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We develop an extension of eigenvector continuation (EC) that makes it possible to extrapolate
simulations of quantum systems in finite periodic boxes across large ranges of box sizes. The formal
justification for this approach, which we call finite-volume eigenvector continuation (FVEC), is
provided by matching periodic functions at different box sizes. As concrete FVEC implementation
we use a discrete variable representation based on plane-wave states and present several applications
calculated within this framework.

I. INTRODUCTION

Simulations of quantum systems in finite volume (FV),
such as a cubic box with periodic boundary conditions,
can be used to obtain information about that same sys-
tem in infinite volume. In a series of highly influen-
tial papers [1–3], Lüscher has shown that the real-world
(infinite-volume) properties of the system are encoded
in how its (discrete) energy levels change as the size of
the volume is varied. Bound-state relations connect the
finite-volume energy correction to the asymptotic proper-
ties of wave functions, leading to an exponential volume
dependence [1, 4–6], while information about elastic scat-
tering can be obtained from discrete energy levels with
power-law dependence on the box size. Resonances, i.e.,
short-lived, unstable states, are manifest in the volume-
dependent spectrum as avoided crossings of energy lev-
els [7–9]. While early studies of finite-volume relations
considered two-body applications, work in recent years
has focused largely on deriving rigorous FV quantiza-
tion conditions for three-body systems [10–22], following
early studies of the triton and Efimov trimers in finite
volume [23–26]. Related work has derived the volume
dependence for bound states comprised of an arbitrary
number of particles [6], and it has been demonstrated
that genuine few-body resonances can be identified from
FV calculations [27], thus providing a discovery tool for
such exotic states.
Eigenvector continuation (EC), first introduced in

Ref. [28], is a powerful (yet strikingly simple in practice)
method to address otherwise unfeasible physics problems.
Given a Hamiltonian with parametric dependence H(c),
EC enables robust extrapolations to a given target point
c∗ from “training data” far away from that point by
exploiting information contained in eigenvectors. The
essence of the system is “learned” through the construc-
tion of a highly effective (nonorthogonal) basis, leading
to a variational calculation of the states of interest with
rapid convergence [29]. Recent work [30, 31] has shown
that EC as a particular reduced-basis (RB) method falls
within a larger class of model-order reduction (MOR)
techniques. In practice, EC boils down to constructing
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Hamiltonian and norm matrices (denoted as H(c∗) and
N , respectively) and solving the generalized eigenvalue
problem H(c∗)|ψð = λN |ψð.
Since its inception, various interesting applications

and extensions of EC have been identified in a short
time. Early applications focusing on bound states in-
clude the construction of highly efficient emulators for
uncertainty quantification [32–34] and robust extrapola-
tions of perturbation theory [35–37]. More recently, the
approach has been extended to construct emulators for
scattering systems [38–40] and to studies of nuclear reac-
tions [41, 42].

We introduce here a novel extension of EC that goes
beyond simple parametric dependencies of the Hamilto-
nian. Specifically, we develop EC as a tool for performing
volume extrapolations at greatly reduced numerical cost.
Since this extension is applicable in connection with any
numerical method that provides access to wave functions
in periodic finite topologies, it immediately yields sev-
eral interesting applications, among which we highlight
in particular FV studies of few-body resonances [27, 43].
Identifying such unstable states as avoided crossing of
FV energy levels requires the calculation of spectra over a
range of volumes, and in particular in very large boxes to
reach, for example, the low-energy regime of few-neutron
systems, which are of great current interest in nuclear
experiments [44, 45] and nuclear theory (see, for exam-
ple, Refs. [43, 46–48]). The technique introduced in this
paper provides a way to greatly extend the reach of FV
resonance studies. Moreover, few-body approaches used
to extrapolate Lattice QCD results to infinite volume via
matching to an effective field theory description, recently
discussed in Ref. [49], can benefit from EC based volume
extrapolation.

II. FINITE-VOLUME EIGENVECTOR

CONTINUATION

By “finite-volume eigenvector continuation (FVEC)”
we refer to the application of EC to extrapolate prop-
erties of quantum states calculated in a set of periodic
boxes with sizes Li, i = 1, ··N to a target volume L∗.
This should be distinguished from using standard EC
at a fixed single volume L to extrapolate a parametric
dependence of the Hamiltonian. Specifically, we want
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to consider states |ψLi
ð at volume Li (or sets of states

{|ψ(j)
Li

ð, j = 1, ··Ni}) and perform EC using Hamiltonian
and norm matrices

Hij = ïψLi
|HL∗

|ψLj
ð , (1a)

Nij = ïψLi
|ψLj

ð . (1b)

However, at face value the above definitions appear prob-
lematic because the dependence on L does not simply
stem from the Hamiltonian; it is inherent in the definition
of the Hilbert space. Two states |ψLi

ð and |ψLj
ð are ac-

tually vectors in different Hilbert spaces for i ̸= j, and it
is not immediately clear how the matrix elements written
down naively in Eqs. (1) can be well-defined quantities.
To resolve this issue, we develop the notion of a vector
space that accommodates states with arbitrary periodic-
ities and show how it relates to FVEC calculations.

A. Periodic matching

Let HL be the space of periodic functions f : R → C

with f(x+L) = f(x) for some fixed but arbitrary L > 0.
Consider the union

H =
⋃

{L>0}

HL . (2)

We proceed to show that this concept can be used to
define overlaps and matrix elements of periodic states
with different periods. We restrict the discussion to the
special case of a one-dimensional (1D) two-body system
(described by a single relative coordinate x), and merely
note that everything generalizes to a larger number of
spatial dimensions and/or particles in a straightforward
manner.
a. Addition. Clearly H is not a vector space if one

defines the sum of f, g ∈ H in the usual pointwise man-
ner (because the sum of two periodic functions is not in
general periodic). However, for given L,L′ > 0 one can
map f ∈ HL to HL′ by means of a dilatation:

(DL,L′f)(x) =

√

L

L′
f

(

L

L′
x

)

. (3)

With this, we can define an addition operation for f ∈
HL and g ∈ HL′ as follows:

(f
max
+ g)(x) = (DL,L′f)(x) + g(x) (4)

for L′ > L, and adjusting g instead in the opposite case.
The result is a periodic function in HL′ ¢ H, and since

multiplication by a scalar is trivially defined, (H,
max
+ ) is

a vector space.
b. Inner products. An inner product on H can be

defined similarly. Let f, g ∈ H and, without loss of gen-
erality, assume L f L′ for the periods of f and g, respec-

tively. Then

ïf, gðmax = ïDL,L′f, gðHL′
=

∫ L′/2

−L′/2

(DL,L′f)(x)
∗
g(x) dx

(5)

defines an inner product on (H,
max
+ ). Indeed, consider

for example adding h ∈ HL′′ with L′′ g L′ to the second
operand:

ïf, g
max
+ hðmax = ïf,DL′,L′′g + hðmax

= ïDL,L′′f,DL′,L′′g + hðHL′′

= ïDL,L′′f,DL′,L′′gðHL′′
+ ïDL,L′′f, hðHL′′

= ïf, gðmax + ïf, hðmax ,

(6)

where we set x′ = (L′/L′′)x to find

ïDL,L′′f,DL′,L′′gðHL′′

=

∫ L′′/2

−L′′/2

√

L

L′′
f

(

L

L′′
x

)∗
√

L′

L′′
g

(

L′

L′′
x

)

dx

=

∫ L′/2

−L′/2

√

L

L′
f

(

L

L′
x′
)∗

g(x′) dx′ = ïf, gðmax .

(7)

They key step above was using the property DL,L′′f =
DL,L′DL′,L′′f of dilatations (which actually form a mul-
tiplicative group). Other combinations of operands and
periods work similarly, and again including scalar factors
is trivial.
c. Matrix elements. Finally, consider a (linear) op-

erator O on HL. While initially this is only given as a
mapping HL → HL, we can define its action on a func-
tion f ∈ HL′ by inserting an appropriate dilatation:

Of ≡ ODL′,Lf ∈ HL . (8)

Together with the inner product (5) this provides a defi-
nition of operator matrix elements between different HL,
HL′ .

B. Truncated periodic bases

Consider now truncated bases SL,N and SL′,N for HL

and HL′ , respectively, with N a positive integer. Specif-

ically, let SL,N = {φ(L)
j : j = 1, ··N} with

φ
(L)
j (x) =

1√
L
exp

(

i
2πj

L
x

)

(9)

be a set of plane waves. Then DL,L′ is a bijection be-
tween SL,N and SL′,N , and because for each j we have

DL,L′φ
(L)
j = φ

(L′)
j . Therefore, if ψ and ψ′ are functions

expanded upon SL,N and SL′,N , respectively, taking the
inner product of their coefficient vectors in R

N is the
same as considering the inner product on H as defined in
Eq. (5). Note that while this inner product has been de-
fined by matching functions to the maximum period, we
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could equally well have chosen to match to the smaller
period. In practice the concrete choice does not mat-
ter because both lead to identical inner products on R

N .
Overall we have arrived at a justification for writing down
Eqs. (1) as well a straightforward prescription for imple-
menting FVEC numerically.
Discrete variable representation. While conceptually

straightforward, the plane-wave basis (9) is in general not
an efficient approach to study few-body systems. It can,
however, be used as starting point for the construction of
a so-called discrete variable representation (DVR). Orig-
inally suggested as an alternative to harmonic-oscillator
based calculations in nuclear physics [50], recent work
has established this plane-wave DVR as a powerful nu-
merical framework for studying few-body resonances in
FV [27, 43, 51]. Its construction starts with the states
φj(x) defined in Eq. (9), with j = −N/2, ··N/2 − 1 for
even N > 2, and where as before x denotes the relative
coordinate for a two-body (n = 2) system in d = 1 dimen-
sions. Any periodic solution of the 1D Schrödinger equa-
tion can be expanded in terms of the φj(x), yielding a
discrete Fourier transform (DFT). Given a set of equidis-
tant points xk ∈ [−L/2, L/2) and weights wk = L/N
(independent of k), DVR states are constructed as [52]

ψk(x) =

N/2−1
∑

i=−N/2

U∗
kiφi(x) , (10)

with Uki =
√
wkφi(xk) defining a unitary matrix. Calcu-

lations in a periodic box can then be carried out through
an expansion in terms of the ψk(x) instead of the φj(x).
Importantly, since the transformation between plane-
wave states and DVR states is unitary, the above con-
siderations that justify FVEC carry over to DVR calcu-
lations.
Local potentials are represented in the DVR by ba-

sis diagonal matrices [27, 51]. Separable potentials have
a more complicated representation, but can also be im-
plemented efficiently [43]. Another advantage of the
DVR is that despite being effectively defined on a lat-
tice of points, it yields a continuum dispersion relation
E = p2/(2µ), where p and µ are the center-of-mass mo-
mentum and the reduced mass of the system, respec-
tively. This is achieved by a nondiagonal matrix repre-
sentation for the kinetic energy K, which is, however,
known analytically [27, 51]. For d > 1 or n > 2 the
DVR representation of K becomes a sparse matrix that
can be calculated very efficiently based only on the 1D
two-body matrix elements. The DVR construction in
this case starts from product states of (n− 1)× d plane
waves.
As discussed in Refs. [27, 51] it is straightforward (and

numerically very efficient) to construct out of these basic
states subspaces with proper bosonic or fermionic (in-
cluding spin degrees of freedom) symmetry properties,
and, optionally, definite parity. Moreover, the breaking
of spherical symmetry in infinite volume down to the
cubic symmetry subgroup O in FV can be accounted

for by introducing appropriate projectors [53], repre-
sented as sparse matrices in the DVR basis [27]. These
projectors select a specific cubic irreducible representa-
tion Γ out of the set {A1, A2, E, T1, T2} (with dimen-
sionalities 1, 1, 2, 3, and 3, respectively). Angular-
momentum multiplets are reducible with respect to O,
so each angular-momentum state in infinite volume in
general contributes to several Γ. Low-lying A1 states are
to a good approximation dominated by infinite-volume
S-wave states, whereas P -wave states contribute predom-
inantly to T1 multiplets. In practice it suffices to perform
cubic-projected calculations at selected volumes in order
to assign quantum numbers.

III. APPLICATIONS

A. Simple two-body system

As a first test we consider a simple two-body system (in
three dimensions) interacting via a Gaussian potential

V (r) = V0 exp

(

−
( r

R

)2
)

. (11)

For this calculation we use natural units with ℏ = c = 1
and also set the particle mass m = 1. As (arbitrary) spe-
cific choice we set R = 2 and V0 = −4.0, which produces
a spectrum with two bound S-wave states in infinite vol-
ume, one of which is very loosely bound. In finite volume
both bound states are found in the A+

1 representation,
where the superscript indicates positive parity. The FV
spectrum including the lowest states is shown in Fig. 1.
For the FVEC calculation we chose to include training
data at four different volumes, L = 6, 7, 8, 9, including
four states at each training volume so that the total num-
ber of training data is 4 × 4 = 16. This covers the two
A+

1 bound states as well as the lowest lying scattering
states, falling in the two-fold degenerate E+ represen-
tation. The DVR calculation was performed using an
N = 32 model space for all data points. Extrapolation
based on this training set work very well, as shown in
Fig. 1 up to L = 20, with merely about 4% deviation be-
tween FVEC and exact calculation for the ground state
at L = 20.

B. Three-boson resonance

As another application we consider three identical
spin-0 bosons with mass m = 939.0 MeV (mimicking
neutrons) interacting via the two-body potential

V (r) = V0 exp

(

−
( r

R0

)2
)

+V1 exp

(

−
(r − a

R1

)2
)

, (12)

with V0 = −55 MeV, V1 = 1.5 MeV, R0 =
√
5 fm,

R1 = 10 fm, and a = 5 fm. This potential produces
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of EC to scenarios where the parametric dependence is
in the model space rather than just the Hamiltonian. In
particular, it would be interesting to develop a version
of EC to extrapolate the frequency parameter ℏω in cal-
culations employing truncated harmonic-oscillator (HO)
bases, which play an important role in nuclear physics.
Such a scheme could for example leverage existing IR and
UV extrapolation schemes [56–60].
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[8] M. Lüscher, Nuclear Physics B 364, 237 (1991).
[9] K. Rummukainen and S. Gottlieb, Nucl. Phys. B 450,

397 (1995).
[10] K. Polejaeva and A. Rusetsky, Eur. Phys. J. A 48, 67

(2012), arXiv:1203.1241 [hep-lat].
[11] R. A. Briceno and Z. Davoudi, Phys. Rev. D 87, 094507

(2013), arXiv:1212.3398 [hep-lat].
[12] M. T. Hansen and S. R. Sharpe, Phys. Rev. D 92, 114509

(2015), arXiv:1504.04248 [hep-lat].
[13] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, Journal

of High Energy Physics 2017, 109 (2017).
[14] H.-W. Hammer, J.-Y. Pang, and A. Rusetsky, Journal

of High Energy Physics 2017, 115 (2017).
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