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ABSTRACT. We introduce real Losungen as an analogue of real roots. For each mutation sequence
of an arbitrary skew-symmetrizable matrix, we define a family of reflections along with associated
vectors which are real Losungen and a set of curves on a Riemann surface. The matrix consisting
of these vectors is called L-matriz. We explain how the L-matrix naturally arises in connection
with the C-matrix. Then we conjecture that the L-matrix depends (up to signs of row vectors)
only on the seed, and that the curves can be drawn without self-intersections, providing a new

combinatorial /geometric description of c-vectors.

1. INTRODUCTION

Let @ be a quiver with n vertices and no oriented cycles of length < 2. The most basic invariant
of a representation of @ is its dimension vector. By Kac’s Theorem [16], the dimension vectors of
indecomposable representations of () are positive roots of the Kac-Moody algebra gg associated
to the quiver Q).

When @ is acyclic, a representation M of Q is called rigid if Ext'(M,M) = 0, and the
dimension vectors of indecomposable rigid representations are called real Schur roots as they are
indeed real roots of gg. In the category of representations of @), rigid objects are foundational.
Therefore an explicit description of real Schur roots is essential for the study of the category,
and there have been various results related to description of real Schur roots of an acyclic quiver
(14, 14, 15, 22, 24, 29]).

In a previous paper [17], we conjectured a correspondence between real Schur roots of an
acyclic quiver and non-self-crossing curves on a marked Riemann surface and hence proposed
a new combinatorial/geometric description. Recently, Felikson and Tumarkin [10] proved our
conjecture for all 2-complete acyclic quivers. (An acyclic quiver is called 2-complete if it has
multiple edges between any pair of vertices.)

Now, when @ is general, it is natural to consider the c-vectors of @) as dimension vectors of
rigid objects. Indeed, when @ is acyclic, the set of positive c-vectors is identical with the set of
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real Schur roots [19]. For an arbitrary quiver @), a positive c-vector is the dimension vector of a
rigid indecomposable representation of a quotient of the completed path algebra. This quotient
was introduced by Derksen, Weyman and Zelevinksy [7], and is called a Jacobian algebra. Thus
c-vectors naturally generalize real Schur roots in this sense, though they are not necessarily real
roots of the corresponding Kac—Moody algebra.

Originally, c-vectors (and C-matrices) were defined in the theory of cluster algebras [11], and
together with their companions, g-vectors (and G-matrices), played fundamental roles in the
study of cluster algebras (for instance, see [7, 12, 13, 18, 20]). As a cluster algebra is defined not
only for a skew-symmetric matrix (i.e. a quiver) but also for an arbitrary skew-symmetrizable

matrix, one can ask:

Can we have a combinatorial/geometric description of the c-vectors (and C-matrices)
of a cluster algebra associated with an arbitrary skew-symmetrizable matriz?

In this paper, we propose a conjectural, combinatorial /geometric model for C-matrices associated
to an arbitrary skew-symmetrizable matrix, which extends our model from the acyclic case [17].

For this purpose, we introduce the notion of real Lésungen as an analogue of real roots, and
define a family of reflections along with associated vectors which are real Losungen for each
mutation sequence of an arbitrary skew-symmetrizable matrix. The matrix consisting of these
real Losungen is called L-matriz. We show that the L-matrix comes from certain leading terms
when the C-matrix is presented using reflections. We conjecture that the L-matrices (up to signs
of row vectors) depend only on seeds, i.e., do not depend on mutation sequences leading to the
same seed. We believe that understanding these new matrices is a key to generalizing Coxeter
groups and their quotients arising from cluster algebras, in particular, generalizing Felikson—
Tumarkin’s result [9].

When a skew-symmetrizable matrix is acyclic, it is natural to consider the corresponding
symmetrizable generalized Cartan matrix. For a general skew-symmetrizable matrix, we consider
generalized intersection matrices (GIMs)! introduced by Slodowy [28, 27]. A GIM is a square
matrix A = [a;;] with integral entries such that

(1) for diagonal entries, a;; = 2;
(2) aijj > 0 if and only if Qj; > 0;
(3) ai; < 0if and only if a;; < 0.
Since we are more interested in cluster algebras associated with skew-symmetrizable matrices,

we restrict ourselves to the class of symmetrizable GIMs. This class contains the collection of all

symmetrizable generalized Cartan matrices as a special subclass.

1Some authors call them quasi-Cartan matrices. For example, see [2].
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Let A be the (unital) Z-algebra generated by s;,e;, i = 1,2,...,n, subject to the following
relations:
si+e —1 ifi=j, e; ifi=
5? =1, Zei =1, s;e;=—e;, €;8;= ‘ ‘ J eiej = ! )
i=1 € if i # j, 0 ifi#j.
Let W be the subgroup of the units of A generated by s;, i = 1,...,n. Note that W is (isomorphic
to) the universal Coxeter group. Thus the algebra A can be considered as the algebra generated
by the reflections and projections of the universal Coxeter group. Keeping computations at the

level of A will reveal some important features of mutations.

Definition 1.1. Let A = [a;;] be an n x n symmetrizable GIM, and D = diag(di,...,d,) be
the symmetrizer, i.e. the diagonal matrix such that d; € Z~¢, ged(dy,...,d,) = 1 and AD is
symmetric. Let I' = " | Za; be the lattice generated by the formal symbols a1, -, o,

(1) An element v = > m;a; € I' is called a Lisung if
(1.1) Z dja;ymim; = 2d,  for some k =1,...,n.
1<i,j<n
A Loésung is positive if m; > 0 for all ¢. Each «; is called a simple Lésung.
(2) Define a representation 7 : A — End(I") by

7'('(81‘)(04]') = Q4 — Q505 and W(ei)(aj) = (51']'011‘, i,j = 1, ooy n.

We suppress m when we write the action of an element of A on I". A Lésung ~ is real if

Y = Si1Siy - - Sip (o) for some i =1,...,n and k > 0.

If A is a generalized Cartan matrix, then real Losungen are the same as real roots of the Kac—
Moody algebra associated with A. We expect that, for each symmetrizable GIM, there exists
a Lie algebra for which real roots can be defined and are compatible with real Losungen, but
we do not yet know which Lie algebra would be adequate. Some related works can be found in
[2, 3, 5, 6, 21, 27, 28, 30].

Fix an n x n skew-symmetrizable matrix B = [b;;] and let D = diag(dy,...,dy) be its sym-
metrizer such that BD is skew-symmetric, d; € Z~¢ and ged(dy, . ..,d,) = 1. Consider the n x 2n
matrix |B I|. After a sequence w of mutations, we obtain [B"’ C’“’} . The matrix C'" is called

the C-matriz and its row vectors the c-vectors. Write their entries as

cy’
(1.2) Be = o], cv=|a] =],
Cn
where ¢’ are the c-vectors. For a mutation sequence w = [i;,42,...,4, i; € {1,2,...,n}, we

define wlk] := [i;, 42, ..., 1, k].
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Definition 1.2. For each mutation sequence w, define r¥ € W C A inductively with the initial

elements r;, = s;, 1 = 1,...,n, as follows:

w . W . w 3 w LW
wik] _ JTETETE if bycy’ >0,
=

(1.3) r -

g otherwise.

Clearly, each " is written in the form
w

1 4
Y =g¥si(g), g eW, i=1,...,n.

This construction has been used in the literature including [1, 9, 10, 29] when the associated

GIM is a Cartan matrix.

Definition 1.3. Fix a GIM A, and define

I’ =g’ (), i=1,...,n.
Then the L-matriz L¥ associated to A is defined to be the n x n matrix whose i*® row is 3¢ for
1=1,...,n,ie.,
i
LY =|:
lw

n
and the vectors [}” are called the [-vectors of A.

Note that the L-matrix and [-vectors associated to a GIM A implicitly depend on the repre-
sentation 7 which is suppressed from the notation. When multiple GIMs are being discussed we
will use the notation liA’w to distinguish between different sets of [-vectors.

When we fix a GIM, we will always choose a linear ordering < on {1,2,...,n} and define the
associated GIM A = [a;;] by

bij if 1 < 7,
(1.4) aij = 2 ifi=j,
—bij if ¢ > J-
An ordering < provides a certain way for us to regard the skew-symmetrizable matrix B as acyclic
even when it is not.
As our geometric model, we consider a Riemann surface and admissible curves (Definition
2.1), and define a map from the set of admissible curves to the set of monomials in s;’s in W
(Definition 2.3). The first conjecture below extends our conjecture in [17] from acyclic quivers

to skew-symmetrizable matrices. The second conjecture claims that we can choose a GIM A to
obtain a set of reflections that only depend on the seed.
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Conjecture 1.4. Fiz an ordering < on {1,2,...,n} so that a GIM A is determined. Then
for any mutation sequence w, there exist non-self-intersecting admissible curves n;° such that
w

m(r]

W) =m(s(n)), where s(n;”) are the monomials in W associated to n;° fori=1,2,...,n.

Conjecture 1.5. For any skew-symmetrizable matriz B, there exists a linear ordering < and
its associated GIM A such that if w and v are two mutation sequences with C% = CV then
w

m(r?

W) =n(ry),i=1,...,n.

For any acyclic skew-symmetrizable matrix, choosing a linear ordering where ¢ < j if and only
if bj; < 0 yields a GIM that is a Cartan matrix by (1.4). In this case, Conjecture 1.5 has been
proven in [29] using some results from categorification of cluster algebras.

As the main result of this paper, we show that the reflections 7} naturally arise in connection
with the C-matrix. It also justifies potential importance of the matrix L*. The key idea is to
maintain that we should have a “root system” for each mutation sequence w as in the acyclic
case. More precisely, we choose a linear ordering < and its associated GIM, and inductively
define an n-tuple of elements s € A and an n-tuple of vectors A’ € Z" (21'),i=1,2,...,n, so
that the following formulae hold:

AW BN if < g,

717
(1.5) si' (A7) = § =AY if i = 7,
)\}f" - b}-‘{)\}” if i > g,

where BY = [b}?]. We denote by A" the matrix whose rows are A},

Theorem 1.6. Fiz a linear ordering < on {1,2,...,n} to obtain its associated GIM A. Then,

for each mutation sequence w, we have
AY =C"¥

Moreover,
s =r’ (mod 24), i=1,2,...,n.

)

As one can see from the flow chart in Table 1, the definitions of s}’ and A}" are somewhat
convoluted and heavily depend on <. Nevertheless, in the end, we obtain C* and 7}’ which do
not depend on <. Moreover, this process reveals that 7}’ are certain leading terms in s}”. Since
w

S

i are related to A’ and 7Y to [}”, the [-vectors [}’ can be considered as “leading terms” of

the c-vectors ¢f’(= A). What Conjectures 1.4 and 1.5 claim is that these leading terms carry

essential information.

To illustrate Theorem 1.6, we present Example 1.7 below. Conjecture 1.4 will be checked for
this example in Example 2.2 after an admissible curve is defined. Conjecture 1.5 is trivially
satisfied for this matrix since its exchange graph is a tree (see [23]) and thus C” = C" does not
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occur (unless v and w differ only by repeated mutations [i,] at the same index). A non-trivial
example of Conjecture 1.5 is given in Example 2.15.

0 3 =3
Example 1.7. Consider the skew-symmetrizable matrix B = (-2 0 2 | with the sym-
2 -2 0

metrizer D = diag(3,2,2), and the sequence of consecutive mutations at indices 2, 3,2, 1, 2:
0 -3 9 5 18 15
2,3,2,1,2]
[B I] e N 2 0 -4 -2 -7 -6
-6 4 0 0o -2 -1
Thus we have obtained three c-vectors (5,18,15), (—2,—7,—6) and (0, -2, —1).
We take the linear ordering 1 > 2 > 3. Then its GIM A and the symmetrized matrix AD are
as follows:

2 -3 3 6 -6 6
A=1|-2 2 -2, AD=1|-6 4 -4
2 -2 2 6 —4 4

In accordance with (1.1), define a quadratic form by
q(x,y, 2) = 622 + 4y? 4+ 42% — 122y — 8yz + 12zz.

Then we have
Q(5a 187 15) = 67 q(_27 _7a _6) = 47 Q(()? _27 _1) =4.

Thus all three c-vectors are Losungen for A.
From Definition 1.2, we obtain

v v v
Ty = 53525152535253525152535253525182583, To = 5352515253525352518283, T3 = 525352,

where v is the mutation sequence [2,3,2,1,2]. For the GIM A, Definition 1.3 gives rise to the
l-vectors
17 = s3s2518283525382(1) = (5,18, 15),
1§ = sgsasisassz(ae) = (2,7,6), 15 =s2(ag) =(0,2,1).
On the other hand, following the definitions in Section 2, we obtain similar results for the A".
In particular,
AT = s352815253828352(av1) = (5, 18,15),
)\g = —8382818283((12) = (—2, —7, —6), )\g = —82(043) = (0, —2, —1).
5 18 15

Thus the matrix A = | -2 -7 —6| equals the C-matrix.
0o -2 -1
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However, [-vectors will not always be equal to positive c-vectors. Indeed, they need not even

2 3 -3
be sign-coherent. For the choice of GIM A’ = | 2 2 2 | we see that
-2 2 2

[ = (149,-462,1341), 15" = (~10,31,-90), 1" = (0,-2,1).

1.1. Organization of the paper. In Section 2, precise definitions will be made for the objects
appeared in this introduction, and Conjectures 1.4 and 1.5 will be presented in a more refined
way, and other examples will be given. In Section 3 the elements s}’ € A and the vectors A}’ will
be defined with a running example, and Theorem 1.6 will be stated more precisely. In Section 4,
Theorem 1.6 will be proven through induction. The main induction step consists of six different
cases, each of which has a few subcases.

Acknowledgments. We are very grateful to Pavel Tumarkin, Ahmet Seven and anonymous
referees for correspondences and comments, which substantially improved the exposition of this

paper.
2. CONJECTURES

In this section, we present our conjectures in a more precise way after making necessary

definitions.
For a nonzero vector ¢ = (cy,...,c,) € Z™, we define ¢ > 0 if all ¢; are non-negative, and ¢ < 0
if all ¢; are non-positive. This induces a partial ordering < on Z". Define |c| = (|c1], ..., |cn])-
Assume that M = [m;] is an n x 2n matrix of integers. Let 7 := {1,2,...,n} be the set of
indices. For w = [i;,12,...,14], i; € Z, we define the matrix M = [m;‘;’] inductively: the initial
matrix is M for w = [], and assuming we have M™, define the matrix M@k = [m:;[k]] forkeZ

with wlk] := [i;,42,...,1s, k] by

wik] _ —m;; ifi=~korj==k,

(2.1) m;;

my; + sgn(mgy) max(mgmy’,0) otherwise,

where sgn(a) € {1,0, -1} is the signature of a. The matrix M* is called the mutation of M™
at the index k.

Let B = [b;;] be an n x n skew-symmetrizable matrix and D = diag(dy,...,dy) be its sym-
metrizer such that BD is symmetric, d; € Z~o and ged(dy,...,d,) = 1. Consider the n x 2n

matrix [B I } and a mutation sequence w = [i1,...,4x]. After the mutations at the indices

i1,...,1; consecutively, we obtain {B“’ C“’] Write their entries as in (1.2). It is well-known
that the c-vector ¢}’ is non-zero for each i, and either ¢ > 0 or ¢}’ < 0 due to sign coherence of
c-vectors ([8, 12]).
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Choose a linear ordering < on the set Z, and define a GIM A = [a;;] by (1.4). From Definition
1.1, we have Losungen associated with A. Set A\ = (1,0,...,0), A2 = (0,1,0,...,0),..., A, =
(0,...,0,1) to be a basis of Z™. Recall that we have defined the algebra 4 in the introduction.
Define a representation 7 : A — End(Z") by

(2.2) W(Si)()\j) = )\j — aji)\i and ﬂ(ei)()\j) = 513)\2 for i,j € I,

and by extending it through linearity, where ¢;; is the Kronecker delta. We will suppress m when
we write the action of an element of A on Z". As before, denote by W the subgroup of the units

of A generated by s;,i=1,...,n.

To introduce our geometric model? for c-vectors, we need a Riemann surface equipped with n
labeled curves as below. Let P; and P> be two identical copies of a regular n-gon. For o € S,,,
label the edges of each of the two n-gons by T5(1), T5(2), - - - s T (n) counter-clockwise.

On P; (i = 1,2), let L; be the line segment from the center of P; to the common endpoint
of T;(1y and T5 (o). Later, these line segments will only be used to designate the end points of
admissible curves and will not be used elsewhere. Fix the orientation of every edge of P; (resp.
P,) to be counter-clockwise (resp. clockwise) as in the following picture.

Ta(n—Q)

Ty(2) To(n—-1)

To(n)

Ty(2)

To(n—2) To(n-1)

n—1

Let 3, be the Riemann surface of genus | "5~ | obtained by gluing together the two n-gons with
all the edges of the same label identified according to their orientations. The edges of the n-gons
become n different curves in ¥,. If n is odd, all the vertices of the two n-gons are identified to
become one point in Y, and the curves obtained from the edges become loops. If n is even, two
distinct vertices are shared by all curves. Let ' =Ty U---T,, C ¥,, and V be the set of the
vertex (or vertices) on 7.

Let 20 be the universal Coxeter group of rank n, which is by definition isomorphic to the free
product of n-copies of Z/27, and let PR be the set of reflections in 20. We will denote an element
of 2 as a word from the alphabet Z = {1,2,...,n}. In particular, an element v of R can be
written as v = i1ig - - - ig such that k is an odd integer and i; = ix41—; for all j =1,2,... k.

Definition 2.1. An admissible curve is a continuous function 7 : [0, 1] — 3, such that
1) n(z) € V if and only if z € {0,1};
2) there exists € > 0 such that 1([0,€]) C Ly and n([1 — €,1]) C Lg;

2An alternative geometric model can be found in [10].
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example_1_pic_O-final.pdfexample_1_pic_1-final.pdfexample_1_pic_2-final.pdf

(A) The curve n}. (B) The curve 3. (¢) The curve ny.

FIGURE 1. The curves n; corresponding to Example 1.7 displayed on ¥, where
o= (3,1,2) € S5 written in one-line notation.

=

FIGURE 2. The curves from Example 1.7. The shortest curve corresponds to 73,
and the longest one to n7.

3) if n(x) € T\ V then n([x — €, + €]) meets T transversally for sufficiently small ¢ > 0;
4) v(n) € R, where v(n) :=1iy-- i € W is given by

{zxe€(0,1) : nx)eT}={x1 <--- <z} and n(xy) €T, for £ €{1,.. k}.

We consider curves up to isotopy. When i, = i1, 1 < p < k-1, for v(n) = iy --- i, the
curve 7 is isotopic to a curve n; with v(nm) = i1 --- ip—1ip+2 - -+ ik If m and 72 are curves with
v(nm) = i1k and v(n2) = j1 - je, define their concatenation ninz to be a curve such that

v(mne) =141 ikj1 - Je-

Example 2.2. Continuing Example 1.7, we choose admissible curves 1Y on a triangulated torus
Y, such that r? = s(n?) and draw the curves in Figure 1 to illustrate that they are non-self-
intersecting. This verifies Conjecture 1.4 for this example. (In this example, it is not necessary
to go through m.) We also draw the curves on the universal cover of ¥, in Figure 2 to see that

they have no pairwise intersections.

Definition 2.3. For v = iiy-- i, € 20, define s(v) = s;,...55, € W C A. We write s(n) =
s(v(n)) for an admissible curve 7.

Now we state Conjecture 1.4 in a more refined way.
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exampleg_3_pic_O-final.pdf examplg_3_pic_1-final.pdf
(A) The curve n?. (B) The curve n3.

example_3_pic_2-final.pdf examplg_3_pic_3-final.pdf
(¢) The curve n3. (D) The curve n}.

FIGURE 3. The curves for Example 2.5 drawn on ¥, with o = (1,4,2,3).

Conjecture 2.4 (Conjecture 1.4). Fiz an ordering on L so that a GIM A is determined. Then,
for each mutation sequence w, there exists a family of non-self-crossing admissible curves n;°,

i=1,...,n, on the Riemann surface ¥, for some o € S,, such that w(r}’) = (s(n)) .

0o -1 -1 2
1 0 1 -1
1 -1 0 -1
-2 1 1 0
the torus with one boundary component with one marked point. It is commonly referred to as
the dreaded torus. With the mutation sequence w = [2,3,4,2, 1, 3], we have

Example 2.5. Consider the matrix B = . It arises from a triangulation of

0 1 -1 -1 0 2 3 2

-1 0 -1 2 2 3 3 2
ERI.

1 1 0O -1 -1 -2 -3 -2

1 -2 1 0o 0 -2 -2 -1

Choose the linear ordering 1 < 3 < 2 < 4. From Definition 1.2, we obtain

w 2 2
1" = 5153(82545253)"51(53525452) 5351,
w 2 2
Ty’ = 5153(52545253) 52(53525452) 5351,
T3’ = 5153525452535254525351,
w
Ty = $2535254525352.

In Figure 3 we provide curves 1’ such that s(n) = r¥ for all ¢ € Z. It is clear that they are

non-self-intersecting on the surface ¥, with o = (1,4, 2,3) € Sy written in one-line notation. By
inspection these curves can be seen to be pairwise non-crossing.

In Example 2.6 we show 7 is necessary in Conjecture 2.4 to avoid self-intersections.
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0o -2 -2 3

2 0 4 2
Example 2.6. Consider the matrix B = 9 40 s Applying to the mutation se-
-3 -2 1 0

quence w = [4,3,1,4,1] we have
ry = 838481(8483)28482(8483)3848284(8384)2818483.

Let 1 be the curve defined by s(n) = rj’. Upon inspection, for any o € Sy the curve n has
a self-intersection in ¥,. However, for any choice of GIM we have 7((s354)%) = 1 so the curve
n' given by v(n') = 34132423143 € 2 satisfies 7(ry’) = m(s(n’)) and can be drawn with no

self-intersections.

In order to refine Conjecture 1.5, we need a new definition. A sequence of indices (i1, ...,iq)
is said to be a chordless cycle in a skew-symmetrizable matrix B if
(1) ij = iy if and only if {j, k} = {1, d},
(2) for any distinct j,k € {1,...,d} we have b;, ;, # 0 if and only if |j — k[ = 1,
Additionally, a chordless cycle is said to be oriented if and only if all entries b
1

same underlying set of indices.

for j =

ijsij41
.,d — 1 have the same sign. Two chordless cycles are considered equivalent if they have the

g ..

Conjecture 2.7 (Conjecture 1.5). Let B be a skew-symmetrizable matriz.

(1) There exists a linear ordering < on L such that every oriented chordless cycle (i1, ..., iq)
in B has an odd number of positive a;; i, ., j=1,...,d — 1, where A = [a;;] is the GIM
determined by <.

(2) Fiz an ordering < and its GIM A satisfying the condition in (1). If w and v are two
mutation sequences such that C* = C? then n(r}) =n(r?),i=1,...,n.

The elements 7(7}") can be viewed as elements of 7(W), and Conjecture 2.7 can be interpreted
as a statement about relations in 7(). Relations for these groups have been explored for par-
ticular skew-symmetrizable matrices and a restricted class of GIMs in [1, 9, 25]. A thorough
investigation of relations in 7(W) and their application to Conjecture 2.7 will take place in a
subsequent article. It is expected that all of the discovered relations will hold for any GIM satis-
fying the condition in Conjecture 2.7 (1) which is a weaker than Seven’s notion of admissibility
[24, 25].

In Proposition 2.9 below, we will prove Conjecture 2.7 (1) for a special family using results in
[24, 26]. In discussing the notion of cycles we will briefly switch from the perspective of matrices
to that of the directed graph.

Definition 2.8. Let B be an n x n skew-symmetrizable matrix. Define G(B) to be the directed
graph with vertices in 7 and arrows ¢ — j for b;; < 0.
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Note that the definition of a chordless cycle for a matirx B is equivalent to the standard
definition of chordless cycle in the directed graph G(B).

Now, for the time being, assume that B = [b;;] is a skew-symmetrizable matrix which can be
mutated from an acyclic matrix By through a mutation sequence w, i.e., assume B = By’. Let
Agp be the generalized Cartan matrix associated with By, and define

(2.3) A = [a;] == C¥Ag(C*)".

Then, by [26, Theorems 1.2] (see also [24]), the matrix A is a GIM such that |a;;| = |b;;| for i # j
and

(2.4)  every oriented chordless cycle of G(B) has exactly one edge {i,j} such that a;; > 0.

Let us consider the following conditions for G(B):

(AC1) every oriented (not necessarily chordless) cycle has at least one edge {i,j} such that
aijj > 0;
AC2) if an edge {i,j} with a;; > 0 is contained in a cycle either oreinted or non-oriented, then
J
it is also contained in an oriented chordless cycle.

Proposition 2.9. Assume that B is a skew-symmetrizable matriz which can be mutated from an
acyclic matriz By. Let A = [ai;] be the GIM defined in (2.3). Suppose that (AC1) and (AC2)
hold. Then Conjecture 2.7 (1) is true.

Proof. Tt follows from (2.4) that A satisfies Conjecture 2.7 (1) if it arises from a linear ordering.
To this effect, let G = G(B), and define G° to be the graph obtained from G by reversing the
directions of edges {7, j} with a;; > 0. We will show that G° is acyclic, and define a relation <
on the set Z of vertices as follows:

i < j if there is a directed path i =iy — -+ = i, = j in G°.

Then the relation < will be a strict partial order on 7.

Suppose that there is an oriented cycle Ey = (i — i1 — -+ — ip = 4g) in G°. Then it is
also a cycle in G, but not necessarily oriented. We inductively define the sequence Ey, E1, ..., E,
of oriented cycles in G° as follows: Suppose that E; is defined for some d € {0,1,...,p — 1}. If
Uigig, < 0 then we define Eqyq to be equal to Eq. Suppose that a;,;,,, > 0. By (AC2), there
must be an oriented chordless cycle (ig — ji — jo — -+ — Jr — G441 — iq) in G. Then we
define F4y1 as a subgraph of G° to be the oriented cycle obtained from E; by replacing the single
arrow ig — ig4q with the oriented path ig — ji -+ — j» — ig41. Here, thanks to (2.4), we have
iy gy <0, a4, 5., <0foree{l,..,r—1}, and aj,;,,, <0. Once Ey, Ey, ..., E), are defined, the
last one E,, is an oriented cycle (kg — k1 — --- — kg = ko) such that {io,....3,—1} C {ko, ..., ks—1}
and ay, k.., <Oforalle=0,...,5—1. By definition of G°, the graph G also has the same oriented
cycle (kg — k1 — -+ — ks = ko). This contradicts (AC1). Thus G° is acyclic.
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Now refine < to a linear ordering on Z. Let A = [a;j] be given by (1.4). We need to show
that A = A. We have a;j = a;; = 2if i = j, and a;; = a;; = 0 if b;; = 0. Assume 7 < j and
a;; = bj; < 0. If a;; > 0, then j < i by definition, which is a contradiction. Thus a;; < 0 and
a;j = a;j. Assume ¢ < j and a;; = b;; > 0. Then bj; < 0. If a;; < 0, then aj; < 0 and hence j < i
by definition, which is a contradiction. Thus a;; > 0 and a;; = a;;. The other cases are similar,
and we have a;; = a;; in all the cases. O

Example 2.10. Let B = [b;;| be the skew-symmetric matrix associated with the quiver @ below
via the rule b;; = —1 if 7 — j and b;; = 0 if there is no arrow between 7 and j. This quiver is

obtained applying mutations at vertices 6,5, 3,4 to the acyclic quiver Qg also shown below.

S AV
SN YA

.(— (—.

2 -1 1 0 0 o0
—1 2 -1 -1 1 0

From (2.3), we obtain GIM A = [a;;] = é :1 3 g j _01 associated to B (or Q). We
0 1 -1 -1 2 1
o 0 -1 0 1 2

specify the signature of a;; on Q(= G) and draw the acyclic graph G° defined in the proof of
Proposition 2.9:

N, AV

FAYANAVAY

It is easy to see that G satisfies (AC1) and (AC2). Indeed, we see (2.4) holds, and there is only
one additional oriented cycle (1,3,6,5,4,2,1) with chords, which has two positive edges. Now
the definition of < in the proof of Proposition 2.9 yields 5 <4 <2 < 1,5 <3 <2 <1 and
5 < 3 < 6. Thus a refinement to a linear odering is given by 5 <4 <3 <6 <2 < 1, which gives
rise to A via (1.4). Clearly, Conjecture 2.7 (1) holds with this linear ordering.

Example 2.11. Let B be the skew-symmetric matrix associated with the quiver @) below in the
same way as in Example 2.10. This quiver is obtained applying mutations at vertices 5, 3,4 to
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the acyclic quiver Qg also shown below.

It is straightforward to check that G satisfies (AC1) and (AC2), and we can take 1 < 2 < 3 <
6 < 4 < 5 for Conjecture 2.7 (1).

Remark 2.12. It will be interesting to investigate when a skew-symmetrizable matrix mutated
from an acyclic matrix satisfies (AC1) and (AC2). It may be that such a matrix always satisfies

the conditions.

The lemma below provides another sufficient condition for existence of a linear ordering <
and its GIM A satisfying the condition in Conjecture 2.7 (1). If we do not require that a GIM
is determined by a linear ordering, it can be proven that a GIM satisfying the condition of
Conjecture 2.7 (1) always exists for any skew-symmetrizable matrix. But in order to define the
elements s € A as in the next section, it is necessary that A arises from a linear ordering.

Lemma 2.13. Let B be a skew-symmetrizable matriz. Consider G = G(B) as undirected. Assume
that each of the (undirected) chordless cycles in G has an edge in the cycle that is not contained
in any other (undirected) chordless cycles. Then Conjecture 2.7 (1) is true.

Proof. For a collection of arrows £ = {ey,...,e,} in G, we can define a new directed graph H by
reversing the direction of the arrows of £. If H is acyclic we may define a linear order by setting
i < jif i —» jis an arrow of H and extending it to a linear ordering on Z. We will show that
there exists a set of arrows that contains an odd number of arrows (actually one arrow) from
every oriented chordless cycle of G such that H is acyclic. Therefore it follows from (1.4) that
the associated GIM satisfies the condition in the statement of the lemma.
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As in the statement of the lemma, we consider G undirected for the time being. Let {C1,Ca,...,Cs}
be the set of undirected chordless cycles in G and take &' = {ej, ez, ..., €5} to be the set of edges
in G such that e; is an edge of C; and not an edge of C; for any j # i. Such an & exists by the
assumption. Let T be the spanning tree obtained from removing the edges in £’ from G. Now we
consider G directed again, and let €; be the opposite arrow of e;. We will construct the desired
sequence £ of arrows as a subset of £ by iteratively taking e; to be in £ if and only if either

(1) C; is oriented in G, or
(2) TU{ekler € £,k < i} U{e;} has an oriented cycle.

Now define H from G by reversing the direction of the arrows of £. Then for any oriented cycle
of G we have reversed only one arrow of the cycle by (1) and the choice of £, so any oriented
chordless cycle of G is no longer oriented in H. Furthermore every non-oriented cycle of G remains
non-oriented in H by (2). Therefore all of the chordless cycles of H are non-oriented and it must
be that H is acyclic. O

We now give an example illustrating the proof of Lemma 2.13.

Example 2.14. Let B be the skew-symmetric matrix given in Figure 4, or any skew-symmetric
matrix with the same directed graph G shown in the figure. The graph G has two oriented
chordless cycles (1,3,4,1) and (2,4, 5, 2), and three undirected chordless cycles Cy, Cs and Cs given
by {1,3,4}, {1,2,4}, and {2,4,5}, respectively. Consider e; =3 — 1, e =1— 2, and e3 =5 —
2. Then & = {e1, e, e3} satisfies the assumption of Lemma 2.13, and we obtain the spanning

1 2
tree T = \ / by removing &£’ from G. Now to construct £ we see that e; € £ by
o «—— o0 —> o
4

3 5

1 2

o —> o
condition (1), e2 & & since Cy is not oriented and T U{er,ea} = / \ / does not have
o «—— o0 —>» o

3 4 5

1 2
an oriented cycle, and e3 € £ by condition (1). Thus €& = {ej, ea}, and H = / \ / \ .
3 4 5

o €«—— o0 ——> o

The covering relations dictated by the acyclic graph H are 1 <4 <3,1 <2 <4, and 2 <4 < 5.
One extension of these relations to a linear ordering is 1 < 2 < 4 < 3 < 5. It is straightforward

to check that the associated GIM has exactly one positive entry for each oriented chordless cycle
of B (or of G).

Recall the definition of an L-matrix from Definition 1.3. We now provide an example illustrat-
ing Conjecture 2.7 and [-vectors.
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0o -1 2 3 0 1' —_— '2

1 0 0 -4 5

-2 0 0 6 0

3 4 -6 0 =7

0 5 0 7 0 ° ° °
3 4 5

FIGURE 4. A skew-symmetric matrix B and the digraph associated to it in

Lemma 2.13. The proof of the lemma is illustrated in Example 2.14.

Example 2.15. Let B be the matrix from Example 2.5. For the two mutation sequences w =
[3,4,1,3,4,3] and v = [4,1,3,4,1, 3] we have C* = C". On the other hand,

7]’ =53545351535453,

7,50 —835453515354525458351535483,

T3 =835451535483515351535453515453,

w 2 2
Ty =5354515354(8351)7535453(5153) 5453515483,

and

2
7 =53(5451)54535451545354(5154) 83,

8 =53(5451)%545354515453(5451)% 545254 (5154)%535451545354(5154)% 53,
Y =s3(5451)%545354(5154)% 83,

ry =(838451 54(313433)2.

There are two oriented cycles on vertices {1,4,2} and {1,4,3} in B. Take the GIM arising from
the linear ordering 1 < 2 < 3 < 4. Then only the entry a4 is positive for the cycles, and
the condition in Corollary 1.5 is satisfied. Direct computation shows that 7(r{’) = 7w (r?), and
Conjecture 1.5 is verified.

We identify «; with A; in Definition 1.3 and compute the I-vectors

liﬂ :535453()\1) = (1503 *L 71)’ lév :‘935453515354()‘2) = (717 ]-307 1))

137 =s3545153545351(A3) = (2,0,0,—3), 1Y =s354518354(s351)%s3(\1) = (—3,0,0,4),

and obtain the L-matrix

1 0 -1 -1
Jw_ |11 0 1
2 0 0 -3
-3 0 0 4
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On the other hand,

i} :(71707 17 1) = - iua lg :(*1, 1,0, 1) = l;u,
1§ =(—-2,0,0,3) = -1, 1Y =(-3,0,0,4) = [

One may hope that the reflections ¥ would give a direct generalization of [29, Theorem 1.4]
with the expectation that a product of r{”’s might equal s5(1)S5(2) * $5(n) in WV for some ¢ € Sy,.
However Example 2.16 provides a counterexample.

Example 2.16. Let B be the matrix from Example 2.6. After the mutation sequence w =
[2,3,2,1] we have

w w w w
7’1 = S1, T‘2 = S8189S81, 7’3 = §28389, 7"4 — 8535483.

It is straightforward to check that Hr;"(i) 7 S5(1)55(2)55(3)S5(4) for any pair of 0,6 € Sy. The
icT
same is true when considering the matrix representation of the s; for any choice of GIM associated
to B.
This collection {r{’} also provides an example where for any o € Sy there will always be some

pair of curves in 1}’ and n}” satisfying Conjecture 2.4 that intersect.

3. MAIN THEOREM

In this section, we define the elements s;” € A and the vectors A}’ to present the main theorem
of this paper precisely. The key idea is that we make the formulae (1.5) inductively hold for each
mutation sequence w. This process shows that there is a unique term in s}’ that survives mod
2A without regard to the choice of an ordering <. More precisely, we prove s = r* (mod 2.A).
When B is acyclic, the c-vectors ¢}’ are the reflection vectors of m(r}") as shown in [29] with the
linear ordering < defined by i < j if and only if b;; < 0. However, for general B, it is not true any
more and comparing r;’ with s{” will help us understand how the reflections r}” arise in relation
to the c-vectors ¢}’ as it will be shown as a part of the main theorem that ¢’ = A".

Throughout this section, assume that B = [b;;] is a skew-symmetrizable matrix. Fix a linear
ordering < on Z to obtain its associated GIM A = [a;;] from (1.4).

Example A-1. As a running example in this section, we consider the skew-symmetrizable matriz

0 1 -3
B=|-2 0 -2
3 1 0
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Def A-5 Def A-5
Define \; = )\E] Define e?[im]
Def A-1 Def A-6
Define s; = 5! and ¢; = ¢!/ Define s;}[im]
Def A-2 Def A-7
Define P ([], [i1]) and Pr([], [i1]) Define Py (v[im], vlim, im+1]) and Pr(v[im], vlim, im1])
Def A-3 Def A-8
Define ; = Tz'H Define Tiv[im]
Def A-4 Def A-9
Define )\Eil] Define )\;’[imvim+1}
Let v =[] and m =1 V[ip] = vand m+1—m

TABLE 1. Flow chart for defining s}’ and A}’

with symmetrizer D = diag(1,2,1) and linear ordering 1 < 2 < 3. Following the convention in
(1.4), we produce the GIM

2 1 -3
A=12 2 =2
-3 -1 2

Assume that a mutation sequence w is given. We will inductively define the elements s}’ € A
and the vectors A", 7 € Z, in what follows. The procedure is summarized in Table 1.

For convenience, we recall the definition of A and its representation on Z". As before, set
A1 =(1,0,...,0), A2 =1(0,1,0,...,0),..., Ay =(0,...,0,1) to be a basis of Z".

Definition A-1. Let A be the (unital) Z-algebra generated by s;,e;, i € Z, subject to the
following relations:

sit+e —1 ifi=j, e; ifi=
512 = 17 Zei =1, s;¢;=—e;, €;s; = t 7 J ciej = 7 Js
i=1 € if i # j, 0 ifi#j.
Define a representation 7 : A — End(Z") by

(31) W(Si)()\j) = )‘j — aji)\,- and W(ei)()\j) = 613)\7, for 1,] € Tz,
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and by extending it through linearity, where ¢;; is the Kronecker delta. We will suppress m when
we write the action of an element of A on Z".

Example A-2. Continuing from Example A-1, the action of s;, 1 = 1,2,3, are respectively given

by the following matrices:

-1 0 0 1 -1 0 10 3
-2 1 0}, 0 -1 0}, 01 2
3 01 0 1 1 00 -1

Here the action of s; on the vector \; is to be understood by multiplication of the matriz on the
right.

Definition A-2. Suppose that w starts with k. Let P4([], [k]) be the set of (i, ), 4,5 € Z, such
that

Ai > sp(A) and Aj < sp(Aj) and (K <i<jori—<j<k), or
Aj < sp(Aj) and k=14 < j.

Let P-([],[k]) be the set of (i,j), i,j € Z, such that
i > sip(Ai) and A\j < s(Nj) and (E<i<jori<j=<k) or
Aj > sp(A;) and k=i > j.

Definition A-3. Define

€r; = Zej S ./4,

where the sum is over j such that (i,j) € P-([],[k]) or (4,7) € P-([],[k]), and define
(3.2) Ti =8 +2(1 —s;)er; forieT.
Definition A-4. Define

T(N) AN < sg(N) and k <4, or if \; > sp(N\;) and k = 4, or if i = k,

3.3) A=
A otherwise.

Example A-3. Continuing from Example A-2, take w = [2,3] so k = 2. We have Ps([],[2]) =
{(2,3)} and P-([],[2]) = {(2,1)}. It follows that e;1 = e, er2 = e1, and er3 = 0. Putting
everything together we see that

T =s1+2(1—s1)e2, T2=s2+2(1—s2)er, T3=s3.
We then have
To(A1) = (2 — s2)(A1) = (1,1,0), T2(A2) = s2(A2) = (0,—1,0), 72(A3) = s2(A3) = (0,1,1).
By (3.3) we define )\?] :=To(N\;) for alli € T.
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Definition A-5. Inductively, assume w = vk, /..., m], including the case v = [|. For i # k,
define
(3.4) ol _ moefTy it AY < sP(AY) and k <4, or if AY > sP(AY) and k > i,
’ ey otherwise,
and

vlk] _ v _ v v[k]
€ =k T GOt

ei (Kl _ Z e;f[k] .

- v[k] v
j;ﬁk, )‘j 7£/\j

where we set

Example A-4. Continuing from Ezample A-3 we have k = 2,0 = 3, and v = []. Fori = 1,3 we
[

have ef] = m9e;To. More explicitly,
6[12] =me1my = (2 — sg)eq, eg2] = Toe3Ty = S2€3.
Fori =2,
e[f] = 6[12] + 65[32] = 2e1 — sa(e1 — e3)
and finally

6[22] =ey(l — 6[12] - eg]) = so(e; —e3) —e1 + ex + e3.

Definition A-6. Define
vlk] _ oVl
S, 7 )

where the sum is over j such that (i, j) € Ps(v,v[k]) or (j,7) € Ps(v,v[k]), and define

(3.5)

k]

V-~V -V VUV -V
TRTITE +2(1 =TT T e

7 +2(1— Tf)ev[k}

EX)

if A? < sP(AY) and k < i, or if AY > sY(\?) and k > i,

otherwise.

Pl

Example A-5. In Ezample A-3 we computed Ps([], [2]) = {(2,3)} so

2

i 2 _ 2

=0, €s2 = €35 6[5,3 =62
Now by comparing s;(\;) given in Example A-2 to \;, we have

i

=T1om1T2 + 2(1 — ToTiT0)E ]1 =TT T2

[2

87

= (2 — 281 + 8281)82 + 2(1 — 289 + 28189 — 828182)61 + 2(—2 + 281 + 289 — 8281)63,
2

8[2] =7+ 2(1 —m)e 5 =2(e; —ez) + s2(1 —2(e; —e3)) = s2+2(1 — s2)(e1 — e3),

8:[32] =713+ 2(1 —73)e

$98389 + 2(1 + 5253)62 + 2(1 — 289 — 525352)63.

Definition A-7. Let Ps(v[k], v[k, £]) be the collection of (i, ) such that
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V] 5 g (0) ang AP < o (08 o

(€<z<jorz<j<€)and/\ (
U[k]( ’U[k’])

{=1i>jand ), [k]<Oand)\
¢=1i<jand )\é[] >0 and )\jH Z[k]()\;’[k]).

Similarly, let P-(v[k], v[k, {]) be the collection of (7, j) such that
(¢<i=<jori=j=<e and A > PO and X0 < M\ or
¢=1i>jand )\z[k] > 0 and )\;-}[ I z[k]()\;[k]), or
¢=i~<jand A\) < 0and A < MO0,

Example A-6. Continuing from Ezample A-5 we have
s = (L1, 5708 = 0,3,2), 705 = (0,-4,-3)

so Ps([2],[2,3]) = 0 and Pr([2],[2,3]) = {(3,2)}.

Definition A-8. Define
ev[k] _ e;}[k] € A,

where the sum is over j such that (i,j) € P-(v[k],v[k,£]) or (j,i) € Pr(v[k],v[k,{]), and define
(3.6) vl

T,

7o = o o(p M), for i € .

Definition A-9. Finally, define
O i 3 < s ) and ¢ < 5,

(3.7) Aot = or if A0 > PO and £ j, orif € = j,
)\;[M otherwise.
Example A-7. Continuing from Ezample A-6 we have
e =0, ey =efl, eyl =efl.
Furthermore,
=5t = s 21— sa)er, T = sasase +2(1 — sas3sa + 5253 — s2)er.

In Example A-5 we computed s[ ]()\[ ]) Finishing our running example we conclude that
AR B = 2= sy) () = (1,1,0),
AP = T () = sass(02) = (0,1,2),
M = AOF) = —s20) = (0,-1,-1).
For any mutation sequence w, set
)\’UJ
1
AY = |
)\’LU

n
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Now we restate the main theorem of this paper.

Theorem 3.1 (Theorem 1.6). Let B be a skew-symmetrizable matriz. Fiz a linear ordering <

on T to obtain a GIM A. Then, for any mutation sequence w, we have

(c1) A =¢f’ forallie T,
or equivalently,
AY =CY;
fori,j €I,
AP +UENTif i<,
(¢2) si (A7) = 4 =AY ifi=j e’ (X)) = 0 A";
AY = UEN i i g,
moreover, for all 1 € I,
(C3) s =rY (mod 2A4).

In what follows, we prove (C3). A proof of (C1) and (C2) will be given in Section 4.

Proof of (C3). Notice from (3.6) that s = 7 modulo 2A. Then the equation (3.5) becomes

modulo 24

(3.8) ol spsysy A AY < sP(AY) and k <4, or if AY > sP(AY) and k > 4,
. i =9 .

S

k otherwise.

Using (C1) and (C2), both of the conditions A} < s7(AY),k < i and Ay > s7(AY),k = i can be
rewritten as

bix Ak = bixck > 0,
which does not depend on the choice of a GIM. Now (C3) follows from the definitions (3.2), (3.5)
and (3.6) and from induction. O

3.1. Some observations. We close this section with examples which show some relationship
between c-vectors and Losungen.

0o -1 -1 -1
. . 1 0 1 -1 .
Example 3.2. Consider the matrix B = 1 10 s The mutation sequence [1,2,3, 4, 2]
1 1 -1 0
produces the c-vector (5,2,2,2) which is not a Losung for any choice of GIM associated to B.

Example 3.3 below shows that even if a c-vector is a real Losung our formula may not always

express it as such.
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0 1 0 0
. . -1 0 -1 0 - . .
Example 3.3. Consider the matrix B = o 1 o0 1l This is a finite-type matrix that
0 0 -1 0

corresponds to an orientation of the Dynkin diagram A4. After the mutation sequence w = [2, 4, 2]
with the GIM associated to the linear order 4 < 2 < 3 < 1 our formula produces

)\éﬂ = —898489A3 — 2893 + 2A3 + 284893 = (0, 0,1, 1)

However, we also have sps4s0A3 = (0,0, 1,1) so we see that A}’ could just be expressed as the
real Losung sasgseAs as opposed to the linear combination of real Losungen given above. For
completeness, we have spA3 = (0,1,1,0) and sgs9\3 = (0,1,1,1).

It is also worth noting that the matrix representation of —s98459 —2s9+24 25459 is not equal to
the matrix representation of sos455. Furthermore, for any choice of linear ordering the expression
for A’ that our formula produces will always have three or four terms even though the vector is
a real Losung.

4. PROOF OF (C1) AND (C2) IN THEOREM 3.1

In this section we prove Theorem 3.1. We start with the following proposition which shows
that s}, el satisfy natural relations for each w.

Proposition 4.1. Fori,j € T and for any mutation sequence w, the following relations hold:

(4.1) e =1,

=1

(4.2) e;’ej’ = di5e;”,

sP+ef —1 ifi=jy,
(4.3) ##{; Z f.%

s ifi#J,

TW4+e -1 ifi=j,
(4.4) efr=4" f !

€ if i #
(4.5) siPsi =1, Tl =1,
(4.6) SWeW = ¥, el = e
Proof. We use induction. If w = [], all the relations follow from the definitions. Assume the

relations hold for v. In what follows, we show that they hold for v[k|, k € Z.
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Relation (4.1): Since ef1P = e? for ¢ # k by induction, we have (1 —e})77 = (1 — e}), and
obtain

Zn: v[k] v[k]+z v[k]

i=1 i#k
_ v v v[k] v[k]
e Y M Y gt Y
itk itk itk
=ep + 1—ek Z e”T,:’—i— Z
k k
;U[ 7&)\;) )\’U[] Xv
n
=ep + Z (1 —e})e; + Z Ze}’zl.
i#k z;ék i=1

Relations (4.2): Suppose that i # k and j # k. Note that ef7 = ef and eJ = e?. Assume
vlk] _ vlk] _

e;  =e;j and e; ;’ Then
vlk] v[k] vou _ s v _ s UK
e e e;e; = dije; = dije; .
k
Assume e?[ = 2e?7? and e;«’[ I Then
vlk] vk v U,V U v UV v_v vk
ei[ }6][ ] = Tkei'rke] = Tkel‘ €j = 5¢kaei = (Sijez[ ]
vlk] _ (K] v
Assume e; e? and e; K€ TR Then
v[k] vlk] BRC P P P R ”_5..”[k]
e € € TRE; Th = € €Tk = 0i5€; T, = 0jj€;
vkl _ v v, v vlk] _ v v, v
Assume e; " = 70e7 and e, =TpeiT]. Then
v[k] v(k] v U v v vV v v v v v v _v vlk]
ei ej = Tk el Tk Tk 6] Tk‘ = Tk 62 ej Tk = 51]7—]4) e,L Tk = 6ij€z
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Fori+# k and j #k, write A= | 1— Z e;’[k] for the time being, and we get
ik, AVl
k k . k
ek 6] =k ej o v (k] v,v ¢ \UIK] v
epe; = €LE; =0 it =AY,
. k

P _ ol gy _ | TEETTERA = RerepA =0 AT 2,

PR Vel A =0 if AV = 2,

ez[k}ez[ = epAef A = (ef — Z epTrelTel)A = el A= ez[k].

ik, AU Lpw
We have proven
(k] v[k] _ k]
6;} ;) 61] i
for all 4,5 € Z.
Relations (4.3): Assume that i # j and ¢ # k. Suppose that ef[k] = e} and e}-’[k] = ¢e7. Then

we have

(k] ;olk] _ (Kl _ k] _ v _ vkl

e; s;} =e; (17 +2(1— T;’)ezj ) =¢e; +2e(1—7; )e:d =el =¢, .
Suppose that e, vlk] Tref Ty and e?[k] = ej.
e?[k]s;’[k] =Tee; T (17 +2(1 —77)e [J]) =Tre] +2(mef — T,:’efT;’)e:gd =T1re] = ef[k].
Suppose that ef[k] = e} and e;’[k] =T, €7 Ty
ef[ } ;’[k] e; [T”T”T,:’ +2(1 = 7)™ )e:gﬂ] =e; +2¢; (1 — T,Q’T;’T,;’)e:gd =e? = ef[k].

Suppose that

Then we have

Assume tha

vlk] v
€k TJ

(] (k] _

ef = 7ef 7y and e;-’ = Tk e?7?. Note that

Tke TkaT Tk—Tke Tk—']—ke Tk

v[k] vlk] _ v v v | v v v v_v_v\ Uk
e S;  =TRe Ty |TRT] T +2(1_TijTk)e .
vlk vlk
=T1pe; Ty + 2(1 e Ty — T,fe:’T,g’)e k] _ ei[ I,
. . k
t i =k # j. Suppose that e;.J[ - e7. Note that
v v_V, UV _V v o_ v 'vv'uv_’v[k}
ek — eka eg Tk’ Tj = ek — eka eg Tk = ek .

£k, A 2ay £k, A 2xy
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Then we have

ek[ }s;’[k] = ez[k] (7 +2(1 - T?’)e;”[j]ﬂ)

= €Z[k]7' + Qev[k]( Tp)e:gc] = ez[k].

Suppose that e;[k] = 1,e77;. Note that
ey [k TRTi Th = Z ev[k] VTR T} Tk
04k
_ v_UV_V VvV_UV_UV_V v UV _UV_U
—Tij T — Z eka’Tj T — Z Tkeg'rj Tk
e, N =0 ek, XAy
=TRT]TE — T,;’e”Tvak - Z e; — Z TveyTy
£k, A —xy t£k,j, AU £w
v VUV v v VU
:1—Tk6j7'k— Z ey — Z T € Tk
£k, A —yp kG, A Lw
“1-ya
£k
Then we have
e']’;[k}s’u[k] ”[ ](TUT'UTI;J + 2(1 _ TkT ™ )6 [k]) Z[k]
. k
Assume that ¢ = j # k. Suppose that )\f[ - AY. Since efe, [ - 0, we get

Mo — ev(2 4201 — T.v)e”[“)
(2 K3 (2 (2 (3
=e’7’ ZevTvev[k] +el —1—2(17 +e] — 1)6:’[1-16}
=77 +2(1 - Ti’)e;’,[f] + e:f —1=sta et

The case )\ 7é MY is similar to the case )\v[k] = AY. We omit the computations for this case.

Assume that ¢ = j = k. Then

ez[klsz[k] =(1- Zez[k])sz[k] _ Sz[k] _ Zez)[klsz[k] _ Sz[k] _ Zezi[k] _ Sz[k] + 6Z[k] 1

£k 04k oy

Relations (4.4): For i # j, we have ef[k}(l - Sf[k]) =0 and

ef[k]rf[k] _ e;’[k](s;[k] +2(1— S;’[k])e:’[% _ e;’[k].
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For ¢ = 7, we get

ef[k}ﬁ’[k] _ e;’[k](s;[k] +2(1— s;’[k])ef’[f]) v[k] [ 4 Qev[k]< _ s;’[k])ei[f]
_ S;f[k] + e;f[k] 11— Qe;’[k] sf[k] e;”[f] v[k] +2(1— p[k]) e:’[ik] + e;ﬁ[k} _1

= T;][k] + ef[k] — 1.
Relations (4.5): Suppose that i = k or i # k and AY™ = \?. Since €¥7? = €? and r¥e¥70r? =

TeejTy for j # i, k, we have

e;’[k]rf = e}’[k] for j # 1.

Thus ¢ L =eg; or e;[f](l —717) =0, and we have

sttt = (200 =) 4 201 = )l
=12 (=)l 20 = ) a0 = el (- el
=1+ 2(r7 — el 201 - r2)ell = 1.

Suppose that ¢ # k and )\ 75 AY. Since ej[ Lo T = e;)[k] for j # i, the computation is

similar to the previous case to obtain si[ TP — 1 in this case as well. Furthermore, since
Pkl Ikl _ lk] o et
T,% % Tz ’ ge

LUl ik (S;’[k] +2(1— sl ])ev[k])( v[k] +2(1— l[ ])e:}f]) —1.

7 7 55 S0

Relations (4.6): Assume i # k, and suppose that )\f k] # A?. Then
st = (rprprt 20— P ael el
= rprirpel = pprprrter y = —rverry =~

The case A?[k} = A7 is similar. For ¢« = k, we obtain

Sk[ }e'Z[k] (Tk 4 2(1 _ Tk) s[lf})e']:[k} — gez[/ﬁ]

=rrep(l— > efy=—ega- Y )=l

0£k, A 2ay 0£k, Aoy

For i € Z, we have

ol ol (o | gy

olH] 5okl oIkl olk] _ jolk] olk] _ _ olk]

i )€ =5 € i

g

Proof of Theorem 3.1. The statements (C1) and (C2) are true for w = [| from the definitions.
Assume that (C1) and (C2) hold for v. We will show that they also hold for v[k], k € Z. There are
cases (1)-(6) according to the order of i, j, k, and each case has several subcases. Since arguments
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are all similar, we will show details for the cases (1), (3), (4) and (6) and skip some details for
the other cases.

To begin with, let us recall some definitions for ease of reference. From the definition of
mutation in (2.1), we have

—by; ifi=korj=k,
(4.7) b = S by sgn(b) by by, i bLY > 0,
b}’j otherwise,

and rewrite the definition of c-vectors as

—c? ifi =k,
(4.8) = e sgn(b9 )Y if bYe? > 0,
cy otherwise.
For i # k, consider the condition
(%) AP < sp(AY) and k < i, or AY > sp(A\) and k > 1,

and rewrite (3.7), (3.4) and (3.5):

TZ(AY) if () is true,

(4.9) AV -

AY otherwise;

TPe?r? if (%) is true,
(4.10) ot J TR 1) _

ey otherwise;

Pror 4 2(1 — 70rPr) et () is true,
(411) o = TR Tk

’ T + 2(1 — T@P)e;’}f] otherwise.

In each of the following cases (1)-(6), we will show the statements (C1) and (C2):

(C1) AV = (W for all i € Z;
fori,j € Z,
AV DEAY i i <,
(¢2) ei” (A)") = dig A}’ sP(AF) = - if i = j,
AW — bUAYif i - .

1) Assume that k£ < i < j. By induction we have

sp(AY) = A7 + b AL, Sp(AY) = A7 + b AL
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a) Suppose bj A} = —AY + sp(AY) < 0 and b AP = —AY + sP(AY) < 0. Then from (4.8), we
have
C’f’[k] — v c?[k] v
i i J 30
and obtain from (4.9)
vlk] _ vlk] _
Ao e,
By induction,

)\z)[k] _ cz)[k], )\;)[k] _ C;J[k}’
which proves (C1) in this case.
From (4.10),
M — ¢ M — ¢
7 7 R

and by induction,

MO = er () =0, MO = er () = a7 = AT,

k k k
M) = ev(ap) =0, ) = ev(a) = Ay = A9,

We also have

okl olK

v[k]
S P j

=77+2(1 -7/

) =¥ 4 2(1 - 77)e W
From the definitions, (i,7), (j, i) & Ps(v, v[k]) U Pr(v, v[k]), and thus
(
(

sg'

v[k:] /\U[k] ( v)ev[ }))\U[k] U/\;’[k] — Tzv)‘;)

J

— )N = SUAY

S,7
J
vk v[k] \v[k g .
AP bar = AV gtV g 2 g
—AY = AU if i = j.
Similarly, we get
s = NN for £ 5,

This proves (C2) in this case.

b) Suppose b AL = —A7 + sp(AY) > 0 and b AY = =AY + sp(AY) > 0. From (4.8), we have

C;)[k]

=/ +sen(Obher, o

= i + sgn(Ap)bjjck -

On the other hand, we obtain from (4.9)
W = 72 () = (s + 201 = D)) (D).
If A} <0 then (k,i) € Pr(v,v[k]) and
(4.12) A = (74 2(1 = s2))(AY) = 207 — sE(AY) = AV — b AL = 2
by induction. If A} > 0 then (k,i) ¢ Pr(v,v[k]) and
(4.13) AV = goaw = 20 g A =

(2
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Similarly, /\ vkl ][ ) This proves (C1) in this case.

From (4. 10)

oVl

_ v, v, v
% =TE€ Tk €

and by induction,

Similarly, ][ JAPHy = 0 and e;[k]( AvHly — e;:[k}'

J
We have
sf[k] =mr’T +2(1 - T,:’T;’T,:’)ez[f], Sy[k] =177 +2(1 - T,;’T;)T;g)eggﬂ.
From the definitions, (i, j), (j,%) € Ps(v, v[k]) U P-(v,v[k]), and thus
sf[k})\;’[k] = (gm0t +2(1 — g7 e v[k]))\;’[k] =177 ")\ vl T Ti AJ

=10 (sy +2(1 — s;’)e;’ﬂ»))\” = T,:,’s”)\”
If i # j and A} < 0, then we obtain from (4.12)

ST = 70500 = 70 (XY 4+ BYAY) = TEAY 4 bY (52 + 2(1 — sP)el gAY
vlk v[k vlk vlk
=20 2 —spay = W0 L,
If i # j and A} > 0, then it follows from (4.13) that
ST = o0 4 B3 (58 + 2(1 = sP)eR )Ny
_ el el ey _ ywlk] ikl ol
= X gt spae = A0y T,
Similarly, we get
s = NN for £ 5,
If ¢ = j then

sUH IR (i +2(1 — T”T"Té’)ev[.k]))\p[k] = T];]TilegAZ}[k] =TT N

i 7 S,1 7

— TPSPAY = —7PAY = — AV,

This proves (C2) in this case.
¢) Suppose b AL = —A7 + sp(AY) < 0 and b3 AY = =AY + sp(AY) > 0. From (4.8), we have

Cf[k] =c, c;-)[k} = ¢} + sgn(Ag)bjxcy-

On the other hand, we obtain from (4.9)

/\f[k] — Y, )\;}[k] = 72(A\Y) = (sp 4+ 2(1 — sp)e2 ) (AY).
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Thus /\f[k] = cf[k] by induction, and using the same argument as in (b), we also see that )\v[k]
c;.’[k]. Therefore (C1) is true in this case.
From (4.10),
e =er, W= rperny,
and it follows from similar computations to those in (a) and (b) that
k k k k
e;’[}(/\;’[]):()’ "’[]( :’ ) v[]7
vlk] \vlk]y v[k] vlk 'u[k]
ej ()\z ) - 07 ()\] ) ] .
We have
sf[k] =77 4+2(1 - Tl-")e;[f], s;-)[k] =17 +2(1 - T,@’T;’T,;’)evm

From the definitions, (i, j) € Ps(v, v[k]) N P-(v,v[k]), and thus

TN = (72 21 — r2) AT = 7o a M o1 - )T = )0 ey

=227 (5?4 2(1 — s?)er ) AT,

T, 7
If i # j and Ay < 0, then (k,i) & Pr(v,v[k]), (k,j) € Pr(v,0[k]), and thus A7 = 72(A?) =
AY — bYAY and by (4.7)

v[k]

sf[k])\;’”—”\ — (57 +2(1 = s7)el ) (AT — b3 AL)
AV (sPAY — BY (Y — BEAY) + 2(1 — s¥)AY)

_2X"[’“] (27 — SPAY = DYAE + bObEAY)

= 22T (Y BYAY — DYAY + BY Y AY)

vlk v vlk vlk] \vlk
= AU (@ — b AT =\ IR el

If i # j and AY > 0, then (k, ), (k, 5) & Pr(v, v[k]), and thus A7 = 72(A%) = A? 4+ 5%, \? and by
(4.7)
sPIH = 20 (52 1 2(1 — s¥)e,) (AY + bYAD)
vk v v v \\V[k vlk] \v[k
= Xy (8 4 b AT :AjHHﬁ[ RG]

Similarly, we get

PP = N oA for i 25 and s = A0

(2

This proves (C2) in this case.
d) Suppose b AL = =AY 4+ sp(A7) > 0 and bY AL = =AY + sp(A}) < 0. This case is similar to
case (c) right above.

2) Assume that ¢ < j < k. Since this case is similar to case (1), we omit the details.
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3) Assume that i < k£ < j. By induction we have
sp(AY) = A7 =0 AL, sE(AT) = AT + DAL

a) Suppose b Ap = A7 — sp(A7) < 0 and b A} = —A7 + sp(A]) < 0. From (4.8), we have

vlk] _ w _
¢, =¢f, c.' =cY.

It follows from (4.9) that
L D

7

Thus /\;’[k] = cf[k] and /\;-’[k] = c;’[k] by induction. Thus (C1) is true in this case.
From (4.10),
ef[k] =ey, e;-’[k] = ej,
and it follows from induction that
vlk vlk vlk vlk vlk
ei[](Aj[]):Oa ei[]()‘i[]):)‘i[]7
vlk] yv[k]y v[k] yo[k]y _ yvlk]
e; (A7) =0, ej (A7) = A
We have
sy[k] =7 +2(1 - Ti”)ez[ik], sy[k] = T;-’ +2(1 - T;’)eggd.

Clearly, (4,7), (j,7) & Ps(v,v[k]) UP-(v,v[k]), and thus

vlk] yvlk] _ /v vy Uk oK) _wyvlk] e v\ v v
s A = (TP 20— 10)e AT = TENT = (87 +2(1 = 57)ed AT

= SYAY = AV 4 BYAY
v v \V vlk vlk]\vlk op s .
AP bey = AT g g,
—av = —p\vH if § = j.

(3

Similarly, we get

PP = N AP for i £ 5 and s = AP

7 7 7
This proves (C2) in this case.
b) Suppose bj AL = A7 — s (AY) > 0 and b AY = =AY + sp(AY) > 0. From (4.8), we have

C;)[k]

We obtain from (4.9)

= ¥ +sgu(ADbG, W

G = cf +sgn(A)bjicl.

W = 70 () = (s8 4 2(1 — s2)e ) (W)

If A} > 0 then (k,7) € P-(v,v[k]) and

(4.14) A = (524 2(1 = s2)(AF) = 200 — sP(AP) = AP + b5 Y = ¢}
by induction. If A} < 0 then (k,) & Pr(v,v[k]) and

(4.15) A = spae = v g = e

(2
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Similarly, /\ vkl ][ ) This proves (C1) in this case.

From (4. 10)
e e
) — k% k> 7 — k% k>
and it follows from induction that
e Mgt = o, ey MOy = A,
K] \vlk k) \vlk k
e;’H(/\;J[]):O’ e;}[]()\;{[ ]):)\;}[]_
We have
st = 7orpr? 4 21 — 7PrprR)elt, s = rrint 4 2(1 — PP r)ellt

Clearly, (i, j), (4,4) & Ps(v,v[k]) UPr(v,v[k]), and as in (1)-(b),
s;’[k])\;-j[k] = T 8 A}

If A} > 0, then we obtain from (4.14)
sPFNII = 20500 = 70 (XY 1 BYAY) = TEXY 4 bY (sE + 2(1 — sP)el gAY
e -

Ji'vi i
e N R VL N

If A} <0, then it follows from (4.15) that
ST = 20 by (52 4 2(1 — sP)el ) AY

)\ H—i—bv[k] 'v)\'v _)\’U[k] —l—b [})\v[k]

Similarly, we get
vlk] yvlk] _ yolk] _ polk]yv[k]
SOFIAPIL — \oI ot o],
This proves (C2) in this case.
¢) Suppose b AL = A7 — sp(AY) < 0 and b AY = =AY + sp (A7) > 0. From (4.8), we have
v[k] v v|k]

C; = C; C

i ¢ =c +sgn(AR)bjc}.

On the other hand, we obtain from (4.9)
vlk v vlk VU v
A = r T = ) = (52 + 201 - s2)eR,)(AY).

Thus )\f[k] = Cf[k] by induction, and using the same argument as in (b), we also see that )\v[k] =

c;’[k]. Therefore (C1) is true in this case.

From (4.10),

vlk] o vlk] _ v v w
€; =€, e —Tkeka,
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and it follows from induction that

ef[k}()\;’[k]) 0, e;’[k]()\:.’[k]) _ )\Zy[k]7
e}’[k}(/\f[k]) — 0, e;.’[k]()\;’[k]) _ )\;}[k]_
We have
st =72 21— )t M = prvre o - el

From the definitions, (7, j), (7,7) € Ps(v,v[k]), and thus

s?PNIH = (72 21 — )l = oY,

If Ay < 0, then (k,i) & Pr(v,v[k]), (k,j) € Pr(v,v[k]), and thus X7 = 72(AY) = AV — by AP
and by (4.7)

s = oy o = ()\” —DYAD) = (57 +2(1 — s¥)eZ )AL — DYAD)
- S'v)\'v - b]ks )‘v + b;,z)‘:} ( + bkz i )

v v v v v vlk vk
:)‘jibjk+(bji* ))\ :)\[]er[])\[}

It AP > 0, then (k, i), (k,5) & Pr(v,v[k]) and thus "™ = 22(A?) = X? 4 52, A% and by (4.7)

s?AIH = 2o \oH = (52 1 2(1 — s2)e? ) (XY + bYAY)
= 5y A} + 0587 AL = A7 + 05T 4+ 05 (A + b AY)
= A (b8 4 b AT = A ek
Similarly, we get
PP = N oA for i £ and s = A0

This proves (C2) in this case.
d) Suppose by A} = AY — sp(A7) > 0 and bYAY = —AY + sP(AY) < 0. This case is similar to
(c) and we omit the details.

4) Assume that ¢ < k = j. By induction we have

sk(A)) = AV — b Ay, sE(AR) = — AL

a) Suppose b A} =AY — s7(AY) < 0. From (4.8), we have

e gl =

Since (k, k) € Pr(v,v[k]), we obtain from (3.7) and induction
A =,

(4.16) AT = 70 (A) = (57 4 2(1 — sP)el )AL = sPAY = —AL.
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Thus /\v[k] [k] and /\Z[k] = cz[k} by induction, and (C1) is true in this case.

From (4.10) and (4.1),
k k k
e'f’H:e'p7 ez[]zl_zez[]’
£k
and it follows from induction that

ev[k]()\z[k]) — 61}(_)\1}) — 0 ev[k]()\v[k]) — C;)/\;U — )\:’[k}’

(2

eH Oy = (1= 37 e et el el g,
O£k
We have
st =rr 20—l g =af 420 - )el.

We see that (k,i) € Ps(v,v[k]) UP,(v,v[k]), and thus
PP = (72 200 = )l O = 70 = — (57 + 201 — 5l AT

8,1

:_S;JA’ILCJ__)\’U kz ;l):)\”[k]+bk[})\[k}

7 (2

Similarly, we get
Sz[k] /\Z)[k] _ Af[k] - bfk[M AZM-
This proves (C2) in this case.
b) Suppose b A} = A} — s (A7) > 0. From (4.8), we have

M= et FsmODhet, =~

On the other hand, we obtain from (3.7)
o[k vV v v vk v
MU =700 = (sp+20 = sDer) ), N =y

If AV < 0 then (k, 1) & Pr(v, v[k]) and A’ = sPAY = AV b9 AV if AV > 0 then (k, 1) € Pr(v, v[k])
and AP = (2 = s¥)AY = AY 4+ BY AV, Thus A“[’“] el I and AV = g induction, and (C1)
is true in this case.

From (4.10), (4.1) and (4.4),

et =rpermy = mper, M =13,
£k
and it follows from induction that
e?[’%z“ﬂ) = el (A =0, e = rperrpriay = moar = A,
SLI0N (1= 37 et = el \el g,
£k
We have
k] k] v[k]

_ v, _v_v v, v,V _ v vy VK]
s; =TT T +2(1 =TT Jeg s s =Tp +2(1—77)egy
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If \} <0, then (k,i) ¢ Pr(v,v[k]) and (k,?) € Ps(v,v[k]), and thus
]

st = (7prorp 4 2(1 — 2P )l = (2 — 7P rPr?) (-AD)
= 2\ — TETIAL = —20; — Tk(S? +2(1 — s7)eZ )AL
= 2] — TSP AL = =20 — T (AR + bAY)
— oA 4 AT — B roAY = A gl IR
and since )\f[ I = =TEA] = sPAY =AY — bj. AL, we have

PPN = (70 21— e )Af[k] (2 — T)TEAY = 270N — Y

= 2N — BIAY) — AV = (AP — BYAD) — by AL = AV eIk vk

If A} > 0, then (k,i) € Pr(v,v[k]) and (k,i) & Ps(v,v[k]), and the computations are similar to
the case right above. This proves (C2) in this case.

5) Assume that i = k < j. Since this case is similar to case (4), we omit the details.

k] —cp. As seen in (4.16), we have )‘:[k] =

—A7. Thus by induction cz[k] = )\Z[k], and (C1) holds. In cases (4) and (5), it is proven that
ezj[k})\z[k] = 0 for ¢ # k. Thus using (4.1), we have
e:[k]/\:[k] =(1- Zez[k]))\z[k] _ )\Z{k].
£k
Finally, since (k, k) & Ps(v, v[k]), we see that

6) Assume that i = j = k. From (4.8), we have ¢,

st = (72 421 — )l WA = et = ey = g = —anH,

where we use (4.5). This proves (C2) in this case, and a proof of Theorem 3.1 has been completed.
O
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