
GEOMETRIC DESCRIPTION OF C-VECTORS AND REAL LÖSUNGEN
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Abstract. We introduce real Lösungen as an analogue of real roots. For each mutation sequence

of an arbitrary skew-symmetrizable matrix, we define a family of reflections along with associated

vectors which are real Lösungen and a set of curves on a Riemann surface. The matrix consisting

of these vectors is called L-matrix. We explain how the L-matrix naturally arises in connection

with the C-matrix. Then we conjecture that the L-matrix depends (up to signs of row vectors)

only on the seed, and that the curves can be drawn without self-intersections, providing a new

combinatorial/geometric description of c-vectors.

1. Introduction

Let Q be a quiver with n vertices and no oriented cycles of length ≤ 2. The most basic invariant

of a representation of Q is its dimension vector. By Kac’s Theorem [16], the dimension vectors of

indecomposable representations of Q are positive roots of the Kac–Moody algebra gQ associated

to the quiver Q.

When Q is acyclic, a representation M of Q is called rigid if Ext1(M,M) = 0, and the

dimension vectors of indecomposable rigid representations are called real Schur roots as they are

indeed real roots of gQ. In the category of representations of Q, rigid objects are foundational.

Therefore an explicit description of real Schur roots is essential for the study of the category,

and there have been various results related to description of real Schur roots of an acyclic quiver

([4, 14, 15, 22, 24, 29]).

In a previous paper [17], we conjectured a correspondence between real Schur roots of an

acyclic quiver and non-self-crossing curves on a marked Riemann surface and hence proposed

a new combinatorial/geometric description. Recently, Felikson and Tumarkin [10] proved our

conjecture for all 2-complete acyclic quivers. (An acyclic quiver is called 2-complete if it has

multiple edges between any pair of vertices.)

Now, when Q is general, it is natural to consider the c-vectors of Q as dimension vectors of

rigid objects. Indeed, when Q is acyclic, the set of positive c-vectors is identical with the set of
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real Schur roots [19]. For an arbitrary quiver Q, a positive c-vector is the dimension vector of a

rigid indecomposable representation of a quotient of the completed path algebra. This quotient

was introduced by Derksen, Weyman and Zelevinksy [7], and is called a Jacobian algebra. Thus

c-vectors naturally generalize real Schur roots in this sense, though they are not necessarily real

roots of the corresponding Kac–Moody algebra.

Originally, c-vectors (and C-matrices) were defined in the theory of cluster algebras [11], and

together with their companions, g-vectors (and G-matrices), played fundamental roles in the

study of cluster algebras (for instance, see [7, 12, 13, 18, 20]). As a cluster algebra is defined not

only for a skew-symmetric matrix (i.e. a quiver) but also for an arbitrary skew-symmetrizable

matrix, one can ask:

Can we have a combinatorial/geometric description of the c-vectors (and C-matrices)

of a cluster algebra associated with an arbitrary skew-symmetrizable matrix?

In this paper, we propose a conjectural, combinatorial/geometric model for C-matrices associated

to an arbitrary skew-symmetrizable matrix, which extends our model from the acyclic case [17].

For this purpose, we introduce the notion of real Lösungen as an analogue of real roots, and

define a family of reflections along with associated vectors which are real Lösungen for each

mutation sequence of an arbitrary skew-symmetrizable matrix. The matrix consisting of these

real Lösungen is called L-matrix. We show that the L-matrix comes from certain leading terms

when the C-matrix is presented using reflections. We conjecture that the L-matrices (up to signs

of row vectors) depend only on seeds, i.e., do not depend on mutation sequences leading to the

same seed. We believe that understanding these new matrices is a key to generalizing Coxeter

groups and their quotients arising from cluster algebras, in particular, generalizing Felikson–

Tumarkin’s result [9].

When a skew-symmetrizable matrix is acyclic, it is natural to consider the corresponding

symmetrizable generalized Cartan matrix. For a general skew-symmetrizable matrix, we consider

generalized intersection matrices (GIMs)1 introduced by Slodowy [28, 27]. A GIM is a square

matrix A = [aij ] with integral entries such that

(1) for diagonal entries, aii = 2;

(2) aij > 0 if and only if aji > 0;

(3) aij < 0 if and only if aji < 0.

Since we are more interested in cluster algebras associated with skew-symmetrizable matrices,

we restrict ourselves to the class of symmetrizable GIMs. This class contains the collection of all

symmetrizable generalized Cartan matrices as a special subclass.

1Some authors call them quasi-Cartan matrices. For example, see [2].
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Let A be the (unital) Z-algebra generated by si, ei, i = 1, 2, . . . , n, subject to the following

relations:

s2i = 1,

n∑
i=1

ei = 1, siei = −ei, eisj =

si + ei − 1 if i = j,

ei if i 6= j,
eiej =

ei if i = j,

0 if i 6= j.

LetW be the subgroup of the units of A generated by si, i = 1, . . . , n. Note thatW is (isomorphic

to) the universal Coxeter group. Thus the algebra A can be considered as the algebra generated

by the reflections and projections of the universal Coxeter group. Keeping computations at the

level of A will reveal some important features of mutations.

Definition 1.1. Let A = [aij ] be an n × n symmetrizable GIM, and D = diag(d1, . . . , dn) be

the symmetrizer, i.e. the diagonal matrix such that di ∈ Z>0, gcd(d1, . . . , dn) = 1 and AD is

symmetric. Let Γ =
∑n

i=1 Zαi be the lattice generated by the formal symbols α1, · · · , αn.

(1) An element γ =
∑
miαi ∈ Γ is called a Lösung if

(1.1)
∑

1≤i,j≤n
djaijmimj = 2dk for some k = 1, . . . , n.

A Lösung is positive if mi ≥ 0 for all i. Each αi is called a simple Lösung.

(2) Define a representation π : A → End(Γ) by

π(si)(αj) = αj − ajiαi and π(ei)(αj) = δijαi, i, j = 1, . . . , n.

We suppress π when we write the action of an element of A on Γ. A Lösung γ is real if

γ = si1si2 · · · sik(αi) for some i = 1, . . . , n and k ≥ 0.

If A is a generalized Cartan matrix, then real Lösungen are the same as real roots of the Kac–

Moody algebra associated with A. We expect that, for each symmetrizable GIM, there exists

a Lie algebra for which real roots can be defined and are compatible with real Lösungen, but

we do not yet know which Lie algebra would be adequate. Some related works can be found in

[2, 3, 5, 6, 21, 27, 28, 30].

Fix an n × n skew-symmetrizable matrix B = [bij ] and let D = diag(d1, . . . , dn) be its sym-

metrizer such that BD is skew-symmetric, di ∈ Z>0 and gcd(d1, . . . , dn) = 1. Consider the n×2n

matrix
[
B I

]
. After a sequence w of mutations, we obtain

[
Bw Cw

]
. The matrix Cw is called

the C-matrix and its row vectors the c-vectors. Write their entries as

(1.2) Bw =
[
bwij

]
, Cw =

[
cwij

]
=


cw1
...

cwn

 ,
where cwi are the c-vectors. For a mutation sequence w = [ii, i2, . . . , i`], ij ∈ {1, 2, . . . , n}, we

define w[k] := [ii, i2, . . . , i`, k].
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Definition 1.2. For each mutation sequence w, define rwi ∈ W ⊂ A inductively with the initial

elements ri = si, i = 1, . . . , n, as follows:

(1.3) r
w[k]
i =

rwk rwi rwk if bwikc
w
k > 0,

rwi otherwise.

Clearly, each rwi is written in the form

rwi = gwi si(g
w
i )−1, gwi ∈ W , i = 1, . . . , n.

This construction has been used in the literature including [1, 9, 10, 29] when the associated

GIM is a Cartan matrix.

Definition 1.3. Fix a GIM A, and define

lwi = gwi (αi), i = 1, . . . , n.

Then the L-matrix Lw associated to A is defined to be the n× n matrix whose ith row is lwi for

i = 1, . . . , n, i.e.,

Lw =


lw1
...

lwn

 ,
and the vectors lwi are called the l-vectors of A.

Note that the L-matrix and l-vectors associated to a GIM A implicitly depend on the repre-

sentation π which is suppressed from the notation. When multiple GIMs are being discussed we

will use the notation lA,wi to distinguish between different sets of l-vectors.

When we fix a GIM, we will always choose a linear ordering ≺ on {1, 2, . . . , n} and define the

associated GIM A = [aij ] by

(1.4) aij =


bij if i ≺ j,

2 if i = j,

−bij if i � j.

An ordering ≺ provides a certain way for us to regard the skew-symmetrizable matrix B as acyclic

even when it is not.

As our geometric model, we consider a Riemann surface and admissible curves (Definition

2.1), and define a map from the set of admissible curves to the set of monomials in si’s in W
(Definition 2.3). The first conjecture below extends our conjecture in [17] from acyclic quivers

to skew-symmetrizable matrices. The second conjecture claims that we can choose a GIM A to

obtain a set of reflections that only depend on the seed.
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Conjecture 1.4. Fix an ordering ≺ on {1, 2, . . . , n} so that a GIM A is determined. Then

for any mutation sequence w, there exist non-self-intersecting admissible curves ηwi such that

π(rwi ) = π (s(ηwi )) , where s(ηwi ) are the monomials in W associated to ηwi for i = 1, 2, . . . , n.

Conjecture 1.5. For any skew-symmetrizable matrix B, there exists a linear ordering ≺ and

its associated GIM A such that if w and v are two mutation sequences with Cw = Cv then

π(rwi ) = π(rvi ), i = 1, . . . , n.

For any acyclic skew-symmetrizable matrix, choosing a linear ordering where i ≺ j if and only

if bij < 0 yields a GIM that is a Cartan matrix by (1.4). In this case, Conjecture 1.5 has been

proven in [29] using some results from categorification of cluster algebras.

As the main result of this paper, we show that the reflections rwi naturally arise in connection

with the C-matrix. It also justifies potential importance of the matrix Lw. The key idea is to

maintain that we should have a “root system” for each mutation sequence w as in the acyclic

case. More precisely, we choose a linear ordering ≺ and its associated GIM, and inductively

define an n-tuple of elements swi ∈ A and an n-tuple of vectors λwi ∈ Zn (∼= Γ), i = 1, 2, . . . , n, so

that the following formulae hold:

swi (λwj ) =


λwj + bwjiλ

w
i if i ≺ j,

−λwj if i = j,

λwj − bwjiλwi if i � j,

(1.5)

where Bw = [bwij ]. We denote by Λw the matrix whose rows are λwi .

Theorem 1.6. Fix a linear ordering ≺ on {1, 2, . . . , n} to obtain its associated GIM A. Then,

for each mutation sequence w, we have

Λw = Cw.

Moreover,

swi ≡ rwi (mod 2A), i = 1, 2, . . . , n.

As one can see from the flow chart in Table 1, the definitions of swi and λwi are somewhat

convoluted and heavily depend on ≺. Nevertheless, in the end, we obtain Cw and rwi which do

not depend on ≺. Moreover, this process reveals that rwi are certain leading terms in swi . Since

swi are related to λwi and rwi to lwi , the l-vectors lwi can be considered as “leading terms” of

the c-vectors cwi (= λwi ). What Conjectures 1.4 and 1.5 claim is that these leading terms carry

essential information.

To illustrate Theorem 1.6, we present Example 1.7 below. Conjecture 1.4 will be checked for

this example in Example 2.2 after an admissible curve is defined. Conjecture 1.5 is trivially

satisfied for this matrix since its exchange graph is a tree (see [23]) and thus Cv = Cw does not
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occur (unless v and w differ only by repeated mutations [i, i] at the same index). A non-trivial

example of Conjecture 1.5 is given in Example 2.15.

Example 1.7. Consider the skew-symmetrizable matrix B =

 0 3 −3

−2 0 2

2 −2 0

 with the sym-

metrizer D = diag(3, 2, 2), and the sequence of consecutive mutations at indices 2, 3, 2, 1, 2:

[
B I

] [2,3,2,1,2]−−−−−−−−−→

 0 −3 9 5 18 15

2 0 −4 −2 −7 −6

−6 4 0 0 −2 −1


Thus we have obtained three c-vectors (5, 18, 15), (−2,−7,−6) and (0,−2,−1).

We take the linear ordering 1 � 2 � 3. Then its GIM A and the symmetrized matrix AD are

as follows:

A =

 2 −3 3

−2 2 −2

2 −2 2

 , AD =

 6 −6 6

−6 4 −4

6 −4 4

 .
In accordance with (1.1), define a quadratic form by

q(x, y, z) = 6x2 + 4y2 + 4z2 − 12xy − 8yz + 12zx.

Then we have

q(5, 18, 15) = 6, q(−2,−7,−6) = 4, q(0,−2,−1) = 4.

Thus all three c-vectors are Lösungen for A.

From Definition 1.2, we obtain

rv1 = s3s2s1s2s3s2s3s2s1s2s3s2s3s2s1s2s3, rv2 = s3s2s1s2s3s2s3s2s1s2s3, rv3 = s2s3s2,

where v is the mutation sequence [2, 3, 2, 1, 2]. For the GIM A, Definition 1.3 gives rise to the

l-vectors

lv1 = s3s2s1s2s3s2s3s2(α1) = (5, 18, 15),

lv2 = s3s2s1s2s3(α2) = (2, 7, 6), lv3 = s2(α3) = (0, 2, 1).

On the other hand, following the definitions in Section 2, we obtain similar results for the λwi .

In particular,

λv1 = s3s2s1s2s3s2s3s2(α1) = (5, 18, 15),

λv2 = −s3s2s1s2s3(α2) = (−2,−7,−6), λv3 = −s2(α3) = (0,−2,−1).

Thus the matrix Λv =

 5 18 15

−2 −7 −6

0 −2 −1

 equals the C-matrix.
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However, l-vectors will not always be equal to positive c-vectors. Indeed, they need not even

be sign-coherent. For the choice of GIM A′ =

 2 3 −3

2 2 2

−2 2 2

 we see that

lA
′,v

1 = (149,−462, 1341), lA
′,v

2 = (−10, 31,−90), lA
′,v

2 = (0,−2, 1).

1.1. Organization of the paper. In Section 2, precise definitions will be made for the objects

appeared in this introduction, and Conjectures 1.4 and 1.5 will be presented in a more refined

way, and other examples will be given. In Section 3 the elements swi ∈ A and the vectors λwi will

be defined with a running example, and Theorem 1.6 will be stated more precisely. In Section 4,

Theorem 1.6 will be proven through induction. The main induction step consists of six different

cases, each of which has a few subcases.

Acknowledgments. We are very grateful to Pavel Tumarkin, Ahmet Seven and anonymous

referees for correspondences and comments, which substantially improved the exposition of this

paper.

2. Conjectures

In this section, we present our conjectures in a more precise way after making necessary

definitions.

For a nonzero vector c = (c1, . . . , cn) ∈ Zn, we define c > 0 if all ci are non-negative, and c < 0

if all ci are non-positive. This induces a partial ordering < on Zn. Define |c| = (|c1|, . . . , |cn|).
Assume that M = [mij ] is an n × 2n matrix of integers. Let I := {1, 2, . . . , n} be the set of

indices. For w = [ii, i2, . . . , i`], ij ∈ I, we define the matrix Mw = [mw
ij ] inductively: the initial

matrix is M for w = [ ], and assuming we have Mw, define the matrix Mw[k] = [m
w[k]
ij ] for k ∈ I

with w[k] := [ii, i2, . . . , i`, k] by

(2.1) m
w[k]
ij =

−mw
ij if i = k or j = k,

mw
ij + sgn(mw

ik) max(mw
ikm

w
kj , 0) otherwise,

where sgn(a) ∈ {1, 0,−1} is the signature of a. The matrix Mw[k] is called the mutation of Mw

at the index k.

Let B = [bij ] be an n × n skew-symmetrizable matrix and D = diag(d1, . . . , dn) be its sym-

metrizer such that BD is symmetric, di ∈ Z>0 and gcd(d1, . . . , dn) = 1. Consider the n × 2n

matrix
[
B I

]
and a mutation sequence w = [i1, . . . , ik]. After the mutations at the indices

i1, . . . , ik consecutively, we obtain
[
Bw Cw

]
. Write their entries as in (1.2). It is well-known

that the c-vector cwi is non-zero for each i, and either cwi > 0 or cwi < 0 due to sign coherence of

c-vectors ([8, 12]).
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Choose a linear ordering ≺ on the set I, and define a GIM A = [aij ] by (1.4). From Definition

1.1, we have Lösungen associated with A. Set λ1 = (1, 0, . . . , 0), λ2 = (0, 1, 0, . . . , 0), . . . , λn =

(0, . . . , 0, 1) to be a basis of Zn. Recall that we have defined the algebra A in the introduction.

Define a representation π : A → End(Zn) by

(2.2) π(si)(λj) = λj − ajiλi and π(ei)(λj) = δijλi for i, j ∈ I,

and by extending it through linearity, where δij is the Kronecker delta. We will suppress π when

we write the action of an element of A on Zn. As before, denote by W the subgroup of the units

of A generated by si, i = 1, . . . , n.

To introduce our geometric model2 for c-vectors, we need a Riemann surface equipped with n

labeled curves as below. Let P1 and P2 be two identical copies of a regular n-gon. For σ ∈ Sn,

label the edges of each of the two n-gons by Tσ(1), Tσ(2), . . . , Tσ(n) counter-clockwise.

On Pi (i = 1, 2), let Li be the line segment from the center of Pi to the common endpoint

of Tσ(1) and Tσ(2). Later, these line segments will only be used to designate the end points of

admissible curves and will not be used elsewhere. Fix the orientation of every edge of P1 (resp.

P2) to be counter-clockwise (resp. clockwise) as in the following picture.

Tσ(n−1)

Tσ(1)

Tσ(n)

Tσ(n−2)

Tσ(2)

...

L1

L2

Tσ(2)

Tσ(n−2)

...

Tσ(1)

Tσ(n−1)

Let Σσ be the Riemann surface of genus bn−12 c obtained by gluing together the two n-gons with

all the edges of the same label identified according to their orientations. The edges of the n-gons

become n different curves in Σσ. If n is odd, all the vertices of the two n-gons are identified to

become one point in Σσ and the curves obtained from the edges become loops. If n is even, two

distinct vertices are shared by all curves. Let T = T1 ∪ · · ·Tn ⊂ Σσ, and V be the set of the

vertex (or vertices) on T .

Let W be the universal Coxeter group of rank n, which is by definition isomorphic to the free

product of n-copies of Z/2Z, and let R be the set of reflections in W. We will denote an element

of W as a word from the alphabet I = {1, 2, ..., n}. In particular, an element v of R can be

written as v = i1i2 · · · ik such that k is an odd integer and ij = ik+1−j for all j = 1, 2, . . . , k.

Definition 2.1. An admissible curve is a continuous function η : [0, 1] −→ Σσ such that

1) η(x) ∈ V if and only if x ∈ {0, 1};
2) there exists ε > 0 such that η([0, ε]) ⊂ L1 and η([1− ε, 1]) ⊂ L2;

2An alternative geometric model can be found in [10].
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example_1_pic_0-final.pdf

(a) The curve ηv1 .

example_1_pic_1-final.pdf

(b) The curve ηv2 .

example_1_pic_2-final.pdf

(c) The curve ηv3 .

Figure 1. The curves ηvi corresponding to Example 1.7 displayed on Σσ where

σ = (3, 1, 2) ∈ S3 written in one-line notation.

Figure 2. The curves from Example 1.7. The shortest curve corresponds to ηv3 ,

and the longest one to ηv1 .

3) if η(x) ∈ T \ V then η([x− ε, x+ ε]) meets T transversally for sufficiently small ε > 0;

4) υ(η) ∈ R, where υ(η) := i1 · · · ik ∈W is given by

{x ∈ (0, 1) : η(x) ∈ T} = {x1 < · · · < xk} and η(x`) ∈ Ti` for ` ∈ {1, ..., k}.

We consider curves up to isotopy. When ip = ip+1, 1 ≤ p ≤ k − 1, for υ(η) = i1 · · · ik, the

curve η is isotopic to a curve η1 with υ(η1) = i1 · · · ip−1ip+2 · · · ik. If η1 and η2 are curves with

υ(η1) = i1 · · · ik and υ(η2) = j1 · · · j`, define their concatenation η1η2 to be a curve such that

υ(η1η2) = i1 · · · ikj1 · · · j`.

Example 2.2. Continuing Example 1.7, we choose admissible curves ηvi on a triangulated torus

Σσ such that rvi = s(ηvi ) and draw the curves in Figure 1 to illustrate that they are non-self-

intersecting. This verifies Conjecture 1.4 for this example. (In this example, it is not necessary

to go through π.) We also draw the curves on the universal cover of Σσ in Figure 2 to see that

they have no pairwise intersections.

Definition 2.3. For v = i1i2 · · · ik ∈ W, define s(v) = si1 ...sik ∈ W ⊂ A. We write s(η) =

s(υ(η)) for an admissible curve η.

Now we state Conjecture 1.4 in a more refined way.
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example_3_pic_0-final.pdf

(a) The curve ηv1 .

example_3_pic_1-final.pdf

(b) The curve ηv2 .

example_3_pic_2-final.pdf

(c) The curve ηv3 .

example_3_pic_3-final.pdf

(d) The curve ηv4 .

Figure 3. The curves for Example 2.5 drawn on Σσ with σ = (1, 4, 2, 3).

Conjecture 2.4 (Conjecture 1.4). Fix an ordering on I so that a GIM A is determined. Then,

for each mutation sequence w, there exists a family of non-self-crossing admissible curves ηwi ,

i = 1, . . . , n, on the Riemann surface Σσ for some σ ∈ Sn such that π(rwi ) = π (s(ηwi )) .

Example 2.5. Consider the matrix B =


0 −1 −1 2

1 0 1 −1

1 −1 0 −1

−2 1 1 0

. It arises from a triangulation of

the torus with one boundary component with one marked point. It is commonly referred to as

the dreaded torus. With the mutation sequence w = [2, 3, 4, 2, 1, 3], we have

[
B I

]
w−−→


0 1 −1 −1 0 2 3 2

−1 0 −1 2 2 3 3 2

1 1 0 −1 −1 −2 −3 −2

1 −2 1 0 0 −2 −2 −1

 .
Choose the linear ordering 1 ≺ 3 ≺ 2 ≺ 4. From Definition 1.2, we obtain

rw1 = s1s3(s2s4s2s3)
2s1(s3s2s4s2)

2s3s1,

rw2 = s1s3(s2s4s2s3)
2s2(s3s2s4s2)

2s3s1,

rw3 = s1s3s2s4s2s3s2s4s2s3s1,

rw4 = s2s3s2s4s2s3s2.

In Figure 3 we provide curves ηwi such that s(ηwi ) = rwi for all i ∈ I. It is clear that they are

non-self-intersecting on the surface Σσ with σ = (1, 4, 2, 3) ∈ S4 written in one-line notation. By

inspection these curves can be seen to be pairwise non-crossing.

In Example 2.6 we show π is necessary in Conjecture 2.4 to avoid self-intersections.
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Example 2.6. Consider the matrix B =


0 −2 −2 3

2 0 4 2

2 −4 0 −1

−3 −2 1 0

. Applying to the mutation se-

quence w = [4, 3, 1, 4, 1] we have

rw4 = s3s4s1(s4s3)
2s4s2(s4s3)

3s4s2s4(s3s4)
2s1s4s3.

Let η be the curve defined by s(η) = rw4 . Upon inspection, for any σ ∈ S4 the curve η has

a self-intersection in Σσ. However, for any choice of GIM we have π((s3s4)
3) = 1 so the curve

η′ given by υ(η′) = 34132423143 ∈ W satisfies π(rw4 ) = π(s(η′)) and can be drawn with no

self-intersections.

In order to refine Conjecture 1.5, we need a new definition. A sequence of indices (i1, . . . , id)

is said to be a chordless cycle in a skew-symmetrizable matrix B if

(1) ij = ik if and only if {j, k} = {1, d},
(2) for any distinct j, k ∈ {1, . . . , d} we have bij ,ik 6= 0 if and only if |j − k| = 1,

Additionally, a chordless cycle is said to be oriented if and only if all entries bij ,ij+1 for j =

1, . . . , d − 1 have the same sign. Two chordless cycles are considered equivalent if they have the

same underlying set of indices.

Conjecture 2.7 (Conjecture 1.5). Let B be a skew-symmetrizable matrix.

(1) There exists a linear ordering ≺ on I such that every oriented chordless cycle (i1, . . . , id)

in B has an odd number of positive aij ,ij+1, j = 1, . . . , d− 1, where A = [aij ] is the GIM

determined by ≺.

(2) Fix an ordering ≺ and its GIM A satisfying the condition in (1). If w and v are two

mutation sequences such that Cw = Cv then π(rwi ) = π(rvi ), i = 1, . . . , n.

The elements π(rwi ) can be viewed as elements of π(W), and Conjecture 2.7 can be interpreted

as a statement about relations in π(W). Relations for these groups have been explored for par-

ticular skew-symmetrizable matrices and a restricted class of GIMs in [1, 9, 25]. A thorough

investigation of relations in π(W) and their application to Conjecture 2.7 will take place in a

subsequent article. It is expected that all of the discovered relations will hold for any GIM satis-

fying the condition in Conjecture 2.7 (1) which is a weaker than Seven’s notion of admissibility

[24, 25].

In Proposition 2.9 below, we will prove Conjecture 2.7 (1) for a special family using results in

[24, 26]. In discussing the notion of cycles we will briefly switch from the perspective of matrices

to that of the directed graph.

Definition 2.8. Let B be an n× n skew-symmetrizable matrix. Define G(B) to be the directed

graph with vertices in I and arrows i→ j for bij < 0.
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Note that the definition of a chordless cycle for a matirx B is equivalent to the standard

definition of chordless cycle in the directed graph G(B).

Now, for the time being, assume that B = [bij ] is a skew-symmetrizable matrix which can be

mutated from an acyclic matrix B0 through a mutation sequence w, i.e., assume B = Bw
0 . Let

A0 be the generalized Cartan matrix associated with B0, and define

(2.3) A = [aij ] := CwA0(C
w)>.

Then, by [26, Theorems 1.2] (see also [24]), the matrix A is a GIM such that |aij | = |bij | for i 6= j

and

(2.4) every oriented chordless cycle of G(B) has exactly one edge {i, j} such that aij > 0.

Let us consider the following conditions for G(B):

(AC1) every oriented (not necessarily chordless) cycle has at least one edge {i, j} such that

aij > 0;

(AC2) if an edge {i, j} with aij > 0 is contained in a cycle either oreinted or non-oriented, then

it is also contained in an oriented chordless cycle.

Proposition 2.9. Assume that B is a skew-symmetrizable matrix which can be mutated from an

acyclic matrix B0. Let A = [aij ] be the GIM defined in (2.3). Suppose that (AC1) and (AC2)

hold. Then Conjecture 2.7 (1) is true.

Proof. It follows from (2.4) that A satisfies Conjecture 2.7 (1) if it arises from a linear ordering.

To this effect, let G = G(B), and define G◦ to be the graph obtained from G by reversing the

directions of edges {i, j} with aij > 0. We will show that G◦ is acyclic, and define a relation ≺
on the set I of vertices as follows:

i ≺ j if there is a directed path i = i1 → · · · → ip = j in G◦.

Then the relation ≺ will be a strict partial order on I.

Suppose that there is an oriented cycle E0 = (i0 → i1 → · · · → ip = i0) in G◦. Then it is

also a cycle in G, but not necessarily oriented. We inductively define the sequence E0, E1, ..., Ep

of oriented cycles in G◦ as follows: Suppose that Ed is defined for some d ∈ {0, 1, ..., p − 1}. If

aid,id+1
< 0 then we define Ed+1 to be equal to Ed. Suppose that aid,id+1

> 0. By (AC2), there

must be an oriented chordless cycle (id → j1 → j2 → · · · → jr → id+1 → id) in G. Then we

define Ed+1 as a subgraph of G◦ to be the oriented cycle obtained from Ed by replacing the single

arrow id → id+1 with the oriented path id → j1 · · · → jr → id+1. Here, thanks to (2.4), we have

aid,j1 < 0, aje,je+1 < 0 for e ∈ {1, ..., r − 1}, and ajr,id+1
< 0. Once E0, E1, ..., Ep are defined, the

last one Ep is an oriented cycle (k0 → k1 → · · · → ks = k0) such that {i0, ..., ip−1} ⊆ {k0, ..., ks−1}
and ake,ke+1 < 0 for all e = 0, . . . , s−1. By definition of G◦, the graph G also has the same oriented

cycle (k0 → k1 → · · · → ks = k0). This contradicts (AC1). Thus G◦ is acyclic.
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Now refine ≺ to a linear ordering on I. Let Ã = [ãij ] be given by (1.4). We need to show

that Ã = A. We have ãij = aij = 2 if i = j, and ãij = aij = 0 if bij = 0. Assume i ≺ j and

ãij = bij < 0. If aij > 0, then j ≺ i by definition, which is a contradiction. Thus aij < 0 and

ãij = aij . Assume i ≺ j and ãij = bij > 0. Then bji < 0. If aij < 0, then aji < 0 and hence j ≺ i
by definition, which is a contradiction. Thus aij > 0 and ãij = aij . The other cases are similar,

and we have ãij = aij in all the cases. �

Example 2.10. Let B = [bij ] be the skew-symmetric matrix associated with the quiver Q below

via the rule bij = −1 if i → j and bij = 0 if there is no arrow between i and j. This quiver is

obtained applying mutations at vertices 6, 5, 3, 4 to the acyclic quiver Q0 also shown below.

Q = 32

4 5

1

6

Q0 =
32

4 5

1

6

From (2.3), we obtain GIM A = [aij ] =


2 −1 1 0 0 0

−1 2 −1 −1 1 0

1 −1 2 0 −1 −1

0 −1 0 2 −1 0

0 1 −1 −1 2 1

0 0 −1 0 1 2

 associated to B (or Q). We

specify the signature of aij on Q(= G) and draw the acyclic graph G◦ defined in the proof of

Proposition 2.9:

32

4 5

1

6

−

−

−

−

−−

+

+

+

G◦ =
32

4 5

1

6

It is easy to see that G satisfies (AC1) and (AC2). Indeed, we see (2.4) holds, and there is only

one additional oriented cycle (1, 3, 6, 5, 4, 2, 1) with chords, which has two positive edges. Now

the definition of ≺ in the proof of Proposition 2.9 yields 5 ≺ 4 ≺ 2 ≺ 1, 5 ≺ 3 ≺ 2 ≺ 1 and

5 ≺ 3 ≺ 6. Thus a refinement to a linear odering is given by 5 ≺ 4 ≺ 3 ≺ 6 ≺ 2 ≺ 1, which gives

rise to A via (1.4). Clearly, Conjecture 2.7 (1) holds with this linear ordering.

Example 2.11. Let B be the skew-symmetric matrix associated with the quiver Q below in the

same way as in Example 2.10. This quiver is obtained applying mutations at vertices 5, 3, 4 to
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the acyclic quiver Q0 also shown below.

Q =

3

1

5

4

6

2

Q0 =

31 5

4

6

2

From (2.3), we obtain GIM A = [aij ] =


2 −1 0 1 0 −1

−1 2 0 1 0 −1

0 0 2 −1 1 0

1 1 −1 2 −1 −1

0 0 1 −1 2 0

−1 −1 0 −1 0 2

. We specify the signature of

aij on Q(= G) and draw the acyclic graph G◦:

31 5

4

6

2

− −

−
+

+

+ −
−− G◦ =

31 5

4

6

2

It is straightforward to check that G satisfies (AC1) and (AC2), and we can take 1 ≺ 2 ≺ 3 ≺
6 ≺ 4 ≺ 5 for Conjecture 2.7 (1).

Remark 2.12. It will be interesting to investigate when a skew-symmetrizable matrix mutated

from an acyclic matrix satisfies (AC1) and (AC2). It may be that such a matrix always satisfies

the conditions.

The lemma below provides another sufficient condition for existence of a linear ordering ≺
and its GIM A satisfying the condition in Conjecture 2.7 (1). If we do not require that a GIM

is determined by a linear ordering, it can be proven that a GIM satisfying the condition of

Conjecture 2.7 (1) always exists for any skew-symmetrizable matrix. But in order to define the

elements swi ∈ A as in the next section, it is necessary that A arises from a linear ordering.

Lemma 2.13. Let B be a skew-symmetrizable matrix. Consider G = G(B) as undirected. Assume

that each of the (undirected) chordless cycles in G has an edge in the cycle that is not contained

in any other (undirected) chordless cycles. Then Conjecture 2.7 (1) is true.

Proof. For a collection of arrows E = {e1, . . . , ep} in G, we can define a new directed graph H by

reversing the direction of the arrows of E . If H is acyclic we may define a linear order by setting

i ≺ j if i → j is an arrow of H and extending it to a linear ordering on I. We will show that

there exists a set of arrows that contains an odd number of arrows (actually one arrow) from

every oriented chordless cycle of G such that H is acyclic. Therefore it follows from (1.4) that

the associated GIM satisfies the condition in the statement of the lemma.
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As in the statement of the lemma, we consider G undirected for the time being. Let {C1, C2, . . . , Cs}
be the set of undirected chordless cycles in G and take E ′ = {e1, e2, . . . , es} to be the set of edges

in G such that ei is an edge of Ci and not an edge of Cj for any j 6= i. Such an E ′ exists by the

assumption. Let T be the spanning tree obtained from removing the edges in E ′ from G. Now we

consider G directed again, and let ēi be the opposite arrow of ei. We will construct the desired

sequence E of arrows as a subset of E ′ by iteratively taking ei to be in E if and only if either

(1) Ci is oriented in G, or

(2) T ∪ {ēk|ek ∈ E , k < i} ∪ {ei} has an oriented cycle.

Now define H from G by reversing the direction of the arrows of E . Then for any oriented cycle

of G we have reversed only one arrow of the cycle by (1) and the choice of E ′, so any oriented

chordless cycle of G is no longer oriented in H. Furthermore every non-oriented cycle of G remains

non-oriented in H by (2). Therefore all of the chordless cycles of H are non-oriented and it must

be that H is acyclic. �

We now give an example illustrating the proof of Lemma 2.13.

Example 2.14. Let B be the skew-symmetric matrix given in Figure 4, or any skew-symmetric

matrix with the same directed graph G shown in the figure. The graph G has two oriented

chordless cycles (1, 3, 4, 1) and (2, 4, 5, 2), and three undirected chordless cycles C1, C2 and C3 given

by {1, 3, 4}, {1, 2, 4}, and {2, 4, 5}, respectively. Consider e1 = 3→ 1, e2 = 1→ 2, and e3 = 5→
2. Then E ′ = {e1, e2, e3} satisfies the assumption of Lemma 2.13, and we obtain the spanning

tree T =

21

3 4 5

by removing E ′ from G. Now to construct E we see that e1 ∈ E by

condition (1), e2 6∈ E since C2 is not oriented and T ∪{e1, e2} =

21

3 4 5

does not have

an oriented cycle, and e3 ∈ E by condition (1). Thus E = {e1, e2}, and H =

21

3 4 5

.

The covering relations dictated by the acyclic graph H are 1 ≺ 4 ≺ 3, 1 ≺ 2 ≺ 4, and 2 ≺ 4 ≺ 5.

One extension of these relations to a linear ordering is 1 ≺ 2 ≺ 4 ≺ 3 ≺ 5. It is straightforward

to check that the associated GIM has exactly one positive entry for each oriented chordless cycle

of B (or of G).

Recall the definition of an L-matrix from Definition 1.3. We now provide an example illustrat-

ing Conjecture 2.7 and l-vectors.
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
0 −1 2 −3 0

1 0 0 −4 5

−2 0 0 6 0

3 4 −6 0 −7
0 −5 0 7 0


21

3 4 5

Figure 4. A skew-symmetric matrix B and the digraph associated to it in

Lemma 2.13. The proof of the lemma is illustrated in Example 2.14.

Example 2.15. Let B be the matrix from Example 2.5. For the two mutation sequences w =

[3, 4, 1, 3, 4, 3] and v = [4, 1, 3, 4, 1, 3] we have Cw = Cv. On the other hand,

rw1 =s3s4s3s1s3s4s3,

rw2 =s3s4s3s1s3s4s2s4s3s1s3s4s3,

rw3 =s3s4s1s3s4s3s1s3s1s3s4s3s1s4s3,

rw4 =s3s4s1s3s4(s3s1)
2s3s4s3(s1s3)

2s4s3s1s4s3,

and

rv1 =s3(s4s1)
2s4s3s4s1s4s3s4(s1s4)

2s3,

rv2 =s3(s4s1)
2s4s3s4s1s4s3(s4s1)

2s4s2s4(s1s4)
2s3s4s1s4s3s4(s1s4)

2s3,

rv3 =s3(s4s1)
2s4s3s4(s1s4)

2s3,

rv4 =(s3s4s1)
2s4(s1s4s3)

2.

There are two oriented cycles on vertices {1, 4, 2} and {1, 4, 3} in B. Take the GIM arising from

the linear ordering 1 ≺ 2 ≺ 3 ≺ 4. Then only the entry a14 is positive for the cycles, and

the condition in Corollary 1.5 is satisfied. Direct computation shows that π(rwi ) = π(rvi ), and

Conjecture 1.5 is verified.

We identify αi with λi in Definition 1.3 and compute the l-vectors

lw1 =s3s4s3(λ1) = (1, 0,−1,−1), lw2 =s3s4s3s1s3s4(λ2) = (−1, 1, 0, 1),

lw3 =s3s4s1s3s4s3s1(λ3) = (2, 0, 0,−3), lw4 =s3s4s1s3s4(s3s1)
2s3(λ4) = (−3, 0, 0, 4),

and obtain the L-matrix

Lw =


1 0 −1 −1

−1 1 0 1

2 0 0 −3

−3 0 0 4

 .
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On the other hand,

lv1 =(−1, 0, 1, 1) = −lw1 , lv2 =(−1, 1, 0, 1) = lw2 ,

lv3 =(−2, 0, 0, 3) = −lw3 , lv4 =(−3, 0, 0, 4) = lw4 .

One may hope that the reflections rwi would give a direct generalization of [29, Theorem 1.4]

with the expectation that a product of rwi ’s might equal sσ̃(1)sσ̃(2) · · · sσ̃(n) inW for some σ̃ ∈ Sn.

However Example 2.16 provides a counterexample.

Example 2.16. Let B be the matrix from Example 2.6. After the mutation sequence w =

[2, 3, 2, 1] we have

rw1 = s1, rw2 = s1s2s1, rw3 = s2s3s2, rw4 = s3s4s3.

It is straightforward to check that
∏
i∈I

rwσ(i) 6= sσ̃(1)sσ̃(2)sσ̃(3)sσ̃(4) for any pair of σ, σ̃ ∈ S4. The

same is true when considering the matrix representation of the si for any choice of GIM associated

to B.

This collection {rwi } also provides an example where for any σ ∈ S4 there will always be some

pair of curves in ηwi and ηwj satisfying Conjecture 2.4 that intersect.

3. Main Theorem

In this section, we define the elements swi ∈ A and the vectors λwi to present the main theorem

of this paper precisely. The key idea is that we make the formulae (1.5) inductively hold for each

mutation sequence w. This process shows that there is a unique term in swi that survives mod

2A without regard to the choice of an ordering ≺. More precisely, we prove swi ≡ rwi (mod 2A).

When B is acyclic, the c-vectors cwi are the reflection vectors of π(rwi ) as shown in [29] with the

linear ordering ≺ defined by i ≺ j if and only if bij < 0. However, for general B, it is not true any

more and comparing rwi with swi will help us understand how the reflections rwi arise in relation

to the c-vectors cwi as it will be shown as a part of the main theorem that cwi = λwi .

Throughout this section, assume that B = [bij ] is a skew-symmetrizable matrix. Fix a linear

ordering ≺ on I to obtain its associated GIM A = [aij ] from (1.4).

Example Λ-1. As a running example in this section, we consider the skew-symmetrizable matrix

B =

 0 1 −3

−2 0 −2

3 1 0


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Define λi = λ
[ ]
i

Def Λ-1

Define si = s
[ ]
i and ei = e

[ ]
i

Def Λ-2

Define Ps([ ], [i1]) and Pτ ([ ], [i1])

Def Λ-3

Define τi = τ
[ ]
i

Def Λ-4

Define λ
[i1]
i

Let v = [ ] and m = 1

Def Λ-5 Def Λ-5

Def Λ-6

Def Λ-7

Def Λ-8

Def Λ-9

Define e
v[im]
i

Define s
v[im]
i

Define Ps(v[im], v[im, im+1]) and Pτ (v[im], v[im, im+1])

Define τ
v[im]
i

Define λ
v[im,im+1]
i

v[im] 7→ v and m+ 1 7→ m

Table 1. Flow chart for defining swi and λwi

with symmetrizer D = diag(1, 2, 1) and linear ordering 1 ≺ 2 ≺ 3. Following the convention in

(1.4), we produce the GIM

A =

 2 1 −3

2 2 −2

−3 −1 2

 .
Assume that a mutation sequence w is given. We will inductively define the elements swi ∈ A

and the vectors λwi , i ∈ I, in what follows. The procedure is summarized in Table 1.

For convenience, we recall the definition of A and its representation on Zn. As before, set

λ1 = (1, 0, . . . , 0), λ2 = (0, 1, 0, . . . , 0), . . . , λn = (0, . . . , 0, 1) to be a basis of Zn.

Definition Λ-1. Let A be the (unital) Z-algebra generated by si, ei, i ∈ I, subject to the

following relations:

s2i = 1,

n∑
i=1

ei = 1, siei = −ei, eisj =

si + ei − 1 if i = j,

ei if i 6= j,
eiej =

ei if i = j,

0 if i 6= j.

Define a representation π : A → End(Zn) by

(3.1) π(si)(λj) = λj − ajiλi and π(ei)(λj) = δijλi for i, j ∈ I,
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and by extending it through linearity, where δij is the Kronecker delta. We will suppress π when

we write the action of an element of A on Zn.

Example Λ-2. Continuing from Example Λ-1, the action of si, i = 1, 2, 3, are respectively given

by the following matrices:−1 0 0

−2 1 0

3 0 1

 ,
1 −1 0

0 −1 0

0 1 1

 ,
1 0 3

0 1 2

0 0 −1

 .
Here the action of si on the vector λj is to be understood by multiplication of the matrix on the

right.

Definition Λ-2. Suppose that w starts with k. Let Ps([ ], [k]) be the set of (i, j), i, j ∈ I, such

that

λi > sk(λi) and λj < sk(λj) and (k ≺ i ≺ j or i ≺ j ≺ k), or

λj < sk(λj) and k = i ≺ j.

Let Pτ ([ ], [k]) be the set of (i, j), i, j ∈ I, such that

λi > sk(λi) and λj < sk(λj) and (k ≺ i ≺ j or i ≺ j ≺ k), or

λj > sk(λj) and k = i � j.

Definition Λ-3. Define

eτ,i =
∑

ej ∈ A,

where the sum is over j such that (i, j) ∈ Pτ ([ ], [k]) or (j, i) ∈ Pτ ([ ], [k]), and define

(3.2) τi = si + 2(1− si)eτ,i for i ∈ I.

Definition Λ-4. Define

(3.3) λ
[k]
i =

τk(λi) if λi < sk(λi) and k ≺ i, or if λi > sk(λi) and k � i, or if i = k,

λi otherwise.

Example Λ-3. Continuing from Example Λ-2, take w = [2, 3] so k = 2. We have Ps([], [2]) =

{(2, 3)} and Pτ ([], [2]) = {(2, 1)}. It follows that eτ,1 = e2, eτ,2 = e1, and eτ,3 = 0. Putting

everything together we see that

τ1 = s1 + 2(1− s1)e2, τ2 = s2 + 2(1− s2)e1, τ3 = s3.

We then have

τ2(λ1) = (2− s2)(λ1) = (1, 1, 0), τ2(λ2) = s2(λ2) = (0,−1, 0), τ2(λ3) = s2(λ3) = (0, 1, 1).

By (3.3) we define λ
[2]
i := τ2(λi) for all i ∈ I.
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Definition Λ-5. Inductively, assume w = v[k, `, . . . ,m], including the case v = [ ]. For i 6= k,

define

e
v[k]
i =

τvk evi τvk if λvi < svk(λvi ) and k ≺ i, or if λvi > svk(λvi ) and k � i,

evi otherwise,
(3.4)

and

e
v[k]
k = evk − evke

v[k]
+ ,

where we set

e
v[k]
+ =

∑
j 6=k, λv[k]j 6=λvj

e
v[k]
j .

Example Λ-4. Continuing from Example Λ-3 we have k = 2, ` = 3, and v = []. For i = 1, 3 we

have e
[2]
i = τ2eiτ2. More explicitly,

e
[2]
1 = τ2e1τ2 = (2− s2)e1, e

[2]
3 = τ2e3τ2 = s2e3.

For i = 2,

e
[2]
+ = e

[2]
1 + e

[2]
3 = 2e1 − s2(e1 − e3)

and finally

e
[2]
2 = e2(1− e[2]1 − e

[2]
3 ) = s2(e1 − e3)− e1 + e2 + e3.

Definition Λ-6. Define

e
v[k]
s,i =

∑
e
v[k]
j ,

where the sum is over j such that (i, j) ∈ Ps(v,v[k]) or (j, i) ∈ Ps(v,v[k]), and define

s
v[k]
i =

τvk τvi τvk + 2(1− τvk τvi τvk )e
v[k]
s,i if λvi < svk(λvi ) and k ≺ i, or if λvi > svk(λvi ) and k � i,

τvi + 2(1− τvi )e
v[k]
s,i otherwise.

(3.5)

Example Λ-5. In Example Λ-3 we computed Ps([], [2]) = {(2, 3)} so

e
[2]
s,1 = 0, e

[2]
s,2 = e

[2]
3 , e

[2]
s,3 = e

[2]
2 .

Now by comparing si(λi) given in Example Λ-2 to λi, we have

s
[2]
1 = τ2τ1τ2 + 2(1− τ2τ1τ2)e[2]s,1 = τ2τ1τ2

= (2− 2s1 + s2s1)s2 + 2(1− 2s2 + 2s1s2 − s2s1s2)e1 + 2(−2 + 2s1 + 2s2 − s2s1)e3,

s
[2]
2 = τ2 + 2(1− τ2)e[2]s,2 = 2(e1 − e3) + s2(1− 2(e1 − e3)) = s2 + 2(1− s2)(e1 − e3),

s
[2]
3 = τ3 + 2(1− τ3)e[2]s,3 = s2s3s2 + 2(1 + s2s3)e2 + 2(1− 2s2 − s2s3s2)e3.

Definition Λ-7. Let Ps(v[k],v[k, `]) be the collection of (i, j) such that
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(` ≺ i ≺ j or i ≺ j ≺ `) and λ
v[k]
i > s

v[k]
` (λ

v[k]
i ) and λ

v[k]
j < s

v[k]
` (λ

v[k]
j ), or

` = i � j and λ
v[k]
` < 0 and λ

v[k]
j > s

v[k]
` (λ

v[k]
j ), or

` = i ≺ j and λ
v[k]
` > 0 and λ

v[k]
j < s

v[k]
` (λ

v[k]
j ).

Similarly, let Pτ (v[k],v[k, `]) be the collection of (i, j) such that

(` ≺ i ≺ j or i ≺ j ≺ `) and λ
v[k]
i > s

v[k]
` (λ

v[k]
i ) and λ

v[k]
j < s

v[k]
` (λ

v[k]
j ), or

` = i � j and λ
v[k]
` > 0 and λ

v[k]
j > s

v[k]
` (λ

v[k]
j ), or

` = i ≺ j and λ
v[k]
` < 0 and λ

v[k]
j < s

v[k]
` (λ

v[k]
j ).

Example Λ-6. Continuing from Example Λ-5 we have

s
[2]
3 (λ

[2]
1 ) = (1, 1, 1), s

[2]
3 (λ

[2]
2 ) = (0, 3, 2), s

[2]
3 (λ

[2]
3 ) = (0,−4,−3)

so Ps([2], [2, 3]) = ∅ and Pτ ([2], [2, 3]) = {(3, 2)}.

Definition Λ-8. Define

e
v[k]
τ,i =

∑
e
v[k]
j ∈ A,

where the sum is over j such that (i, j) ∈ Pτ (v[k],v[k, `]) or (j, i) ∈ Pτ (v[k],v[k, `]), and define

(3.6) τ
v[k]
i = s

v[k]
i + 2(1− sv[k]i )e

v[k]
τ,i for i ∈ I.

Definition Λ-9. Finally, define

(3.7) λ
v[k,`]
j =


τ
v[k]
` (λ

v[k]
j ) if λ

v[k]
j < s

v[k]
` (λ

v[k]
j ) and ` ≺ j,

or if λ
v[k]
j > s

v[k]
` (λ

v[k]
j ) and ` � j, or if ` = j,

λ
v[k]
j otherwise.

Example Λ-7. Continuing from Example Λ-6 we have

e
[2,3]
τ,1 = 0, e

[2,3]
τ,2 = e

[2]
3 , e

[2,3]
τ,3 = e

[2]
2 .

Furthermore,

τ
[2]
1 = s

[2]
1 , τ

[2]
2 = s2 − 2(1− s2)e1, τ

[2]
3 = s2s3s2 + 2(1− s2s3s2 + s2s3 − s2)e1.

In Example Λ-5 we computed s
[2]
3 (λ

[2]
i ). Finishing our running example we conclude that

λ
[2,3]
1 = λ

[2]
1 = (2− s2)(λ1) = (1, 1, 0),

λ
[2,3]
2 = τ

[2]
3 (λ

[2]
2 ) = s2s3(λ2) = (0, 1, 2),

λ
[2,3]
3 = τ

[2]
3 (λ

[2]
3 ) = −s2(λ3) = (0,−1,−1).

For any mutation sequence w, set

Λw =


λw1
...

λwn

 .
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Now we restate the main theorem of this paper.

Theorem 3.1 (Theorem 1.6). Let B be a skew-symmetrizable matrix. Fix a linear ordering ≺
on I to obtain a GIM A. Then, for any mutation sequence w, we have

(C1 ) λwi = cwi for all i ∈ I,

or equivalently,

Λw = Cw;

for i, j ∈ I,

swi (λwj ) =


λwj + bwjiλ

w
i if i ≺ j,

−λwj if i = j,

λwj − bwjiλwi if i � j,

ewi (λwj ) = δijλ
w
j ;(C2 )

moreover, for all i ∈ I,

(C3 ) swi ≡ rwi (mod 2A).

In what follows, we prove (C3). A proof of (C1) and (C2) will be given in Section 4.

Proof of (C3). Notice from (3.6) that swi ≡ τwi modulo 2A. Then the equation (3.5) becomes

modulo 2A

s
v[k]
i ≡

svksvi svk if λvi < svk(λvi ) and k ≺ i, or if λvi > svk(λvi ) and k � i,

svi otherwise.
(3.8)

Using (C1) and (C2), both of the conditions λvi < svk(λvi ), k ≺ i and λvi > svk(λvi ), k � i can be

rewritten as

bvikλ
v
k = bvikc

v
k > 0,

which does not depend on the choice of a GIM. Now (C3) follows from the definitions (3.2), (3.5)

and (3.6) and from induction. �

3.1. Some observations. We close this section with examples which show some relationship

between c-vectors and Lösungen.

Example 3.2. Consider the matrix B =


0 −1 −1 −1

1 0 1 −1

1 −1 0 1

1 1 −1 0

. The mutation sequence [1, 2, 3, 4, 2]

produces the c-vector (5, 2, 2, 2) which is not a Lösung for any choice of GIM associated to B.

Example 3.3 below shows that even if a c-vector is a real Lösung our formula may not always

express it as such.
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Example 3.3. Consider the matrix B =


0 1 0 0

−1 0 −1 0

0 1 0 1

0 0 −1 0

 . This is a finite-type matrix that

corresponds to an orientation of the Dynkin diagram A4. After the mutation sequence w = [2, 4, 2]

with the GIM associated to the linear order 4 ≺ 2 ≺ 3 ≺ 1 our formula produces

λw3 = −s2s4s2λ3 − 2s2λ3 + 2λ3 + 2s4s2λ3 = (0, 0, 1, 1).

However, we also have s2s4s2λ3 = (0, 0, 1, 1) so we see that λw3 could just be expressed as the

real Lösung s2s4s2λ3 as opposed to the linear combination of real Lösungen given above. For

completeness, we have s2λ3 = (0, 1, 1, 0) and s4s2λ3 = (0, 1, 1, 1).

It is also worth noting that the matrix representation of −s2s4s2−2s2+2+2s4s2 is not equal to

the matrix representation of s2s4s2. Furthermore, for any choice of linear ordering the expression

for λw3 that our formula produces will always have three or four terms even though the vector is

a real Lösung.

4. Proof of (C1) and (C2) in Theorem 3.1

In this section we prove Theorem 3.1. We start with the following proposition which shows

that swi , e
w
i satisfy natural relations for each w.

Proposition 4.1. For i, j ∈ I and for any mutation sequence w, the following relations hold:

n∑
i=1

ewi = 1,(4.1)

ewi e
w
j = δije

w
i ,(4.2)

ewi s
w
j =

swi + ewi − 1 if i = j,

ewi if i 6= j,
(4.3)

ewi τ
w
j =

τwi + ewi − 1 if i = j,

ewi if i 6= j,
(4.4)

swi s
w
i = 1, τwi τ

w
i = 1,(4.5)

swi e
w
i = −ewi , τwi e

w
i = −ewi .(4.6)

Proof. We use induction. If w = [], all the relations follow from the definitions. Assume the

relations hold for v. In what follows, we show that they hold for v[k], k ∈ I.
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Relation (4.1): Since evi τ
v
k = evi for i 6= k by induction, we have (1 − evk)τvk = (1 − evk), and

obtain

n∑
i=1

e
v[k]
i = e

v[k]
k +

∑
i 6=k

e
v[k]
i

= evk − evk
∑
i 6=k

λ
v[k]
i 6=λvi

e
v[k]
i +

∑
i 6=k

λ
v[k]
i 6=λvi

e
v[k]
i +

∑
i 6=k

λ
v[k]
i =λvi

e
v[k]
i

= evk + (1− evk)
∑
i 6=k

λ
v[k]
i 6=λvi

τvk e
v
i τ

v
k +

∑
i 6=k

λ
v[k]
i =λvi

evi

= evk +
∑
i 6=k

λ
v[k]
i 6=λvi

(1− evk)evi +
∑
i 6=k

λ
v[k]
i =λvi

evi =
n∑
i=1

evi = 1.

Relations (4.2): Suppose that i 6= k and j 6= k. Note that evi τ
v
k = evi and evj τ

v
k = evj . Assume

e
v[k]
i = evi and e

v[k]
j = evj . Then

e
v[k]
i e

v[k]
j = evi e

v
j = δije

v
i = δije

v[k]
i .

Assume e
v[k]
i = τvk e

v
i τ

v
k and e

v[k]
j = evj . Then

e
v[k]
i e

v[k]
j = τvk e

v
i τ

v
k e

v
j = τvk e

v
i e

v
j = δijτ

v
k e

v
i = δije

v[k]
i .

Assume e
v[k]
i = evi and e

v[k]
j = τvk e

v
j τ

v
k . Then

e
v[k]
i e

v[k]
j = evi τ

v
k e

v
j τ

v
k = evi e

v
j τ

v
k = δije

v
i τ

v
k = δije

v[k]
i .

Assume e
v[k]
i = τvk e

v
i τ

v
k and e

v[k]
j = τvk e

v
j τ

v
i . Then

e
v[k]
i e

v[k]
j = τvk e

v
i τ

v
k τ

v
k e

v
j τ

v
k = τvk e

v
i e

v
j τ

v
k = δijτ

v
k e

v
i τ

v
k = δije

v[k]
i .
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For i 6= k and j 6= k, write A =

1−
∑

i 6=k, λv[k]i 6=λvi

e
v[k]
i

 for the time being, and we get

e
v[k]
k e

v[k]
j = evkAe

v[k]
j =

evk(e
v[k]
j − ev[k]j ) = 0 if λ

v[k]
i 6= λvi ,

evke
v[k]
j = evke

v
j = 0 if λ

v[k]
i = λvi ,

e
v[k]
i e

v[k]
k = e

v[k]
i evkA =

τvk evi τvk evkA = τvk e
v
i e

v
kA = 0 if λ

v[k]
i 6= λvi ,

evi e
v
kA = 0 if λ

v[k]
i = λvi ,

e
v[k]
k e

v[k]
k = evkAe

v
kA = (evk −

∑
i 6=k, λv[k]i 6=λvi

evkτ
v
k e

v
i τ

v
k e

v
k)A = evkA = e

v[k]
k .

We have proven

e
v[k]
i e

v[k]
j = δije

v[k]
i

for all i, j ∈ I.

Relations (4.3): Assume that i 6= j and i 6= k. Suppose that e
v[k]
i = evi and e

v[k]
j = evj . Then

we have

e
v[k]
i s

v[k]
j = evi (τvj + 2(1− τvj )e

v[k]
s,j ) = evi + 2evi (1− τvj )e

v[k]
s,j = evi = e

v[k]
i .

Suppose that e
v[k]
i = τvk e

v
i τ

v
k and e

v[k]
j = evj .

e
v[k]
i s

v[k]
j = τvk e

v
i τ

v
k (τvj + 2(1− τvj )e

v[k]
s,j ) = τvk e

v
i + 2(τvk e

v
i − τvk evi τvj )e

v[k]
s,j = τvk e

v
i = e

v[k]
i .

Suppose that e
v[k]
i = evi and e

v[k]
j = τvk e

v
j τ

v
k .

e
v[k]
i s

v[k]
j = evi

[
τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j

]
= evi + 2evi (1− τvk τvj τvk )e

v[k]
s,j = evi = e

v[k]
i .

Suppose that e
v[k]
i = τvk e

v
i τ

v
k and e

v[k]
j = τvk e

v
j τ

v
k . Note that

τvk e
v
i τ

v
k τ

v
k τ

v
j τ

v
k = τvk e

v
i τ

v
j τ

v
k = τvk e

v
i τ

v
k .

Then we have

e
v[k]
i s

v[k]
j = τvk e

v
i τ

v
k

[
τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j

]
= τvk e

v
i τ

v
k + 2(τvk e

v
i τ

v
k − τvk evi τvk )e

v[k]
s,j = e

v[k]
i .

Assume that i = k 6= j. Suppose that e
v[k]
j = evj . Note that

e
v[k]
k τvj =

evk − ∑
`6=k, λv[k]` 6=λv`

evkτ
v
k e

v
` τ

v
k

 τvj =

evk − ∑
`6=k, λv[k]` 6=λv`

evkτ
v
k e

v
` τ

v
k

 = e
v[k]
k .
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Then we have

e
v[k]
k s

v[k]
j = e

v[k]
k (τvj + 2(1− τvj )e

v[k]
s,j )

= e
v[k]
k τvj + 2e

v[k]
k (1− τvj )e

v[k]
s,j = e

v[k]
k .

Suppose that e
v[k]
j = τvk e

v
j τ

v
k . Note that

e
v[k]
k τvk τ

v
j τ

v
k = (1−

∑
`6=k

e
v[k]
` )τvk τ

v
j τ

v
k

= τvk τ
v
j τ

v
k −

∑
`6=k, λv[k]` =λv`

ev` τ
v
k τ

v
j τ

v
k −

∑
`6=k, λv[k]` 6=λv`

τvk e
v
` τ

v
j τ

v
k

= τvk τ
v
j τ

v
k − τvk evj τ bj vτvk −

∑
`6=k, λv[k]` =λv`

ev` −
∑

`6=k,j, λv[k]` 6=λv`

τvk e
v
` τ

v
k

= 1− τvk evj τvk −
∑

`6=k, λv[k]` =λv`

ev` −
∑

`6=k,j, λv[k]` 6=λv`

τvk e
v
` τ

v
k

= 1−
∑
`6=k

e
v[k]
` = e

v[k]
k .

Then we have

e
v[k]
k s

v[k]
j = e

v[k]
k (τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j ) = e

v[k]
k .

Assume that i = j 6= k. Suppose that λ
v[k]
i = λvi . Since evi e

v[k]
s,i = 0, we get

e
v[k]
i s

v[k]
i = evi (τvi + 2(1− τvi )e

v[k]
s,i )

= evi τ
v
i − 2evi τ

v
i e

v[k]
s,i = τvi + evi − 1− 2(τvi + evi − 1)e

v[k]
s,i

= τvi + 2(1− τvi )e
v[k]
s,i + evi − 1 = s

v[k]
i + e

v[k]
i − 1.

The case λ
v[k]
i 6= λvi is similar to the case λ

v[k]
i = λvi . We omit the computations for this case.

Assume that i = j = k. Then

e
v[k]
k s

v[k]
k = (1−

∑
`6=k

e
v[k]
k )s

v[k]
k = s

v[k]
k −

∑
`6=k

e
v[k]
` s

v[k]
k = s

v[k]
k −

∑
`6=k

e
v[k]
` = s

v[k]
k + e

v[k]
k − 1.

Relations (4.4): For i 6= j, we have e
v[k]
i (1− sv[k]i ) = 0 and

e
v[k]
i τ

v[k]
j = e

v[k]
i (s

v[k]
j + 2(1− sv[k]j )e

v[k]
τ,j ) = e

v[k]
i .
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For i = j, we get

e
v[k]
i τ

v[k]
i = e

v[k]
i (s

v[k]
j + 2(1− sv[k]i )e

v[k]
τ,i ) = e

v[k]
i s

v[k]
j + 2e

v[k]
i (1− sv[k]i )e

v[k]
τ,i

= s
v[k]
i + e

v[k]
i − 1− 2e

v[k]
i s

v[k]
i e

v[k]
τ,i = s

v[k]
i + 2(1− sv[k]i )e

v[k]
τ,i + e

v[k]
i − 1

= τ
v[k]
i + e

v[k]
i − 1.

Relations (4.5): Suppose that i = k or i 6= k and λ
v[k]
i = λvi . Since evj τ

v
i = evj and τvk e

v
j τ

v
k τ

v
i =

τvk e
v
j τ

v
k for j 6= i, k, we have

e
v[k]
j τvi = e

v[k]
j for j 6= i.

Thus e
v[k]
s,i τ

v
i = evs,i or e

v[k]
s,i (1− τvi ) = 0, and we have

s
v[k]
i s

v[k]
i = (τvi + 2(1− τvi )e

v[k]
s,i )(τvi + 2(1− τvi )e

v[k]
s,i )

= 1 + 2τvi (1− τvi )e
v[k]
s,i + 2(1− τvi )e

v[k]
s,i τ

v
i + 4(1− τvi )e

v[k]
s,i (1− τvi )e

v[k]
s,i

= 1 + 2(τvi − 1)e
v[k]
s,i + 2(1− τvi )e

v[k]
s,i = 1.

Suppose that i 6= k and λ
v[k]
i 6= λvi . Since e

v[k]
j τvk τ

v
i τ

v
k = e

v[k]
j for j 6= i, the computation is

similar to the previous case to obtain s
v[k]
i s

v[k]
i = 1 in this case as well. Furthermore, since

e
v[k]
τ,i s

v[k]
i = e

v[k]
τ,i , we get

τ
v[k]
i τ

v[k]
i = (s

v[k]
i + 2(1− sv[k]i )e

v[k]
s,i )(s

v[k]
i + 2(1− sv[k]i )e

v[k]
τ,i ) = 1.

Relations (4.6): Assume i 6= k, and suppose that λ
v[k]
i 6= λvi . Then

s
v[k]
i e

v[k]
i = (τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i )e

v[k]
i

= τvk τ
v
i τ

v
k e

v[k]
i = τvk τ

v
i τ

v
k τ

v
k e

v
i τ

v
k = −τvk evi τvk = −ev[k]i .

The case λ
v[k]
i = λvi is similar. For i = k, we obtain

s
v[k]
k e

v[k]
k = (τvk + 2(1− τvk )e

v[k]
s,k )e

v[k]
k = τvk e

v[k]
k

= τvk e
v
k(1−

∑
`6=k, λv[k]` 6=λv`

e
v[k]
j ) = −evk(1−

∑
`6=k, λv[k]` 6=λv`

e
v[k]
j ) = −ev[k]k .

For i ∈ I, we have

τ
v[k]
i e

v[k]
i = (s

v[k]
i + 2(1− sv[k]i )e

v[k]
τ,i )e

v[k]
i = s

v[k]
i e

v[k]
i = −ev[k]i .

�

Proof of Theorem 3.1. The statements (C1) and (C2) are true for w = [] from the definitions.

Assume that (C1) and (C2) hold for v. We will show that they also hold for v[k], k ∈ I. There are

cases (1)-(6) according to the order of i, j, k, and each case has several subcases. Since arguments
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are all similar, we will show details for the cases (1), (3), (4) and (6) and skip some details for

the other cases.

To begin with, let us recall some definitions for ease of reference. From the definition of

mutation in (2.1), we have

(4.7) b
v[k]
ij =


−bvij if i = k or j = k,

bvij + sgn(bvik) b
v
ikb

v
kj if bvikb

v
kj > 0,

bvij otherwise,

and rewrite the definition of c-vectors as

(4.8) c
v[k]
i =


−cvi if i = k,

cvi + sgn(bvik)b
v
ikc

v
k if bvikc

v
k > 0,

cvi otherwise.

For i 6= k, consider the condition

(∗) λvi < svk(λvi ) and k ≺ i, or λvi > svk(λvi ) and k � i,

and rewrite (3.7), (3.4) and (3.5):

λ
v[k]
i =

τvk (λvi ) if (∗) is true,

λvi otherwise;
(4.9)

e
v[k]
i =

τvk evi τvk if (∗) is true,

evi otherwise;
(4.10)

s
v[k]
i =

τvk τvi τvk + 2(1− τvk τvi τvk )e
v[k]
s,i if (∗) is true,

τvi + 2(1− τvi )e
v[k]
s,i otherwise.

(4.11)

In each of the following cases (1)-(6), we will show the statements (C1) and (C2):

(C1 ) λwi = cwi for all i ∈ I;

for i, j ∈ I,

ewi (λwj ) = δijλ
w
j , swi (λwj ) =


λwj + bwjiλ

w
i if i ≺ j,

−λwj if i = j,

λwj − bwjiλwi if i � j.

(C2 )

1) Assume that k ≺ i � j. By induction we have

svk(λvi ) = λvi + bvikλ
v
k , svk(λvj ) = λvj + bvjkλ

v
k .
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a) Suppose bvikλ
v
k = −λvi + svk(λvi ) < 0 and bvjkλ

v
k = −λvj + svk(λvj ) < 0. Then from (4.8), we

have

c
v[k]
i = cvi , c

v[k]
j = cvj ,

and obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = λvj .

By induction,

λ
v[k]
i = c

v[k]
i , λ

v[k]
i = c

v[k]
i ,

which proves (C1) in this case.

From (4.10),

e
v[k]
i = evi , e

v[k]
j = evj ,

and by induction,

e
v[k]
i (λ

v[k]
j ) = evi (λvj ) = 0, e

v[k]
i (λ

v[k]
i ) = evi (λvi ) = λvi = λ

v[k]
i ,

e
v[k]
j (λ

v[k]
i ) = evj (λvi ) = 0, e

v[k]
j (λ

v[k]
j ) = evj (λvj ) = λvj = λ

v[k]
j .

We also have

s
v[k]
i = τvi + 2(1− τvi )e

v[k]
s,i , s

v[k]
j = τvj + 2(1− τvj )e

v[k]
s,j .

From the definitions, (i, j), (j, i) 6∈ Ps(v,v[k]) ∪ Pτ (v,v[k]), and thus

s
v[k]
i λ

v[k]
j = (τvi + 2(1− τvi )e

v[k]
s,i )λ

v[k]
j = τvi λ

v[k]
j = τvi λ

v
j

= (svi + 2(1− svi )evτ,i)λ
v
j = svi λ

v
j

=

λvi + bvjiλ
v
k = λ

v[k]
i + b

v[k]
ji λ

v[k]
k if i 6= j,

−λvi = −λv[k]i if i = j.

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k for i 6= j.

This proves (C2) in this case.

b) Suppose bvikλ
v
k = −λvi + svk(λvi ) > 0 and bvjkλ

v
k = −λvj + svk(λvj ) > 0. From (4.8), we have

c
v[k]
i = cvi + sgn(λvk)bvikc

v
k , c

v[k]
j = cvj + sgn(λvk)bvjkc

v
k .

On the other hand, we obtain from (4.9)

λ
v[k]
i = τvk (λvi ) = (svk + 2(1− svk)evτ,k)(λ

v
i ).

If λvk < 0 then (k, i) ∈ Pτ (v,v[k]) and

(4.12) λ
v[k]
i = (svk + 2(1− svk))(λvi ) = 2λvi − svk(λvi ) = λvi − bvikλvk = c

v[k]
i

by induction. If λvk > 0 then (k, i) 6∈ Pτ (v,v[k]) and

(4.13) λ
v[k]
i = svkλ

v
i = λvi + bvikλ

v
k = c

v[k]
i .



30 K.-H. LEE, K. LEE, AND M. R. MILLS

Similarly, λ
v[k]
j = c

v[k]
j . This proves (C1) in this case.

From (4.10),

e
v[k]
i = τvk e

v
i τ

v
k , e

v[k]
j = τvk e

v
j τ

v
k ,

and by induction,

e
v[k]
i (λ

v[k]
j ) = τvk e

v
i τ

v
k (τvk λ

v
j ) = τvk e

v
i (λvj ) = 0,

e
v[k]
i (λ

v[k]
i ) = τvk e

v
i τ

v
k (τvk λ

v
i ) = τvk e

v
i (λvi ) = τvk λ

v
i = λ

v[k]
i .

Similarly, e
v[k]
j (λ

v[k]
i ) = 0 and e

v[k]
j (λ

v[k]
j ) = e

v[k]
j .

We have

s
v[k]
i = τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i , s

v[k]
j = τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j .

From the definitions, (i, j), (j, i) 6∈ Ps(v,v[k]) ∪ Pτ (v,v[k]), and thus

s
v[k]
i λ

v[k]
j = (τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i )λ

v[k]
j = τvk τ

v
i τ

v
k λ

v[k]
j = τvk τ

v
i λ

v
j

= τvk (svi + 2(1− svi )evτ,i)λ
v
j = τvk s

v
i λ

v
j .

If i 6= j and λvk < 0, then we obtain from (4.12)

s
v[k]
i λ

v[k]
j = τvk s

v
i λ

v
j = τvk (λvj + bvjiλ

v
i ) = τvk λ

v
j + bvji(s

v
k + 2(1− svk)evτ,k)λ

v
i

= λ
v[k]
j + b

v[k]
ji (2− svk)λvi = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

If i 6= j and λvk > 0, then it follows from (4.13) that

s
v[k]
i λ

v[k]
j = τvk λ

v
j + bvji(s

v
k + 2(1− svk)evτ,k)λ

v
i

= λ
v[k]
j + b

v[k]
ji svkλ

v
i = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k for i 6= j.

If i = j then

s
v[k]
i λ

v[k]
i = (τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i )λ

v[k]
i = τvk τ

v
i τ

v
k λ

v[k]
i = τvk τ

v
i λ

v
i

= τvk s
v
i λ

v
i = −τvk λvi = −λv[k]i .

This proves (C2) in this case.

c) Suppose bvikλ
v
k = −λvi + svk(λvi ) < 0 and bvjkλ

v
k = −λvj + svk(λvj ) > 0. From (4.8), we have

c
v[k]
i = cvi , c

v[k]
j = cvj + sgn(λvk)bvjkc

v
k .

On the other hand, we obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = τvk (λvj ) = (svk + 2(1− svk)evτ,k)(λ

v
j ).
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Thus λ
v[k]
i = c

v[k]
i by induction, and using the same argument as in (b), we also see that λ

v[k]
j =

c
v[k]
j . Therefore (C1) is true in this case.

From (4.10),

e
v[k]
i = evi , e

v[k]
j = τvk e

v
j τ

v
k ,

and it follows from similar computations to those in (a) and (b) that

e
v[k]
i (λ

v[k]
j ) = 0, e

v[k]
i (λ

v[k]
i ) = λ

v[k]
i ,

e
v[k]
j (λ

v[k]
i ) = 0, e

v[k]
j (λ

v[k]
j ) = λ

v[k]
j .

We have

s
v[k]
i = τvi + 2(1− τvi )e

v[k]
s,i , s

v[k]
j = τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j .

From the definitions, (i, j) ∈ Ps(v,v[k]) ∩ Pτ (v,v[k]), and thus

s
v[k]
i λ

v[k]
j = (τvi + 2(1− τvi )e

v[k]
s,i )λ

v[k]
j = τvi λ

v[k]
j + 2(1− τvi )λ

v[k]
j = 2λ

v[k]
j − τvi λ

v[k]
j

= 2λ
v[k]
j − (svi + 2(1− svi )evτ,i)λ

v[k]
j .

If i 6= j and λvk < 0, then (k, i) 6∈ Pτ (v,v[k]), (k, j) ∈ Pτ (v,v[k]), and thus λ
v[k]
j = τvk (λvj ) =

λvj − bvjkλvk and by (4.7)

s
v[k]
i λ

v[k]
j = 2λ

v[k]
j − (svi + 2(1− svi )evτ,i)(λ

v
j − bvjkλvk)

= 2λ
v[k]
j − (svi λ

v
j − bvjk(λvk − bvkiλvi ) + 2(1− svi )λvj )

= 2λ
v[k]
j − (2λvj − svi λvj − bvjkλvk + bvjkb

v
kiλ

v
i )

= 2λ
v[k]
j − (λvj − bvjiλvi − bvjkλvk + bvjkb

v
kiλ

v
i )

= λ
v[k]
j + (bvji − bvjkbvki)λ

v[k]
i = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

If i 6= j and λvk > 0, then (k, i), (k, j) 6∈ Pτ (v,v[k]), and thus λ
v[k]
j = τvk (λvj ) = λvj + bvjkλ

v
k and by

(4.7)

s
v[k]
i λ

v[k]
j = 2λ

v[k]
j − (svi + 2(1− svi )evτ,i)(λ

v
j + bvjkλ

v
k)

= λ
v[k]
j + (bvji + bvjkb

v
ki)λ

v[k]
i = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k for i 6= j and s

v[k]
i λ

v[k]
i = −λv[k]i .

This proves (C2) in this case.

d) Suppose bvikλ
v
k = −λvi + svk(λvi ) > 0 and bvjkλ

v
k = −λvj + svk(λvj ) < 0. This case is similar to

case (c) right above.

2) Assume that i � j ≺ k. Since this case is similar to case (1), we omit the details.
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3) Assume that i ≺ k ≺ j. By induction we have

svk(λvi ) = λvi − bvikλvk , svk(λvj ) = λvj + bvjkλ
v
k .

a) Suppose bvikλ
v
k = λvi − svk(λvi ) < 0 and bvjkλ

v
k = −λvj + svk(λvj ) < 0. From (4.8), we have

c
v[k]
i = cvi , c

v[k]
j = cvj .

It follows from (4.9) that

λ
v[k]
i = λvi , λ

v[k]
j = λvj .

Thus λ
v[k]
i = c

v[k]
i and λ

v[k]
j = c

v[k]
j by induction. Thus (C1) is true in this case.

From (4.10),

e
v[k]
i = evi , e

v[k]
j = evj ,

and it follows from induction that

e
v[k]
i (λ

v[k]
j ) = 0, e

v[k]
i (λ

v[k]
i ) = λ

v[k]
i ,

e
v[k]
j (λ

v[k]
i ) = 0, e

v[k]
j (λ

v[k]
j ) = λ

v[k]
j .

We have

s
v[k]
i = τvi + 2(1− τvi )e

v[k]
s,i , s

v[k]
j = τvj + 2(1− τvj )e

v[k]
s,j .

Clearly, (i, j), (j, i) 6∈ Ps(v,v[k]) ∪ Pτ (v,v[k]), and thus

s
v[k]
i λ

v[k]
j = (τvi + 2(1− τvi )e

v[k]
s,i )λ

v[k]
j = τvi λ

v[k]
j = (svi + 2(1− svi )evτ,i)λ

v
j

= svi λ
v
j = λvj + bvjiλ

v
i

=

λvi + bvjiλ
v
k = λ

v[k]
i + b

v[k]
ji λ

v[k]
k if i 6= j,

−λvi = −λv[k]i if i = j.

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k for i 6= j and s

v[k]
i λ

v[k]
i = −λv[k]i .

This proves (C2) in this case.

b) Suppose bvikλ
v
k = λvi − svk(λvi ) > 0 and bvjkλ

v
k = −λvj + svk(λvj ) > 0. From (4.8), we have

c
v[k]
i = cvi + sgn(λvk)bvikc

v
k , c

v[k]
j = cvj + sgn(λvk)bvjkc

v
k .

We obtain from (4.9)

λ
v[k]
i = τvk (λvi ) = (svk + 2(1− svk)evτ,k)(λ

v
i ).

If λvk > 0 then (k, i) ∈ Pτ (v,v[k]) and

(4.14) λ
v[k]
i = (svk + 2(1− svk))(λvi ) = 2λvi − svk(λvi ) = λvi + bvikλ

v
k = c

v[k]
i

by induction. If λvk < 0 then (k, i) 6∈ Pτ (v,v[k]) and

(4.15) λ
v[k]
i = svkλ

v
i = λvi − bvikλvk = c

v[k]
i .
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Similarly, λ
v[k]
j = c

v[k]
j . This proves (C1) in this case.

From (4.10),

e
v[k]
i = τvk e

v
i τ

v
k , e

v[k]
j = τvk e

v
j τ

v
k ,

and it follows from induction that

e
v[k]
i (λ

v[k]
j ) = 0, e

v[k]
i (λ

v[k]
i ) = λ

v[k]
i ,

e
v[k]
j (λ

v[k]
i ) = 0, e

v[k]
j (λ

v[k]
j ) = λ

v[k]
j .

We have

s
v[k]
i = τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i , s

v[k]
j = τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j .

Clearly, (i, j), (j, i) 6∈ Ps(v,v[k]) ∪ Pτ (v,v[k]), and as in (1)-(b),

s
v[k]
i λ

v[k]
j = τvk s

v
i λ

v
j .

If λvk > 0, then we obtain from (4.14)

s
v[k]
i λ

v[k]
j = τvk s

v
i λ

v
j = τvk (λvj + bvjiλ

v
i ) = τvk λ

v
j + bvji(s

v
k + 2(1− svk)evτ,k)λ

v
i

= λ
v[k]
j + b

v[k]
ji (2− svk)λvi = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

If λvk < 0, then it follows from (4.15) that

s
v[k]
i λ

v[k]
j = τvk λ

v
j + bvji(s

v
k + 2(1− svk)evτ,k)λ

v
i

= λ
v[k]
j + b

v[k]
ji svkλ

v
i = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k .

This proves (C2) in this case.

c) Suppose bvikλ
v
k = λvi − svk(λvi ) < 0 and bvjkλ

v
k = −λvj + svk(λvj ) > 0. From (4.8), we have

c
v[k]
i = cvi , c

v[k]
j = cvj + sgn(λvk)bvjkc

v
k .

On the other hand, we obtain from (4.9)

λ
v[k]
i = λvi , λ

v[k]
j = τvk (λvj ) = (svk + 2(1− svk)evτ,k)(λ

v
j ).

Thus λ
v[k]
i = c

v[k]
i by induction, and using the same argument as in (b), we also see that λ

v[k]
j =

c
v[k]
j . Therefore (C1) is true in this case.

From (4.10),

e
v[k]
i = evi , e

v[k]
j = τvk e

v
j τ

v
k ,
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and it follows from induction that

e
v[k]
i (λ

v[k]
j ) = 0, e

v[k]
i (λ

v[k]
i ) = λ

v[k]
i ,

e
v[k]
j (λ

v[k]
i ) = 0, e

v[k]
j (λ

v[k]
j ) = λ

v[k]
j .

We have

s
v[k]
i = τvi + 2(1− τvi )e

v[k]
s,i , s

v[k]
j = τvk τ

v
j τ

v
k + 2(1− τvk τvj τvk )e

v[k]
s,j .

From the definitions, (i, j), (j, i) 6∈ Ps(v,v[k]), and thus

s
v[k]
i λ

v[k]
j = (τvi + 2(1− τvi )e

v[k]
s,i )λ

v[k]
j = τvi λ

v[k]
j .

If λvk < 0, then (k, i) 6∈ Pτ (v,v[k]), (k, j) ∈ Pτ (v,v[k]), and thus λ
v[k]
j = τvk (λvj ) = λvj − bvjkλvk

and by (4.7)

s
v[k]
i λ

v[k]
j = τvi λ

v[k]
j = τvi (λvj − bvjkλvk) = (svi + 2(1− svi )evτ,i)(λ

v
j − bvjkλvk)

= svi λ
v
j − bvjksvi λvk = λvj + bvjiλ

v
i − bvjk(λvk + bvkiλ

v
i )

= λvj − bvjk + (bvji − bvjkbvki)λvi = λ
v[k]
j + b

v[k]
ji λ

v[k]
i .

If λvk > 0, then (k, i), (k, j) 6∈ Pτ (v,v[k]) and thus λ
v[k]
j = τvk (λvj ) = λvj + bvjkλ

v
k and by (4.7)

s
v[k]
i λ

v[k]
j = τvi λ

v[k]
j = (svi + 2(1− svi )evτ,i)(λ

v
j + bvjkλ

v
k)

= svi λ
v
j + bvjks

v
i λ

v
k = λvj + bvjiλ

v
i + bvjk(λ

v
k + bvkiλ

v
i )

= λ
v[k]
j + (bvji + bvjkb

v
ki)λ

v[k]
i = λ

v[k]
j + b

v[k]
ji λ

v[k]
i .

Similarly, we get

s
v[k]
j λ

v[k]
i = λ

v[k]
i − bv[k]ij λ

v[k]
k for i 6= j and s

v[k]
i λ

v[k]
i = −λv[k]i .

This proves (C2) in this case.

d) Suppose bvikλ
v
k = λvi − svk(λvi ) > 0 and bvjkλ

v
k = −λvj + svk(λvj ) < 0. This case is similar to

(c) and we omit the details.

4) Assume that i ≺ k = j. By induction we have

svk(λvi ) = λvi − bvikλvk , svk(λvk) = −λvk .

a) Suppose bvikλ
v
k = λvi − svk(λvi ) < 0. From (4.8), we have

c
v[k]
i = cvi , c

v[k]
k = −cvk .

Since (k, k) 6∈ Pτ (v,v[k]), we obtain from (3.7) and induction

λ
v[k]
i = λvi ,

λ
v[k]
k = τvk (λvk) = (svk + 2(1− svk)evτ,k)λ

v
k = svkλ

v
k = −λvk .(4.16)
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Thus λ
v[k]
i = c

v[k]
i and λ

v[k]
k = c

v[k]
k by induction, and (C1) is true in this case.

From (4.10) and (4.1),

e
v[k]
i = evi , e

v[k]
k = 1−

∑
`6=k

e
v[k]
` ,

and it follows from induction that

e
v[k]
i (λ

v[k]
k ) = evi (−λvk) = 0, e

v[k]
i (λ

v[k]
i ) = evi λ

v
i = λ

v[k]
i ,

e
v[k]
k (λ

v[k]
i ) = (1−

∑
`6=k

e
v[k]
` )λ

v[k]
i = λ

v[k]
i − λv[k]i = 0.

We have

s
v[k]
i = τvi + 2(1− τvi )e

v[k]
s,i , s

v[k]
k = τvk + 2(1− τvk )e

v[k]
s,k .

We see that (k, i) 6∈ Ps(v,v[k]) ∪ Pτ (v,v[k]), and thus

s
v[k]
i λ

v[k]
k = (τvi + 2(1− τvi )e

v[k]
s,i )λ

v[k]
k = τvi λ

v[k]
k = −(svi + 2(1− svi )evτ,i)λ

v
k

= −svi λvk = −λvk − bvkiλvi = λ
v[k]
k + b

v[k]
ki λ

v[k]
i .

Similarly, we get

s
v[k]
k λ

v[k]
i = λ

v[k]
i − bv[k]ik λ

v[k]
k .

This proves (C2) in this case.

b) Suppose bvikλ
v
k = λvi − svk(λvi ) > 0. From (4.8), we have

c
v[k]
i = cvi + sgn(λvk)bvikc

v
k , c

v[k]
k = −cvk .

On the other hand, we obtain from (3.7)

λ
v[k]
i = τvk (λvi ) = (svk + 2(1− svk)evτ,k)(λ

v
i ), λ

v[k]
k = −λvk .

If λvk < 0 then (k, i) 6∈ Pτ (v,v[k]) and λ
v[k]
i = svkλ

v
i = λvi −bvikλvk ; if λvk > 0 then (k, i) ∈ Pτ (v,v[k])

and λ
v[k]
i = (2− svk)λvi = λvi + bvikλ

v
k . Thus λ

v[k]
i = c

v[k]
i and λ

v[k]
k = c

v[k]
k by induction, and (C1)

is true in this case.

From (4.10), (4.1) and (4.4),

e
v[k]
i = τvk e

v
i τ

v
k = τvk e

v
i , e

v[k]
k = 1−

∑
`6=k

e
v[k]
` ,

and it follows from induction that

e
v[k]
i (λ

v[k]
k ) = τvk e

v
i (−λvk) = 0, e

v[k]
i (λ

v[k]
i ) = τvk e

v
i τ

v
k τ

v
k λ

v
i = τvk λ

v
i = λ

v[k]
i ,

e
v[k]
k (λ

v[k]
i ) = (1−

∑
`6=k

e
v[k]
` )λ

v[k]
i = λ

v[k]
i − λv[k]i = 0.

We have

s
v[k]
i = τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i , s

v[k]
k = τvk + 2(1− τvk )e

v[k]
s,k .
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If λvk < 0, then (k, i) 6∈ Pτ (v,v[k]) and (k, i) ∈ Ps(v,v[k]), and thus

s
v[k]
i λ

v[k]
k = (τvk τ

v
i τ

v
k + 2(1− τvk τvi τvk )e

v[k]
s,i )λ

v[k]
k = (2− τvk τvi τvk )(−λvk)

= −2λvk − τvk τvi λvk = −2λvk − τk(svi + 2(1− svi )evτ,i)λ
v
k

= −2λvk − τvk svi λvk = −2λvk − τvk (λvk + bvkiλ
v
i )

= −2λvk + λvk − bvkiτvk λvi = λ
v[k]
k + b

v[k]
ki λ

v[k]
i ,

and since λ
v[k]
i = τvk λ

v
i = svkλ

v
i = λvi − bvikλvk , we have

s
v[k]
k λ

v[k]
i = (τvk + 2(1− τvk )evs,i)λ

v[k]
i = (2− τvk )τvk λ

v
i = 2τvk λ

v
i − λvi

= 2(λvi − bvikλvk)− λvi = (λvi − bvikλvk)− bvikλvk = λ
v[k]
i − bv[k]ik λ

v[k]
k .

If λvk > 0, then (k, i) ∈ Pτ (v,v[k]) and (k, i) 6∈ Ps(v,v[k]), and the computations are similar to

the case right above. This proves (C2) in this case.

5) Assume that i = k ≺ j. Since this case is similar to case (4), we omit the details.

6) Assume that i = j = k. From (4.8), we have c
v[k]
k = −cvk . As seen in (4.16), we have λ

v[k]
k =

−λvk . Thus by induction c
v[k]
k = λ

v[k]
k , and (C1) holds. In cases (4) and (5), it is proven that

e
v[k]
` λ

v[k]
k = 0 for ` 6= k. Thus using (4.1), we have

e
v[k]
k λ

v[k]
k = (1−

∑
`6=k

e
v[k]
` )λ

v[k]
k = λ

v[k]
k .

Finally, since (k, k) 6∈ Ps(v,v[k]), we see that

s
v[k]
k λ

v[k]
k = (τvk + 2(1− τvk )e

v[k]
s,k )λ

v[k]
k = τvk λ

v[k]
k = τvk τ

v
k λ

v
k = λvk = −λv[k]k ,

where we use (4.5). This proves (C2) in this case, and a proof of Theorem 3.1 has been completed.
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