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Abstract—Human activity recognition (HAR) is a challenging 
area of research with many applications in human-computer 
interaction. With advances in artificial neural networks (ANNs), 
methods of HAR feature extraction from wearable sensor data 
have greatly improved and have increased interest in their classi-
fication using ANNs. Most prior work has only investigated the 
software implementations of ANN-based HAR. Here, we investi-
gate, for the first time, two novel hardware implementations for 
use in resource-constrained edge devices. Through architecture 
exploration, we identify first a hybrid ANN we call DCLSTM 
incorporating the convolutional and long-short-term memory 
techniques. The second is a much more compact implementation 
WCLSTM that uses wavelet transforms (WTs) to enhance fea-
ture extraction; it can achieve even better accuracy while being 
smaller and simpler; it is therefore the better choice for resource-
constrained applications. We present hardware implementations 
of these ANNs and evaluate their performance and resource uti-
lization on the UCI HAR and WISDM datasets. Synthesis results 
on an FPGA platform show the superiority of the WT-assisted 
version in accuracy and size. Moreover, our networks achieve a 
better accuracy than earlier published works. 

Keywords— Artificial neural networks, wavelet transform, hu-
man activity recognition, hardware implementation. 

I. INTRODUCTION  

Human activity recognition (HAR) has been receiving sig-
nificant amount of attention in the recent years due to  advanc-
es in sensor technology and artificial intelligence [1]. HAR has 
widespread applications in the domains of health care [2], 
home behavior analysis [3], gesture recognition [4] and surveil-
lance systems [5]. HAR systems can be vision- [6] or sensor-
based [7], using wearable sensors [8] or smartphones [9]. They 
collect data from, e.g., accelerometers, gyroscopes and magne-
tometers and analyze them to detect and recognize simple or 
complex activities. Various machine learning algorithms help 
overcome difficulties due to ambiguities in sensor data and the 
dynamic nature of human activities [10]. Recent advancements 
in artificial neural networks (ANNs) like convolutional neural 
networks (CNNs), and recurrent neural networks (RNNs) like 
long short term memory (LSTM) have paved the path for their 
use in HAR applications [11]-[15]. 

The traditional software implementation of ANNs like 
LSTMs and CNNs on CPUs or GPUs has some drawbacks that 
support the use of dedicated hardware realizations especially in 
resource-constrained edge devices. At the same time, resource 
restrictions are essential in applications such as the Internet of 
Things or autonomous driving, where the impact of ANNs is 
constantly growing. Due to the recurrent nature of the LSTMs, 

it is difficult to parallelize their operations on either CPUs or 
GPUs. CPUs and especially GPUs incur very high power con-
sumption when processing computationally expensive CNNs. 
This paper focuses on designing dedicated ANN hardware op-
timized for HAR. For evaluation, we use field programmable 
gate arrays (FPGAs), which provide the necessary parallelism, 
energy efficiency, fixed-point arithmetic and flexibility through 
reconfigurability. 

To address the challenging nature of HAR tasks, we em-
ploy hybrid networks that combine LSTMs with CNNs. The 
inherently recurrent nature of LSTMs makes them suitable for 
capturing temporal information from the time series nature of 
HAR sensor signals, whereas the spatially deep CNNs are bet-
ter suited for learning complex human activities [13]. In order 
to build a suitable network for HAR, we designed a hybrid 
ANN that we call DCLSTM via architecture exploration that 
tries to capture the advantages of both CNNs and LSTMs.  

Even though DCLSTM outperforms other published net-
works, it is notably large and hence is less suitable for imple-
mentation on smaller hardware devices. We therefore propose 
WCLSTM, a much smaller version of DCLSTM that is assist-
ed by wavelet transforms (WTs) and is better suited to HAR 
applications. The accuracy of the ANN improves strikingly due 
to the addition of WT, as WT filters out noise and enables bet-
ter feature extraction by providing information about the input 
data both in the time and frequency domains. We determine the 
performance of our networks by applying them on two widely 
used datasets, UCI HAR [16] and WISDM [17], and compare 
their accuracy with previously published work. Our WCLSTM 
network outperforms all other networks. We also examine the 
hardware resource utilization of our networks and demonstrate 
that FPGA implementations achieve significant speedup when 
compared to CPU or GPU implementations. 

The remainder of the paper is as follows: Section 0 pro-
vides some necessary background for the basic building blocks 
of our hybrid networks, LSTM, CNN, and the two datasets 
used for HAR applications. In Section III we introduce the 
proposed architectures. Section IV presents cost and perfor-
mance results, and Section V concludes the paper. 

II. BACKGROUND 

A. Long Short Term Memory (LSTM) Networks 

 An LSTM network is a type of RNN that can predict output 
sequences from input sequences [18]. It identifies and remem-
bers hidden states that cannot usually be observed directly, 
enabling the network to learn useful long-term dependencies. 
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An LSTM network’s memory is embodied in LSTM cells. 
These are modules with a sequential behavior that depends on 
three parameters: the input xt, the cell’s previous state ct–1, and 
a hidden state ht–1, which is the cell’s output in the previous 
time step. The states of all LSTM cells serve as the network’s 
memory. 

An LSTM cell includes a forget gate that determines what 
past information is relevant enough to keep, an input gate that 
decides what new information is relevant to add, and an output 
gate that calculates the current hidden state, as depicted in Fig. 
1. The sigmoid activation function is used to transform the 
values between 0 (“not important”) and 1 (“important”). This 
determines how much impact the old and/or the new infor-
mation has on the cell output. The tanh activation function 
generates values between –1 and 1, and is used to normalize 
the data values. The mathematical operations of LSTM are 
shown in (1)-(6). 

                               ft = σ (Wf ⋅ [ht–1 , xt] + bf)                        (1) 

                              it = σ (Wi ⋅ [ht–1 , xt] + bi)                          (2) 

                         C´t  = tanh (Wc ⋅ [ht–1, xt] + bc)                       (3) 

                              ct = ft ⋅ ct–1 + it * C´t                                                   (4) 

                             ot = σ(Wo ⋅ [ht–1, xt]+ bo)                            (5) 

                             ht = ot ⋅ tanh(ct)                                          (6) 

B. Convolutional Neural Networks (CNNs) 

 CNNs are primarily used for applications like video recog-
nition [19], image classification [10] and activity recognition 
[20]. As Fig. 2 shows, the first layer of a CNN is one of the 
possibly several convolution layers. This layer extracts features 
from the input. It reads an input (image or other signal) in 
small segments at a time and steps across the entire input, ap-
plying convolutions on it and on the filter or kernel. The output 
of the convolution is called a feature map. Across the entire 
previous layer, a filter is imposed, which is moved one pixel at 
a time; its output is collected in the feature map. The distance 
by which the filter moves across the input is called the stride. 

A pooling layer, which follows the convolutional layer of a 
CNN, reduces the number of parameters of the feature map. It 
helps to retain important information while down sampling the 
feature map. For example, a layer with pooling size 2x2 pixels 
with stride of 2 applied to a feature map of size 8x8 will result 
in a feature map of size 4x4. Most popular pooling layers use 
max pooling and average pooling, where the largest or the av-
erage value of a 2x2 section of the feature map is selected, re-
spectively. The last layer of CNN is the fully connected layer. 

It has a non-linear activation function or a softmax function 
that is responsible for the final classification of the input signal. 

C. Datasets 

We use two benchmark datasets UCI HAR [16] and 
WISDM [17] to measure the performance of our networks and 
compare their accuracy with previously published work. To 
create the UCI-HAR dataset, 30 subjects of 19-48 years age 
wore a Samsung Galaxy SII smartphone with embedded ac-
celerometer and gyroscope sensors around the waist and per-
formed six activities: standing, sitting, laying, walking, walk-
ing downstairs, and upstairs. A total of 748,406 triaxial accel-
eration and angular velocity data samples were collected at a 
50 Hz sampling rate. The WISDM dataset was built with 36 
subjects and has 1,098,209 samples. The subjects performed 
six activities of daily life: standing, sitting, walking, upstairs, 
downstairs, and jogging with an Android phone in their front 
leg pocket. The built-in accelerometer sensor of the 
smartphone was used to collect the accelerometer data at 20 
Hz frequency. 

III. ARCHITECTURE 

 In this section, we present the architectures of our two 
ANNs for the HAR applications. 

A. DCLSTM 

Our initial design DCLSTM embodies the advantages of 
both CNN and LSTM. We performed an architecture explora-
tion (added and removed layers) until reaching around 98% 
accuracy so that the final network can be reliably used for de-
tecting complex real-life human activities. We systematically 
tuned the hyper-parameters (number of layers, size of filter, 
kernel, and pooling) of the network, eventually reaching the 
design in Fig. 3 (a) that satisfies our criteria. The input sensor 
signal is given to the first 1D convolution layer, which is parti-
cularly effective in extracting identifying features from a fixed 
window length dataset like ours, where the window length is 
128. This layer has a kernel of size 11 and a filter of size 64. It 
is followed by another convolutional layer with kernel size 11 
and filter size 128. Both layers employ the ReLU activation 
function. Next, we added a max-pooling layer with pool size 2. 
A third convolutional layer with kernel size 11 and filter size 
128 performs a deeper feature extraction, followed by another 
max-pooling layer with the same pool size. A flatten layer for-
mats the matrix representation of feature maps to a vector, 
which is fed to the following two LSTM layers with 128 and 
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Figure 1: LSTM cell with input xt, cell state ct-1/ct, hidden state ht-1/ht,              Figure 2: CNN with two convolution and one max-pooling layers. 
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64 hidden neurons, respectively. The fully connected output 
layer with softmax activation does the final classification, as 
shown in Fig. 3 (a). The network is trained in software using 
Keras and the inference stage is done using Verilog. 

The three convolutional layers and the fully connected lay-
er perform DCLSTM’s overall convolution operation. We de-
signed a convolutional kernel of size 3x3 that performs 9 mul-
tiplications in each clock cycle. This module also performs 8 
addition operations to generate the final output. Reusing the 
same module for multiple layers would decrease the resource 
utilization. In our design, we also try to speed-up the convolu-
tion operation, using shift registers. The convolution operation 
in each step takes nine neighboring cell values from the input 
matrix. However, six out of these nine values were already 
processed in the previous step. Therefore, each step (except the 
first) requires only three new values. We use shift registers to 
shift the cell value by one in each row/column of the input ma-
trix. This speeds up the convolution operation and increases the 
overall computing performance of DCLSTM. 

For the LSTM layers in Fig. 3 (a), the major operations to 
be implemented in hardware are the time-consuming matrix 
vector multiplications and the non-linear activation functions 
(tanh and sigmoid). The matrix-vector multiplication is com-
puted by a multiply and accumulate (MAC) unit, which takes 
the network’s input vector and the weight matrix as input. The 
same input vector is multiplied with all the rows of the weight 
matrix and the intermediate multiplication results are accumu-
lated in a buffer. This matrix vector multiplication is accelerat-
ed by using pipelining. Instead of waiting for all the multiplica-
tions of the first input vector with all the weight matrix rows to 
be done, whenever the first input vector has been multiplied 
with the first weight matrix row, we start multiplying the sec-
ond input vector with the first weight matrix row. Data de-
pendencies are avoided by storing all intermediate results in 
buffers.  

For implementing the activation functions, we use piece-
wise linear approximation of (7). It was found to perform much 
better than other approximation techniques, since small errors 
do not affect the overall performance of the LSTM. The values 
of a and b are stored in block RAMs (BRAMs) and a pipelined 
MAC unit is used to multiply a and x and accumulate the prod-
uct with b.  

                      f(x) = ai x + bi , x ϵ [xi , xi + 1)                          (7) 

 We use 8-bit fixed-point numbers for all the calculations. 
As will be discussed in Sec. IV and shown in Table I, this net-
work outperforms other networks, yet it is quite large and re-
source consuming. 

B. WCLSTM 

 The accuracy of ANNs can be increased by improving the 
feature extraction process using various signal-processing 
techniques like the Fourier transform (FT) and wavelet trans-
form (WT). We leverage this finding by adding a WT block to 
the network, with the presumption that signals pre-processed 
by WTs will require less effort—and thus fewer network lay-
ers—for accurate classification. We chose WT (rather than FT) 
because the periodicity of the wavelets makes the WT localized 
in both time and frequency domains reflecting the properties of 
non-stationary signals from HAR applications. 

The same architecture exploration with the same accuracy 
target as in the previous section was applied to a much smaller 
network with a WT block placed directly after the input layer. 
This process resulted in the WCLSTM network shown in Fig. 
3 (b). Detailed analysis of the same small hybrid network with 
WT (WCLSTM) and without WT (CLSTM) will be presented 
in Sec. IV. In the following, we provide information on the 
specific wavelets used. 

WTs involve two major processes, scaling and shifting. 
Scaling represents a signal’s extension or compression in the 
time domain that helps to capture slow and abrupt changes in 
the signal by using large and small wavelet versions of the 
scale parameter α that stretch and shrink the wavelet, respec-
tively. Shifting is done to arrange the features of the signal by 
moving the differently scaled wavelets from start to end. We 
use the continuous wavelet transform (CWT) which helps to 
extract and analyze complex spectral features of signals [21]. 
CWT extracts features from non-stationary 1D signals and 
represents them in a 2D scalogram. This is useful in detecting 
high power regions in the signal at a localized time and fre-
quency and this makes the CWT best suited for our HAR ap-
plications. Apart from improving feature extraction, the CWT 
can also convert one-dimensional (1D) sensor signals into 2D 
images, which allows us to use 2D CNNs. This further increas-
es the performance of our network significantly. 

 After careful study of wavelet families, we chose to use the 
Morlet wavelet for the analysis of the non-stationary time-
series input signal [22]. The output of the CWT is fed into the 
first two 2D convolution layers with kernel size 11, filter size 
64 and ReLU activation. To reduce data over fit and network 
complexity, a max-pooling layer with pool size 2 is used next. 
We add a flatten layer to format the output data from CNN so 
that it can be fed to a single LSTM layer with 128 units and 
tanh activation. The result from the LSTM layer is passed to a 
fully connected layer with a softmax activation function, which 
classifies the input into six different classes for both the UCI 
HAR and the WISDM datasets. The network was trained using 
Keras and synthesized on hardware using Verilog. 
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Figure 3: The DCLSTM network proposed for HAR applications (a), the WCLSTM network proposed for HAR applications (b). 

 



 To optimize the hardware realization of WT, we use the 
Fast Fourier Transform (FFT), which reduces complex convo-
lution operation in the time domain to simple multiplication in 
the frequency domain, and vice versa. In our hardware realiza-
tion, the input signal is first transformed to the frequency do-
main using the FFT and the result is stored in a buffer. Then 
the Morlet wavelet is converted to the frequency domain at 
different scales α (in our case 64). The resultant signal FFT and 
the wavelet FFT are then multiplied at all α’s. The inverse FFT 
at each of the 64 scales produces the required CWT coeffi-
cients for that particular scale, and is repeated until the final 
scale is evaluated. Once the whole wavelet transform operation 
is complete, the output is then fed to the CNN as shown in Fig. 
4. The hardware implementation of the remaining layers is the 
same as that of DCLSTM and only the parameters are modified 
to the best values found during architecture exploration. 

IV. RESULTS 

 We evaluate the proposed networks with respect to classifi-
cation accuracy on both the UCI HAR and WISDM datasets 
(Sec. II.C), hardware utilization, and performance in compari-
son to a software implementation. We refer to the network 
from Sec. III.A (architecture optimized without WT) as 
DCLSTM and to the network from Sec. III.B (WT-assisted 
architecture) as WCLSTM. For comparison, we also present 
results for the latter network with the WT block removed; we 
call this design CLSTM. 

Table I compares the accuracy of these and previously pub-
lished hybrid networks. Both proposed networks outperform all 
other networks on both data sets, and the WT-assisted one has 
a higher accuracy. In contrast, the WT-assisted network 
stripped of its WT block classifies rather poorly, underscoring 
the importance of the WT functionality. 

In Table II, we present the resource utilization of the pro-
posed networks when synthesized on a Virtex-7 FPGA board 
at 150 MHz using the Vivado compiler. Note that the previous-
ly proposed networks have no published FPGA implementa-
tions so we cannot compare with them in this regard. Both our 
designs fit on the FPGA, as the maximal resource utilization is 
around 40%. At the same time, DCLSTM is roughly 60% larg-
er than WCLSTM, which can be excessive for resource-
constrained applications. Thus, the WT-assisted version is both 
smaller and has better accuracy. The fact that DCLSTM is able 
to achieve a comparable (only slightly worse) accuracy sug-
gests that the signal processing done by WT is emulated by the 
extra layers that are not present in WCLSTM, but at an exces-
sive cost. Stripping the WT block from CLSTM reduces the 
resource consumption as expected by roughly 15%; however 
this reduction is likely not worth the significant deterioration in 
accuracy. 

Finally, we demonstrate the superiority of a dedicated 
hardware architecture over software running on a CPU or a 
GPU. A comparison of software implementations running in 
Intel Core i5 CPU 3.20 GHz and on NVIDIA GTX GPU 980 
MHz with 2048 CUDA cores is found in Table III where the 
runtime for classification of one test dataset is given. Despite a 
lower clock frequency of 150 MHz, our networks classify 

roughly 15× faster than the CPU, and about 8× faster than the 

GPU. Note that the WT-assisted network is roughly 2× faster 
than the larger DCLSTM. 

V. CONCLUSION 

We investigated hybrid neural network architectures for 
human activity recognition that provides high classification 
accuracy but at the same time are suitable for realization in 
dedicated hardware. A feature of our work is the integration of 
a wavelet transform block into the architecture and a study of 
its impact. For the first time, we provided and evaluated hard-
ware implementations of hybrid LSTM-CNNs on an FPGA 
platform, demonstrating an order-of-magnitude speed-up com-
pared to all-software solutions. We found that achieving best-
in-class accuracy of around 98% is possible with and without 
WT assistance, yet the WT-assisted network is much more 
compact and faster, as fewer layers are required to achieve the 
accuracy target. These findings strongly suggest that WT 
should be part of future solutions for hardware acceleration in 
the HAR domain.  

TABLE I: COMPARISON OF ACCURACY FOR DIFFERENT NETWORK 

ARCHITECTURES. 

 
Network 
architecture 

 
Number of layers 

Accuracy (%) 

UCI 
HAR 

WISDM 

CNN–
LSTM  [13] 

1 CNN layer, 1 LSTM 
layer, 128 units 

92.0 - 

LSTM–
CNN [14] 

2 CNN layers, 2 LSTM 
layers, 32 units 

95.7 95.0 

CNN–
LSTM [15] 

3 CNN layers, 1 LSTM 
layer, 30 units 

97.0 94.0 

CNN–RF 
[15] 

3 CNN layers, Random 
Forest 

98.0 97.0 

DCLSTM 3 CNN layers, 2 LSTM 
layers, 128 & 64 units 

98.4 97.8 

WCLSTM WT, 2 CNN layers, 1 
LSTM layer, 128 units 

98.9 98.5 

CLSTM  2 CNN layers, 1 LSTM 
layer, 128 units 

95.8 95.3 

 
TABLE II: RESOURCE UTILIZATION OF PROPOSED NETWORKS ON VIRTEX-7 

FPGA. 

Network 
architecture 

FF    
(%) 

LUT 
(%) 

BRAM 
(%) 

DSP 
(%) 

DCLSTM 148680 
(20.4%) 

147500 
(40.5%) 

251 
(31.5%) 

510 
(40.4%) 

WCLSTM 92650 
(12.7%) 

84600 
(23.2%) 

180 
(22.6%) 

340 
(26.9%) 

CLSTM  77330 
(10.6%) 

75430 
(20.7%) 

150 
(18.8%) 

290 
(23.0%) 

 

TABLE III: RUNTIMES ON CPU, GPU AND FPGA IMPLEMENTATIONS. 

Network architecture CPU GPU FPGA 

DCLSTM 1.611ms 0.819ms 0.105ms 

WCLSTM 0.876ms 0.436ms 0.049ms 

CLSTM  0.813ms 0.402ms 0.036ms 
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