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Abstract—In this paper, we consider the multi-user scheduling
problem in millimeter wave (mmWave) video streaming networks,
which comprises a streaming server and several users, each
requesting a video stream with a different resolution. The
main objective is to optimize the long-term average quality of
experience (QoE) for all users. We tackle this problem by consid-
ering the physical layer characteristics of the mmWave network,
including the beam alignment overhead due to pencil-beams. To
develop an efficient scheduling policy, we leverage the contextual
multi-armed bandit (MAB) models to propose a beam alignment
overhead and buffer predictive streaming solution, dubbed B2P-
Stream. The proposed B2P-Stream algorithm optimally balances
the trade-off between the overhead and users’ buffer levels, and
improves the QoE by reducing the beam alignment overhead
for users of higher resolutions. We also provide a theoretical
guarantee for our proposed method and prove that it guarantees
a sub-linear regret bound. Finally, we examine our proposed
framework through extensive simulations. We provide a detailed
comparison of the B2P-Stream against a uniformly random and
Round-robin (RR) policies and show that it outperforms both of
them in providing a better QoE and fairness. We also analyze
the scalability and robustness of the B2P-Stream algorithm with
different network configurations.

Index Terms—Quality of Experience, mmWave Networking,
Multi-user Streaming and Scheduling

I. INTRODUCTION

3GPP broadband wireless standards such as LTE-Advanced
and fifth generation (5G) technologies and IEEE wireless
standards such as 802.11ad and 802.11ay have enabled high
data transfer and data-intensive applications, and are moving
towards all-connected small-cell networks. Now, the monthly
global average data usage per smartphone is about 11.4GB
and it is expected to reach 41GB by the end of 2027. Also,
about 69% of the world’s mobile data traffic corresponds to
mobile video streaming, and it is expected to reach 79% by
2027 [1–3]. This deluge of data traffic, especially demands for
high resolution video streaming on portable mobile devices,
will pose significant challenges for the wireless and cellular
network providers to meet the quality of experience (QoE)
requirements. In contrast to the quality of service (QoS) that
is usually quantified in terms of achieved rate and latency,
video streaming QoE depends on several factors such as the
resolution of video frames, number of re-buffering events, and
frequency of resolution switches.

In terms of required infrastructure, millimeter wave
(mmWave) networks are capable of providing multi-Gbps data
rates, which makes them suitable to meet the ever-increasing
demand for video streaming applications [4, 5]. However,
unlike omni-directional communications in sub-6 GHz, high
data rates in mmWave systems come at the price of large
coordination overhead due to highly directional communica-
tions needed to compensate for large channel losses [6–8].

Fig. 1: System model depicting mmWave capable base station (gNB)
and an Access Point (AP) serving K of N users simultaneously.

Although there are extensive works on providing more efficient
beam alignment1solutions [9–12], this process still consumes
resources that otherwise could have been utilized for high-bit-
rate data transfer.

A mmWave base station, equipped with multiple RF chains
(K), can serve up to K users at the same time. As such, multi-
user management plays a central role to guarantee low-latency
and high QoE for all users [11, 12]. The key point, however,
is that due to beam alignment overhead, switching from one
mobile user to another one incurs a switching cost, as denoted
by τ(.) in Figure 1.

Assuming that the QoE is a function of the playback buffer
level and resolution of the video frames stored in the buffer,
the system needs to balance between users’ buffer levels vs.
beam alignment overhead to optimize the QoE across all the
users in the network. For instance, in the extreme situation,
the system could serve only a fixed subset of K users, with
the objective of reducing the beam alignment overhead. While
this minimizes the risk of zero playback buffer for those
K users, the other under-served users would exhaust their
playback buffers, which leads to significant QoE degradation.
On the other hand, quickly switching between users results in
significant beam alignment overheads that is a relatively very
slow process vis-à-vis data transfer.

In this paper, we consider the interplay between beam align-
ment overhead (i.e., switching cost) and multi-user scheduling
in order to enhance the QoE across all users. On one hand, the
optimal scheduling should take the switching cost into account,
and on the other hand, switching cost is a function of the
scheduling algorithm that determines the beam quality. This
is in contrast to the classical scheduling problems, where the
switching overhead is traditionally assumed to be negligible
compared to the service time [13].

1In this paper, beam alignment, collectively, refers to initial beam search,
beam tracking, beam refinement, and beam switching.
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Within this context, and given that beam alignment overhead
is a function of the previous schedules, we develop a multi-
user scheduling algorithm that works based on predicting
the beam alignment overhead and buffer. We refer to this
algorithm as B2P-Stream that is built upon the contextual
multi-armed bandit (MAB) models to optimally balance the
trade-offs between buffer levels and beam alignment overhead.
To maximize the average QoE for all users, the streaming
server estimates the beam alignment overhead as well as the
playback buffer level at each user, and selects K users out of
N users at each time slot.

There are several studies that have considered the scheduling
task under different scenarios and using different tools. Jiang
et al. [14] used a multi-task deep learning scheme, [15] uses
Lyapunov optimization, [11, 12] consider the scheduling under
user mobility. A different group of works studied QoE predic-
tion and approximation using reference signal received power
(RSRP) and throughput [16]; packet loss, jitter, and delay
[17]; congestion indicators of a 5G network [18], and many
other works in both categories [19–29]. However, our work
aims to integrate the unique characteristics of the mmWave
communication (i.e., beam alignment overhead) into a QoE-
centric multi-user scheduling framework. In summary, the
main contributions of this paper are as follows:
• We model the beam alignment overhead of individual

users based on the last time we served that particular
user, and we propose a dynamic model for the users’
buffer level prediction.

• Given the playback buffer level, we model the QoE
for each user and formulate an optimization problem to
improve the long-term average QoE for all the users.

• We develop a MAB-based scheduling policy, called B2P-
Stream, which provides a sub-linear regret bound, to
solve the defined optimization problem. This algorithm
incorporates estimated buffer level of each user and
schedules users with the help of a heuristic trend function
on the beam alignment overhead.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a mmWave network that consists of N users
and a single base station (BS) or access point (AP), referred
to as the streaming server. We only focus on video streaming
users and ignore other types of traffic. At each time slot, the
streaming server selects K users out of N users to serve
simultaneously. The K beams generated by the server are
used to stream different video frames to each of the K users.
Different resolution of each video is available at the server
side, and each user may ask for a different resolution based
on the channel condition.

Beam Alignment Model and Assumptions: As shown
in Figure 1, each time slot is divided into two phases: beam
alignment and data transmission. In this paper, we normalize
the duration of each time slot to be equal to 1 unit of time.
Thus, given that beam alignment takes τ(.) units, 1 − τ(.)
is the amount of time left for the data transfer phase. This
overhead can occupy from 10% up to 43% of the time slot
duration in the cellular networks [30, 31]. However, in a more
general sense, the function τ(.) can be expressed in terms
of the time interval between two consecutive schedules of a

user, i.e., the beam alignment overhead for a user at a specific
time depends on how long ago that user was served by the
server. This model captures the “freshness” of the beam for the
user. We can model this characteristic using a non-decreasing
function of the last time a user has been served. Thus, the
beam alignment overhead of user i at time t is denoted by
τ i(xit), where xit is the amount of time that has been passed
since the last schedule of user i at time t.

Playback Buffer Dynamics: Each user i has a finite play-
back buffer of size si bytes to store video frames. Considering
the resolution of the video vires that the user is playing and its
bit rate virate, the user has at most si/virate seconds of video
to play. We denote bit as the buffer level of user i at time t in
seconds. When the proper beam has been created, the server
can start streaming to the user at rate R. As such, the amount
of data transferred to the user at a time t is obtained as follows:

dit = (1− τ it (xit))R/virate, (1)

where τ it (x
i
t) is the beam alignment overhead, and dit deter-

mines the amount of data, in seconds, that the server sends
to the user. Due to blockage and other environmental issues,
the user may not receive all the data that has been sent by
the server. For the sake of exposition, we assume that the
probability of successful reception is given by Pit. Therefore,
the amount of received data is given by yit = ditPit. The
probability value Pit depends on the several factors such as
user mobility, blockage, and propagation environment.

Now that we know how much data a user receives, the
dynamics of the playback buffer level is given as follows:

bit+1 = max{bit − 1, 0}+ uity
i
t, (2)

where uit is a binary control variable that determines whether
the user i is scheduled at time t or not. Therefore, uity

i
t

determines the amount of seconds of the video that would
be successfully transmitted to the user, if it is scheduled. We
consider that each time slot is one second, and thus we subtract
one second from the previous buffer level of user i, and then
add the amounts of seconds that the user would receive in case
of selection and reception.

Quality of Experience: The QoE for each user depends on
the playback buffer level and the resolution of the video frames
stored in the buffer. To characterize the QoE, we consider three
factors. (1) Any interruption in the streaming is undesirable,
and it happens whenever the playback buffer becomes empty.
We call this event “zero-hit”. (2) The QoE increases as the
buffer level increases, but it has a diminishing return modeled
as a logarithmic function. (3) The resolution of the video
frames impacts the QoE. For two different users with the same
amount of data in their playback buffers, the QoE of the user
who plays a higher resolution is higher. We denote the QoE
of user i at time t by qit, and putting together these factors,
the overall QoE can be expressed as:

qit = (1− 10(bti))λ(vires) + α log(1 + bit)− γ10(bti). (3)

The first term is an offset, which only depends on the resolu-
tion of the video the user is playing. The second term captures
the diminishing return of the playback buffer, and the third
term accounts for the zero-hit events that penalizes the QoE
by a factor of γ.
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Algorithm 1 B2P-Stream
Inputs:

T : Total number of timestamps
η0: Initial learning rate

Algorithm:
1: for t = 0 to T do
2: At = ∅
3: for k = 1 to K do
4: Select arm ik = arg maxi/∈At

(µ̃it + cit + f i(b̃t))
5: At = At ∪ {ik}
6: end for
7: ut = one hot(At, N)
8: Perform ut and observe QoE vector rt
9: for i = 1 to N do

10: dit = (1− τ it (xit))R
11: b̃it+1 = max{b̃it − 1, 0}+ uitd

i
t

12: µ̃it+1 = µ̃it + ηt(r
i
t − µ̃it)

13: if uit == 1 then
14: xit+1 = 0
15: else
16: xit+1 = xit + 1
17: end if
18: end for
19: ηt+1 = η0e

−t/T

20: end for

QoE-Centric Optimization Problem: The objective of
the server is to maximize the long-term average QoE for all
users, given that switching to a new user (a user that was not
scheduled in the previous time slot) incurs a beam alignment
overhead τ(.). The decision variable is u ∈ {0, 1}N , which is
a binary vector of size N . At each time step, only K elements
of u can be active, and the rest of them are zero. Therefore,
we can formulate the following optimization problem:

max
u

lim
T→∞

1
T

T∑
t=1

N∑
i=1

qit

s.t.
∑N
i=1 u

i
t ≤ K ∀t=1..T

bit+1 = max{bit − 1, 0}+ uity
i
t ∀i=1..N,t=1..T

(4)

The first constraint addresses the hardware limitations in terms
of the number of RF chains, and the second constraints
captures the playback buffer dynamics. The size of the decision
space in Eq. 4 scales with the number of users in the network.
In the next section, we establish an efficient scheduling frame-
work based on contextual multi-armed bandits.

III. BEAM AND BUFFER PREDICTIVE STREAMING:
B2P-STREAM

Multi-Armed Bandit Models: A MAB problem is an
interactive game between a learner and an environment [32].
The game repeats for a finite number of times. In each round
of the game, the learner chooses an action (i.e., plays an arm)
u, and receives a reward r, that is revealed by the environment.
The reward can come from a stochastic distribution or chosen
by the environment itself. The learner tries to find an optimal
policy using the history of played actions and received rewards.
To this end, the Upper Confidence Bound (UCB) method
[33, 34] handles the exploration and exploitation trade-off by

providing an upper bound for the estimation of the expected
reward of each arm. The upper bound decreases as the number
of reward samples from one arm increases, which means that
we are more certain about the estimation of the expected
value. There are other classes of MAB algorithms that are
specified to different cases, such as the case that the learner
can choose more than one arm at a time [35, 36], called
combinatorial bandit problem; or another case where there are
some contextual information available [33].

B2P-Stream Policy: In order to solve the optimization
problem defined in Eq. 4, we model this problem as an instance
of the contextual multi-armed bandit formulation. We desig-
nate rit as the measurement of the QoE at time t for user i, and
µ̃it denotes the average of these measurements. In addition, the
action set in this model is U ⊆ {u ∈ {0, 1}N : ‖u‖1 ≤ K},
which tells us that we have an N dimensional binary action
vector that has at most K active elements.

The contextual bandit model stems from the fact that the
scheduler can estimate users’ playback buffer level as follows:

b̃it+1 = max{b̃it − 1, 0}+ uitd
i
t. (5)

Note that the state of each user changes over time according
to Eq. 2, but the scheduler can only estimate the buffer level
since there are unknown parameters such as the probability of
successful frame reception by the user. This estimated play-
back buffer level along with the knowledge on beam alignment
overhead function τ i(.), which is a non-decreasing function
as a function of the last time served, provide contextual
information for the server. For the sake of presentation, we
combine these two factors into a single trend function f (b̃i)
that captures the estimated QoE for a user i. The trend function
is then added to the average reward measurements received by
the algorithm. In fact, MAB models with trend functions are
finding applications in different domains [34].

The complete process is shown in Algorithm 1 in which
first we select K users that provide the maximum outcome,
and add them to a set At (lines 2 to 6). Then, in line 7, we
create a N dimensional binary vector using At, and based on
this vector, we create K beams and stream to the selected
users, and measure the QoE rt. Then using Eq. 5, we update
the playback buffer level estimation in line 11, for all the users.
Next, we update the vector µ̃ using the new measurements in
line 12. Finally, from line 13 to 17, we either set the last time
served to zero if we scheduled the user in the current time
stamp or increase it if we did not schedule the user. Finally,
the learning rate η is decreasing exponentially at each iteration.

The performance of the B2P-Stream can be theoretically
measured in terms of regret that quantifies the gap with respect
to the optimal solution. Let µi be the expected value of the
rewards achieved by playing arm i (i.e., µi = E(ri)), and
µi

∗
= maxi µ

i be the expected value of the reward of the
optimal arm. In this case, ∆i = µi

∗ − µi is the immediate
regret, and the accumulated stochastic regret is defined over
T rounds of playing the game [32]: R(T ) =

∑
i ∆iE(ni(T )),

in which ni(T ) is the number of times that arm i has been
played over the time interval T . Then in Theorem 1, we show
that using an Lf -Lipschitz trend function, we achieve a sub-
linear regret bound for the B2P-Stream algorithm.
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(b) 8 RF chains
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(c) 16 RF chains
Fig. 2: Fraction of simulation time that users experienced zero-hits per the total number of connected users to the network for B2P-Stream,
Uniform and RR policy. The users scheduled with B2P-Stream experience far less number of zero-hits.

Theorem 1: Given an Lf -Lipschitz trend function, bmax as
the maximum playback buffer level, and an α > 0, the regret
for B2P-Stream algorithm is upper-bounded by

R(T ) ≤
∑
i 6=i∗

2α log(T )

∆i − Lf bmax
+

2α

α− 1
(∆i + Lf bmax),

where ∆i = µi∗ − µi.
Proof: During the learning process, we either underes-

timate the value of all the sub-optimal actions, event Gt,
overestimated the value of the optimal action, event Ht, or
complement of these two events.

Gt) µ̃ini
+ f (b̃i) ≤ µi + f (bi) + ci;

Ht) µ̃i
∗

ni∗
+ f (b̃i

∗
) ≥ µi

∗
+ f (bi

∗
)− ci

∗
,

where ci =
√

α log(t)
2ni

. By using Hoeffding’s inequality, we
bound the probability of each of these two events taking
place by t−α. Now, assuming that both Gt and Ht hold, we
bound the number of sub-optimal arm pulls due to insufficient
sampling up to this point, which means:

µ̃i
ni

+ f (b̃i) +

√
α log(t)

2ni
≥ µ̃i∗

ni∗ + f (bi
∗
) +

√
α log(t)

2ni∗
. (6)

Since Gt and Ht are assumed to be true, by adding ci and
ci

∗
to both sides of Gt and Ht, respectively, we have:

µi + f (bi) + 2

√
α log(t)

2ni
≥ µ̃i

ni
+ f (b̃i) +

√
α log(t)

2ni
(7)

µ̃i∗
ni∗ + f (b̃i

∗
) +

√
α log(t)

2ni∗
≥ µi∗ + f (bi

∗
) (8)

Now, by chaining equations 6, 7, 8, and then arranging the results,
we have:

ni ≤
2α log(t)

(µi∗ − µi + f (bi∗)− f (bi))2
=

2α log(t)

(∆i + δi)2
.

where ∆i = µi∗ − µi and δi = f (bi
∗
) − f (bi). Then, the expected

number of times that an arm has been played is given by:

E[ni] =

T∑
t=1

E[1(It = i)] ≤ 2α log(T )

(∆i + δi)2
+

T∑
t=1

E[1{Gc
t ∪Hc

t }]

≤ 2α log(T )

(∆i + δi)2
+

2α

α− 1
.

Thus, we can bound the regret by

R(T ) =
∑
i6=i∗

(∆i + δi)E[ni] ≤
∑
i 6=i∗

2α log(T )

∆i + δi
+

2α

α− 1
(∆i + δi)

≤
∑
i6=i∗

2α log(T )

∆i − Lf bmax
+

2α

α− 1
(∆i + Lf bmax).

Let f be a Lf -Lipschitz function then we can upper bound
|δi| = |f (bi

∗
)− f (bi)| ≤ Lf |bi

∗ − bi| ≤ Lf bmax, where bmax
is the maximum level of buffer.

IV. NUMERICAL RESULTS
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Fig. 3: Average beam alignment overhead when 4 users out of 200
are allowed to be scheduled at a time.

Simulation Setting: We evaluate the B2P-Stream’s per-
formance under different conditions to make sure about the
robustness of the method. We compare the B2P-Stream with
two different baselines, namely the Uniform and the RR
scheduling algorithms. In our simulations, we assumed that
the path loss probability is negligible. Also, all of the users
are initialized with zero buffer level.

The two main contributing factors in QoE, as shown in Eq.
3, are number of zero-hit experienced and buffer level. The
zero buffer level is considered a highly unsatisfying situation
for all the users, thus the method that provides a lower number
of zero-hits is desirable. Also, users experience lower QoE
as their playback buffer level approach zero. Thus, we define
two critical situations to be able to compare the performance of
different algorithms. We call the first critical situation “critical
region,” that corresponds to the case when a user has less than
fifteen seconds of data in the playback buffer. The other one
is named “highly critical region,” which corresponds to the
case when the user has less than five seconds of data in the
playback buffer. Since we are initializing all the users with
zero buffer levels, it is desirable that the scheduling algorithm
avoid these two critical regions.

Each experiment has been run 10 times and for 500 time
steps. At the beginning of each run, the video resolution and
bit-rates are taken from [37], and the portion of users with
specific resolution is inspired from [38].

Zero-hit Performance: Figure 2 compares the performance
of B2P-Stream with respect to other baselines, as the number
of RF chains and total number of users increase. From the re-
sults, B2P-Stream achieves a much smaller zero-hit compared
to the RR and Uniform scheduler, which is due to the fact that
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Fig. 4: The average of measured QoE for 200 users in the network and 4 chains.
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Fig. 5: Empirical distribution of the scheduled users with respect to
the last time they have been served.

the B2P-Stream utilizes a buffer level prediction. Figure 2 also
demonstrate that the B2P-Stream generalizes well as we use a
more powerful BS (i.e. number of RF chains, K, increases).
The B2P-Stream, as shown in Figure 3, also provides a better
beam alignment overhead compared to RR, which is a result
of considering the last time we served a user. On the other
hand, the Uniform policy maintains a lower beam alignment
overhead, but as shown in Figure 2 it fails to provide an
acceptable QoE in terms of number of zero-hits.

QoE Comparison: Figure 4 shows the average QoE for 200
users connected to the network. The BS is equipped with 4 RF
chains and users play videos with different resolutions. Each
of the columns corresponds to a different group of users with
different video resolutions: low resolution (480p), medium
resolution (1080p), and high resolution (4K), respectively. In
this set of results, we ignore the impact of resolution on the
QoE (i.e., the first term in Eq. 3) to provide a fair comparison
across different resolutions. Also, the dark grey and slate
grey, in Figure 4, correspond to the critical and highly critical
region, respectively. The users scheduled by B2P-Stream exit
the critical regions much earlier than the users scheduled with
Uniform or RR policy. Even though only 5% of the users in
the simulation are playing a 4K video, both RR and Uniform
policies cannot provide a satisfying experience. The situation
is the same for users who are playing a 2K video.

Although the B2P-Stream provides a better zero-hit statistics
compared to two other baselines, there is some cost needs to
be paid. This cost is lower QoE for users of lower resolution.
From the results, we note that the B2P-Stream algorithm main-
tains a lower QoE for users of lower resolution to compensate
for the users of higher resolutions, as they need to be served
more often because of the higher bit rate requirements. This
does not mean that users with lower video quality would
experience a significantly lower QoE because the QoE has
a diminishing effect and there is not much of QoE difference
as long as they are out of critical regions.

Intuitions Behind B2P-Stream: The B2P-Stream, as

shown in Figure 5, recognizes two groups of users (i.e. two
peaks). To balance the trade-off between beam alignment
overhead and playback buffer levels in order to optimize the
QoE metric, we can intuitively distinguish two groups of users.
The first group corresponds to those users who were served
recently, thus the beam alignment overhead would be small
for them (small τ it ), and we can stream more data to this
group. The second group are those users that their buffer levels
are approaching zero, meaning that it has been a long time
since the last time we served them (large xit). Figure 6 also
supports this claim by illustrating the time interval between
two consecutive schedules of different groups of users in the
simulation. The B2P-Stream may allocate more resources to
the users with higher resolution in comparison with users with
lower video quality. This policy results in a more fair QoE for
users of different resolutions, as supported by Figure 4 as well.
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Fig. 6: Time interval between consecutive schedules of users of
different video resolution.

V. CONCLUSION

In this paper, we considered the problem of multi-user
mmWave scheduling (K users out of N ) who are streaming
videos with different resolutions. The overall objective is to
optimize the QoE across all the users. Leveraging the con-
textual MAB models, we developed a QoE-centric scheduling
policy that considers the physical layer characteristics of the
mmWave networks. The proposed B2P-Stream algorithm is
able to optimally balance the trade-off between the beam
alignment overhead and the users’ playback buffer level. In
particular, B2P-Stream uses an estimated buffer level as an
input for a trend function that biases the scheduling policy
towards those users with exhausted buffer levels. Overall,
mmWave networks are considered as one of the key enablers
for data-intensive applications such as high quality video
streaming. As such, developing efficient and reliable multi-user
management algorithms that guarantee high QoE for all the
users, is of utmost importance to enable ubiquitous mmWave
technologies.
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