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Abstract—Contemporary quantum computers face many critical chal-
lenges that limit their usefulness for practical applications. A primary
limiting factor is classical-to-quantum (C2Q) data encoding, which re-
quires specific circuits for quantum state initialization. The required
state initialization circuits are often complex and violate decoherence
constraints, particularly for 1/0O intensive applications. Existing Noisy
Intermediate-Scale Quantum (NISQ) devices are noise-sensitive and
have low quantum bit (qubit) counts, thus limiting the applicability of
C2Q circuits for encoding large and realistic datasets. This has made
the study of complete and realistic circuits that include data encoding
challenging and has also led to a heavy dependency on costly and
resource-intensive simulations on classical platforms. In this work, we
propose a cost-effective, classical-hardware-accelerated framework for
realistic and complete emulation of quantum algorithms. The emulation
framework incorporates components for the critical C2Q data encoding
process, as well as architectures for quantum algorithms such as the
quantum Haar transform (QHT). The framework is used to investigate
optimizations for C2Q and QHT algorithms, and the corresponding op-
timized quantum circuits are presented. The framework is implemented
on a High-Performance Reconfigurable Computer (HPRC) which emu-
lates the proposed QHT circuits combined with proposed C2Q data en-
coding methods. For performance benchmarks, CPU-based emulations
and simulations on a state-of-the-art quantum computing simulator are
also carried out. Results show that the proposed hardware-accelerated
emulation framework is more efficient in terms of speed and scalability
compared to CPU-based emulation and simulation.

Index Terms—Quantum Computing, Quantum Encoding, Field-
Programmable Gate Arrays, Parallel Processing

1 INTRODUCTION

Quantum computing offers potential advantages over clas-
sical computing in certain problem domains, such as the
bounded-error quantum polynomial (BQP) class of deci-
sion problems [1] [2]. BQP is the class of problems that
a quantum computer can solve in polynomial time, e.g.,

computation of discrete logarithms, factorization of com-
posite integers, and estimation of eigenvalues [1] [3]. The
potential applications for such problem-solving capabilities
has lead to a growing focus on quantum technology and
the development of quantum devices by a number of major
international corporations as well as new start-ups [4]-[8].

State-of-the-art quantum processors are currently repre-
sented by Noisy Intermediate-Scale Quantum (NISQ) de-
vices [9], which have several challenges that limit their
usefulness. A critical challenge for NISQ devices is deco-
herence, a process in which the state of the quantum com-
puter is destroyed by interaction with the environment [10].
Decoherence places constraints on the realistic applicability
of quantum algorithms, since real-life applications usually
require complex equivalent quantum circuits to be real-
ized. The scale of NISQ devices also creates compounding
spatial and temporal limitations. With few fully-connected
quantum bits (qubits), circuit implementations must be deep
rather than wide [11]. Quantum circuits with large depth [11],
i.e., the number of time steps the circuit executes, take longer
time to run and exacerbate the impact of qubit noise and de-
coherence. More specifically, the accumulation of errors due
to noise and circuit complexity could result in incorrect re-
sults [12]. These limitations make practical implementations
of quantum algorithms exceedingly challenging. Therefore,
circuit optimization techniques for reducing circuit depth
are needed to mitigate the effects of decoherence when using
current quantum hardware.

Another critical challenge that limits the use of quan-
tum computers in I/O-intensive, real-world applications is
encoding classical data onto the quantum computer. Before
executing a quantum algorithm, a quantum system typically
starts from a ‘ground’ or "zero” state [13]. In addition to the
equivalent circuit of the quantum algorithm, a state synthesis
circuit is required for initializing the quantum state with
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input data. The additional state synthesis circuit encodes
classical data into an equivalent representation in the quan-
tum domain, a process we have termed in this work as
classical-to-quantum (C2Q) data encoding. The C2Q process
adds to the algorithmic spatial and temporal complexity,
and it is critical to reduce the depth of the equivalent state
synthesis circuit.

To investigate the challenges associated with modern
quantum devices, the use of classical computing to emulate
quantum algorithms has become increasingly common. Ef-
ficient emulation allows for faster experimentation and pro-
totyping of quantum circuits, algorithms, and applications.
However, classical emulation of quantum computation gen-
erally involves the use of large-scale, resource-hungry, and
costly simulation platforms. Moreover, many simulation
tools do not take advantage of hardware acceleration [14]. In
this regard, more efficient, scalable, and cost-effective tools
for hardware-accelerated emulation of quantum algorithms
are required. The use of Field-Programmable Gate Arrays
(FPGAs) to emulate quantum computation has been increas-
ing in recent times [15] due to their cost-effectiveness, high-
performance, and reconfigurability.

In this paper, we demonstrate a complete, FPGA-
accelerated, hardware framework for noise-free emulation
of quantum algorithms. We refer to the term “complete”
to describe emulation that incorporates methods for quan-
tum state initialization in addition to emulating quantum
algorithms, rather than assuming a pre-initialized state. As
a case study, we investigate a quantum image processing
application and evaluate it using the proposed emulation
framework. The application consists of encoding a classical
image onto a quantum circuit and applying a Quantum
Haar transform (QHT) [16] [17]. We propose quantum cir-
cuits for performing C2Q data encoding and performing a
multi-dimensional, multi-level decomposable QHT. Circuit
optimizations as well as detailed analysis of circuit depths
for the C2Q and QHT circuits are also presented. The
circuits are emulated and evaluated experimentally using
the proposed emulation framework.

The hardware architectures of the emulation framework
were implemented with 32-bit floating-point data precision
for high accuracy and were also fully pipelined for highest
throughput. For experimental evaluation, an FPGA-based,
high-performance reconfigurable computing (HPRC) plat-
form was used. RGB colored images were used as input
data for the quantum image processing application. We
present results for the hardware emulation runtime and re-
source utilization along with the corresponding analysis for
the proposed emulation architectures. For verification and
benchmarking the performance of the proposed emulation
framework, software implementations were also performed
on a CPU. In addition, the proposed quantum circuits were
also implemented on a state-of-the-art quantum computing
simulator. Finally, we present a quantitative comparison
of our emulator with existing FPGA-based emulators in
terms of scale, accuracy, and throughput. To the best of
our knowledge, this work is the first FPGA-based emula-
tion framework that integrates quantum state initialization
with quantum algorithms and demonstrates the complete
emulation of a full quantum image processing application.

The rest of the paper is organized as follows. Section 2

2

discusses background concepts and existing work. Section 3
contains the proposed quantum circuits. Section 4 contains
the hardware architectures for emulation in addition to the
experimental work and results. Finally, Section 5 contains
the conclusion and discussion of future work.

2 BACKGROUND AND RELATED WORK

This section outlines relevant prerequisite information for
classical-to-quantum (C2Q) data encoding and quantum
Haar transform (QHT). Related work involving data encod-
ing, quantum wavelet/Haar transforms, and GPU/FPGA
emulation is also presented.

2.1 Qubit Superposition

A quantum bit (qubit) is the basic unit of information in a
quantum computer [18]. A qubit exists in a superposition of

two orthogonal basis states |0) = [(ﬂ and 1) = {(1)], see
(1). The pure state of a qubit is represented by a normalized

vector [¢) such that (¢[¢) = {/|a|* + 8> = 1, where «

and f3 are complex coefficients, and |a|® and |3|* are the
probabilities of finding the qubit in the basis states |0) and
|1), respectively. The state of a qubit can also be pictured as
being a point on the surface of a unit sphere called the Bloch
sphere [19].

) =alo)+511) = 5] o

For generality purposes that we will use later, an arbi-
trary (non-normalized) two-dimensional complex vector |¢)
could also be pictured as being a point on the surface of a
non-unit Bloch sphere of radius r» # 1 as described by (2)
[18] [20].

o) = re's e s cosg [0) + ei? sing [1) )
The angles ¢ and ¢ are called the elevation and azimuth
angles, respectively, where 6 € [0, 7] and ¢ € [0,2n]. The
angle ¢ is usually referred to as the global phase, which is
physically unobservable [18] [20]. The factor r is typically
equal to unity for qubit normalized states, such that (¢)|¢)) =
1 and the probability interpretation is applicable. However,
similar to the global phase ¢, we will interpret and refer to
the factor r as the global scale and picture it as the radius of
a non-unit Bloch sphere.

2.2 Decoherence

Environmental effects can alter the coherence of a qubit’s
state in the form of the so-called decoherence noise [10].
Interaction with the environment erodes the qubit’s state
to become gradually mixed, which leads to information
loss [10] [18]. As time progresses, quantum interference is
suppressed and the ability to perform additional opera-
tions is lost [10] [18]. Decoherence time creates a real-time
constraint for quantum circuits, such that circuits must be
optimized so that the output can be captured within the
decoherence time. This constraint is typically considered in
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the form of relaxation (T1) or dephasing (T2) times, which
represent how long for a qubit in a given state to either
return to its ground state or succumb to environmental
noise, respectively [10].

2.3 Quantum Gates

In the circuit model of quantum computing [18], compu-
tation begins with the system in an unentangled quantum
state [1g) = [0)®", where 7 is the number of qubits, which
can be expressed as a superposition of N = 2" basis states.
Depending on the quantum algorithm, different unitary
transformations or quantum gates can be applied to reach
a final quantum state [¢)). In this work, we utilize the
Hadamard (H), SWAP, Controlled-NOT (CNOT), Rotation
(Ry, R.), Rotate-Left (RoL) and Rotate-Right (RoR) gates
[18] [21], see Fig. Al (in the Appendix). We also denote the
time delays of the H and the SWAP gates as 7 and Tswap,
respectively.

2.4 Quantum Haar Transform (QHT)

The classical wavelet transform (WT) uses non-sinusoidal
functions called mother wavelets to decompose sig-
nals/data into its spatio-temporal spectral components [22].
Due to high computational efficiency, WT is commonly used
for image processing applications [22]. The first and sim-
plest wavelet is the Haar wavelet. The Haar mother wavelet
function can be constructed using a unit step function wu(t),
as shown in (3), where a and b are the time dilation and
displacement factors, respectively. The discretized version
of the Haar wavelet function is defined in (4), and the
expression for discrete Haar Transform on a signal f(¢) is
given by (5), where t = ¢ - At, b =j-At,a = K - At, At
is the sampling period, and K is the Haar window size in

samples.
(t—b) (t—b 1>
—2u ——|+u
a a 2

()

(©)
v (%) o1, Ko<k @
0, otherwise
= q—J
FolK) = X fola-a0ws (T) )
q=0

The quantum equivalent of the Haar transform, i.e.,
the quantum Haar transform (QHT) [16] [17], is used in
the quantum-information-processing (QIP) domain. Signal
samples are encoded as the basis state coefficients of a
quantum state |1)) in superposition, as shown in (6). In QHT,
the Haar Transform is applied on the coefficients, and the
equivalent expression for the output of the QHT is given by

);

N-1 N—-1
)y =" fla-At)|g), where Y [f(q- AP =1 (6)
q=0 q=0

3
1 N—-1N-1 q_] .
1) qur = N Z_% Z;) flg-At)¥p <T> i) @

where K is the wavelet window size, n is the number of
qubits, At is the sampling period, ¥p is the Haar mother
wavelet function in complex conjugate form, N = 2" is the
number of data samples represented as the total number of
quantum basis-states, [t)) is the input state, and [t))qyyy is
the output state.

2.5 Quantum Permutations

The fundamental operations used in QHT, and also in
many classical computations that involve signal and image
processing, are permutations in general, and specifically
perfect-shuffle-permutations (PSP) [16]. Quantum permuta-
tions are described by their effect on the ordering of qubits
[16] [17]. For building the proposed QHT circuits, we will
focus on the two PSP operations Rotate-Left (RoL) and
Rotate-Right (RoR). RoL and RoR operations, given by (8)
and (9), respectively, are fundamentally circular left/right
shift operations on a register of n qubits. Notably, these can
be implemented with a network of quantum SWAP gates
[16], see Fig. Al (in the Appendix).

RoL(n — 1,0) : [gn-1Gn—2 - q1q0) = |Gn—2 - - 190qn—1)
®)

RoR(n — 1,0) : ‘QTL—IQn—Q T QIQO> = \%%—1%—2 T Q1>
&)

2.6 Related Work

In this section, we discuss the work related to classical-
to-quantum (C2Q) data encoding, quantum wavelet trans-
forms, and hardware accelerated (GPU/FPGA-based) emu-
lation of quantum computations.

2.6.1 C2Q Data Encoding

Existing methods of encoding classical data to a quantum
representation are of three types: (a) basis encoding, (b)
angle encoding, and (c) amplitude encoding [23] [24].

Basis encoding involves encoding the binary represen-
tations of data points as basis states. Typically, this tech-
nique is costly in terms of number of qubits. The authors
in [25] presented an optimized basis encoding technique
for image processing, where pixels are represented by the
tensor product of their color and position. As a result of
their optimization, the qubit cost was lowered, however
their technique incurred greater circuit depth.

Angle encoding represents one data point per qubit,
with each data point encoded as a normalized rotation in
the Bloch sphere. The authors in [26] investigated angle
encoding and presented a quantum method for image edge
detection. However, their method could be impractical, be-
cause each image pixel requires one qubit for encoding.

In amplitude encoding, each data point is represented as
the amplitude/coefficient of a basis state in a superimposed
quantum state. The work in [27] proposed circuits with
depth complexity O(n), where n is the number of qubits.
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However, the number of qubits required is of the order
O(N), where N = 2" is the data size, therefore the proposed
circuits are not feasible for current or near-future quantum
processors. In [28], the authors presented a quantitative
analysis of existing amplitude encoding methods and pro-
posed state synthesis circuits based on amplitude encoding
with 50% reduction in circuit depth and 50% reduction of
total number of gates. The authors in [20] also presented a
method of arbitrary state synthesis for amplitude encoding,
which was used by IBM Quantum (IBM-Q) [29] Qiskit APIs
for state synthesis [30]. Among the data encoding methods,
amplitude encoding requires the least number of qubits. To
represent a data size of N = 2", it requires [log,(N)] qubits
with a depth complexity of O(N). However, this technique
requires the implementation of complex quantum circuits.
In this work, we extend the methods in [20] and [28]
to present a more optimized method based on amplitude
encoding for classical-to-quantum data encoding. The corre-
sponding quantum circuits for our proposed methods and
detailed analysis of circuit depths are also presented.

2.6.2 Quantum Wavelet and Haar Transforms

Fijany and Williams proposed methods for the imple-
mentation of permutation matrices for quantum wavelet
transform (QWT), which is the quantum equivalent of the
classical wavelet transform [16]. In [17], partial quantum
circuit derivations for the Haar and Daubechies wavelet
were presented. The authors also proposed implementa-
tion circuits of multi-level and multi-dimensional packet
QWT. In general, the previously reported work on QWT
and QHT have not investigated data initialization methods,
circuit optimizations, nor actual hardware implementations.
In our previous investigations on QHT [31], we proposed
optimizations to reduce circuit depth, and in this work we
leverage and extend the work in [31] with integration of
data initialization methods and implementations on classi-
cal hardware.

2.6.3 GPU-based Emulation

In our survey of related quantum emulators, we focused on
the recently reported hardware-accelerated quantum sim-
ulators, e.g.,, GPU-based quantum simulators/emulators.
There is a plethora of open-source GPU-based quantum
simulators/emulators [32] that have been introduced in
recent years. The major constraint of these simulators is their
heavy dependency on the availability of large memory and
costly high-end GPUs in their local hosts. In [33], the authors
introduced an open-source quantum numerical emulator
with single and double precision floating point formats that
offers larger circuit simulations using costly high-end GPU-
accelerated systems. This simulator can simulate only up
to 29-qubit circuits using a 12 GB GPU system, and up
to 38-qubit circuits on a high-performance supercomputer
with 8 TiB of memory. In [34], the authors proposed a
GPU-accelerated quantum simulation framework available
in both single and double precision that only allows 29-
qubit circuit simulations using high-end GPUs with 16 GB
memory. In addition, there are several high-performance
quantum simulators available, such as [29] or [35], that can
execute complex circuit simulations with higher qubit count.
However, the communication overhead among simulation

4

servers is not negligible and incurs a higher time overhead
that adds to the total execution time.

2.6.4 FPGA-based Emulation

Reported FPGA emulation of quantum algorithms in [36]-
[42] are generally characterized by low scalability (small
number of qubits), low accuracy (fixed-point precision), and
low throughput (low operating frequency). In addition, the
related work assumes that quantum data is already ini-
tialized and there is no integration of classical-to-quantum
(C2Q) data encoding methods, which makes the emulation
unrealistic and thus incomplete.

In this work, we propose a cost-effective, FPGA-
accelerated methodology for complete emulation of quan-
tum computation. Our methodology is the first to inte-
grate amplitude-encoding-based quantum state initializa-
tion methods with algorithm emulation. We present two
methods and their corresponding quantum circuits for
classical-to-quantum (C2Q) data encoding/state initializa-
tion which have less depth and complexity compared to
existing methods. We also propose optimizations for the
quantum Haar transform (QHT) to reduce circuit depth.
Finally, the integration of C2Q data encoding with QHT is
evaluated experimentally by emulation.

3 PROPOSED QUANTUM CIRCUITS

In this section, we present quantum circuits for classical-
to-quantum (C2Q) data encoding and the quantum Haar
transform (QHT). Further optimizations for the C2Q and
QHT circuits are also presented.

3.1 Classical-to-Quantum (C2Q) Data Encoding

The process of synthesizing and initializing a quantum
state with arbitrary classical data is termed as classical-to-
quantum (C2Q) data encoding in this work. We propose
two methods and corresponding quantum circuits for C2Q
data encoding. In the first proposed method (Method 1), we
use non-unitary operators and non-normalized state vectors
where the global scale  # 1. This method is suitable only
for emulation purposes. In the second proposed method
(Method 2), we use unitary operators and normalized state
vectors where the global scale » = 1, which makes it suitable
for physical realization and implementation. Given a classi-
cal dataset of N = 2" elements, where n is the number of
required qubits to represent the classical dataset, we propose
a quantum circuit denoted as U“2?~! for Method 1 that
synthesizes a corresponding quantum state with encoded
classical data. U“2@~! is parameterized by the global scale
r # 1, global phase ¢, elevation angle #, and azimuth
angle ¢. We also present an optimized state synthesis circuit
U222 for Method 2 that is characterized by unity global
scale, i.e.,, 7 = 1. The steps of the proposed methodology
in the formation of the circuits U292~ and U“29~2 are
elaborated in the next subsections.

3.1.1 Method 1: Non-Unitary State Synthesis for Emulation

A quantum register of n qubits in ground state is denoted
by |1ho) = |0)®"™. In quantum amplitude encoding, given a
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classical data set of N = 2" elements, we want to synthesize
a quantum state |1)), see (10), and encode each data element
as a basis state coefficient, «;.

N-1 N-1
[) = Z a; |i) , where Z ;> =1 (10)
i=0 i=0

For non-unitary state synthesis, it is required to find a non-
unitary operator, U2¥~!, that transforms |t) to [¢)). Any
arbitrary single-qubit non-unitary gate can be decomposed
as a series of R, and R, gates known as the ZYZ or Pauli
decomposition [18], see (11).

) = R.(¢) - Ry(0) - r¢% - |0)

(1D
= R.(¢) - RBy(0) - Ro(—t) -7 -{0)

Therefore, a qubit in ground state |0) can be transformed
to any arbitrary non-normalized vector |¢)) by applying a
Bloch sphere radius scaling 7, followed by a —t rotation
about the z-axis, then a 6 rotation about the y-axis, and
finally a ¢ rotation about the z-axis. The factor re’z is
the physically unobservable constant factor for an arbitrary
non-normalized state, ¢ is the global phase, and r # 1 is the
global scale [18] [20]. Given the coefficients o and 3 of the
target arbitrary non-normalized state |1), see (1), and using
the transformation matrices of R, and R,, see Fig. Al (in
the Appendix), the parameters r, ¢, 6, and ¢ in (11) could be
determined by (12).

la|> + 8%, t = £B8 + Za

T =
12
02tan1(6|),¢454a (2
|al
where
| = \/Rez(a) +Im*(a), Za = cos™* (Re(iT)>>

18 = /Re2(8) + Im2(8), £8 = cos™! (Rgf))

AJ('}"J‘HJ‘¢J):R:(¢J)'R.“(01)'R:(7rf)'rf

| Non —Unitary ~ Unitary

-Rz(—tj)'Ry(gz)'R7(¢f)-|%>=[;j

Unitary Unitary |

Fig. 1: Pauli (ZYZ) decomposition for non-unitary arbitrary
state synthesis.

Using the Pauli decomposition described by (11) and the
parameters obtained by (12), we derive a method for trans-
forming an n-qubit register in the ground state [1y) = |0)®"
to an arbitrary state |¢)), see Fig. 1. To synthesize the j‘" pair
of coefficients, or |¢;) in the state vector of |i)), we apply
A; on a ground state |0), where j = 0,1,2,---, (271 —1).
Note that [1);) is generally non-normalized, and thus each
A is non-unitary, see Fig. 1. However, A; cannot be applied
on one qubit in the n-qubit register without also affecting
the other coefficients in |t)). Hence, each transformation A
needs to be applied conditionally to synthesize the j*" pair
of coefficients in the output state. The resulting conditional

5

quantum circuit can be represented by a block-diagonal
matrix Upoer, of which each diagonal block is a 2 x 2
transformation matrix A;, see Fig. 1 and (13). The elements
of A; are calculated using the parameters r;, t;, 6;, and ¢;
obtained from the j*" pair of coefficients using (12).

Ublock = Do @ A1 @ -+ Aj - D Aggn-1_7) (13)

= diag(Ao, A1, -+, A, An-1_1))
A block-diagonal matrix such as Uyp;,cx, can be implemented
as a uniformly-controlled circuit or a quantum multiplexer
[20]. A uniformly-controlled circuit is one where a different
operation or gate is applied to the target qubit (least signif-
icant qubit in this case), for all possible combinations of the
remaining control qubits. The uniformly-controlled circuit
corresponding to Upjock, see Fig. A2a (in the Appendix), con-
tains n qubits of which (n — 1) are control qubits controlling
the operation on the least significant target qubit. For each
combination of the control qubits, the corresponding A; is
applied on the target qubit, where j = 0,1,2,---, (2771 —1).
To produce all combinations on the control qubits with equal
probability, a set of H gates must be applied on the (n — 1)
control qubits before applying the Upocr transformation.
The desired final state |¢) is produced at the output with
the target coefficients as a result of uniformly applying each
A transformation on the least significant qubit. The overall
transformation, UY2@~1, from ground state 1) = |0)®"
to 1) can be expressed by (14), see also Fig. A2 (in the
Appendix).

) = U291 Jyhg) = UC?Q~1.10)®", where
UvCQQ_1 = Ublock(rat7 97 ¢) ' (H®(n_1) ® I)
= U597 (.60,9) - UL (r)

rem

(14)

Each A; block is a sequence of global scale, followed
by z-rotation, followed by y-rotation, and followed by z-
rotation as shown in Fig. A2b (in the Appendix), and
Aj is calculated from the corresponding set of parameters
{r;- 2(HT_1), tj,0;,¢;} obtained by (12). Note that the global
scale 7; has been modified by a factor of 20"z resulting
from the application of the H gates on the (n — 1) control
qubits. Since each set of operations is mutually exclusive
from the others, we can separate them into uniformly-
controlled groups of scale, z-rotations, y-rotations, and z-
rotations as shown in Fig. A2c (in the Appendix). To repre-
sent uniformly-controlled operations as a single gate oper-
ation, we use the ‘square box’ notation [20] for the control
bits, and the parameterized operations on the data qubit are
replaced by a single box denoting the operation. We use this
notation to simplify the circuit in Fig. A2c (in the Appendix)
and the resulting circuit representation is shown in Fig. 2.

It is worth mentioning that the US29~1(r) operator,
shown in (14) and Fig. 2, is non-unitary. For this reason,
Method 1 is only suitable for emulation purposes rather
than for physical realization and implementation on actual
quantum devices which require all operators to be unitary.
Therefore, we are next presenting our proposed Method 2
for unitary state synthesis.
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lin (r) = Non—Unitary US> (£.6.4) = Unitary
9,1=[0) )
Qniz : |O> ---n f | f f f
0,10} - )
R e
0, =10) 7 z(nTlJ R (_t) 1R, (9) nR: (¢) i

Fig. 2: Simplified full quantum circuit for non-unitary C2Q
(Method 1) data encoding with uniformly-controlled opera-
tions.

3.1.2 Method 2: Unitary State Synthesis for Physical Real-
ization

Here, we propose a more practical approach for synthesiz-
ing a quantum state in which the global scale is unity, i.e.,
r = 1, see Fig. 3a. As a result, all operators in this circuit
are unitary and are physically implementable. In develop-
ing our Method 2, we leverage and improve the recursive
approach discussed in [20] which is reported to be the most
efficient technique for state synthesis [20] and hence it is
used by IBM-Q Qiskit [30]. We present the corresponding
quantum circuit U292 consisting of a pyramidal structure
of U; gates, where j =0,1,--- , (n — 1), see Fig. 3b and Fig.
A3a (in the Appendix), to eliminate the non-unitary global
scale term of Method 1. Fig. 3c and (15) show and describe
the method proposed by Shende et al. [20]. For optimizing
the Clrcult depth and eliminating the residual global phase
term e* ot , see Fig. 3c and (15), of Shende’s method [20],
we moved all the R, rotation operators to the first step Uy
of the process, where a set of R.(—t), R,(6), and R.(¢)
rotations are used in Uy, see Fig. 3d. A set of only R,(6)
rotations is then applied in the remaining (n — 1) operations
Uj, where j = (n—1),(n—2),---,2,1, see Fig. 3d and (16).

|1/}> _ UShende . W}O> _ US'hende . |O>®n, where
n—1 ) by
UShende — H U]Shende(e, ¢) ® I®j LetTr (15)
j=0
_ Uéshende(e R Ui’:znde(a }) - eit"%
) = UC2R=2 . |yhy) = U222 0)®" , where
n—1
_ c2Q— C2Q— ]
U = U 2(t,0,0) - | [[U97%(0) @ 17
j=1
= Uy *72(1.0,0) - U222 (0)
(16)

Each Uj is a uniformly-controlled operation, shown in
Fig. 3b. As shown in Fig. A3a (in the Appendix), a number
(k; = 2(»=1=9)) of A; ; rotation operations are applied for
each Uj, where 0 < i < kj, and 0 < j < n. Each A; ; op-
eration requires calculating a 2-tuple parameters (a; j, 8; ;)
from given classical data set |¢)) using the steps described in

A, (1y1,:0,00,) = R (4,) R (9,)-R(-1,,) 1,
Unitary

Unitary

o)) | =t G 0,) R ()

Unitary Unitary

|Ww> =|:;:j:|

(a) Pauli (ZYZ) decomposition for single-qubit state synthesis.
U, (t,6’, ¢) = Unitary

0,1 #0)
0..#(0)-

0,,,#0) =

)
#|0)
)

/+1

Q1:|0 =
0<j<n

(b) Multiplexer (uniformly-controlled) quantum circuit.

p Shende

USe“(0.9) = Unitary
U,(0.9)

U (6.¢) = Unitary
U,(6.9) Ui(6.9) Ui(6.9)

Uressa (1) U,4(0:9)

0,y =0) RSO R, (6) RAP) fr——— i

oz L qu - hx.(o)Hk.(f) ——Q:
0, op— 80— E

Y- =

0,=[0)
0,=[0)

U..(6.4)

(c) Pyramidal structure of quantum circuit for Shende [20].

[ce-2
U2 (9) = Unitary (Up (1,9,¢) = Unitary
U,.(6) U,.(6) Ua(6) U, (9) Ui(9) U, (1.6.9)
0,.,=[0) =R, (6) r—12 —T T
0 o= Ot
0, =0) : R (0) —l '
9,=l9) R(0)— [v)
2,=10)
[ =|0)

(d) Pyramidal structure of quantum circuit for Method 2.

Fig. 3: Quantum circuits for unitary C2Q data encoding for
Shende [20] and proposed Method 2.

equations (17) to (20) which are then used in (12) to calculate
the required 4-tuple parameters (r; ;,%; 5, 0; j, ¢i ;). It could
be seen from (17) to (20) that unitarity of transformation is

> 418> =1, see Fig. 3a.

maintained where 7; ; = \/| ;
Co
G
) = , N =2", n = number of qubits  (17)
Cn-1

|Coi* + |Caia %, j=0,0<i<2mD

P@j = Pgi,j_l + P2i+17]‘_1, 1<j<n 0<1< 9(n=1-j)
0, 2(n=1-j) <4 < 9(n—1)

(18)
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G Py #£0,j=0,0<i<2m

@ij = P?;ffl, Pij#0,1<j<n, 0<i<2017))
1, Pij=0
19)
G Py A0,j=0,0<i <20
Big =1 /Bptt, Py £0,1<j<n, 0<i<2n 1)
0, P j=0
(20)

where 0 < j <n, 0<i<kj,and k; = 2("~179).

3.1.3 Analysis of Circuit Depth

We determined the circuit depths for our proposed C2Q
Method 2 in comparison with the most efficient reported
method by Shende et al. [20]. We followed a similar ap-
proach to Shende’s in [20] in which we considered counting
the number of 1-qubit rotation gates and 2-qubit CNOT
gates. We focused on the gate count of the 2-qubit CNOT
gates since they have significant impact on the overall
circuit fidelity due to their higher gate errors compared to
single-qubit gates. In addition, we distinguished between
two types of input data: (a) complex data and (b) positive
real data. The derived circuit depths for each method are
summarized in Table 1. Although C2Q Method 1 is tar-
geted for emulation and is not implementable on physical
devices, we’ve included it in our circuit depth analysis for
completeness of analysis. It will also serve as a basis on
which we could theoretically and experimentally compare
our different implementations, i.e., on FPGAs, CPUs, and
IBM Quantum (IBM-Q) [29] Qiskit cloud-based simulator.

In our analysis, each n-qubit uniformly-controlled R,
and R, rotation operation in Figs. 2 and 3 can be decom-
posed into a sequence of 2" gates in total (2"~ 1-qubit
rotation gates + 2"~! 2-qubit CNOT gates, where n > 1)
[20] , see Fig. 4. For positive real data, i.e.,, Zao = £ = 0,
all R.(—t) and R.(¢) gates could be eliminated since
t = ¢ = 0, see (12), which results in both our proposed
Method 2 and Shende’s [20] being an identical pyramidal
sequence of n uniformly-controlled R, (¢) gates, see Figs. 3c,
3d, and Table 1. The advantage of our proposed Method 2
over Shende’s [20] becomes obvious for complex data where
the improvement/reduction of the total number of gates as
well as the overall circuit depth asymptotically approaches
25% as the number of qubits increases indefinitely, see Table
1. Moreover, our proposed Method 2 for encoding complex
data compared to Shende’s [20] asymptotically achieves
50% reduction in the number of 2-qubit CNOT gates, see
Table 1. Our analysis has been experimentally verified using
IBM-Q Qiskit APIs for state synthesis [30]. Our theoretical
expectations were in perfect match with the experimental
measurements as it will be shown in the Experimental
Results section.

3.2 Optimized Circuits for Multi-level Decomposable,
Multi-dimensional Quantum-Haar-Transform (QHT)

Similar to classical wavelet transforms, d-dimensional QHT
is decomposable for I levels of decomposition using either

&, DR 0] HED- R 2 -EDH R0 D

Fig. 4: Decomposition of a uniformly-controlled 3-qubit R,
rotation operation.

—R {0}

TABLE 1: Theoretical expectation of C2Q circuit depth and
total number of gates (1-qubit rotation gates and 2-qubit
CNOT gates).

Positive Real Data
0On=1
2:20°D _2 n>1
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CNOT Gates | 42" -2 .n-2, n>1 [
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Total Gates | 8-20"") —2.n-3
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1
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2.20-0 _ 5.
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Total Gates 0
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max = lim o) = 7

packet or pyramidal decomposition techniques [21]. For
our implementation, we use lossless packet decomposition
where data dimensions are not lost during decomposition.
In packet decomposition, all the data qubits are needed for
the entire process. The maximum number of decomposition
levels l:,:;m is dependent on the number of data dimensions
d and the total number of qubits n. However, the maximum
number of levels for lossless decomposition is equal to the
minimum number of qubits across all d dimensions.

In packet decomposition, a d-dimensional QHT opera-
tion, U4=P~@HT 5 applied repeatedly for every level on
all the data (qubits), see Fig. A4 (in the Appendix). The
Ud-D=QHT gperation consists of three components: (1)
input permutation operations applied to the state vector, (2)
Haar transform operations, and (3) output permutations ap-
plied to produce the output state vector. Detailed algorithms
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for 2D-QHT (U%~P~QHT) and 3D-QHT (U?~P~QHT) can
be found in [31].

The operation, , can be implemented using
two types of QHT circuits: parallel (1-stage) and sequential
(d-stage). For the purpose of this paper, we investigate
optimization of the parallel (1-stage) QHT.

[Jd-D—QHT

3.2.1 Unoptimized Parallel (1-stage) QHT

In QHT circuits, the Haar operation (H gates) is generally
applied in parallel (1-stage), see Fig. A5 (in the Appendix),
with the RoR and RoL operations grouped together into a
set of preceding and proceeding permutations, respectively.
The total time delay of this unoptimized circuit is derived
from Fig. A5 (in the Appendix) and expressed by (21).

tpar, unopt, pkt
total -

((2n —ngg—1) — (2d = 1)) - Tswap + 781) - 1
(21)

where n is the number of qubits, d is the number of data
dimensions, Tswap and 7 are the time delays for SWAP and
H gates, respectively, and [ is the number of decomposition
levels.

3.2.2 Optimized Parallel (1-stage) QHT

The parallel (1-stage) circuit of d-dimensional QHT is opti-
mized by re-positioning the I gates separated by n; qubits,
where 0 < ¢ < d, see Fig. A5 (in the Appendix). Due to this
re-positioning of the H gates, no preceding permutations
(RoL gates) are required. The proceeding RoR operations are
also reduced in depth and can be applied in parallel as they
are independent of each other. The expression for the total
time delay for the optimized parallel I-level decomposable
d-dimensional QHT circuits is given by

P opt, pkt
total - (( max

—1) - Tswap + 7r) - (22)

where 7,4, is the maximum number of qubits across all
dimensions, Tswap and 7y are the time delays for SWAP and
H gates, respectively, and [ is the number of decomposition
levels.

4 EXPERIMENTAL RESULTS

The proposed hardware /FPGA-based emulation methodol-
ogy and corresponding hardware architectures for emula-
tion of C2Q and QHT are presented here. In our experimen-
tal work, three different implementations were carried out:
(a) implementation using the reconfigurable system (CPU
+ FPGA), (b) implementation using only CPUs, and (c)
implementation using IBM-Q Qiskit cloud-based simulator.

4.1 Hardware Architectures for Quantum Algorithm
Emulation

To evaluate the proposed quantum circuits, a framework
for hardware-based emulation is developed. The proposed
emulation framework, shown in Fig. 5, for complete em-
ulation of quantum algorithms, consists of two compo-
nents: modeling C2Q data encoding and modeling the
quantum algorithm computation. For C2Q data encoding,
we have discussed two methods and their corresponding
quantum circuits. For emulation on CPUs and FPGAs, we

8

model both C2Q methods and their corresponding cir-
cuits, see Figs. 2 and 3. The model for quantum algorithm
emulation is flexible and uses different emulation tech-
niques [31] [43] depending on the algorithm. For exam-
ple, for algorithms with dense matrices such as quantum
Fourier transform and Grover’s search, complex-multiply-
and-accumulate (CMAC) operations [43] are employed. For
algorithms with sparse transformation matrices such as
QHT, we employ kernel-based operations [31]. The hard-
ware architectures for emulation of C2Q and QHT are
elaborated in the next sections.

Emulation Framework

} |
. 1
} ¥ Method 1 % CMAC operations :
} % Method 2 % Kernel-based operations 1
1
I . . |
o ‘ Classical-to- Quantum Algorithm _:_} i
©
S g e Quantum Emulator )| 2 5
S al ! (CZQ) . Quantum Fourier Transform 1 3 %‘
2 = dat di . Quantum Haar Transform | v o
g ELE E el . Grover’s search ‘—J
. Shor’s Factoring Algorithm / :
|

Fig. 5: Hardware architecture overview for complete emula-
tion of quantum algorithms.

4.1.1 Hardware Architectures for C2Q Emulation

We present a hardware model, shown in Fig. 6, for emu-
lation of the C2Q data encoding circuits in our proposed
methods. To synthesize the desired state of a single qubit |1))
from the zero state |0), the Pauli decomposition discussed in
(11) can be used to define the complex coefficient pair («, 3),
as in (1), in terms of the 4-tuple of parameters (7, ¢, 0, ¢).

a:/]".ei% - COS (g)/ 6:7‘.61.# 'Sin <§> (23)

Accordingly, for synthesizing the overall quantum state
vector of N states, the C2Q hardware kernel shown in Fig. 6,
iteratively in a pipelined fashion, builds the circuit structure
shown in Figs. 2 and A2a (in the Appendix) for Method
1, and the circuit structure shown in Figs. 3b, 3d, and A3a
(in the Appendix) for Method 2. This process continues to
synthesize % pairs of complex coefficients of intermediate
state vectors from the set of intermediate input parameters

7j,t5,05,¢; where j = 0,1,2,--- ,% — 1, see (23) and Fig.
6.

T
real
] L
Al \_ imag
i U EE %
+
+f ) w1 e }'eal
g _imag
% -’

Fig. 6: Hardware architecture for C2Q kernel.
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4.1.2 Hardware Architectures for QHT Emulation

As discussed previously, the QHT operations consist of
input permutations, Haar transform operations, and output
permutations which are denoted as P3P, U3~P~@HT and
P3D | respectively for 3D-QHT. We propose hardware ar-
chitectures for emulation of 3D-QHT and the corresponding
architectures for P3P and U?~P~@HT are illustrated in Figs.
A6 and A7 (in the Appendix), respectively. The input per-
mutations P3P are modeled using a hardware scheduler, see
Fig. A6 (in the Appendix). The scheduler works by reading
the input state vector into memory, generating new indexes
for data points, and then writing back to memory using
generated indexes and forming the output state vector. An
example of how the indices are permuted is demonstrated
in Fig. A7 (in the Appendix), where an input quantum
state |z), representing a 3D image of size (4 x 4 x 4) pixels
undergoes the 3D input permutation P> operation.

From the resulting state, the 3D Haar transformation is
applied to groups of eight pixels at a time. The correspond-
ing hardware architecture is shown in Fig. A8 (in the Ap-
pendix). Following the 3D Haar transformation, an output
permutation P is applied to the data. The operation and

hardware architecture of P3L is similar to P3P .

On-board
memory

FPGA

: Classical-to-Quantum
[)
1)
: Quantum Algorithm
[¥)

Accelerator board (Xilinx Alveo)

PCle

host “

(1,6, ¢)
ut

(a) Emulation kernels on FPGA.

Teey Tin ITe
I

comp

Accelerator
on-board
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CPU Host
memory
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Host Accelerator

(b) Measured execution times on the host and accelerator.

‘ Setup ‘ Configure ‘ Data in

! ] | | | |
Tconfig L Tm Tout

i
Tse tup Tcomp

(c) Timing profile for the Accelerator.

Fig. 7: Emulation execution model and timing profile for the
experimental work on Xilinx Alveo FPGA.

4.2 Experimental Setup

In this section, we provide the details of each experimental
implementation, i.e., FPGA, CPU, and IBM-Q Qiskit cloud-
based simulator. Additionally, we present the methodology
for which reported data was gathered.

4.2.1 Hardware (FPGA) Implementations

The evaluation platform used for the experimental work
was an HPRC system comprising of a Xilinx Alveo U250
Data Center Accelerator connected to a host machine, see
Fig. A9 (in the Appendix). The host machine has the fol-
lowing configuration: a 16-core, 3GHz AMD CPU, 251GB of
system memory, and PCle Gen 3 for host-to-board config-
uration and data communications. The Alveo U250 board
contains an XCU250 FPGA that uses Xilinx stacked silicon
interconnect (SSI) technology. SSI technology allows for
increased density by combining 4 super logic regions (SLRs).
The deployment shell that handles device bring-up and
configuration over PCle is contained within a static region
of the FPGA. The remaining dynamic region is available for
developers to implement custom accelerators and kernels.
The dynamic region’s resources consist of 1,341K look-up
tables (LUTs), 2,749K registers, 2,000x36KB block RAMs,
and 11,508 DSP slices. In addition, the on-board memory
resources consist of four 16GB 288-pin DDR4 DIMM sockets
populated with single rank DIMMs, see Fig. A9 (in the Ap-
pendix), with data transfer rates up to 2,400 MegaTransfers
per second. The Vitis Unified Software from Xilinx [44] was
used for design and hardware deployment. The OpenCL
framework [45] was used for development of the kernels
and host program. MATLAB R2020a was used for data pre-
processing, post-processing, and visualizations.

The emulation execution model on Xilinx Alveo FPGA
is shown in Fig. 7. The FPGA configuration and partitioning
among the implemented emulation kernels is shown in Fig.
7a. The measured execution times on the system for the host
and the accelerator is shown in Fig. 7b. The timing profile for
the hardware accelerator is shown in Fig. 7c. The time taken
by the host to perform memory allocation, setup kernel
objects, kernel queues, etc. is termed as Tscsyp. The time
taken to program the FPGA via PCle is termed as Tconfig-
The time taken to transfer data from the host memory to
on-board memory of the FPGA is termed as Tj,, and the
time taken to transfer data from the on-board memory to
the host memory is termed as 7, see Figs. 7b and 7c. The
compute time spent in the kernel on the FPGA is termed as
Teomp, and it also includes the data transfer times between
the FPGA and the on-board memory, see Figs. 7b and 7c.

The hardware architectures for C2Q and QHT were
implemented as reconfigurable hardware kernels, kernel_c2q
and kernel_ght on the FPGA. The extraction of the 4-tuple
(r,t,0, ¢) of parameters from input dataset is performed on
the host machine. The parameters and input/output state
vectors |Yin), |tout) are stored on the on-board memory
and transferred to the kernel reconfigurable regions during
computation. The host machine controls memory transfers
and kernel execution commands via a high-speed PCle bus.
The kernel_c2q is executed first, which operates on the input
parameters and synthesizes the input quantum state |t;y,),
which is stored on the on-board memory. The input quan-
tum state vector is then transferred to the kernel_ght, which
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executes the parallel /-level d-dimensional QHT algorithm
and produces output state vector |t)y:), that is transferred
back to on-board memory.

The kernel architectures were fully pipelined and com-
putation operations were implemented with 32-bit floating-
point arithmetic. Multi-spectral images with sizes ranging
from (16 x 16 x 4) pixels to (32, 768 x 32, 768 x 4) pixels were
used as input data. For these images, C2Q and 3D-QHT
circuits requiring 10 to 32 qubits were emulated using the
implemented emulation architectures. Equivalently sized
complex data generated using a seeded random number
generator was also used. Run-time results from the con-
ducted experiments are shown in Fig. 8a and Table Ala (in
the Appendix) for the C2Q kernel using positive real data
(multi-spectral images) while Fig. 8b and Table Alb (in the
Appendix) shows the results for the C2Q kernel using com-
plex data. Fig. 8c and Table Alc (in the Appendix) shows the
results for the 3D-QHT kernel using only positive real data
(multi-spectral images), since 3D-QHT is only relevant to
multi-spectral images. For both C2Q and 3D-QHT kernels,
measurements of T}, Teomp, and T,,,; were taken from host-
controlled executions on the FPGA. Data packing techniques
were employed to fully utilize the host-to-FPGA bandwidth
and achieve optimal data transfer and compute times. The
setup time Tsc4yp and FPGA configuration time 1., 114, See
Fig. 7c, were not included in the analysis to be consistent
with CPU-based experiments. The total FPGA run-time
reported is the sum of the time taken to transfer data from
the host to the Alveo board, the time taken for emulation
computations on the FPGA, and the time taken to transfer
data back to the host, i.e., Trpga = Tin + Teomp + Tout-

In Table 2, the post-place-and-route FPGA resource uti-
lization is reported. The FPGA area consists of a static
region containing the OpenCL shell, which is responsible
for interfacing the FPGA with the host and controlling
host-to-accelerator memory transfers. The FPGA area also
consists of a reconfigurable region comprising of the C2Q
and 3D-QHT kernel spaces. The FPGA resources that are
used are look-up tables (LUTs), registers (REG), Block-
RAMs (BRAMSs) and Digital Signal Processing (DSP) blocks.
The highest total resource utilization incurred after imple-
mentation of the C2Q and 3D-QHT kernels was that for
LUTs (9.48%) and BRAMs (9.29%), see Table 2. Therefore,
more emulation engines, up to x 10, of the hardware kernels
can be instantiated on a single FPGA to achieve higher
throughput and faster emulation times.

TABLE 2: FPGA resource utilization for emulation of C2Q
and 3D-QHT on Xilinx Alveo.

FPGA Resource Utilization

Static Overlay C€2Q Kernel Total

3D-QHT
€2Q (Method 1) | C2Q (Method 2) | C2Q (Method 1) | C2Q (Method 2) Kernel
4.688(0.29%)| 11931 (0.75%)| 11478 (0.71%)| 126,548 (7.39%)| 161.819 (9.48%),
746 (0.1%) 851(0.11%)| 17,236 (2.19%)| 23.063 (3.04%)
5321 (0.16%)| 12,053 (0.38%)| 13,546 (0.40%)| 194,532 (5.66%)| 276,587 (8.04%),
3(0.12%) 2(0.08%)| 248 (9.29%),

24 (0.2%)) 27(0.22%) 74 (0.61%)

Resource
€2Q (Method 1) | C2Q (Method 2)

LUT | 110.382 (6.39%)| 138.410 (8.02%)

LUTAsMem| 15,639 (1.98%)| 21.035 (2.78%) 1.174 (0.15%)

REG 175,665 (5.1%)| 250,988 (7.26%)|

BRAM 203(7.6%) 228 (8.48%)

7(0.06%),

18 (0.73%),
40 (0.33%)

208 (7.8%)
55 (0.45%)

DSP 4(0.03%)

4.2.2 Software (CPU) Implementations

The software implementations were run on a high-
performance computing (HPC) cluster at the University of
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Results: Classical-to-Quantum (C2Q) for Positive Real Data (Multi-Spectral Images)
Platforms: CPU, Xilinx Alveo, and IBM-Q Qiskit Cloud-based Simulator
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(a) C2Q emulation run-times using positive real data (multi-
spectral images).

Results: Quantum Haar Transform (QHT) using Multi-Spectral Images
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Fig. 8: Emulation run-times for C2Q and 3D-QHT.

Kansas (KU). Each of the cluster nodes was comprised of
two 12-core Intel Xeon E5-2680 v3 CPUs operating at a
base clock of 2.50GHz, and PCle Gen 3.0 connectivity. Each
node also featured 503GB of memory configured as 8 x64GB
physical DDR4 DIMMs operating at 2,133MHz.

For the purposes of comparison and verification, a
software-based emulator was also created for the proposed
architectures using C++. Similar to the hardware (FPGA)
experiments, we used the same positive real (multi-spectral
images) and complex data for the CPU emulation exper-
iments. For these data, C2Q and 3D-QHT operations re-
quired 10 to 32 qubits to be emulated on the CPU software
emulator. The 4-tuple (r, ¢, 0, ¢) of input parameters as well
as the |t;,) and [¢y:) state vectors were stored in heap-
allocated memory after reading input text files and perform-
ing computations, respectively. Measurements of CPU run-
times shown in Fig. 8 and Table Al (in the Appendix) were
taken from kernel executions on a single-core of the CPU
on the host machine. The total CPU run-time, denoted as
Tcpu, is the total time taken by the host (including host
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memory transfers) to execute the operations, see Fig. 7b.
The time taken to read the input text files is not included in
the reported timings.

4.2.3 IBM Quantum (IBM-Q) Qiskit Implementations

Using the same system used for the software implementa-
tions, a noise-free cloud-based simulator using Qiskit SDK
(v0.38) from IBM Quantum (IBM-Q) [29] was used for
implementing the proposed C2Q (Method 2) and 3D-QHT
quantum circuits. The presented experimental results in Fig.
8 and Table A1 (in the Appendix) are the median of multiple
runs (minimum of 10 runs) at different times of the day to
amortize and mitigate the time-variant dependency of our
measurements on queued simulations using IBM-Q cloud-
based simulators.

For the proposed C2Q Method 2 experiments, the
circuit in Fig. 3d was implemented for the same
positive real (multi-spectral images) and complex
data that were wused for both FPGA and CPU
emulations. ~We  compared our implementations
against Qiskit API, Initialize(), specifically the
giskit.circuit.QuantumCircuit.initialize ()
method [30], which is based on the work by Shende et al.
[20]. All C2Q) circuits on Qiskit were given the same input
data and were transpiled to 2-qubit CNOT gates and
single-qubit rotation gates. From the ground state, each
circuit was initialized to the input state before applying
the 3D-QHT operation. The execution times for the C2Q
state synthesis circuits and 3D-QHT circuits are shown in
Fig. 8 and Table Al (in the Appendix). The reported results
were obtained using a circuit execution of 1 shot through
the job.result () Qiskit API, which excludes the time
taken to construct, transpile, and assemble the circuits. It
is worth mentioning that Qiskit transpilation using the
Initialize () API exceeded system memory limits for
C2Q circuits requiring larger than 16 qubits while the limit
was 28 qubits for 3D-QHT circuits, see Fig. 8 and Table Al
(in the Appendix).

4.2.4 Data Visualization

Fig. 9a shows a sample input (64 x 64 x 3)-pixel RGB-image
used for the experiments. The input images were padded
with zeroes to make the spectral dimension a power of 2.
The image data was converted to a one-dimensional vector
and normalized in MATLAB. Parameters required for C2Q
were extracted from the image vector and provided as input
to the FPGA, CPU, and IBM-Q simulators, where C2Q and
QHT operations were performed. Post-processing, such as
de-normalization, removal of padded zero data, and image
reconstruction was performed in MATLAB. Fig. 9b shows
the output image reconstructed after undergoing 1-level
3D-QHT. After the decomposition, the image size in each
dimension is reduced by a factor of 2—1,, where [ is the number
of decomposition levels.

4.3 Performance Benchmarks

In this section, we present the gathered results and discuss
performance comparisons among the proposed hardware-
accelerated (FPGA) emulation framework in reference to
software (CPU) and IBM-Q Qiskit implementations.
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(b) Decomposed RGB-image and its 3 spectral-bands after 1-level
3D-QHT.

Fig. 9: Dimension-reduction of (64 x 64 x 3)-pixel RGB-image
using 1-level parallel (1-stage) 2D-QHT.

4.3.1 FPGA and CPU Performance Comparison

The FPGA and CPU run-times are presented in Figs. 8a
and 8b for C2Q kernels using positive real (multi-spectral
images) and complex data, respectively, along with Fig. 8c
for the 3D-QHT kernel. The CPU outperforms the FPGA
up to 12-qubit emulation and 16-qubit emulation for the
C2Q and 3D-QHT kernels, respectively, as the CPU and
host memory subsystem are able to take advantage of data
caching. However, for larger data sizes and larger circuit
emulations, the data caching is throttled, and the FPGA
performance improves as it is able to take advantage of the
FPGA’s high bandwidth and fine-grain parallelism. To com-
pare the performances of the FPGA and CPU, we calculated
the speedup of the total FPGA execution time relative to the
total CPU execution time. We observed up to x21.66 and
x3.49 improvement in favor of FPGA using positive real
(multi-spectral images) for C2Q (Method 1) and QHT ker-
nels, respectively, see Fig. 8 and Table A1 (in the Appendix).
The FPGA also outperforms the CPU by a factor of up to
x1.34 for C2Q (Method 2) using complex data, see Fig. 8b
and Table Alb (in the appendix). These results demonstrate
the suitability and efficiency of our proposed methods,
particularly Method 1, for hardware-accelerated (FPGA)
emulations of C2Q quantum circuits. It is worth noting
that our proposed Method 2 for C2Q hardware-accelerated
(FPGA) emulations could still benefit from more hardware
optimizations such as deep pipelining, loop fusion, super-
scaling, and dense data packing/unpacking, which we will
investigate in our future work.

4.3.2 FPGA and Qiskit Performance Comparison

When comparing our FPGA implementation with IBM-Q
Qiskit simulator, we observed that the Qiskit simulator was
bound to 16-qubit C2Q circuits using Qiskit Initialize ()
API, to 20-qubit C2Q circuits using our proposed Method
2, and to 28-qubit QHT circuits, even when supplied with
500+ GB of system memory. However, our FPGA emulation
was more scalable up to 32-qubit circuits, see Fig. 8 and
Table Al (in the Appendix). For 20-qubit C2Q circuits, our
FPGA emulation achieved more than 4 orders of magnitude
speedup compared to the Qiskit simulator, see Fig. 8a, Fig.
8b, and Tables Ala and Alb (in the Appendix). For 26-qubit
3D-QHT circuits, the achieved FPGA emulation speedup
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relative to Qiskit simulator was up to x148.33, see Fig. 8c
and Table Alc (in the Appendix).

4.3.3 Comparison of C2Q Method 2 with IBM-Q Qiskit

As discussed earlier, IBM Quantum (IBM-Q) [29] Qiskit
API, Initialize (), for arbitrary state synthesis [30] is
based on the reportedly most efficient recursive technique
proposed by Shende et al. [20]. When we experimentally
compared our proposed Method 2 with IBM-Q Qiskit sim-
ulator for arbitrary state synthesis, we observed identical
performance in terms of circuit depth and total gate count
using positive real (multi-spectral images) where both tech-
niques synthesized identical circuits. However, our pro-
posed Method 2 demonstrated a performance and circuit
depth advantage up to 25% improvement in circuit depth
when synthesizing circuits for complex data, see Fig. 10.
The experimental measurements of circuit depth perfectly
match our theoretical expectations, see Table 1 and Table A2
(in the Appendix).

Note that the default behavior of Qiskit API,
Initialize (), for simulation is to directly initialize the
quantum state vector with the desired values rather than
to construct a C2Q circuit. In our measurements of the
C2Q circuit depth, we used Qiskit transpilers for both
our proposed Method 2 and Qiskit API, Initialize(),
to actually synthesize the C2Q circuits. However, Qiskit
API ran into transpilation memory limitations far sooner
(16-qubit circuits) than our proposed Method 2 (20-qubit
circuits), see Fig. 8a, Fig. 8b, and Tables Ala and A1b (in the
Appendix). Moreover, Qiskit API, Initialize (), recur-
sively constructs the C2Q circuits [20] [30], which appears
to incur a far greater memory overhead compared to our
non-recursive proposed Method 2, see (17) to (20). This
demonstrates another advantage of our proposed Method
2 for C2Q) circuit synthesis.

Circuit Depth Improvement/Reduction
Proposed (Method 2) vs Reported (Shende [20])
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Fig. 10: C2Q circuit depth improvement/reduction.

4.4 Quantitative Comparison with existing FPGA-
based emulators

A quantitative comparison of the proposed work with re-
lated FPGA-based emulators is presented in Table 3. Among
the reported work [36]-[42], only few quantum algorithms
have been investigated, and the corresponding quantum
circuits that have been emulated are small relative to our
proposed work. The low number of qubits emulated in
previous works is due to the fact that the emulation tech-
niques used were inefficiently resource-intensive and the
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emulator designs were bound by on-chip resources. In ad-
dition, previous emulators did not make efficient use of on-
board memory, and no on-board memory utilizations were
reported in their experimental works. Classical emulation
of quantum algorithms is inherently memory-bound and in
our work we are taking full advantage of both available on-
chip and on-board memory resources, which enabled us to
achieve larger-scale quantum circuit emulation compared to
reported work. Information about precision, frequency, and
emulation time are not reported in some of the work. The
computation precision and operating frequencies are also
lower compared to that in our proposed work and results.
In this work, we have presented complete emulation of the
QHT algorithm that includes data encoding C2Q circuits,
emulating up to 32-qubit C2Q + QHT circuits with 32-
bit floating point precision and operating frequency in the
range of 411MHz - 414MHz.

TABLE 3: Quantitative comparison of FPGA-based quantum
computing emulators.

: Number - mEade | S | G| s
Reported Work | Algorithm | V5| Precision soc memory | frequency | 2
(bytes) (MHz)
- Atrera
Eujiskima GO0S)) o, . oo iorng| NA NA APEX20K1500E-  N/A 80 10
361 X
Khalid et al. QFT 3 | l6-bitfedpt | Abera Stratix A o1 6.10E-08
(2004) [37] [Groverssearch| 3 | 16 bitfixedpt_| EP1SS0B956CE 240E.08
Aminian et al. Attera Stratix
Grover's search| 3 | 16-bitfiedpt NA 1313 | 460E.08
(2008) [38] over s sear Pt | EP1580B956CE
TLee et al. (2016) QFT 5 | 24-bitfcdpt | Altera Stratix IV - % 219507
139] Grover's search| 7| 24 bitfined pt._| EPASGX530KF4 85 9.68E.08
Silva and
AMD Xilinx
Zabaleta (2017) QFT 4| 32-bit floating pt. NA NA 4.00E-06
ZYNQ-7000
[401
Pilch and
Dlugopolski Deutsch 2 NA Aftera Cyclone V| N/A NA NA
(2018) [41]
Suzuki ef al. Tmage } AN Xilinx )
6 | 16-bitfuedpt NA 250 | 1B-6-1E-2
(2022) [42] ificat tied pt XCVU9P
C2Q 3 o "ANID Xilinx 16G a1 7507
Proposed work 32 bit floating pt
e QHT ) g XCU250 16G 11 7382

N/A = Not Available

QFT = Quantum Fourier Transform
QHT = Quantum Haar Transform
C2Q = Classical-to-Quantum

5 CONCLUSION AND FUTURE WORK

Efficient emulation of quantum algorithms is necessary to
investigate applications for quantum computing. In this
paper, we presented an FPGA-based emulation framework
for the complete emulation of quantum algorithms. The pro-
posed emulation framework consists of hardware kernels
for classical-to-quantum (C2Q) data encoding, as well as
emulating the algorithm operation. The emulation frame-
work allowed us to investigate algorithms such as quan-
tum Haar transform (QHT) and propose optimizations. We
also presented optimized quantum circuits for C2Q data
encoding. We performed combined emulation of C2Q and
QHT algorithms on a high-performance reconfigurable com-
puter. Real image data was used for C2Q data encoding in
the experiments and results showed accurate and correct
decomposition of data after multi-dimensional QHT oper-
ation. Performance benchmarks with a software emulator
and state-of-the-art quantum circuit simulator showed that
the proposed hardware-based emulator is faster and more
scalable. Future work will focus on improving the emulation
framework with optimizations that target reducing memory
I/0 bottlenecks and improving inter-kernel buffering. We
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will also investigate quantum-to-classical (Q2C) data read-
out techniques for more realistic full quantum algorithm
emulation.
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