation reconstruction algorithm
is useless. Hence, we can get rid of such additional collisions with the following
approach (proposed by Beullens in [7]). Let Lex denote the function that on input a
vector a returns ba, with b ∈ F∗

q such that Values(ba) comes first, in lexicographical
order, among the multiset entries of all scalar multiples of a. To understand how
this function operates, we have reported an example in Figure 4. Embedding the
function Lex into the codewords finding algorithm, one can get rid of all unnecessary
codewords.

The full subroutine for finding colliding codewords is shown in Algorithm 4. We
observe that including the computation of Lex into the codewords search guarantees
that we do not put scalar multiples into the lists X and Y and, consequently, into
P . The number of codewords we draw from each code is indicated as L, while w is
the Hamming weight of the found codewords.

25

Values(1a) = {1, 2, 2, 3, 3, 3, 4}
Values(2a) = {1, 1, 1, 2, 3, 4, 4}
Values(3a) = {1, 1, 2, 3, 4, 4, 4}
Values(4a) = {1, 2, 2, 2, 3, 3, 4}

(a)

1◦ -
2◦ -
3◦ -
4◦ -

Values(2a) = {1, 1, 1, 2, 3, 4, 4}
Values(3a) = {1, 1, 2, 3, 4, 4, 4}
Values(4a) = {1, 2, 2, 2, 3, 3, 4}
Values(1a) = {1, 2, 2, 3, 3, 3, 4}

(b)

Figure 4. Example of lexicograph ordering, for the finite field with q =
5 elements and a vector a = (0, 3, 2, 0, 0, 3, 3, 2, 4, 1), for which Lex(a) =
2a. Figure (A) shows the multisets of entries for all scalar multiples of
a, while figure (B) reports the lexicographic order of such multisets.

Algorithm 4: Algorithm to find and match codewords

Data: Number of codewords L ∈ N, weight w ∈ N, ISD routine
Input: linear codes C1,C2 ⊆ Fn

q with dimension k
Output: list P containing pairs (x,y) ∈ C1 × C2, such that

Values(x) = Values(y)

/* Produce a list X of L codewords from C1 with weight w */

1 X = ∅;

2 while |X| < L do
3 Call ISD to find x ∈ C1 with weight w;

4 X ← X ∪ {Lex(x)};

/* Produce a list Y of L codewords from C2 with weight w */

5 Y = ∅;

6 while |Y | < L do
7 Call ISD to find y ∈ C2 with weight w;

8 Y ← Y ∪ {Lex(y)};

/* Find collisions between the lists X and Y */

9 for {x,y} ∈ X × Y do
10 if Values(x) = Values(y) then
11 P ← P ∪ {x,y};

12 return P ;

In the next proposition we compute the average size of P , as well as the number
of good and bad collisions.

Proposition 10. Let C1 ⊆ Fn
q be a random linear code with dimension k, and

let C2 = π(C1) with π
$←− Sn. Then, on average P contains M = M ′ + M ′′

26

elements, when M ′ = L2/Nw is the average number of good collisions and M ′′ =

(1− 1/Nw)(q − 1)L2
(
w+q−3
w−1

)−1
is that of bad collisions.

Proof. We consider that C1 contains Nw codewords with weight w and, according
to Assumption 1, assume that the automorphism group of the code is trivial. We
first determine the number of good collisions. For each x ∈ C1, we have only one
codeword y ∈ C2 such that π(x) = y. Since ISD returns random codewords of
weight w, we have that on average the number of good collisions is given by

M ′ =
L∑

i=1

i ·
(
L
i

)(
Nw−L
L−i

)(
Nw

L

) =
L2

Nw
.

We now count the number of bad collisions; let us first make some preliminary
considerations. First, for any vector a, we have that Lex(a) contains at least a 1.
Hence, for each x ∈ X, we may assume that Values(x) is a random multiset with
one entry equal to 1, and the other w − 1 ones picked at random over F∗

q . The
same goes for each y ∈ Y . To have {x,y} ∈ P , it must be Values(x) = Values(y):
since there are

(
q+w−3
w−1

)
ways to choose w − 1 elements from F∗

q with repetitions,
assuming that such elements are drawn at random, we have that a collision between

Values(x) and Values(y) is expected to happen with probability
(
q+w−3
w−1

)−1
. Hence,

the number of bad collisions can be estimated as

M ′′ = (L2 −M ′)(q − 1)

(
w + q − 3

w − 1

)−1

.

Indeed, we have L2 −M ′ possible pairs that do not give rise to a good collision,

and a fraction
(
w+q−3
w−1

)−1
of these is expected to yield to a bad collision. Then, the

list size of P is given by M ′ +M ′′.

A confirmation of the heuristics we have used for the Proposition is shown in
Section B.3, where we compare the performances of the algorithm with those of
numerical simulations. The complexity of executing Algorithm 4 is computed in
the next proposition.

Proposition 11. Let C1 ⊆ Fn
q be a random code with dimension k, and C2 = π(C1),

with π being a randomly picked permutation. Then, the complexity of running
algorithm 4 with parameter L and w is

O

L
(
log2(L) + (q − 1)w log22(q)

)
+M ′ +M ′′ +

CISD(q, n, k, w)

Nw
·
ln
(
1− L

Nw

)
ln
(
1− 1

Nw

)
 .

Proof. (Heuristic) We start by estimating the number of ISD calls to find L distinct
codewords. We consider that each ISD call costs CISD(n, k, q, w)/Nw. Now: the

average number of distinct codewords we find, after u calls, is Nw

(
1−

(
1− 1

Nw

)u)
.

Since we want this quantity to be equal to L, it must be u =
ln(1− L

Nw
)

ln(1− 1
Nw

)
. Then,

the average cost of calling ISD is O

(
CISD(q,n,k,w)

Nw
· ln(1−

L
Nw

)
ln(1− 1

Nw
)

)
. For each found

codeword we compute the value of Lex, which comes with a cost of (q− 1)w log22(q)
(since we must compute the (q− 1) scalar multiple of each found codeword, having
weight w). Then, we have to produce the merged list, which can be done efficiently

27

if one firsts hashes the entries of lists X and Y and then uses a binary search
algorithm. This comes with a cost that is estimated as L log2(L). Finally, we
consider that the list P contains M ′ +M ′′ elements, and consider such a value as
the estimate for the complexity to build the list.

Remark 5. If L≪ Nw (as we expect), then ln(1− L
Nw

) ≈ − L
Nw

and ln(1
Nw

) ≈ − 1
Nw

.

Then, the cost of ISD becomes O
(

LCISD(q,n,k,w)
Nw

)
: this means that we call ISD for

L times, and that every call costs CISD(q,n,k,w)
Nw

. Embedding this simplification into
the expression of 11, we obtain a time complexity of

O

(
L log2(L) + L(q − 1)w log22(q) +M ′ +M ′′ +

LCISD(q, n, k, w)

Nw

)
.

Furthermore, considering that the cost of ISD is expected to be prevalent, with
respect to the other terms, we can simply assume that Algorithm 4 costs

O

(
LCISD(q, n, k, w)

Nw

)
B.2. Probabilistic permutation recovery. We now move on to assessing the
performance of the permutation reconstruction phase described in [7]. The algo-
rithm exploits the following crucial observation: if we know that π(x) = y for some
permutation π, and we have xi ̸= yj , then we know that π does not map i to j.
Considering all pairs of indexes (i, j) for which xi ̸= yj , we gather a significant
amount of information about π or, to put it differently, we filter out a wide number
of candidate permutations. Exploiting all pairs in P , and putting all the informa-
tion together, it may become possible to recover the secret π with a procedure as
simple as the one in Algorithm 5.

Algorithm 5: Probabilistic permutation recovery, for the permutation
equivalence version of Beullens’ algorithm

Input: list P , containing pairs {x,y} ∈ Fn
q × Fn

q

Output: permutation π ∈ Sn, or report failure

1 U ← n× n matrix made of all ones;

2 for {x,y} ∈ P do
3 for i ∈ {1, · · · , n} do
4 for j ∈ {1, · · · , n} do
5 if xi ̸= yj then
6 ui,j = 0

/* Use U to reconstruct the permutation; if not possible, report failure */

7 if U is a permutation matrix then
8 return π;

9 else
10 report failure

We note that, however, such an efficient permutation recovery is characterized
by a certain failure probability. Indeed, when P is not populated with a sufficient
number of elements, it may happen that the algorithm is not able to return a

28

valid matrix. To estimate the probability that Algorithm 5 is successful, and to
additionally derive the minimum number of elements that P should contain, we
rely on the following proposition.

Proposition 12. Let C1 ⊂ Fn
q be a random linear code with dimension k and

C2 = π(C1), with π
$←− Sn. Let P be the list produced by Algorithm 4 with input

parameters L and w. Let L and w such that M ′′
(
1− 1

Nw

L2

(w+q−3
w−1)

)
≈ 0. Then,

Algorithm 5 runs in time O
(
n2 L2

Nw

)
, and retrieves the correct permutation with

probability (1− ρ
L2

Nw)n(n−1), where ρ =
(
1− w

n

)2
+ 1

q−1

(
w
n

)2
.

Proof. We assume that L and w are such that P does not contain bad collisions.

Hence, we have |P | = M ′ = L2

Nw
. To check each pair in P , the algorithm uses

O(n2) operations (since it goes through all pairs of indexes (i, j) ∈ {1, . . . , n}2). We
now proceed to estimate the success probability. We consider a pair of codewords
{x,y} ∈ P and a pair of indexes (j, ℓ), and consider the probability that we have
xj = yℓ. This probability is given by

ρ =
(
1− w

n

)2
+

1

q − 1

(w
n

)2
.

The algorithm will succeed if, for all possible pairs (j, ℓ), we have at least a couple

of codewords {x,y} for which xj ̸= yℓ. Given that P contains L2

Nw
pairs, and that

we have xj ̸= yℓ must happen for n(n−1) pairs of indexes, we have that the success

probability can be estimated as
(
1− ρ

L2

Nw

)n(n−1)

.

Remark 6. The probability in Proposition 12 is an approximation of the actual
success probability. Indeed, the proof of the proposition assumes that all pairs
of indexes (j, ℓ) for which we have xj = yℓ behave as random and uncorrelated
variables, which is clearly ideal. Indeed, the actual distribution depends on the
supports of the codewords which are present in P and, especially when P is small,
the pairs of indexes are heavily correlated. Taking this phenomenon into account in
a more accurate way would require a much more involved analysis. In any case, the
probability expressed by Proposition 12 offers a crude, but appropriate and simple,
approximation of the actual probability.

B.3. Numerical confirmation. In this section we present the results of some
numerical simulations we have run, in order to validate the analysis of Beullens’
algorithm we have performed in the previous sections. For our simulations, we
have fully implemented the algorithm using Sage; the code we have used for the
experiments is made fully available5.

We start by considering the codewords finding algorithm; we have run the fol-
lowing experiment:

1. generate random pairs of codes, one being a permutation of the other;
2. for each couple of codes, cal ISD to find L distinct codewords with weight w;
3. for each couple of codes, run Algorithm 4 and have empirically measured the

values of M ′ and M ′′;
4. average the obtained values of M ′ and M ′′, and compare with the theoretical

estimates in Proposition 10.

5https://github.com/paolo-santini/LESS_project

29

https://github.com/paolo-santini/LESS_project

15 30 45 60 75 90
0

0.2

0.4

0.6

0.8

1

L

S
u
cc
es
s
p
ro
b
ab

il
it
y

Emp., q = 31, n = 30, k = 20, w = 8
Th., q = 31, n = 30, k = 20, w = 8

Emp., q = 11, n = 30, k = 10, w = 15
Th., q = 11, n = 30, k = 10, w = 15
Emp., q = 19, n = 40, k = 15, w = 20
Th., q = 19, n = 40, k = 15, w = 20

Figure 5. Success probability of the probabilistic permutation recovery
as a function of L, for codes with different parameters. For every con-
figuration, we have tested the attack on 50 codes. The empirical success
probability has been computed by averaging over the trials.

In Table 4 we have reported a comparison between the theoretical values and the
empirical ones.

(n, k, q) w L
M ′ M ′′ |P |

th. emp. th. emp. th. emp.

(50, 25, 5)
13 12 7.2 8.2 1.2 3.3 8.4 11.5
14 100 47.3 47.6 71.1 268.9 118.4 316.5

(40, 10, 11)
23 40 31.5 31.0 7.78 · 10−4 0 31.5 31
24 145 58.4 58.2 7.4 · 10−3 0.1 58.3 58.3

(40, 10, 23)
26 250 52.7 54.2 1.9 · 10−7 0 52.7 54.2
28 2000 28.9 29.1 3.9 · 10−6 0 28.9 29.1

(30, 10, 31)
8 90 51.9 51.9 2.9 · 10−2 0 51.9 51.9
9 200 3.5 4.5 3.1 · 10−2 0 3.5 4.5

Table 4. Comparison between numerical results and theoretical esti-
mates on the composition of list P . For each triplet (n, k, q), the empir-
ical results have been averaged over 10 random codes.

Finally, we have considered also the success probability of the permutation recon-
struction algorithm; in Figure 5 we compare the obtained values with the theoretical
ones, obtained through Proposition 12. The results show that Proposition 12 offer
indeed a realistic approximation of the actual probability.

Appendix C. Computing First Lexicographic Basis

In this section we describe how the computation of Lex can be extended to the
case of two-dimensional spaces; to avoid confusion with the one-dimensional case,

we will refer to the operation as Lex(2). We define Lex(2) as the function that,
on input V ∈ F2×n

q , returns the matrix BV , with B ∈ GL2 and such that the
lexicographic minimum of {τ(BV) | τ ∈ Mn} does not come after the lexicographic

30

minimum of each {τ(B∗V) | τ ∈ Mn}, with B∗ ∈ GL2\B. Note that this definition
is a generalization to the two-dimensional case of the Lex function we have already
considered in Section B.1.

To compute the first lexicographic basis of all possible monomial transformations
of a matrix V , we can operate as follows. We multiply each column of V by the
inverse of the element in the first row, in order to remain with either zeros or ones
in the first row. Now, we permute the columns of the obtained matrix with the goal
of placing the zeros in the leftmost part of the first row. To do this, we consider the
element in the second row: when two columns have the same element in the first
row, we look at the element in the second row, and put on the left the one with
the lowest entry. Finally, if we have some non null entry in the second row which
corresponds to a null entry in the first row, we can scale the corresponding column
to put a one in the second row. For the sake of clarity, in Figure 6 we show an
example of this procedure.

(
0 1 0 0 2 3 2 0 4
1 0 0 2 0 3 4 0 2

)
(a)(

0 1 0 0 1 1 1 0 1
1 0 0 2 0 1 2 0 3

)
(b)(

0 0 0 0 1 1 1 1 1
0 0 1 2 0 0 1 2 3

)
(c)(

0 0 0 0 1 1 1 1 1
0 0 1 1 0 0 1 2 3

)
(d)

Figure 6. Example of lexicographic ordering of a basis, for the finite
field with q = 5 elements. In figure (A) we show the initial basis, while in
the other figures we detail the steps we perform to find the corresponding
lexicographic minimum. The matrix in figure (B) is obtained by scaling
all columns so that the entry in the first row is a 1. To obtain the matrix
in figure (C), we sort the columns. Finally, we see that we have some
degrees of freedom, since the third and fourth columns have a zero in
the first row and a non null entry in the second row. Hence, we scale
these columns and finally obtain the minimum lexicograph basis as in
figure (D).

Then, given an input matrix V ∈ F2×n
q , we compute the matrices BV , with

B ∈ GL2. We then perform the operations shown in Figure 6 and, for each BV ,
keep only the resulting lexicographically minimum matrix. Finally, we compare all
of such matrices and pick the one which comes first, in the lexicographically order.
Notice that, for each input matrix, we test a total of (q2 − 1)(q2 − q) basis, and
for each basis we use O(n) operations to find the lexicographic minimum matrix.

31

Each comparison requires O(2n) operations, so that the computation of Lex(2) costs
O
(
n(q2 − 1)(q2 − q)

)
operations.6

Appendix D. Considerations about Lex(2) and two-dimensional
equivalent codes

In this appendix we estimate the probability to have bad collisions when consid-

ering the computation of Lex(2) and Values on two-dimensional subcodes. We start
with the following technical Lemma.

Lemma 3. Let V 1,V 2 ∈ F2×n
q , with A1 = Lex(2)(V 1) and A2 = Lex(2)(V 2) being

such that Values(A1) = Values(A2). Then, the codes generated by V 1 and V 2 are
equivalent.

Proof. We observe that, if Values(A1) = Values(A2), then this means that there
exist two monomials τ1, τ2 ∈ Mn such that τ1(A1) = τ2(A2). Let Q1 and Q2 be
the associated matrices, and let A1 = B1V 1, A2 = B2V 2. Then, we have

B1V 1Q1 = B2V 2Q2 =⇒ V 1 = B−1
1 B2V 2Q2Q

−1
1 ,

which corresponds to the definition of linear equivalence.

Proposition 1. Let C ⊆ Fn
q be a random linear code with dimension k. Let V ⊆ C

be a randomly-chosen, two-dimensional subcode with support size w. Then, the
average number of two-dimensional subcodes B′ ⊆ C which are linearly equivalent
to B is upper bounded by

t(2)w =

(
n

w

)
w!(q − 1)w−1

[k2]q
[n2]q

.

Proof. The bound is trivially obtained by considering all distinct monomial transfor-
mations of a code whose support is w, which is given by

(
n
w

)
w!(q−1)w−1 (excluding

monomial transformations which are identical, up to a scalar multiplication). Then,

we consider that for every such code, there is a probability equal to
[k2]q
[n2]q

that it is

in C (since C is random).

Remark 7. With some simple arithmetic manipulations, one can find that

t(2)w ≤ nwq−2(n−k)+w = nwq−2(1−R)n+w,

where R is the code rate. The behaviour of t
(2)
w depends on the setting that one

considers, namely, on the relation between n and q, but also on the desired values of
w which, in turns, depend on further several factors (such as existence of subcodes
with support size w and the actual cost to find subcodes). Taking all of this into
account would require several cumbersome computations and would unnecessarily
burden the presentation. Yet, the following simple reasoning is enough to discuss

the expected behaviour of t
(2)
w and, ultimately, the performance of Leon’s algorithm.

- if we fix q and let n grow, then we expect that the optimal w is linear in n,
so that the term nw is super-exponential in n. Hence, at some point, we will

have t
(2)
w ≥ 1;

6Clearly, one can improve the computation of Lex(2) using small weight codewords: this avoids

to consider all (q2 − 1)(q2 − q) changes of basis. However, taking this into account would burden
the description. Since this aspect does not affect significantly the complexity of the algorithms we

analyze, we chose to consider only the trivial (and, perhaps, naive) computation for Lex(2).

32

- when, instead, we fix n and increase q, we have that w may increase as well:
the minimum support size we expect to find gets larger and, consequently,
Beullens’ algorithm is expected to be optimized with a larger value for w.
However, at some point, w will saturate: for instance, regardless of q, any
code contains two-dimensional subcodes with support size n− k + 2. Setting
w = n − k + 2 ≈ n(1 − R), we have that the term nw is constant in q while
q−2(1−R)n+w ≈ q−n(1−r) gets lower as q gets larger. Roughly speaking, the

value of t
(2)
w gets lower as q increases and this makes the existence of equiv-

alent subcodes less likely. This reasoning describes why we expect Beullens’
algorithm to perform better when q becomes larger.

Appendix E. Proof of Proposition 5

Proposition 5. Let C1 ⊆ Fn
q be a random linear code with dimension k, and let

C2 = τ(C1) with τ
$←− Mn. Let P be the list obtained by running Algorithm 1 with

parameters L and w, with w ≤ n− k + 2. The algorithm runs in time

O

(
L
(
log2(L) + (q2 − q)(q − 1)

)
+M ′ +M ′′ +

L

N
(2)
w

CISD(q, n, k, w)

)
,

and produces a list P with M = M ′ + M ′′ elements, where M ′ = L2/N
(2)
w is the

average number of good collisions and M ′′ ≤ t(2)w (L2−M ′)

N
(2)
w

is that of bad collisions.

Proof. For the running time of the algorithm, it is enough to repeat the same
computation performed for Proposition 11. Hence, we only show how the number
of good and bad collisions can be computed. The value of M ′ is estimated with the
same reasoning we have adopted for the proof of Proposition 10. To estimate M ′′,
we consider the following facts:

1) let V 1 be the basis of a subcode V1 ∈ C1, and assume that V1 is equivalent
to u subcodes in C1. According to Lemma 3, this means that there are u
subcodes in C1 which lead to a collision in the computation of Lex;

2) since C2 is a monomial transformation of C1, this means that also C2 contains
u subcodes that are equivalent to B1;

2) we can use t
(2)
w to upper bound the value of u (to see how t

(2)
w is obtained,

check Appendix D). Then, for any pair of drawn subcodes V1 ⊆ C1, V2 ⊆ C2,

the probability that they are equivalent is upper bounded as
t(2)w

N
(2)
w

;

4) given that we draw L subcodes from each code, we have a total of L2 pairs.
We know that M ′ of them are good collisions, while for each remaining one

there is a probability t
(2)
w /N

(2)
w that it is a bad collision. Then, on average,

the number of bad collisions is given by
t(2)w (L2−M ′)

N
(2)
w

.

33

	1. Introduction
	2. Background
	2.1. Coding Theory
	2.2. ISD algorithms

	3. The Code Equivalence Problem
	3.1. High Level Hardness Overview

	4. Solvers for Hard Permutation Equivalence Instances
	5. Solvers for Hard Linear Equivalence Instances
	5.1. Leon's algorithm
	5.2. Beullens' algorithm
	5.3. Heuristic analysis

	6. Improving Beullens' algorithm for LEP
	6.1. Finding subcodes more efficiently
	6.2. Improved LEP algorithm
	6.3. Performance of our new LEP algorithm

	7. Conclusions
	References
	Appendix A. Leon's algorithm
	Appendix B. Beullens' algorithm for PEP
	B.1. Finding matching codewords
	B.2. Probabilistic permutation recovery
	B.3. Numerical confirmation

	Appendix C. Computing First Lexicographic Basis
	Appendix D. Considerations about Lex(2) and two-dimensional equivalent codes
	Appendix E. Proof of Proposition 5

