Wavelet Transtform Assisted Neural Networks for
Human Activity Recognition

Roshwin Sengupta and Ilia Polian
Institute of Computer Architecture and Computer Engineering
University of Stuttgart
Stuttgart, Germany
{roshwin.sengupta, ilia.polian} @iti.uni-stuttgart.de

Abstract—Human activity recognition (HAR) is a challenging
area of research with many applications in human-computer
interaction. With advances in artificial neural networks (ANNs),
methods of HAR feature extraction from wearable sensor data
have greatly improved and have increased interest in their classi-
fication using ANNs. Most prior work has only investigated the
software implementations of ANN-based HAR. Here, we investi-
gate, for the first time, two novel hardware implementations for
use in resource-constrained edge devices. Through architecture
exploration, we identify first a hybrid ANN we call DCLSTM
incorporating the convolutional and long-short-term memory
techniques. The second is a much more compact implementation
WCLSTM that uses wavelet transforms (WTs) to enhance fea-
ture extraction; it can achieve even better accuracy while being
smaller and simpler; it is therefore the better choice for resource-
constrained applications. We present hardware implementations
of these ANNs and evaluate their performance and resource uti-
lization on the UCI HAR and WISDM datasets. Synthesis results
on an FPGA platform show the superiority of the WT-assisted
version in accuracy and size. Moreover, our networks achieve a
better accuracy than earlier published works.

Keywords— Artificial neural networks, wavelet transform, hu-
man activity recognition, hardware implementation.

I. INTRODUCTION

Human activity recognition (HAR) has been receiving sig-
nificant amount of attention in the recent years due to advanc-
es in sensor technology and artificial intelligence [1]. HAR has
widespread applications in the domains of health care [2],
home behavior analysis [3], gesture recognition [4] and surveil-
lance systems [5]. HAR systems can be vision- [6] or sensor-
based [7], using wearable sensors [8] or smartphones [9]. They
collect data from, e.g., accelerometers, gyroscopes and magne-
tometers and analyze them to detect and recognize simple or
complex activities. Various machine learning algorithms help
overcome difficulties due to ambiguities in sensor data and the
dynamic nature of human activities [10]. Recent advancements
in artificial neural networks (ANNSs) like convolutional neural
networks (CNNs), and recurrent neural networks (RNNs) like
long short term memory (LSTM) have paved the path for their
use in HAR applications [11]-[15].

The traditional software implementation of ANNs like
LSTMs and CNNs on CPUs or GPUs has some drawbacks that
support the use of dedicated hardware realizations especially in
resource-constrained edge devices. At the same time, resource
restrictions are essential in applications such as the Internet of
Things or autonomous driving, where the impact of ANNSs is
constantly growing. Due to the recurrent nature of the LSTMs,
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it is difficult to parallelize their operations on either CPUs or
GPUs. CPUs and especially GPUs incur very high power con-
sumption when processing computationally expensive CNNs.
This paper focuses on designing dedicated ANN hardware op-
timized for HAR. For evaluation, we use field programmable
gate arrays (FPGAs), which provide the necessary parallelism,
energy efficiency, fixed-point arithmetic and flexibility through
reconfigurability.

To address the challenging nature of HAR tasks, we em-
ploy hybrid networks that combine LSTMs with CNNs. The
inherently recurrent nature of LSTMs makes them suitable for
capturing temporal information from the time series nature of
HAR sensor signals, whereas the spatially deep CNNs are bet-
ter suited for learning complex human activities [13]. In order
to build a suitable network for HAR, we designed a hybrid
ANN that we call DCLSTM via architecture exploration that
tries to capture the advantages of both CNNs and LSTMs.

Even though DCLSTM outperforms other published net-
works, it is notably large and hence is less suitable for imple-
mentation on smaller hardware devices. We therefore propose
WCLSTM, a much smaller version of DCLSTM that is assist-
ed by wavelet transforms (WTs) and is better suited to HAR
applications. The accuracy of the ANN improves strikingly due
to the addition of WT, as WT filters out noise and enables bet-
ter feature extraction by providing information about the input
data both in the time and frequency domains. We determine the
performance of our networks by applying them on two widely
used datasets, UCI HAR [16] and WISDM [17], and compare
their accuracy with previously published work. Our WCLSTM
network outperforms all other networks. We also examine the
hardware resource utilization of our networks and demonstrate
that FPGA implementations achieve significant speedup when
compared to CPU or GPU implementations.

The remainder of the paper is as follows: Section 0 pro-
vides some necessary background for the basic building blocks
of our hybrid networks, LSTM, CNN, and the two datasets
used for HAR applications. In Section III we introduce the
proposed architectures. Section IV presents cost and perfor-
mance results, and Section V concludes the paper.

II. BACKGROUND

A. Long Short Term Memory (LSTM) Networks

An LSTM network is a type of RNN that can predict output
sequences from input sequences [18]. It identifies and remem-
bers hidden states that cannot usually be observed directly,
enabling the network to learn useful long-term dependencies.



An LSTM network’s memory is embodied in LSTM cells.
These are modules with a sequential behavior that depends on
three parameters: the input x, the cell’s previous state cx1, and
a hidden state 4.1, which is the cell’s output in the previous
time step. The states of all LSTM cells serve as the network’s
memory.

An LSTM cell includes a forget gate that determines what
past information is relevant enough to keep, an input gate that
decides what new information is relevant to add, and an output
gate that calculates the current hidden state, as depicted in Fig.
1. The sigmoid activation function is used to transform the
values between 0 (“not important”) and 1 (“important”). This
determines how much impact the old and/or the new infor-
mation has on the cell output. The tanh activation function
generates values between —1 and 1, and is used to normalize
the data values. The mathematical operations of LSTM are
shown in (1)-(6).
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B. Convolutional Neural Networks (CNNs)

CNNss are primarily used for applications like video recog-
nition [19], image classification [10] and activity recognition
[20]. As Fig. 2 shows, the first layer of a CNN is one of the
possibly several convolution layers. This layer extracts features
from the input. It reads an input (image or other signal) in
small segments at a time and steps across the entire input, ap-
plying convolutions on it and on the filter or kernel. The output
of the convolution is called a feature map. Across the entire
previous layer, a filter is imposed, which is moved one pixel at
a time; its output is collected in the feature map. The distance
by which the filter moves across the input is called the stride.

A pooling layer, which follows the convolutional layer of a
CNN, reduces the number of parameters of the feature map. It
helps to retain important information while down sampling the
feature map. For example, a layer with pooling size 2x2 pixels
with stride of 2 applied to a feature map of size 8x8 will result
in a feature map of size 4x4. Most popular pooling layers use
max pooling and average pooling, where the largest or the av-
erage value of a 2x2 section of the feature map is selected, re-
spectively. The last layer of CNN is the fully connected layer.

Biases

l

Figure 1: LSTM cell with input x;, cell state c..i/cs, hidden state As1/h,
internal signals f,i, C 0, weights Wy, Wi, We, W, biases by, bi, be, bo.

It has a non-linear activation function or a softmax function
that is responsible for the final classification of the input signal.

C. Datasets

We use two benchmark datasets UCI HAR [16] and
WISDM [17] to measure the performance of our networks and
compare their accuracy with previously published work. To
create the UCI-HAR dataset, 30 subjects of 19-48 years age
wore a Samsung Galaxy SII smartphone with embedded ac-
celerometer and gyroscope sensors around the waist and per-
formed six activities: standing, sitting, laying, walking, walk-
ing downstairs, and upstairs. A total of 748,406 triaxial accel-
eration and angular velocity data samples were collected at a
50 Hz sampling rate. The WISDM dataset was built with 36
subjects and has 1,098,209 samples. The subjects performed
six activities of daily life: standing, sitting, walking, upstairs,
downstairs, and jogging with an Android phone in their front
leg pocket. The built-in accelerometer sensor of the
smartphone was used to collect the accelerometer data at 20
Hz frequency.

III. ARCHITECTURE

In this section, we present the architectures of our two
ANNSs for the HAR applications.

A. DCLSTM

Our initial design DCLSTM embodies the advantages of
both CNN and LSTM. We performed an architecture explora-
tion (added and removed layers) until reaching around 98%
accuracy so that the final network can be reliably used for de-
tecting complex real-life human activities. We systematically
tuned the hyper-parameters (number of layers, size of filter,
kernel, and pooling) of the network, eventually reaching the
design in Fig. 3 (a) that satisfies our criteria. The input sensor
signal is given to the first 1D convolution layer, which is parti-
cularly effective in extracting identifying features from a fixed
window length dataset like ours, where the window length is
128. This layer has a kernel of size 11 and a filter of size 64. It
is followed by another convolutional layer with kernel size 11
and filter size 128. Both layers employ the ReLU activation
function. Next, we added a max-pooling layer with pool size 2.
A third convolutional layer with kernel size 11 and filter size
128 performs a deeper feature extraction, followed by another
max-pooling layer with the same pool size. A flatten layer for-
mats the matrix representation of feature maps to a vector,
which is fed to the following two LSTM layers with 128 and
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Figure 2: CNN with two convolution and one max-pooling layers.



64 hidden neurons, respectively. The fully connected output
layer with softmax activation does the final classification, as
shown in Fig. 3 (a). The network is trained in software using
Keras and the inference stage is done using Verilog.

The three convolutional layers and the fully connected lay-
er perform DCLSTM’s overall convolution operation. We de-
signed a convolutional kernel of size 3x3 that performs 9 mul-
tiplications in each clock cycle. This module also performs 8
addition operations to generate the final output. Reusing the
same module for multiple layers would decrease the resource
utilization. In our design, we also try to speed-up the convolu-
tion operation, using shift registers. The convolution operation
in each step takes nine neighboring cell values from the input
matrix. However, six out of these nine values were already
processed in the previous step. Therefore, each step (except the
first) requires only three new values. We use shift registers to
shift the cell value by one in each row/column of the input ma-
trix. This speeds up the convolution operation and increases the
overall computing performance of DCLSTM.

For the LSTM layers in Fig. 3 (a), the major operations to
be implemented in hardware are the time-consuming matrix
vector multiplications and the non-linear activation functions
(tanh and sigmoid). The matrix-vector multiplication is com-
puted by a multiply and accumulate (MAC) unit, which takes
the network’s input vector and the weight matrix as input. The
same input vector is multiplied with all the rows of the weight
matrix and the intermediate multiplication results are accumu-
lated in a buffer. This matrix vector multiplication is accelerat-
ed by using pipelining. Instead of waiting for all the multiplica-
tions of the first input vector with all the weight matrix rows to
be done, whenever the first input vector has been multiplied
with the first weight matrix row, we start multiplying the sec-
ond input vector with the first weight matrix row. Data de-
pendencies are avoided by storing all intermediate results in
buffers.

For implementing the activation functions, we use piece-
wise linear approximation of (7). It was found to perform much
better than other approximation techniques, since small errors
do not affect the overall performance of the LSTM. The values
of a and b are stored in block RAMs (BRAMs) and a pipelined
MAC unit is used to multiply @ and x and accumulate the prod-
uct with b.

fx)=aix+bi, x €[xi, xi+1) (7)

We use 8-bit fixed-point numbers for all the calculations.

As will be discussed in Sec. IV and shown in Table I, this net-

work outperforms other networks, yet it is quite large and re-
source consuming.
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B. WCLSTM

The accuracy of ANNs can be increased by improving the
feature extraction process using various signal-processing
techniques like the Fourier transform (FT) and wavelet trans-
form (WT). We leverage this finding by adding a WT block to
the network, with the presumption that signals pre-processed
by WTs will require less effort—and thus fewer network lay-
ers—for accurate classification. We chose WT (rather than FT)
because the periodicity of the wavelets makes the WT localized
in both time and frequency domains reflecting the properties of
non-stationary signals from HAR applications.

The same architecture exploration with the same accuracy
target as in the previous section was applied to a much smaller
network with a WT block placed directly after the input layer.
This process resulted in the WCLSTM network shown in Fig.
3 (b). Detailed analysis of the same small hybrid network with
WT (WCLSTM) and without WT (CLSTM) will be presented
in Sec. IV. In the following, we provide information on the
specific wavelets used.

WTs involve two major processes, scaling and shifting.
Scaling represents a signal’s extension or compression in the
time domain that helps to capture slow and abrupt changes in
the signal by using large and small wavelet versions of the
scale parameter o that stretch and shrink the wavelet, respec-
tively. Shifting is done to arrange the features of the signal by
moving the differently scaled wavelets from start to end. We
use the continuous wavelet transform (CWT) which helps to
extract and analyze complex spectral features of signals [21].
CWT extracts features from non-stationary 1D signals and
represents them in a 2D scalogram. This is useful in detecting
high power regions in the signal at a localized time and fre-
quency and this makes the CWT best suited for our HAR ap-
plications. Apart from improving feature extraction, the CWT
can also convert one-dimensional (1D) sensor signals into 2D
images, which allows us to use 2D CNNs. This further increas-
es the performance of our network significantly.

After careful study of wavelet families, we chose to use the
Morlet wavelet for the analysis of the non-stationary time-
series input signal [22]. The output of the CWT is fed into the
first two 2D convolution layers with kernel size 11, filter size
64 and ReLU activation. To reduce data over fit and network
complexity, a max-pooling layer with pool size 2 is used next.
We add a flatten layer to format the output data from CNN so
that it can be fed to a single LSTM layer with 128 units and
tanh activation. The result from the LSTM layer is passed to a
fully connected layer with a softmax activation function, which
classifies the input into six different classes for both the UCI
HAR and the WISDM datasets. The network was trained using
Keras and synthesized on hardware using Verilog.
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Figure 3: The DCLSTM network proposed for HAR applications (a), the WCLSTM network proposed for HAR applications (b).



To optimize the hardware realization of WT, we use the
Fast Fourier Transform (FFT), which reduces complex convo-
lution operation in the time domain to simple multiplication in
the frequency domain, and vice versa. In our hardware realiza-
tion, the input signal is first transformed to the frequency do-
main using the FFT and the result is stored in a buffer. Then
the Morlet wavelet is converted to the frequency domain at
different scales a (in our case 64). The resultant signal FFT and
the wavelet FFT are then multiplied at all o’s. The inverse FFT
at each of the 64 scales produces the required CWT coeffi-
cients for that particular scale, and is repeated until the final
scale is evaluated. Once the whole wavelet transform operation
is complete, the output is then fed to the CNN as shown in Fig.
4. The hardware implementation of the remaining layers is the
same as that of DCLSTM and only the parameters are modified
to the best values found during architecture exploration.

IV. RESULTS

We evaluate the proposed networks with respect to classifi-
cation accuracy on both the UCI HAR and WISDM datasets
(Sec. I1.C), hardware utilization, and performance in compari-
son to a software implementation. We refer to the network
from Sec. III.A (architecture optimized without WT) as
DCLSTM and to the network from Sec. III.LB (WT-assisted
architecture) as WCLSTM. For comparison, we also present
results for the latter network with the WT block removed; we
call this design CLSTM.

Table I compares the accuracy of these and previously pub-
lished hybrid networks. Both proposed networks outperform all
other networks on both data sets, and the WT-assisted one has
a higher accuracy. In contrast, the WT-assisted network
stripped of its WT block classifies rather poorly, underscoring
the importance of the WT functionality.

In Table II, we present the resource utilization of the pro-
posed networks when synthesized on a Virtex-7 FPGA board
at 150 MHz using the Vivado compiler. Note that the previous-
ly proposed networks have no published FPGA implementa-
tions so we cannot compare with them in this regard. Both our
designs fit on the FPGA, as the maximal resource utilization is
around 40%. At the same time, DCLSTM is roughly 60% larg-
er than WCLSTM, which can be excessive for resource-
constrained applications. Thus, the WT-assisted version is both
smaller and has better accuracy. The fact that DCLSTM is able
to achieve a comparable (only slightly worse) accuracy sug-
gests that the signal processing done by WT is emulated by the
extra layers that are not present in WCLSTM, but at an exces-
sive cost. Stripping the WT block from CLSTM reduces the
resource consumption as expected by roughly 15%; however
this reduction is likely not worth the significant deterioration in
accuracy.

Finally, we demonstrate the superiority of a dedicated
hardware architecture over software running on a CPU or a
GPU. A comparison of software implementations running in
Intel Core 15 CPU 3.20 GHz and on NVIDIA GTX GPU 980
MHz with 2048 CUDA cores is found in Table III where the
runtime for classification of one test dataset is given. Despite a
lower clock frequency of 150 MHz, our networks classify
roughly 15x faster than the CPU, and about 8% faster than the

GPU. Note that the WT-assisted network is roughly 2x faster
than the larger DCLSTM.

V. CONCLUSION

We investigated hybrid neural network architectures for
human activity recognition that provides high classification
accuracy but at the same time are suitable for realization in
dedicated hardware. A feature of our work is the integration of
a wavelet transform block into the architecture and a study of
its impact. For the first time, we provided and evaluated hard-
ware implementations of hybrid LSTM-CNNs on an FPGA
platform, demonstrating an order-of-magnitude speed-up com-
pared to all-software solutions. We found that achieving best-
in-class accuracy of around 98% is possible with and without
WT assistance, yet the WT-assisted network is much more
compact and faster, as fewer layers are required to achieve the
accuracy target. These findings strongly suggest that WT
should be part of future solutions for hardware acceleration in
the HAR domain.

TABLE I. COMPARISON OF ACCURACY FOR DIFFERENT NETWORK
ARCHITECTURES.
Accuracy (%)
Network Number of layers UCI | WISDM
architecture HAR
CNN- 1 CNN layer, 1 LSTM | 92.0 -
LSTM [13] |layer, 128 units
LSTM- 2 CNN layers, 2 LSTM | 95.7 95.0
CNN [14] layers, 32 units
CNN- 3 CNN layers, | LSTM| 97.0 94.0
LSTM [15] |layer, 30 units
CNN-RF 3 CNN layers, Random | 98.0 97.0
[15] Forest
DCLSTM 3 CNN layers, 2 LSTM| 98.4 97.8
layers, 128 & 64 units
WCLSTM WT, 2 CNN layers, 1 98.9 98.5
LSTM layer, 128 units
CLSTM 2 CNN layers, 1 LSTM| 95.8 95.3
layer, 128 units

TABLE II: RESOURCE UTILIZATION OF PROPOSED NETWORKS ON VIRTEX-7
FPGA.

Network FF LUT BRAM DSP
architecture (%) (%) (%) (%)
DCLSTM 148680 147500 251 510
(20.4%) | (40.5%) | (31.5%) | (40.4%)
WCLSTM 92650 84600 180 340
(12.7%) | (23.2%) | (22.6%) | (26.9%)
CLSTM 77330 75430 150 290
(10.6%) | (20.7%) | (18.8%) | (23.0%)
TABLE III: RUNTIMES ON CPU, GPU AND FPGA IMPLEMENTATIONS.
Network architecture CPU GPU FPGA
DCLSTM 1.611ms | 0.819ms | 0.105ms
WCLSTM 0.876ms | 0.436ms | 0.049ms
CLSTM 0.813ms | 0.402ms | 0.036ms
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