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Experimental and theoretical studies have highlighted protonated water clusters (PWCs) as important models of the
excess proton in aqueous systems. A significant focus has been characterizing the spectral signatures associated with
different excess proton solvation motifs. Accurate vibrational frequency calculations are crucial for connecting the
measured spectra to the structure of PWCs. In this paper, we extend and characterize a coupled local mode (CLM)
approach for calculating the infrared spectra of PWCs, using the HT(H,O)4 cluster as a benchmark system. The CLM
method is relatively low cost and incorporates the anharmonicity and coupling of OH vibrations. Here, we demonstrate
the accuracy of the technique compared to experiments. We also illustrate the dependence of calculated spectral features
on the underlying electronic structure theory and basis sets used in the local mode frequency and coupling calculations.

I. INTRODUCTION

The study of aqueous solutions has drawn a significant
amount of interest in the physical and chemical sciences. This
is because aqueous environments are ubiquitous in biologi-
cal, ecological, and chemical systems, which bear great im-
portance across diverse scientific disciplines. It is particularly
important to understand the structure and behavior of acidic
and basic aqueous solutions, since they constitute the envi-
ronment of many biological and ecological systems. For the
hydrated proton, the solvation structure is typically character-
ized in relation to two extremes: (1) a symmetrically solvated
hydronium species, H;0" (H,0)3 or H"(H,0)y, called Eigen,
and (2) a proton evenly shared by a pair of neighboring waters,
HsO4 or H"(H,0),, called Zundel.!"> Unfortunately, despite
extensive experimental and theoretical inquiry, the structure
and dynamics of the hydrated excess proton remain contro-
versial and demand further study.>’

Various techniques can be used to study aqueous systems,
each suited uniquely to providing insights ranging from ther-
modynamic quantities to molecular structure and dynamics.
In principle, infrared (IR) spectroscopy promises to identify
the nature of the hydrated proton because of the sensitivity
of the underlying molecular vibrations to their local chemical
and solvation environments.®~'© Complicating the interpreta-
tion of the aqueous proton is the broad continuum spanning
1000 - 3000 cm~! in the IR absorption spectrum of acidic
solutions.*%!! This broad featureless region complicates the
interpretation of the IR spectrum in terms of the limiting Eigen
and Zundel species.*® Attempting to disentangle these broad
bands by examining the time-dependent 2D-IR responses has
still not definitively resolved the interpretation of the IR spec-
tra of aqueous acids.>>® The continuum arises because the
contributing vibrational modes are anharmonic and strongly
coupled. Thus, minute structural fluctuations result in signifi-
cant changes in vibrational frequencies that contribute to mas-
sive inhomogeneous broadening.®!%13 In theoretical studies
of the hydrated excess proton, it is thus critically important
to utilize techniques that can capture both the anharmonicities
in the vibrational potential energy surface (PES) and the in-
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homogeneous broadening caused by fluctuations in the local
chemical environment.

Concurrent with theoretical approaches that directly inter-
rogate the structure of the aqueous hydrated proton are ex-
perimental techniques that aim to characterize the excess pro-
ton when it is isolated in a variety of simpler chemical mo-
tifs. Studies of cryogenic gas-phase protonated water clusters
(PWCs), HT (H,0),, offer unique insights unavailable in the
condensed phase.!4!7 For our purposes, PWCs offer an op-
portunity to directly probe the distinction between the Eigen
and Zundel motifs; the Eigen and Zundel structures are es-
sentially defined by the n = 4 and n = 2 clusters.">!® Other
clusters exhibit structures somewhere in between the limiting
Eigen and Zundel motifs.'>** Both the Duncan and Johnson
groups have extensively expanded the understanding of the
hydrated excess proton by taking a bottom-up approach of
studying PWCs of various sizes.!>!%1921 Because the clus-
ters are cryogenically cooled, the IR spectra contain relatively
distinct features amenable to interpretation in terms of spe-
cific vibrational modes associated with particular molecular
structures, in contrast to the mostly featureless aqueous acid
continuum. Johnson has used this approach to track the evo-
lution of the excess proton’s stretching modes throughout a
variety of cluster sizes.'%?

Johnson has also implemented an approach based on se-
lective deuteration of the PWCs so that the spectral response
given by modes on water molecules in distinct chemical envi-
ronments can be isolated.'%>!?? Selective deuteration is effec-
tive both because of the isotopic shift in the OH stretching and
HOH bending frequencies caused by isotopic substitution of
H with D, and the off-resonance modes are decoupled.!???
Both the HT(H,0),; and CsT(H,0)y clusters have been
studied using this selective deuteration approach.'®?? These
studies have provided enormous insights into the spectral re-
sponses caused by aqueous protons in different chemical en-
vironments.

The interpretation of the IR spectra of PWCs has benefited
from theoretical studies.?’-?32% The experimental spectra pro-
vide a benchmark of the accuracy of theoretical methods for
computing vibrational frequencies and spectra. As in the con-
densed phase, the anharmonicity of the potential experienced
by the excess proton prohibits the use of the harmonic approx-
imation. Thus, harmonic normal mode calculations, which
are standard in quantum chemistry packages, are unreliable
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for PWCs.2*%7 Moreover, the modes in PWCs are also an-
harmonically coupled, which leads to complicated mode mix-
ing. For instance, the water stretching fundamental’s acciden-
tal degeneracy with the bending overtone can lead to a Fermi
resonance that significantly mixes the bending and stretching
vibrations.”3?” Addressing these difficulties with PWCs will
point towards new approaches for dealing with these same dif-
ficulties in the condensed phase.

Furthermore, high-level anharmonic vibrational structure
methods have been applied to PWCs. The Meyer group used
the multiconfiguration time-dependent Hartree (MCTDH)
method to perform a full-dimensional (15 dimensions)
quantum-dynamical calculation on the Zundel molecule,
HsO7 .1 The Bowman group has used the VSCF/VCI
method implemented in the MULTIMODE software package
to study PWCs, including the three-dimensional H (H,0);
cluster.”830 Spectra produced with these methods give im-
pressive quantitative agreement with experiment. Unfortu-
nately, the computational cost of these methods makes them
relatively difficult to apply to problems in the condensed
phase. The high-level calculations on PWCs have generally
used an ab initio many-body PES and dipole moment surface
(DMS) to reduce computational costs.>'3> These PESs/DMSs
are, however, generally quite costly to obtain if a high-level of
electronic structure theory is utilized.>* The VSCF/VCI cal-
culations performed by Bowman have also sometimes used a
local monomer approximation to separate the vibrations of the
cluster into modes on several individual water molecules and
the solvated Eigen or Zundel species.?83*

A subset of different studies have combined sampling
unique structures from molecular dynamics (MD) simula-
tions and calculating the vibrational frequencies using den-
sity functional theory (DFT) and discrete variable represen-
tation (DVR) of OH stretches in acidic and basic aque-
ous condensed-phase solutions.*3-33-3¢ QOthers have used the
Fourier transform of the dipole autocorrelation function to
generate the IR spectrum.®3” The choice of methods used to
generate the MD trajectories of both aqueous systems and cer-
tain PWCs varies from purely classical force-field simulations
to quantum ring-polymer MD simulations.*323-38.39 In several
instances, the vibrational frequencies computed using DFT
were used to develop empirical frequency maps.*® This sim-
plifies the calculation of the OH stretch vibrational frequency
of interest to computing collective variables that are available
from the MD simulations.$3% For instance, the electric field
along the OH bond can be used to create a map of the fre-
quency and transition dipole moment vector magnitudes.®3
The vibrational frequency map-based methods have given in-
sight into the IR spectra of water and aqueous solutions in the
condensed phase. They have not, however, been applied to
gas-phase PWCs where comparison can be made to the rel-
atively isolated spectral features in the experiment and other
high-level methods, which invites an avenue of further study.

In this paper, we extend and validate the coupled local mode
(CLM) approach for calculating the IR spectra of PWCs,
though it can be applied to other systems as well.?® The
CLM method proceeds in a series of steps. First, snap-
shots of the cluster are sampled from an ab initio molecu-

lar dynamics simulation. For each of these snapshots, a se-
ries of local modes (LMs) are generated from numerically
solving the Schrodinger equation using a generalization of
Miller’s discrete variable representation (DVR) method and
evaluating the differences between the eigenvalues of the LM
Hamiltonians.*!*> Bi-linear coupling constants are then cal-
culated for each pair of local modes. Finally, the LMs are
coupled, and the resultant coupled modes are used to gen-
erate an inhomogeneous IR spectrum that is deconvoluted in
terms of the participating LMs. This method produces a rea-
sonably cost-effective and accurate approach which has the
versatility to be applied in the condensed phase. As a bench-
mark of this method, we will primarily study the Eigen cluster,
H™(H,0)4. We have recently shown several results for more
complex clusters using the CLM method, but here we present
the theoretical basis for the CLM method in more detail.?®
A detailed analysis of the sensitivity of the CLM method to
various choices in electronic structure and derivative expan-
sion are also presented. Finally, we show that several reason-
able cost-reduction schemes can be applied to utilize the CLM
method for more complex systems.

1. COUPLED LOCAL MODE VIBRATION THEORY
A. The Approxmate Vibrational Hamiltonian

We begin with Wilson’s form of the vibrational Hamilto-
nian written in terms of the internal coordinates {g j},43

n BPE[I 407
H=—-—Y |=— J"} V({q; 1
2%[%8 aq.| V@D (1)

where g/¥ are Wilson’s G matrix elements.*> In order to uti-
lize this Hamiltonian, the potential energy is expanded using
a multidimensional Taylor series in up to two of the M in-
ternal coordinates that are chosen to be treated quantum me-
chanically. For the purposes of this paper, these will be the
OH bond lengths and HOH bending angles. The expansion is
truncated at two coordinates so that only vibrational couplings
between pairs of LMs are considered. The Taylor expansion
is performed at a point where each internal coordinate that is
treated quantum mechanically is at its equilibrium value in the
sampled geometry, denoted by the subscript label P. Note that
this is not the same as an equilibrium geometry, since other co-
ordinates are not necessarily at their equilibrium value. Thus,
thermal fluctuations away from equilibrium are intrinsically
incorporated into the CLM calculations. This expansion gives,
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where 847 = (G — qjeq)"s qj,eq is the equilibrium value of g,
and single coordinate derivatives of all orders have been com-
bined into smooth functions V(g;). The vibrational Hamilto-
nian in equation (1) now consists of a sum of diagonal and
off-diagonal operators in terms of the internal coordinates.

Next, the vibrational Hamiltonian in equation (1) is parti-
tioned into a set of local and coupling operators,
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where H(q ;) is interpreted as the Hamiltonian operator as-
sociated to the motion along an internal coordinate g;, and
H(g j»qrk) denotes the Hamiltonian operator corresponding to
the coupling between motions along coordinates ¢; and gj.

B. The CLM Representation

In order to solve for the coupled mode transition frequen-
cies, a representation of the vibrational Hamiltonian in a LM
basis is constructed. The LM approximation consists of treat-
ing the eigenfunctions of Hj,..; as separable in terms of excita-
tions involving the individual internal coordinates.** Equiva-
lently, this approximation is equivalent to a separation of vari-
ables, as implied by equation (4). The eigenstates of Aipeal
are then given by the product of the eigenstates of each single-
coordinate Hamiltonian from equation 4),$

A(q;)
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where n; is the number of quanta associated with coordinate
qj,and & ; 18 the corresponding energy contribution. Note that
equation (6) implies that each LM Hamiltonian, H(g;), only
acts on its own wavefunctions. In this paper, we will focus
on states with quanta in only one coordinate, which admits a
simplifying notation,

vl )= v vl ) (8)

This forms an orthogonal basis to construct a representation
of the vibrational Hamiltonian. The matrix elements of ﬂlocal
from equation (4) with respect to the one-mode product states
in equation (8) are thus given by,
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This means the ground state transition frequency associated
with a given LM can be evaluated as,
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where |0) is the ground state with no quanta in any modes. In
other words, to evaluate the LM transition frequencies all that
is needed are the excitation energies for individual internal co-
ordinates. The diagonal elements of the CLM representation
of the Hamiltonian in equation (3) are thus written as,
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since the states in equation (8) only involve excitation of a
single coordinate.

The coupled local modes (CLMs) are obtained by coupling
the LM transitions via the appropriate matrix elements from
Heoup in equation (5).84 The couplings between the LMs as-
sociated to g; and g; have matrix elements of the form,
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where in the second step the matrix elements of the potential
are simplified and the product rule has been used. Evaluat-
ing the derivatives is done with the general finite difference
formula for a function f(x,y),
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where (}) is a binomial coefficient and hy and hy are the finite
difference steps along the coordinates x and y, respectively.*
In practice, the infinite series expansion of the potential is
truncated with a very small number of terms.

After calculating the local modes and couplings, or diag-
onal and off-diagonal matrix elements, in equations (11) and
(12), the CLM representation of the vibrational Hamiltonian
in equation (3) is constructed from its matrix elements, which
is denoted H. This effective representation of the vibrational
Hamiltonian allows for the determination of the coupled mode
transition frequencies and their contributions in terms of the
local mode frequencies.

C. Coupled Mode Frequencies and Intensities

The CLM Hamiltonian matrix H can be diagonalized to
give the coupled energies and mixed states, represented by the
equation H = BEBT, where E is the diagonal matrix of cou-
pled energies and the columns of B contain the coefficients
giving the contribution of the basis states in equation (6) to
the coupled energy states, including |0). The ground state is
not coupled to the other (off-resonance) states in the CLM
method.*’ Thus, the expansion H = Eg ® H' is warranted,
where H' is the CLM Hamiltonian excluding the ground state,
@ is the matrix direct sum, and,

Eo=Y ¢ (14)
7

This also gives,
H= (16B)(EcaE)(1aB)T (15)

where the connection between both E, B and E/, B’ is the same
as the relation between H and H'. The transition frequency
and coupling matrix x, whose diagonal elements are the LM
transition frequencies and whose off-diagonal elements are
the couplings between them, can thus be defined,
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where I is the identity matrix, €2 is the diagonal matrix of cou-
pled transition frequencies a)jc, and in the second step k has

been diagonalized. This means that the coefficients in a col-
umn of B’ are interpreted as the contributions of a given LM
to the CLM whose transition frequency is given by the appro-
priate eigenvalue via a)jC = (E} — Ey)/h. The construction of
x means that the LM energies are not needed to obtain the
CLM transition frequencies, since the coupled transitions can
be constructed from only the LM transition frequencies.

From this analysis, the transition dipole moment (TDM) for
a given CLM can also be written in terms of the LM TDMs.
This can be justified by writing the dipole moment operator
as a Taylor expansion in the internal coordinates about their
equilibria in the sampled geometry in a manner similar to the
treatment of the potential energy in equation (2),
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where the exclusion of the derivatives in more than one inter-
nal coordinate is motivated by the fact that (0| 54;(0) ~ 0, as
this state is relatively harmonic, and terms involving higher
powers of 84; are likewise small.*8 Equation (17) allows the
TDM between the ground state and a coupled state to be writ-
ten as,
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where the number of quanta in the state <l[/( ’ is left am-

biguous so that the index & can refer to different numbers of
quanta in the same coordinate, if necessary, and the notation
1% = (w*| fi(qx) |0) has been defined to deal with the ambi-
guity of how many quanta are in the LM TDM. The LM TDM
fpr a specific number of quanta, ﬁ,go, has the usual interpreta-
tion,

ﬁ/foE/DchjW,f*(qj)ﬁwé(qj) (19)

in which D is the appropriate domain for the internal coor-
dinate of interest. LM TDMs are calculated using the DVR
wavefunctions. The intensity of the normal mode transition
ch is thus given by I (a)jc) o< | ﬁjc 2, in accord with Fermi’s

Golden Rule.*** In order to deal with combination bands,
terms involving the relevant pairs of coordinates must be in-
cluded in the expansion, though this will not be addressed in
this paper.
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D. Generalized DVR Method

In order to compute the LM wavefunctions and energies, we
have developed a generalization of Colbert and Miller’'s DVR
approach to the solution of differential equations. #1420 A
complete description of our derivation is given in the Supple-

J

mentary Material (SM). This approach allows an analytic Her-
mitian representation of any differential operator up to second
order differentials, making the representation of the Hamilto-
nian matrix particularly simple. For a given set of N — 1 grid
points {xq = a+ aAx: o € [1,N — 1]} on the domain [a,b]
with uniform spacing Ax = %, we obtain the formulas,
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where f(x) is a well-behaved function with a Taylor expan-
sion. Note that equation (20) implies that the LM potential
operator is represented by a diagonal matrix of potentials eval-
uated at the grid points for a given internal coordinate. Equa-
tions (20), (21) and (22) apply to coordinates x of any type on
any domain. In the infinite limits and for appropriate choices
of f(x), these reproduce Colbert and Miller’s results.*'*> An
example of the DVR approach for a stretching coordinate of
H*(H;0), is given in Figure 1. Matrix elements of operators
using the DVR wavefunctions {y;}, such as the LM TDM in
equation (19), are given by the formula for generic A,

N—1
(Wil Alw) = Y wi(xa)AQE  wi(xp) Ax
o,f=1

(23)

I1l.  SIMULATION AND CALCULATION DETAILS

The same AIMD simulation that was used in our previ-
ous study of PWCs was utilized for this paper.”® We re-
peat the details of the simulation here for completeness. A
Born-Oppenheimer AIMD simulation of the HT(H,0)4 clus-
ter was performed using the CP2K open-source software
package with a time step of 0.5 fs and the BLYP exchange-
correlation functional with Grimme’s D3 correction.?%>152
CP2K uses the Quickstep method for force evaluations with
the Gaussian and plane waves scheme.’®> A TZVP-GTH ba-
sis set was employed in the AIMD simulation, where the core
electrons are described with Goedecker-Teter-Hutter (GTH)

(
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FIG. 1: Example of the DVR approach where ¢g; is a
stretching coordinate of the hydronium core of H(H,0)4
visualized in the inset. The first three energy levels and
wavefunctions obtained from the DVR approach are shown
and labeled.

pseudopotentials.>* The simulation of H*(H,0)4 was per-
formed in the NVT ensemble with a canonical sampling
through velocity rescaling (CSVR) thermostat with a time
constant of 100 fs to constrain the temperature at 77 K.>> The
starting point for the simulation was an optimized structure,
which was equilibrated for 10 ps. The production run of 500
ps generated 2000 snapshots spaced by 250 fs for further anal-
ysis.
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Unless otherwise stated, the PES for every OH stretch and
HOH bend LM in each of the sampled snapshots was com-
puted using the designated electronic structure method and the
6-311G++(d, p) basis set in the Q-Chem software package.”®
OH stretch potential energy curves used 16 DVR grid points
in the domain [0.75 A, 1.5 10%] with 0.05 A increments, and
HOH bend potential energy curves used 18 grid points in the
domain [70°, 155°] with 5° increments.

Coupling calculations are truncated at the first order
derivative in the potential for the stretch-stretch fundamen-
tal couplings and at third order derivatives for the stretch
fundamental-bend overtone couplings, since these couplings
are an intrinsically anharmonic effect.!3> Analysis of the fit-
ness of these truncations is shown in the SM. Finite difference
steps of &, = 0.02 A were used for the stretches and hg = 2°
for the bends, which were found to provide converged values
of the derivatives.

All necessary equations for the Wilson G matrix elements,
the local mode and coupling operators, and the matrix ele-
ments for the couplings are given in our previous paper.”® Ex-
amples of the DVRs taken from our general equations (20),
(21), and (22) of various operators are also shown in this prior
work. The method for the spectral deconvolution of the CLM
IR spectra is also the same as in our previous paper.?®

IV. RESULTS AND DISCUSSION

In order to benchmark the sensitivity of our CLM method to
choices in electronic structure calculations, we simulated the
IR spectrum of HT(H,0)4 using the same AIMD trajectory
and corresponding 2000 snapshots while employing different
electronic structure methods for the calculations required in
each spectrum. In Figure 2 we present the results of three
DFT methods compared with experimental results from John-
son and coworkers, and in Figure 3 we present the CLM re-
sults of three different wavefunction-based electronic struc-
ture methods.  Although systematic differences in the cal-
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FIG. 2: Comparison of IR CLM spectra calculated using
DFT-based electronic structure methods and experiment.
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FIG. 3: Comparison of IR CLM spectra calculated using
wavefunction-based electronic structure methods and
experiment.

culated frequencies across different electronic structure meth-
ods could be found for water molecules in distinct chemical
environments, each method reliably produced the same pat-
tern of peaks with comparable intensity profiles. This sug-
gests the discrepancies are more related to the underlying elec-
tronic structure rather than from approximations in the CLM
methodology. Although the CCSD(T) and MP2 results are
the most accurate, their computational cost exceeds the DFT
methods, especially for CCSD(T).

The DFT spectral shapes are qualitatively identical to the
CCSD(T) results, but the peak locations are not as precisely
matched to experiment for the modes associated to the H3O™"
core. The calculated linewidth of the prominent H;O™ feature
around 2600 cm~! originates from inhomogeneous effects
(i.e., from different structures sampled from the AIMD sim-
ulations). Previous VSCF/VCI calculations identified combi-
nation bands between the H3O™ stretches and lower frequency
hindered rotation and wagging motions, which also contribute
to the linewidths, but are absent in this work.3? However, the
VSCF/VCI calculations neglect inhomogeneous effects, and
both the CLM and VSCF/VCI approaches ignore dynamical
and population lifetime effects.® Thus, further investigations
are required to have a satisfactory understanding of the H;0O™"
linewidth. Nevertheless, the savings in computational cost
make DFT a viable method for most applications, and we will
discuss a correction approach below. Note, we also examined
the extent to which the D3 correction affects the frequencies
by directly comparing B3LYP and B3LYP-D3 calculations of
the OH stretch LM frequencies of 300 H™ (H,0),4 snapshots
(Figure SM.4). The RMS difference in the calculated frequen-
cies is 2.46 cm™!, indicating the D3 correction does not have
a substantial effect on the frequency calculations.

We have also studied the effects of varying the basis set size
on the IR CLM spectra systematically to determine what con-
stitutes sufficient convergence with respect to basis set size.
We chose to study a set of double, triple, and quadruple zeta
Dunning-style basis sets all using the B3LYP DFT method
for HT(H,0)4. As shown in Figure 4, there is no substantial
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FIG. 4: Comparison of IR CLM spectra calculated using
B3LYP electronic structure method with varying
Dunning-style basis sets.

difference between the spectra calculated using these different
basis sets, meaning that the vibrational frequencies are reason-
ably well converged at even the aug-cc-pVDZ level (roughly
comparable to the 6-311G++(d,p) basis set used in our previ-
ous study).?®

Next, we consider several methods to incorporate higher-
level calculations of the LMs and couplings without incurring
excess cost. First, we consider mapping electronic structure
results obtained from calculations at a lower level of electronic
structure to those obtained at a higher level. For instance, in
Figure 5 we show the results of fitting a subset of stretching
LM frequencies obtained at the B3LYP level with the same
frequencies obtained at the CCSD(T) level. The strength of
this fit implies that a small subset of LM data obtained at
higher levels of theory can be used to correct the lower-level
results to save on computational costs.

A similar fitting procedure for the couplings can be used to
relate the couplings calculated with a lower order truncation of
the potential energy expansion to those calculated at a higher
order truncation. A comparison of couplings obtained by trun-
cating the expansion at 2" order derivatives, 3" order deriva-
tives, and 4th order derivatives is shown in the SM. Likewise,
we also show a fit between couplings calculated using DFT
and higher level methods. Interestingly, the corrections to the
coupling expansion and the level of electronic structure theory
almost entirely cancel out (yielding ~ 98% of the uncorrected
DFT value), meaning that DFT can be used to obtain surpris-
ingly accurate stretch-stretch couplings without correction.

Finally, we evaluate the Forster dipole-dipole description
of the couplings between stretches on adjacent molecules. In
the Forster picture, the stretch-stretch couplings arise solely
from the interactions of the transition dipole moments on
OH stretching chromophores, yielding a formula for the
interaction, 3’

3
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FIG. 5: Plot of the ab initio 1-0 stretching local modes of
H*(H,0)4 calculated at the CCSD(T)/6-311G++(d,p) level,
Wcc, against the modes calculated from the same snapshots
at the B3LYP/6-311G++(d,p) level, wprr. The blue curve is
the best fit of over 18,000 local modes given by the equation
occ ~ 0.0001603 7 +0.07517wprr + 1168.03 with an 72
of 0.9999.

where 7, is the unit vector corresponding to OH bond with
index j, 71 is the unit vector stretching from dipole j to dipole
k, and rj; is the distance between the dipole moment vectors.
Skinner’s convention of placing the dipole moments 58% of
the way along the bond stretching vectors will be adopted for
simplicity.® Because only the TDMs calculated using the DVR
approach are needed, this leads to a dramatic reduction of cost
when calculating the couplings. The results of fitting inter-
molecular couplings calculated at the B3LYP/6-311G++(d,p)
level of electronic structure theory to the Forster approxima-
tion of the couplings is given in Figure 6. Clearly, the Forster
couplings can be reasonably used to approximate the cou-
plings if a sufficient fit is performed. The group of coupling
constants near zero are for pairs of OH stretches separated
by larger distances and whose relative orientation is some-
what random. The other collection with larger magnitudes
and negative sign is between OH groups on neighboring wa-
ter or hydronium molecules, which are closer together and are
in a more well-defined relative orientation. As expected, the
Forster dipole-dipole model is more accurate for computing
the coupling constant of more distal OH stretches. Interest-
ingly, a comparable fit can be made between the Forster cou-
plings and the potential energy portion of the intramolecular
couplings, despite the Forster formula vastly overestimating
the coupling strength. This result is shown in the SM.

V. CONCLUDING REMARKS

In this paper, we have shown the theoretical details of
the CLM method for the calculation of vibrational spec-
tra and have applied it to the IR spectrum of the bench-
mark HY(H,O0)4 cluster. We also showed a generalization of
Miller’s DVR scheme for solving linear differential equations
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FIG. 6: Plot of the ab initio uncorrected 2" order
intermolecular stretch-stretch couplings a)g/k of HF (H,0)4
against the Forster couplings. The red curve is the best fit of
over 6000 couplings given by the equation

. o\ 2 .
0 ~0.0012 (0})"+0.58440* ~0.097 with an 12 of
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and calculating matrix elements. The consistency of broad
spectral features for a variety of different electronic structure
methods was established, though the location of the distinct
features was shown to change depending upon the method
chosen. The dependence of the calculated vibrational cou-
plings on the order of the PES expansion and the electronic
structure method was shown to be relatively modest, and it
was further shown that 2™ order B3LYP couplings are sur-
prisingly accurate due to a fortuitous cancellation of error. Fi-
nally, it was shown that accurate fits between the local modes
calculated at lower and higher levels of electronic structure
theory could be used to increase accuracy with modest cost. It
was also shown that the couplings could be approximated with
simple electrostatic models, such as the Forster dipole-dipole
coupling model for the stretch-stretch couplings. This leads
to a drastic reduction in the number of calculations needed in
the CLM method, particularly for larger systems. Thus, the
prospects of applying the CLM method to aqueous acid, base,
and salt solutions in the condensed phase are promising, in-
cluding the calculation of two-dimensional infrared (2D IR)
spectra. Presently, we are restricted to the OH stretch, HOH
bend, and OH stretch-HOH bend overtone manifold. How-
ever, these are the features that dominate aqueous condensed
phase vibrational spectra above 1500 cm™!. Nevertheless, in-
cluding the effects of lower frequency combination bands is a
critical challenge for future methodological work.

SUPPLEMENTARY MATERIAL

The Supplementary Material contains a full derivation of
the generalized Miller DVR formulas, an analysis of the
truncation of the derivative expansion and electronic struc-
ture methods for the vibrational couplings, an analysis of the

Forster approximation for the intramolecular couplings, and
analysis of the D3 correction’s effect on the local mode fre-
quencies.
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