Volume extrapolation via eigenvector continuation
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We develop an extension of eigenvector continuation (EC) that makes it possible to extrapolate
simulations of quantum systems in finite periodic boxes across large ranges of box sizes. The formal
justification for this approach, which we call finite-volume eigenvector continuation (FVEC), is
provided by matching periodic functions at different box sizes. As concrete FVEC implementation
we use a discrete variable representation based on plane-wave states and present several applications

calculated within this framework.

I. INTRODUCTION

Simulations of quantum systems in finite volume (FV),
such as a cubic box with periodic boundary conditions,
can be used to obtain information about that same sys-
tem in infinite volume. In a series of highly influen-
tial papers [1-3], Liischer has shown that the real-world
(infinite-volume) properties of the system are encoded
in how its (discrete) energy levels change as the size of
the volume is varied. Bound-state relations connect the
finite-volume energy correction to the asymptotic proper-
ties of wave functions, leading to an exponential volume
dependence [1, 4-6], while information about elastic scat-
tering can be obtained from discrete energy levels with
power-law dependence on the box size. Resonances, i.e.,
short-lived, unstable states, are manifest in the volume-
dependent spectrum as avoided crossings of energy lev-
els [7-9]. While early studies of finite-volume relations
considered two-body applications, work in recent years
has focused largely on deriving rigorous FV quantiza-
tion conditions for three-body systems [10-22], following
early studies of the triton and Efimov trimers in finite
volume [23-26]. Related work has derived the volume
dependence for bound states comprised of an arbitrary
number of particles [6], and it has been demonstrated
that genuine few-body resonances can be identified from
FV calculations [27], thus providing a discovery tool for
such exotic states.

Eigenvector continuation (EC), first introduced in
Ref. [28], is a powerful (yet strikingly simple in practice)
method to address otherwise unfeasible physics problems.
Given a Hamiltonian with parametric dependence H(c),
EC enables robust extrapolations to a given target point
¢, from “training data” far away from that point by
exploiting information contained in eigenvectors. The
essence of the system is “learned” through the construc-
tion of a highly effective (nonorthogonal) basis, leading
to a variational calculation of the states of interest with
rapid convergence [29]. Recent work [30, 31] has shown
that EC as a particular reduced-basis (RB) method falls
within a larger class of model-order reduction (MOR)
techniques. In practice, EC boils down to constructing
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Hamiltonian and norm matrices (denoted as H(c,) and
N, respectively) and solving the generalized eigenvalue
problem H(c,)|v) = AN|).

Since its inception, various interesting applications
and extensions of EC have been identified in a short
time. Early applications focusing on bound states in-
clude the construction of highly efficient emulators for
uncertainty quantification [32-34] and robust extrapola-
tions of perturbation theory [35-37]. More recently, the
approach has been extended to construct emulators for
scattering systems [38-40] and to studies of nuclear reac-
tions [41, 42].

We introduce here a novel extension of EC that goes
beyond simple parametric dependencies of the Hamilto-
nian. Specifically, we develop EC as a tool for performing
volume extrapolations at greatly reduced numerical cost.
Since this extension is applicable in connection with any
numerical method that provides access to wave functions
in periodic finite topologies, it immediately yields sev-
eral interesting applications, among which we highlight
in particular FV studies of few-body resonances [27, 43].
Identifying such unstable states as avoided crossing of
FV energy levels requires the calculation of spectra over a
range of volumes, and in particular in very large boxes to
reach, for example, the low-energy regime of few-neutron
systems, which are of great current interest in nuclear
experiments [44, 45] and nuclear theory (see, for exam-
ple, Refs. [43, 46-48]). The technique introduced in this
paper provides a way to greatly extend the reach of FV
resonance studies. Moreover, few-body approaches used
to extrapolate Lattice QCD results to infinite volume via
matching to an effective field theory description, recently
discussed in Ref. [49], can benefit from EC based volume
extrapolation.

II. FINITE-VOLUME EIGENVECTOR
CONTINUATION

By “finite-volume eigenvector continuation (FVEC)”
we refer to the application of EC to extrapolate prop-
erties of quantum states calculated in a set of periodic
boxes with sizes L;, ¢ = 1,--N to a target volume L.
This should be distinguished from using standard EC
at a fixed single volume L to extrapolate a parametric
dependence of the Hamiltonian. Specifically, we want



to consider states |¢r,) at volume L; (or sets of states
{W(J)> j=1,--N;}) and perform EC using Hamiltonian

and norm matrices
Hl] = <¢L1 j>7 (18.)
Nij = (Y, [Yr;) - (1b)

However, at face value the above definitions appear prob-
lematic because the dependence on L does not simply
stem from the Hamiltonian; it is inherent in the definition
of the Hilbert space. Two states [¢z,) and | ;) are ac-
tually vectors in different Hilbert spaces for i # j, and it
is not immediately clear how the matrix elements written
down naively in Egs. (1) can be well-defined quantities.
To resolve this issue, we develop the notion of a vector
space that accommodates states with arbitrary periodic-
ities and show how it relates to FVEC calculations.

A. Periodic matching

Let H be the space of periodic functions f : R — C
with f(x+ L) = f(x) for some fixed but arbitrary L > 0.
Consider the union

U #e. (2)

{L>0}

We proceed to show that this concept can be used to
define overlaps and matrix elements of periodic states
with different periods. We restrict the discussion to the
special case of a one-dimensional (1D) two-body system
(described by a single relative coordinate x), and merely
note that everything generalizes to a larger number of
spatial dimensions and/or particles in a straightforward
manner.

a. Addition. Clearly H is not a vector space if one
defines the sum of f,g € H in the usual pointwise man-
ner (because the sum of two periodic functions is not in
general periodic). However, for given L, L’ > 0 one can
map f € Hr to Hy by means of a dilatation:

7 1(5e)- ®

With this, we can define an addition operation for f €
Hy and g € H as follows:

(Dr,p f)(z) =

max

(f + 9)(x) = (Dro f)(z)+g(x) (4)

for L' > L, and adjusting g instead in the opposite case.
The result is a periodic function in Hy, C H, and since

multiplication by a scalar is trivially defined, (H, m—la-x) is
a vector space.

b. Immer products. An inner product on H can be
defined similarly. Let f,¢g € H and, without loss of gen-
erality, assume L < L’ for the periods of f and g, respec-

tively. Then

L'/2

(D, f)(=) g(x)dz

(5)
defines an inner product on (H,m—ix). Indeed, consider
for example adding h € Hp» with L” > L' to the second
operand:

<f7 g>max == <DL,L/f, 9>HL/ :/

—L'/2

(f.9 T hYymax = (f, Dr/,17g + h)max
= (Dr,pf,Drr g+ h)w,, (6)
= (Dr,of, Do @4, + (Do fy W),
= (f, P max + (f, M) max ,

where we set 2’ = (L'/L")x to find

(Dr,o fy Drr,prg)#, .

L”/Q \/> L/ L/
Zgl=Zz)d
L”/Q L// < L// > L// g < LI/ I) x (7)

/ LLZ v’ (I) 9(2") da’ = (f,9)max

They key step above was using the property Dy . f =
Dy 1Dy o f of dilatations (which actually form a mul-
tiplicative group). Other combinations of operands and
periods work similarly, and again including scalar factors
is trivial.

¢.  Matriz elements. Finally, consider a (linear) op-
erator O on Hy. While initially this is only given as a
mapping H; — Hr, we can define its action on a func-
tion f € Hy by inserting an appropriate dilatation:

OfEODLgLf eHy. (8)

Together with the inner product (5) this provides a defi-
nition of operator matrix elements between different Hp,,
Hy.

B. Truncated periodic bases

Consider now truncated bases Sy y and S/ n for Hp,
and H/, respectively, with N a positive integer. Specif-
ically, let Sp.y = {6\ 1 j = 1,-N} with

1 . 27j >
—exp |i—=x 9
o ?)
be a set of plane waves. Then Dy, 1/ is a bijection be-
tween Sp n and Sis n, and because for each j we have
Dy, L/(;S;.L) = d);L ), Therefore, if ¥ and v’ are functions
expanded upon Sy, y and Sy v, respectively, taking the
inner product of their coefficient vectors in RY is the
same as considering the inner product on A as defined in

Eq. (5). Note that while this inner product has been de-
fined by matching functions to the maximum period, we
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could equally well have chosen to match to the smaller
period. In practice the concrete choice does not mat-
ter because both lead to identical inner products on R¥.
Overall we have arrived at a justification for writing down
Egs. (1) as well a straightforward prescription for imple-
menting FVEC numerically.

Discrete variable representation. While conceptually
straightforward, the plane-wave basis (9) is in general not
an efficient approach to study few-body systems. It can,
however, be used as starting point for the construction of
a so-called discrete variable representation (DVR). Orig-
inally suggested as an alternative to harmonic-oscillator
based calculations in nuclear physics [50], recent work
has established this plane-wave DVR as a powerful nu-
merical framework for studying few-body resonances in
FV [27, 43, 51]. Tts construction starts with the states
¢j(z) defined in Eq. (9), with j = —N/2,--N/2 — 1 for
even N > 2, and where as before x denotes the relative
coordinate for a two-body (n = 2) system in d = 1 dimen-
sions. Any periodic solution of the 1D Schrédinger equa-
tion can be expanded in terms of the ¢;(z), yielding a
discrete Fourier transform (DFT). Given a set of equidis-
tant points z, € [—L/2,L/2) and weights wy = L/N
(independent of k), DVR states are constructed as [52]

N/2-1

Ur(z) = Y Uydi(x), (10)

i=—N/2

with Uy; = \/wr¢;(x)) defining a unitary matrix. Calcu-
lations in a periodic box can then be carried out through
an expansion in terms of the ¢ (x) instead of the ¢;(x).
Importantly, since the transformation between plane-
wave states and DVR states is unitary, the above con-
siderations that justify FVEC carry over to DVR calcu-
lations.

Local potentials are represented in the DVR by ba-
sis diagonal matrices [27, 51]. Separable potentials have
a more complicated representation, but can also be im-
plemented efficiently [43]. Another advantage of the
DVR is that despite being effectively defined on a lat-
tice of points, it yields a continuum dispersion relation
E = p?/(2u), where p and p are the center-of-mass mo-
mentum and the reduced mass of the system, respec-
tively. This is achieved by a nondiagonal matrix repre-
sentation for the kinetic energy K, which is, however,
known analytically [27, 51]. For d > 1 or n > 2 the
DVR representation of K becomes a sparse matrix that
can be calculated very efficiently based only on the 1D
two-body matrix elements. The DVR construction in
this case starts from product states of (n — 1) x d plane
waves.

As discussed in Refs. [27, 51] it is straightforward (and
numerically very efficient) to construct out of these basic
states subspaces with proper bosonic or fermionic (in-
cluding spin degrees of freedom) symmetry properties,
and, optionally, definite parity. Moreover, the breaking
of spherical symmetry in infinite volume down to the
cubic symmetry subgroup O in FV can be accounted

for by introducing appropriate projectors [53], repre-
sented as sparse matrices in the DVR basis [27]. These
projectors select a specific cubic irreducible representa-
tion I' out of the set {A;1, As, E,T1,T2} (with dimen-
sionalities 1, 1, 2, 3, and 3, respectively). Angular-
momentum multiplets are reducible with respect to O,
so each angular-momentum state in infinite volume in
general contributes to several I'. Low-lying A; states are
to a good approximation dominated by infinite-volume
S-wave states, whereas P-wave states contribute predom-
inantly to T7 multiplets. In practice it suffices to perform
cubic-projected calculations at selected volumes in order
to assign quantum numbers.

ITII. APPLICATIONS
A. Simple two-body system

As a first test we consider a simple two-body system (in
three dimensions) interacting via a Gaussian potential

V(r) = Voexp<—(;>2) . (11)

For this calculation we use natural units with A =c=1
and also set the particle mass m = 1. As (arbitrary) spe-
cific choice we set R = 2 and Vjy = —4.0, which produces
a spectrum with two bound S-wave states in infinite vol-
ume, one of which is very loosely bound. In finite volume
both bound states are found in the A] representation,
where the superscript indicates positive parity. The FV
spectrum including the lowest states is shown in Fig. 1.
For the FVEC calculation we chose to include training
data at four different volumes, L = 6,7,8,9, including
four states at each training volume so that the total num-
ber of training data is 4 x 4 = 16. This covers the two
Af bound states as well as the lowest lying scattering
states, falling in the two-fold degenerate ET represen-
tation. The DVR calculation was performed using an
N = 32 model space for all data points. Extrapolation
based on this training set work very well, as shown in
Fig. 1 up to L = 20, with merely about 4% deviation be-
tween FVEC and exact calculation for the ground state
at L = 20.

B. Three-boson resonance

As another application we consider three identical
spin-0 bosons with mass m = 939.0 MeV (mimicking
neutrons) interacting via the two-body potential

V(r) = Vpexp (— (};)2) +V; exp (— (r];a) 2) » (12)

with Vj = =55 MeV, V; = 1.5 MeV, Ry = /5 fm,
Ry = 10 fm, and a = 5 fm. This potential produces
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Figure 1. Positive-parity energy spectrum of two particles in
finite volume as a function of the box size L for a Gaussian
potential (11) with R = 2 and Vo = —4.0 in natural units
(see text). Solid lines show the three lowest energy levels cal-
culated in a DVR basis with N = 32. Dashed lines indicate
FVEC results obtained based on training data from four dif-
ferent box sizes (solid circles).
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Figure 2. Positive-parity finite-volume energy spectrum of
three bosons interacting via the potential (12). Solid lines
show the exact states calculated in DVR bases with N < 28,
whereas dashed lines indicate FVEC results obtained based
on training data at five different box sizes (solid circles). The
FVEC calculation was performed using 8 x 5 = 40 training
states, which includes the A} ground state not shown in the
plot. See text for details.

a resonance state with energy Fr = —5.31 MeV and half
width 0.12 MeV [54] (shaded band in Fig. 2).

In Fig. 2 we show an FVEC calculation for this sys-
tem, using training data at five different box sizes L =
21,22,23,24,25 fm with N = 28. For each training vol-
ume eight states were included, covering four A states
(including the deeply bound ground state not shown in
the figure), one E* state, and one T, state (for which
only part of cubic multiplet was included because the
training calculations did not all yield the full triplet).
In total, 8 x 5 = 40 training states were included. The
FVEC calculation provides an excellent reproduction of
the exact energy levels, with noticeable deviations only
for excited states at box sizes far away from the train-
ing regime. In particular, FVEC perfectly captures the
avoided crossing between the lowest two A states in
Fig. 2, indicating the three-boson resonance that Ref. [27]
extracted at Fr = —5.32(1) MeV from the FV spectrum,
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Figure 3. Negative-parity S, = 1/2 finite-volume energy

spectrum of three neutrons interacting via a separable con-
tact potential fit to reproduce the neutron-neutron scattering
length a,, = —18.9 fm. Solid lines show the exact states
calculated in DVR bases with NV < 22, whereas dashed lines
indicate FVEC results obtained based on N = 22 training
data at three different box sizes (solid circles). The first and
third levels shown in the plots are 7] states with total spin
S = 1/2. The second level is a (noninteracting) S = 3/2 T
state, whereas the fourth level is a T, state with S = 1/2.
A total number of 3 x 8 = 24 training data were used to
generate this plot, covering a subset of states from the four
three-dimensional multiplets (see text for details).

in good agreement with Ref. [54].

C. Three neutrons

Finally, we consider a system of three neutrons (n) in
pionless effective field theory at leading order. Specifi-
cally, we use a separable momentum-space contact inter-
action,

Vig,q") = Cgla)g(d),

where g(q) = exp(—q®"/A*") is a super-Gaussian regu-
lator. A projector ensures that the potential acts only
on spin-singlet neutron pairs with vanishing angular mo-
mentum (FV analog of the 'Sy channel). This system
was recently studied in Ref. [43] (which also discusses the
use of separable interactions with the plane-wave DVR),
and as in that work we set n = 2 and fix the momentum
cutoff A = 250 MeV. The low-energy constant C' is fixed
to reproduce the nn scattering length a,, = —18.9 fm.
Figure 3 shows results using training data from N = 22
DVR calculations at L = 19, 20,21 fm. The DVR basis
B was restricted to include only states with spin pro-
jection S, = 1/2, which covers total spin S = 1/2 and
S = 3/2. Tts dimension dim B = 28, 344, 960 is quite siz-
able, and even larger bases are needed to converge the
calculation in boxes with L > 32 fm [43]. Compared to
the previous examples, this application is more involved
because (a) the inclusion of spin increases the DVR basis
size at fixed N and (b) the low-lying fermion spectrum is
comprised of negative-parity 77 and 7% states, each com-
ing as threefold degenerate multiplets (with dominant
correspondence to P-wave and D-wave states in infinite

(13)
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Figure 4. FVEC calculation with uncertainty estimates for two particles interacting via a Gaussian potential with range R = 2
and depth Vo = —4.0 (in natural units). A pool of 16 training data sets with 6 < L < 9 (indicated as dark shaded bands) was
used to estimate the FVEC uncertainty by considering all combinations of Ngc = 4 (left panel) and Ngc = 5 (right panel) out
of the overall pool. The range of all these individual calculations is shown as shaded bands.

volume, respectively). For the training calculations used
to generate Fig. 3, the iterative diagonalization did not
resolve all these degeneracies, finding between one and
three states of each multiplet, not uniform across the dif-
ferent training volumes. In spite of these imperfections,
FVEC still performs remarkably well after preprocessing
the set of training vectors with a modified Gram-Schmidt
orthogonalization. This step is well known to be useful
for EC calculations in order to avoid numerical problems
stemming from singular and/or ill-conditioned norm ma-
trices. Therefore, this example demonstrates the robust-
ness of the FVEC method.

IV. UNCERTAINTY ESTIMATION

The accuracy of an FVEC calculation depends on the
choice of training data, both on the range it is chosen
from and on the number of training points used to con-
struct the EC subspace. This dependence can be used
to estimate the inherent uncertainty in an FVEC predic-
tion, which we illustrate in Fig. 4 for the same two-body
system with attractive Gaussian interaction considered in
Sec. IIT A. Instead of using a single fixed set of training
points, we calculate (using N = 32 for the DVR calcu-
lation) a training pool of 16 box sizes located uniformly
within the interval 6 < L < 9. To generate the left
panel in Fig. 4, we then pick all possible combinations of
Ngc = 4 training points out of this pool and perform an
FVEC calculation for each of these combinations. The
range of results from these calculations (performed for
each target volume) is shown as shaded bands in Fig. 4.
To generate the right panel in the figure the procedure
was repeated choosing all combinations of Ngc = 5 train-
ing points out of the pool of 16.

Accuracy and precision of the extrapolation evidently
increase with higher Ngc as expected. The band for the
ground state almost overlaps at large L with the exact
result for Ngc = 5, whereas the other levels are already
well converged with Ngc = 4 (so much so that the shaded
bands for the excited states are barely visible in the fig-
ure). We note that due to the variational nature of EC

calculations the bands always lie above the exact energy
levels. This is a particular feature of energy observables,
while no such constraint holds in general for expectation
values of other operators [32].

V. DISCUSSION AND OUTLOOK

The examples considered above demonstrate that
FVEC is able to perform well for a variety of different sce-
narios, including bound and unbound states and bosonic
as well as fermionic systems. In particular, we find the
performance of FVEC roughly independent of the dimen-
sion of the model space, considering that all applications
above use comparable numbers of training data. Based
on this one should expect FVEC to work equally well
even at large scales.

Eigenvector continuation has built a reputation of
yielding substantial speedups over exact calculations, to
an extent that it can render possible otherwise unfea-
sible analyses [33]. FVEC does not disappoint in this
regard: for example, an exact calculation at a single box
size shown in Fig. 2 requires roughly 1100 matrix-vector
multiplications to find the low-energy spectrum of the
N = 28 DVR Hamiltonian using PARPACK [55]. The
FVEC calculation with 40 training data points on the
other hand requires only 40 such matrix-vector products
(plus negligible numerical cost from vector-vector prod-
ucts and solving the EC eigenvalue problem). Since the
cost of constructing the DVR Hamiltonian for each target
box size is also comparatively negligible, FVEC provides
a speedup factor of roughly 28 for a single L in this par-
ticular scenario, and even more for a calculation spanning
multiple L such as shown in Fig. 2.

While the focus in the examples we presented has been
on using FVEC for eztrapolation, there is no requirement
to choose training data from a narrow set of volumes.
Sampling instead on both ends of the regime of interest
to perform an interpolation can further improve the ac-
curacy of FVEC at fixed cost. Uncertainty estimation as
discussed in Sec. IV works the same way for this scenario.

Our work provides a perspective for further extensions



of EC to scenarios where the parametric dependence is
in the model space rather than just the Hamiltonian. In
particular, it would be interesting to develop a version
of EC to extrapolate the frequency parameter fiw in cal-
culations employing truncated harmonic-oscillator (HO)
bases, which play an important role in nuclear physics.
Such a scheme could for example leverage existing IR and
UV extrapolation schemes [56-60].
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